1
|
Yuan P, Ma N, Xu B. Poly (adenosine diphosphate-ribose) polymerase inhibitors in the treatment of triple-negative breast cancer with homologous repair deficiency. Med Res Rev 2024; 44:2774-2792. [PMID: 38922930 DOI: 10.1002/med.22058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Breast cancer (BC) is a highly heterogeneous disease, and the presence of germline breast cancer gene mutation (gBRCAm) is associated with a poor prognosis. Triple-negative breast cancer (TNBC) is a BC subtype, characterized by the absence of hormone and growth factor receptor expression, making therapeutic decisions difficult. Defects in the DNA damage response pathway due to mutation in breast cancer genes (BRCA 1/2) lead to homologous recombination deficiency (HRD). However, in HRD conditions, poly (adenosine diphosphate-ribose) polymerase (PARP) proteins repair DNA damage and lead to tumor cell survival. Biological understanding of HRD leads to the development of PARP inhibitors (PARPi), which trap PARP proteins and cause genomic instability and tumor cell lysis. HRD assessment can be an important biomarker in identifying gBRCAm patients with BC who could benefit from PARPi therapy. HRD can be identified by homologous recombination repair (HRR) gene-based assays, genomic-scarring assays and mutational signatures, transcription and protein expression profiles, and functional assays. However, gold standard methodologies that are robust and reliable to assess HRD are not available currently. Hence, there is a pressing need to develop accurate biomarkers identifying HRD tumors to guide targeted therapies such as PARPi in patients with BC. HRD assessment has shown fruitful outcomes in chemotherapy studies and preliminary evidence on PARPi intervention as monotherapy and combination therapy in HRD-stratified patients. Furthermore, ongoing trials are exploring the potential of PARPi in BC and clinically complex TNBC settings, where HRD testing is used as an adjunct to stratify patients based on BRCA mutations.
Collapse
Affiliation(s)
- Peng Yuan
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Ma
- Value & Implementation, Global Medical & Scientific Affairs, MSD China, Shanghai, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Ghisoni E, Morotti M, Sarivalasis A, Grimm AJ, Kandalaft L, Laniti DD, Coukos G. Immunotherapy for ovarian cancer: towards a tailored immunophenotype-based approach. Nat Rev Clin Oncol 2024; 21:801-817. [PMID: 39232212 DOI: 10.1038/s41571-024-00937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Despite documented evidence that ovarian cancer cells express immune-checkpoint molecules, such as PD-1 and PD-L1, and of a positive correlation between the presence of tumour-infiltrating lymphocytes and favourable overall survival outcomes in patients with this tumour type, the results of trials testing immune-checkpoint inhibitors (ICIs) in these patients thus far have been disappointing. The lack of response to ICIs can be attributed to tumour heterogeneity as well as inherent or acquired resistance associated with the tumour microenvironment (TME). Understanding tumour immunobiology, discovering biomarkers for patient selection and establishing optimal treatment combinations remains the hope but also a key challenge for the future application of immunotherapy in ovarian cancer. In this Review, we summarize results from trials testing ICIs in patients with ovarian cancer. We propose the implementation of a systematic CD8+ T cell-based immunophenotypic classification of this malignancy, followed by discussions of the preclinical data providing the basis to treat such immunophenotypes with combination immunotherapies. We posit that the integration of an accurate TME immunophenotype characterization with genetic data can enable the design of tailored therapeutic approaches and improve patient recruitment in clinical trials. Lastly, we propose a roadmap incorporating tissue-based profiling to guide future trials testing adoptive cell therapy approaches and assess novel immunotherapy combinations while promoting collaborative research.
Collapse
Affiliation(s)
- Eleonora Ghisoni
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Matteo Morotti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Apostolos Sarivalasis
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alizée J Grimm
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Lana Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
3
|
Jiang C, Shen C, Ni M, Huang L, Hu H, Dai Q, Zhao H, Zhu Z. Molecular mechanisms of cisplatin resistance in ovarian cancer. Genes Dis 2024; 11:101063. [PMID: 39224110 PMCID: PMC11367050 DOI: 10.1016/j.gendis.2023.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 09/04/2024] Open
Abstract
Ovarian cancer is one of the most common malignant tumors of the female reproductive system. The majority of patients with advanced ovarian cancer are mainly treated with cisplatin-based chemotherapy. As the most widely used first-line anti-neoplastic drug, cisplatin produces therapeutic effects through multiple mechanisms. However, during clinical treatment, cisplatin resistance has gradually emerged, representing a challenge for patient outcome improvement. The mechanism of cisplatin resistance, while known to be complex and involve many processes, remains unclear. We hope to provide a new direction for pre-clinical and clinical studies through this review on the mechanism of ovarian cancer cisplatin resistance and methods to overcome drug resistance.
Collapse
Affiliation(s)
- Chenying Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Chenjun Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Maowei Ni
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310005, China
| | - Lili Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Hongtao Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Qinhui Dai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Huajun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Zhihui Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| |
Collapse
|
4
|
Monberg MJ, Keefe S, Karantza V, Tryfonidis K, Toker S, Mejia J, Orlowski R, Haiderali A, Prabhu VS, Aktan G. A Narrative Review of the Clinical, Humanistic, and Economic Value of Pembrolizumab-Based Immunotherapy for the Treatment of Breast and Gynecologic Cancers. Oncol Ther 2024:10.1007/s40487-024-00308-0. [PMID: 39453600 DOI: 10.1007/s40487-024-00308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024] Open
Abstract
Breast and gynecologic cancers are common across the world and are associated with substantial societal and economic burden. Pembrolizumab was among the first immune checkpoint inhibitors targeting programmed cell death protein 1 to be approved for the treatment of patients with triple-negative breast cancer, cervical cancer, and endometrial cancer. Recent clinical trials have established pembrolizumab regimens as a standard of care treatment for these tumor types. Clinical data are further supported by patient-reported outcome, cost-effectiveness, and real-world evidence. Pembrolizumab monotherapy and combination regimens do not negatively influence health-related quality of life and are cost-effective relative to comparators. Ongoing phase 3 studies with pembrolizumab will expand the current understanding of its use in breast and gynecologic cancers. Several of these studies are in patients with early-stage disease with the hope of curing patients. The main objective of this review is to summarize the clinical, humanistic, and economic value of pembrolizumab in these settings and to describe the future challenges for patients, caregivers, clinicians, and payers.
Collapse
Affiliation(s)
| | - Steve Keefe
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | | | | | - Sarper Toker
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | - Jaime Mejia
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | | | - Amin Haiderali
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | | | - Gursel Aktan
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| |
Collapse
|
5
|
Na JR, Liu Y, Fang K, Tan Y, Liang PP, Yan M, Chu JJ, Gao JM, Chen D, Zhang SX. Unraveling the potential biomarkers of immune checkpoint inhibitors in advanced ovarian cancer: a comprehensive review. Invest New Drugs 2024:10.1007/s10637-024-01478-4. [PMID: 39432145 DOI: 10.1007/s10637-024-01478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
The ongoing research on the role of immunotherapy in advanced ovarian cancer (OC) and current clinical trials indicate that patients shown limited response to immune checkpoint inhibitor (ICI) monotherapy. When combined with other treatments or drugs, the efficacy of immunotherapy will be significantly improved. Biomarkers can be used to identify patients with better responses, thereby improving the precision and efficacy of immunotherapy. Key biomarkers for advanced OC include homologous repair deficiency, programmed death-ligand (PD-L) 1 expression, chemokines, and tumor infiltrating lymphocytes. These biomarkers could be applied in the future to select the most suitable patient populations. This review comprehensively examines the research and development of biomarkers in OC immunotherapy from three omics perspectives: genomics, transcriptomics, and proteomics, which may provide guidance for the effectiveness of OC immunotherapy strategies.
Collapse
Affiliation(s)
- Jian-Rong Na
- Department of Respiratory and Critical Care Medicine, the First Clinical College of Ningxia Medical University, Yinchuan, 750004, China
| | - Yaqin Liu
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Kun Fang
- Yinchuan Maternal and Child Health Hospital, Yinchuan, 750004, China
| | - Yuan Tan
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Pan-Pan Liang
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Mei Yan
- Ningxia Medical University General Hospital, Yinchuan, 750004, China
| | - Jiao-Jiao Chu
- Ningxia Medical University General Hospital, Yinchuan, 750004, China
| | - Jian-Mei Gao
- Ningxia Medical University General Hospital, Yinchuan, 750004, China
| | - Dongsheng Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China.
- Cancer Center, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
- Center of Translational Medicine, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| | - Shu-Xiang Zhang
- Department of Respiratory and Critical Care Medicine, the First Clinical College of Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
6
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Qiu J, Ren T, Liu Q, Jiang Q, Wu T, Cheng LC, Yan W, Qu X, Han X, Hua K. Dissecting the Distinct Tumor Microenvironments of HRD and HRP Ovarian Cancer: Implications for Targeted Therapies to Overcome PARPi Resistance in HRD Tumors and Refractoriness in HRP Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309755. [PMID: 39136172 PMCID: PMC11481286 DOI: 10.1002/advs.202309755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/08/2024] [Indexed: 10/17/2024]
Abstract
High-grade serous tubo-ovarian cancer (HGSTOC) is an aggressive gynecological malignancy including homologous recombination deficient (HRD) and homologous recombination proficient (HRP) groups. Despite the therapeutic potential of poly (ADP-ribose) polymerase inhibitors (PARPis) and anti-PDCD1 antibodies, acquired resistance in HRD and suboptimal response in HRP patients necessitate more precise treatment. Herein, single-cell RNA and single-cell T-cell receptor sequencing on 5 HRD and 3 HRP tumors are performed to decipher the heterogeneous tumor immune microenvironment (TIME), along with multiplex immunohistochemistry staining and animal experiments for validation. HRD tumors are enriched with immunogenic epithelial cells, FGFR1+PDGFRβ+ myCAFs, M1 macrophages, tumor reactive CD8+/CD4+ Tregs, whereas HRP tumors are enriched with HDAC1-expressing epithelial cells, indolent CAFs, M2 macrophages, and bystander CD4+/CD8+ T cells. Significantly, customized therapies are proposed. For HRD patients, targeting FGFR1+PDGFRβ+ myCAFs via tyrosine kinase inhibitors, targeting Tregs via anti-CCR8 antibodies/TNFRSF4 stimulation, and targeting CXCL13+ exhausted T cells by blocking PDCD1/CTLA-4/LAG-3/TIGIT are proposed. For HRP patients, targeting indolent CAFs, targeting M2 macrophages via CSF-1/CSF-1R inhibitors, targeting bystander T cells via tumor vaccines, and targeting epithelial cells via HDAC inhibitors. The study provides comprehensive insights into HRD and HRP TIME and tailored therapeutic approaches, addressing the challenges of PARPi-resistant HRD and refractory HRP tumors.
Collapse
Affiliation(s)
- Junjun Qiu
- Department of Gynecology Obstetrics and Gynecology HospitalFudan University419 Fangxie RoadShanghai200011China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related Diseases413 Zhaozhou RoadShanghai200011China
| | - Tingting Ren
- Department of Gynecology Obstetrics and Gynecology HospitalFudan University419 Fangxie RoadShanghai200011China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related Diseases413 Zhaozhou RoadShanghai200011China
| | - Qinqin Liu
- Department of Gynecology Obstetrics and Gynecology HospitalFudan University419 Fangxie RoadShanghai200011China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related Diseases413 Zhaozhou RoadShanghai200011China
| | - Qian Jiang
- Department of Gynecology Obstetrics and Gynecology HospitalFudan University419 Fangxie RoadShanghai200011China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related Diseases413 Zhaozhou RoadShanghai200011China
| | - Tong Wu
- Department of Gynecology Obstetrics and Gynecology HospitalFudan University419 Fangxie RoadShanghai200011China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related Diseases413 Zhaozhou RoadShanghai200011China
| | - Leong Chi Cheng
- Department of Gynecology Obstetrics and Gynecology HospitalFudan University419 Fangxie RoadShanghai200011China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related Diseases413 Zhaozhou RoadShanghai200011China
| | - Wenqing Yan
- Department of Gynecology Obstetrics and Gynecology HospitalFudan University419 Fangxie RoadShanghai200011China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related Diseases413 Zhaozhou RoadShanghai200011China
| | - Xinyu Qu
- Department of Gynecology Obstetrics and Gynecology HospitalFudan University419 Fangxie RoadShanghai200011China
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related Diseases413 Zhaozhou RoadShanghai200011China
| | - Xiao Han
- Kangxiang Bio‐tech.Ltd.2168 Chenhang RoadShangHai201114China
| | - Keqin Hua
- Department of Gynecology Obstetrics and Gynecology HospitalFudan University419 Fangxie RoadShanghai200011China
| |
Collapse
|
8
|
Yamanaka K, Koma YI, Urakami S, Takahashi R, Nagamata S, Omori M, Torigoe R, Yokoo H, Nakanishi T, Ishihara N, Tsukamoto S, Kodama T, Nishio M, Shigeoka M, Yokozaki H, Terai Y. YKL40/Integrin β4 Axis Induced by the Interaction between Cancer Cells and Tumor-Associated Macrophages Is Involved in the Progression of High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2024; 25:10598. [PMID: 39408927 PMCID: PMC11477481 DOI: 10.3390/ijms251910598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Macrophages in the tumor microenvironment, termed tumor-associated macrophages (TAMs), promote the progression of various cancer types. However, many mechanisms related to tumor-stromal interactions in epithelial ovarian cancer (EOC) progression remain unclear. High-grade serous ovarian carcinoma (HGSOC) is the most malignant EOC subtype. Herein, immunohistochemistry was performed on 65 HGSOC tissue samples, revealing that patients with a higher infiltration of CD68+, CD163+, and CD204+ macrophages had a poorer prognosis. We subsequently established an indirect co-culture system between macrophages and EOC cells, including HGSOC cells. The co-cultured macrophages showed increased expression of the TAM markers CD163 and CD204, and the co-cultured EOC cells exhibited enhanced proliferation, migration, and invasion. Cytokine array analysis revealed higher YKL40 secretion in the indirect co-culture system. The addition of YKL40 increased proliferation, migration, and invasion via extracellular signal-regulated kinase (Erk) signaling in EOC cells. The knockdown of integrin β4, one of the YKL40 receptors, suppressed YKL40-induced proliferation, migration, and invasion, as well as Erk phosphorylation in some EOC cells. Database analysis showed that high-level expression of YKL40 and integrin β4 correlated with a poor prognosis in patients with serous ovarian carcinoma. Therefore, the YKL40/integrin β4 axis may play a role in ovarian cancer progression.
Collapse
Affiliation(s)
- Keitaro Yamanaka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.T.); (S.N.); (Y.T.)
| | - Yu-ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Satoshi Urakami
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Ryosuke Takahashi
- Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.T.); (S.N.); (Y.T.)
| | - Satoshi Nagamata
- Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.T.); (S.N.); (Y.T.)
| | - Masaki Omori
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Rikuya Torigoe
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Hiroki Yokoo
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Takashi Nakanishi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Nobuaki Ishihara
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Shuichi Tsukamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Yoshito Terai
- Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.T.); (S.N.); (Y.T.)
| |
Collapse
|
9
|
Mitri Z, Goodyear SM, Mills G. Strategies for the prevention or reversal of PARP inhibitor resistance. Expert Rev Anticancer Ther 2024; 24:959-975. [PMID: 39145413 DOI: 10.1080/14737140.2024.2393251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
INTRODUCTION Advances in our understanding of tumor biology shed light on hallmarks of cancer development and progression that include dysregulated DNA damage repair (DDR) machinery. Leveraging the underlying tumor genomic instability and tumor-specific defects in DDR, Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induced DNA damage emerges as a novel non-chemotherapy therapeutic opportunity. PARPis are currently approved in multiple tumor types, with the largest benefit seen in tumors with homologous recombination repair (HRR) deficiency, including germline and somatic mutations in BRCA1/2 genes (BRCA) and other pathway members such as PALB2 and Rad51c. AREAS COVERED This review article summarizes the current approval landscape and known and proposed mechanisms of resistance to PARPi. Further, therapeutic strategies to overcome PARPi resistance are discussed, including ongoing clinical trials. EXPERT OPINION PARPi have proven to be a safe and effective therapy and represents a cornerstone treatment across multiple solid tumor types. Elucidating innate and acquired mechanisms of resistance, coupled with the emergence of novel therapeutic options to capitalize on the activity of PARPi and prevent or reverse the acquisition of resistance, provides an opportunity to further expand the role of PARPi in cancer therapy.
Collapse
Affiliation(s)
- Zahi Mitri
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Shaun M Goodyear
- Developmental and Cancer Biology, Knight Cancer Institute, Portland, OR, USA
| | - Gordon Mills
- Developmental and Cancer Biology, Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
10
|
Ye W, Fang Y, Wei Z. Construction and validation of a comprehensive metabolism-associated prognostic model for predicting survival and immunotherapy benefits in ovarian cancer. J Cancer 2024; 15:5986-6001. [PMID: 39440060 PMCID: PMC11492998 DOI: 10.7150/jca.100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Background: Ovarian cancer (OV) is a prevalent malignancy among gynecological tumors. Numerous metabolic pathways play a significant role in various human diseases, including malignant tumors. Our study aimed to develop a prognostic signature for OV based on a comprehensive set of metabolism-related genes (MRGs). Method: To achieve this, a bioinformatics analysis was performed on the expression profiles of 51 MRGs. The OV individuals were subsequently categorized into two molecular clusters based on the expression levels of MRGs. Following this, differentially expressed genes (DEGs) were identified among these clusters. The DEGs aided in the classification of two gene clusters, with a total of 390 DEGs being identified between them. A prognostic signature, constructed using the DEGs, enabled the calculation of risk scores for OV patients. Results: This study revealed that patients classified as low-risk demonstrated a more favorable prognosis, increased immune cell infiltration, and superior response to chemotherapy in comparison to high-risk patients. Four signature genes, GDF6, KIF26A, P2RY14, and ALDH1A2, were identified as significant contributors to the prognostic signature. The expression levels of these signature genes were different between OV and normal ovary tissues through in vitro experiments. Additionally, P2RY14 protein was found to potentially influence the growth of OV cell lines. Conclusion: We have constructed a prognostic signature associated with MRGs that demonstrates exceptional efficacy in prognosis survival outcomes and therapeutic responses in patients diagnosed with OV. Downregulation of P2RY14 may contribute to an unfavorable prognosis in OV.
Collapse
Affiliation(s)
- Wei Ye
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yuanyuan Fang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| |
Collapse
|
11
|
Qian J, Liao G, Chen M, Peng RW, Yan X, Du J, Huang R, Pan M, Lin Y, Gong X, Xu G, Zheng B, Chen C, Yang Z. Advancing cancer therapy: new frontiers in targeting DNA damage response. Front Pharmacol 2024; 15:1474337. [PMID: 39372203 PMCID: PMC11449873 DOI: 10.3389/fphar.2024.1474337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Genomic instability is a core characteristic of cancer, often stemming from defects in DNA damage response (DDR) or increased replication stress. DDR defects can lead to significant genetic alterations, including changes in gene copy numbers, gene rearrangements, and mutations, which accumulate over time and drive the clonal evolution of cancer cells. However, these vulnerabilities also present opportunities for targeted therapies that exploit DDR deficiencies, potentially improving treatment efficacy and patient outcomes. The development of PARP inhibitors like Olaparib has significantly improved the treatment of cancers with DDR defects (e.g., BRCA1 or BRCA2 mutations) based on synthetic lethality. This achievement has spurred further research into identifying additional therapeutic targets within the DDR pathway. Recent progress includes the development of inhibitors targeting other key DDR components such as DNA-PK, ATM, ATR, Chk1, Chk2, and Wee1 kinases. Current research is focused on optimizing these therapies by developing predictive biomarkers for treatment response, analyzing mechanisms of resistance (both intrinsic and acquired), and exploring the potential for combining DDR-targeted therapies with chemotherapy, radiotherapy, and immunotherapy. This article provides an overview of the latest advancements in targeted anti-tumor therapies based on DDR and their implications for future cancer treatment strategies.
Collapse
Affiliation(s)
- Jiekun Qian
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Guoliang Liao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Maohui Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Xin Yan
- Department of Cardiac Medical Center Nursing, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianting Du
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Renjie Huang
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Maojie Pan
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Yuxing Lin
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Xian Gong
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Guobing Xu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Bin Zheng
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Cardiothoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| | - Zhang Yang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Clinical Research Center for Thoracic Tumors of Fujian Province, Fuzhou, China
| |
Collapse
|
12
|
Phillipps J, Nassief G, Morecroft R, Adeyelu T, Elliott A, Abdulla F, Vanderwalde A, Park S, Butt O, Zhou A, Ansstas G. Efficacy of PARP inhibitor therapy after targeted BRAF/MEK failure in advanced melanoma. NPJ Precis Oncol 2024; 8:187. [PMID: 39232122 PMCID: PMC11374802 DOI: 10.1038/s41698-024-00684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
Modern advancements in targeted therapy and immunotherapy have significantly improved survival outcomes for advanced melanoma; however, there remains a need for novel approaches to overcome disease progression and treatment resistance. In recent years, PARPi therapy has shown great promise both as a single regimen and in combination with other therapeutics in melanoma. Here, we describe three unique cases of advanced BRAF V600 mutated melanoma that progressed on targeted BRAF/MEK agents that subsequently exhibited partial to near-complete responses to combinatory PARPi and BRAF/MEK inhibitors. This highlights both a potential synergy underlying this combinatory approach and its efficacy as a treatment option for patients with advanced melanoma refractory to targeted and/or immunotherapies. Prospective clinical trials are needed to explore this synergic effect in larger melanoma cohorts to investigate this combination for treating refractory advanced melanoma.
Collapse
Affiliation(s)
- Jordan Phillipps
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - George Nassief
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Renee Morecroft
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | | | | | | | | | - Soo Park
- University of California San Diego, San Diego, CA, USA
| | - Omar Butt
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Alice Zhou
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - George Ansstas
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA.
| |
Collapse
|
13
|
Kristeleit R, Leary A, Oaknin A, Redondo A, George A, Chui S, Seiller A, Liste-Hermoso M, Willis J, Shemesh CS, Xiao J, Lin KK, Molinero L, Guan Y, Ray-Coquard I, Mileshkin L. PARP inhibition with rucaparib alone followed by combination with atezolizumab: Phase Ib COUPLET clinical study in advanced gynaecological and triple-negative breast cancers. Br J Cancer 2024; 131:820-831. [PMID: 38971950 PMCID: PMC11369183 DOI: 10.1038/s41416-024-02776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Combining PARP inhibitors (PARPis) with immune checkpoint inhibitors may improve clinical outcomes in selected cancers. We evaluated rucaparib and atezolizumab in advanced gynaecological or triple-negative breast cancer (TNBC). METHODS After identifying the recommended dose, patients with PARPi-naive BRCA-mutated or homologous recombination-deficient/loss-of-heterozygosity-high platinum-sensitive ovarian cancer or TNBC received rucaparib plus atezolizumab. Tumour biopsies were collected pre-treatment, during single-agent rucaparib run-in, and after starting combination therapy. RESULTS The most common adverse events with rucaparib 600 mg twice daily and atezolizumab 1200 mg on Day 1 every 3 weeks were gastrointestinal effects, fatigue, liver enzyme elevations, and anaemia. Responding patients typically had BRCA-mutated tumours and higher pre-treatment tumour levels of PD-L1 and CD8 + T cells. Markers of DNA damage repair decreased during rucaparib run-in and combination treatment in responders, but typically increased in non-responders. Apoptosis signature expression showed the reverse. CD8 + T-cell activity and STING pathway activation increased during rucaparib run-in, increasing further with atezolizumab. CONCLUSIONS In this small study, rucaparib plus atezolizumab demonstrated acceptable safety and activity in BRCA-mutated tumours. Increasing anti-tumour immunity and inflammation might be a key mechanism of action for clinical benefit from the combination, potentially guiding more targeted development of such regimens. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov (NCT03101280).
Collapse
Affiliation(s)
- Rebecca Kristeleit
- University College London Cancer Institute, London, UK.
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.
- Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK.
| | | | - Ana Oaknin
- Gynaecologic Cancer Programme, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitario Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Andres Redondo
- Medical Oncology Department, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Angela George
- The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Stephen Chui
- Product Development Oncology, Genentech Inc., South San Francisco, CA, USA
| | | | | | - Jenna Willis
- Product Development Safety, Roche Products Ltd, Welwyn Garden City, UK
| | - Colby S Shemesh
- Clinical Pharmacology Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Jim Xiao
- Clovis Oncology, San Francisco, CA, USA
| | | | - Luciana Molinero
- Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Yinghui Guan
- Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Isabelle Ray-Coquard
- Centre Leon Bérard, HESPER laboratory EA 7425, Université Claude Bernard Lyon Est, Lyon, France
| | - Linda Mileshkin
- Department of Medical Oncology, Peter MacCallum Cancer Centre and University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Xiao F, Wang Z, Qiao L, Zhang X, Wu N, Wang J, Yu X. Application of PARP inhibitors combined with immune checkpoint inhibitors in ovarian cancer. J Transl Med 2024; 22:778. [PMID: 39169400 PMCID: PMC11337781 DOI: 10.1186/s12967-024-05583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024] Open
Abstract
The advent of polyadenosine diphosphate ribose polymerase inhibitors (PARPi) has brought about significant changes in the field of ovarian cancer treatment. However, in 2022, Rucaparib, Olaparib, and Niraparib, had their marketing approval revoked for third-line and subsequent therapies due to an increased potential for adverse events. Consequently, the exploration of new treatment modalities remains imperative. Recently, the integration of PARPi with immune checkpoint inhibitors (ICIs) has emerged as a potential remedy option within the context of ovarian cancer. This article offers a comprehensive examination of the mechanisms and applications of PARPi and ICIs in the treatment of ovarian cancer. It synthesizes the existing evidence supporting their combined use and discusses key considerations that merit attention in ongoing development efforts.
Collapse
Affiliation(s)
- Fen Xiao
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - ZhiBin Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Liu Qiao
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiu Zhang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - NaYiYuan Wu
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| | - Jing Wang
- Hunan Gynecological Tumor Clinical Research Center; Hunan Key Laboratory of Cancer Metabolism; Hunan Cancer Hospital, and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| | - Xing Yu
- Department of Basic Medical Sciences, School of Medicine, Hunan Normal University, Changsha, China.
- Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.
- Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China.
| |
Collapse
|
15
|
Xie Y, Xiao D, Li D, Peng M, Peng W, Duan H, Yang X. Combined strategies with PARP inhibitors for the treatment of BRCA wide type cancer. Front Oncol 2024; 14:1441222. [PMID: 39156700 PMCID: PMC11327142 DOI: 10.3389/fonc.2024.1441222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Genomic instability stands out as a pivotal hallmark of cancer, and PARP inhibitors (PARPi) emerging as a groundbreaking class of targeted therapy drugs meticulously crafted to inhibit the repair of DNA single-strand breaks(SSB) in tumor cells. Currently, PARPi have been approved for the treatment of ovarian cancer, pancreatic cancer, breast cancer, and prostate cancer characterized by homologous recombination(HR) repair deficiencies due to mutations in BRCA1/2 or other DNA repair associated genes and acquiring the designation of breakthrough therapy. Nonetheless, PARPi exhibit limited efficacy in the majority of HR-proficient BRCA1/2 wild-type cancers. At present, the synergistic approach of combining PARPi with agents that induce HR defects, or with chemotherapy and radiotherapy to induce substantial DNA damage, significantly enhances the efficacy of PARPi in BRCA wild-type or HR-proficient patients, supporting extension the use of PARPi in HR proficient patients. Therefore, we have summarized the effects and mechanisms of the combined use of drugs with PARPi, including the combination of PARPi with HR defect-inducing drugs such as ATRi, CHKi, HR indirectly inducing drugs like VEGFRi, CDKi, immune checkpoint inhibitors and drugs instigating DNA damage such as chemotherapy or radiotherapy. In addition, this review discusses several ongoing clinical trials aimed at analyzing the clinical application potential of these combined treatment strategies.
Collapse
Affiliation(s)
- Yijun Xie
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Di Xiao
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Duo Li
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Wei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Huaxin Duan
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoping Yang
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
16
|
Chen Y, Fan X, Lu R, Zeng S, Gan P. PARP inhibitor and immune checkpoint inhibitor have synergism efficacy in gallbladder cancer. Genes Immun 2024; 25:307-316. [PMID: 38866965 DOI: 10.1038/s41435-024-00280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Gallbladder cancer (GBC) is an aggressive cancer with poor prognosis. PARP inhibitors (PARPi) target PARP enzymes and have shown efficacy in patients with breast cancer gene (BRCA) mutations. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has transformed cancer treatment. However, the combined impact of PARPi and ICIs in GBC remains unclear. We present a groundbreaking case of a GBC patient with BRCA2 mutations who received combination therapy with PARPi and ICIs after failing multiple lines of treatment. Next-generation sequencing (NGS-Seq) identified BRCA gene mutations. To further investigate potential mechanisms, we developed a PARP1-BRCA1-BRCA2 pathway-related risk score (PBscore) system to evaluate the impact of PARPi on the tumor immune microenvironment via RNA-Seq data. Gene expression and functional analysis identified potential mechanisms associated with the PBscore. Experimental validation assessed the impact of the combination therapy on the tumor microenvironment using multiplexed immunofluorescence imaging and immunohistochemistry in patients with BRCA gene wild type or mutations. RNA-Seq analysis revealed correlations between PBscore, immune checkpoint levels, tumor-infiltrating immune cells (TIICs), and the cancer-immunity cycle. Multiplexed immunofluorescence imaging validated that low PBscore patients might have an active tumor microenvironment. Furthermore, upon drug resistance, we observed an upregulation of negative immune checkpoints such as CEACAM1, indicating that the tumor immune microenvironment becomes suppressed after resistance. Our study revealed that PBscore could serve as a biomarker to predict immunotherapy efficacy, offering a promising alternative for BRCA2-mutated GBC patients.
Collapse
Affiliation(s)
- Yu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xudong Fan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ruohuang Lu
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Pingping Gan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
17
|
Carballo EV, Kim KH, Penn CA. Trends in estimated PARP inhibitor eligibility and benefit among US epithelial ovarian cancer patients. Gynecol Oncol 2024; 187:204-211. [PMID: 38795509 DOI: 10.1016/j.ygyno.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
OBJECTIVE To estimate the annual percentage of patients with epithelial ovarian cancer (EOC) who could be eligible for and benefit from PARP inhibitor therapy amidst changing US Food and Drug Administration (FDA)-approved indications. METHODS This is a simulated retrospective observational study using publicly available data on patients with advanced-stage EOC. PARPi eligibility is based on FDA approvals and withdrawals from 2014 through 2023, along with published demographic and genomic data. Clinical trial data is used to estimate treatment benefit. PARPi including olaparib, niraparib, and rucaparib are analyzed in aggregate with sub-analyses by molecular classification and treatment timing. Results are reported as the percentage of EOC patients appropriate for any cancer-directed therapy. RESULTS PARPi were approved for 9 different indications in EOC between 2014 and 2021; reduced to 6 indications by 2023. Eligibility increased from 2.0% (95% CI,1.3%-1.6%) in 2014 to a maximum of 93.4% (95% CI,90.1%-94.6%) in 2021. The maximum percentage of patients with 2-year PFS benefit was 22.0% (95% CI, 17.2%-26.8%) in 2021, projected to decrease to 13.0% (95% CI, 9.9%-15.9%) in 2024. Most of this decrease was seen in the homologous recombination deficient, BRCA wild-type population (8.4% to 4.0%). CONCLUSIONS PARPi eligibility increased at a greater rate than benefit resulting in a low population-level benefit-to-eligibility ratio until 2021. Recent FDA withdrawals improved this ratio with an accompanied decrease in the absolute number of patients benefiting. To further optimize population-level benefit-to-eligibility ratio of targeted therapies in ovarian cancer, we need to identify better biomarkers, treatment combinations, and novel therapeutic targets.
Collapse
Affiliation(s)
- Erica V Carballo
- Division of Gynecologic Oncology, Vanderbilt University Medical Center, United States of America.
| | - Kenneth H Kim
- Division of Gynecologic Oncology, Cedars-Sinai Medical Center, United States of America
| | - Courtney A Penn
- Division of Gynecologic Oncology, Vanderbilt University Medical Center, United States of America
| |
Collapse
|
18
|
Dinkins K, Barton W, Wheeler L, Smith HJ, Mythreye K, Arend RC. Targeted therapy in high grade serous ovarian Cancer: A literature review. Gynecol Oncol Rep 2024; 54:101450. [PMID: 39092168 PMCID: PMC11292514 DOI: 10.1016/j.gore.2024.101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Ovarian cancer continues to have a high mortality rate despite therapeutic advances. Traditionally, treatment has focused on surgery followed by systemic platinum- based chemotherapy. Unfortunately, most patients develop resistance to platinum agents, highlighting the need for targeted therapies. PARP inhibitors and anti-angiogenic agents, such as bevacizumab, have more recently changed upfront therapy. Unfortunately, other targeted therapies including immunotherapy have not seen the same success. Emerging therapeutic targets and modalities such as small molecule tyrosine kinase inhibitors, lipid metabolism targeting agents, gene therapy, ribosome targeted drugs as well as several other therapeutic classes have been and are currently under investigation. In this review, we discuss targeted therapies in high grade serous ovarian cancer from preclinical studies to phase III clinical trials.
Collapse
Affiliation(s)
- Kaitlyn Dinkins
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Wade Barton
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Lauren Wheeler
- Lister Hill Library, University of Alabama at Birmingham, Birmingham, AL
| | - Haller J. Smith
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Karthikeyan Mythreye
- Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Rebecca C. Arend
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
19
|
Kulkarni S, Gajjar K, Madhusudan S. Poly (ADP-ribose) polymerase inhibitor therapy and mechanisms of resistance in epithelial ovarian cancer. Front Oncol 2024; 14:1414112. [PMID: 39135999 PMCID: PMC11317305 DOI: 10.3389/fonc.2024.1414112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Advanced epithelial ovarian cancer is the commonest cause of gynaecological cancer deaths. First-line treatment for advanced disease includes a combination of platinum-taxane chemotherapy (post-operatively or peri-operatively) and maximal debulking surgery whenever feasible. Initial response rate to chemotherapy is high (up to 80%) but most patients will develop recurrence (approximately 70-90%) and succumb to the disease. Recently, poly-ADP-ribose polymerase (PARP) inhibition (by drugs such as Olaparib, Niraparib or Rucaparib) directed synthetic lethality approach in BRCA germline mutant or platinum sensitive disease has generated real hope for patients. PARP inhibitor (PARPi) maintenance therapy can prolong survival but therapeutic response is not sustained due to intrinsic or acquired secondary resistance to PARPi therapy. Reversion of BRCA1/2 mutation can lead to clinical PARPi resistance in BRCA-germline mutated ovarian cancer. However, in the more common platinum sensitive sporadic HGSOC, the clinical mechanisms of development of PARPi resistance remains to be defined. Here we provide a comprehensive review of the current status of PARPi and the mechanisms of resistance to therapy.
Collapse
Affiliation(s)
- Sanat Kulkarni
- Department of Medicine, Sandwell and West Birmingham NHS Trust, West Bromwich, United Kingdom
| | - Ketankumar Gajjar
- Department of Gynaecological Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|
20
|
Wenyao C, Shuai M, Yifeng F, Xinzhi L, Xiangyong Q. Combined use of niraparib enhanced the inhibitory effect of Anti-GD2 antibody on osteosarcoma cells. Discov Oncol 2024; 15:304. [PMID: 39048747 PMCID: PMC11269552 DOI: 10.1007/s12672-024-01166-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
PURPOSE This study aims to investigate the effect of Niraparib in combination with an Anti-GD2 Antibody on osteosarcoma cells. METHODS Scratch test was utilized to assess cell migration capacity, while the Transwell experiment was utilized to evaluate cell invasion potential. Cell proliferation was measured using the CCK8 experiment. The affinity between the anti-GD2 antibody and its antigen was determined via ELISA. Tumor growth was evaluated through animal experiments. Western blotting, QRT-PCR, and histological analysis were conducted to examine the expression of relevant proteins and mRNAs. RESULTS MG63 cell line was used for an example. The scratch test showed that the migration rate of osteosarcoma cells in Niraparib + Anti-GD2 group was 1.07 ± 0.04 after 48 h, and 0.34 ± 0.04 in the Control group. Transwell experiment showed that the invasion ability of osteosarcoma cells in Niraparib + Anti-GD2 group was 21.0 ± 1.5, and that in Control group was 87.7 ± 2.9. CCK8 experiment showed that the absorbance value of Niraparib + Anti-GD2 group was 0.16 ± 0.10 on day 5, and that of the Control group was 0.76 ± 0.09. Western blotting showed that the expression levels of BALP and CICP in Niraparib + Anti-GD2 group were 0.751 ± 0.135 and 1.086 ± 0.115, respectively, and those in Control group were 1.025 ± 0.143 and 1.216 ± 0.168, respectively. QRT-PCR results showed that the absorbance values of Niraparib + Anti-GD2 group were 0.173 ± 0.065 and 0.170 ± 0.078 on day 14. The results of animal experiments showed that on day 5, the tumor volume of the Control group was 2433 ± 391, and that of the Niraparib + Anti-GD2 group was 1137 ± 148. Histological analysis showed that the mean density values of Niraparib + Anti-GD2 group were 0.19 ± 0.08 and 0.22 ± 0.07, and those of Control group were 0.26 ± 0.09 and 0.29 ± 0.10. CONCLUSION The combination of Niraparib and Anti-GD2 antibody significantly inhibits Osteosarcoma cells.
Collapse
Affiliation(s)
- Chen Wenyao
- Affiliated Renhe Hospital of China Three Gorges University, No. 410, Yiling Avenue, Yichang, 443001, China
| | - Ma Shuai
- Affiliated Renhe Hospital of China Three Gorges University, No. 410, Yiling Avenue, Yichang, 443001, China
| | - Fan Yifeng
- Affiliated Renhe Hospital of China Three Gorges University, No. 410, Yiling Avenue, Yichang, 443001, China
| | - Li Xinzhi
- Affiliated Renhe Hospital of China Three Gorges University, No. 410, Yiling Avenue, Yichang, 443001, China
| | - Que Xiangyong
- Affiliated Renhe Hospital of China Three Gorges University, No. 410, Yiling Avenue, Yichang, 443001, China.
| |
Collapse
|
21
|
Ray-Coquard IL, Savoye AM, Schiffler C, Mouret-Reynier MA, Derbel O, Kalbacher E, LeHeurteur M, Martinez A, Cornila C, Martinez M, Bengrine Lefevre L, Priou F, Cloarec N, Venat L, Selle F, Berton D, Collard O, Coquan E, Le Saux O, Treilleux I, Gouerant S, Angelergues A, Joly F, Tredan O. Neoadjuvant and adjuvant pembrolizumab in advanced high-grade serous carcinoma: the randomized phase II NeoPembrOV clinical trial. Nat Commun 2024; 15:5931. [PMID: 39013870 PMCID: PMC11252284 DOI: 10.1038/s41467-024-46999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/18/2024] [Indexed: 07/18/2024] Open
Abstract
This open-label, non-comparative, 2:1 randomized, phase II trial (NCT03275506) in women with stage IIIC/IV high-grade serous carcinoma (HGSC) for whom upfront complete resection was unachievable assessed whether adding pembrolizumab (200 mg every 3 weeks) to standard-of-care carboplatin plus paclitaxel yielded a complete resection rate (CRR) of at least 50%. Postoperatively patients continued assigned treatment for a maximum of 2 years. Postoperative bevacizumab was optional. The primary endpoint was independently assessed CRR at interval debulking surgery. Secondary endpoints were Completeness of Cytoreduction Index (CCI) and peritoneal cancer index (PCI) scores, objective and best response rates, progression-free survival, overall survival, safety, postoperative morbidity, and pathological complete response. The CRR in 61 pembrolizumab-treated patients was 74% (one-sided 95% CI = 63%), exceeding the prespecified ≥50% threshold and meeting the primary objective. The CRR without pembrolizumab was 70% (one-sided 95% CI = 54%). In the remaining patients CCI scores were ≥3 in 27% of the standard-of-care group and 18% of the investigational group and CC1 in 3% of the investigational group. PCI score decreased by a mean of 9.6 in the standard-of-care group and 10.2 in the investigational group. Objective response rates were 60% and 72%, respectively, and best overall response rates were 83% and 90%, respectively. Progression-free survival was similar with the two regimens (median 20.8 versus 19.4 months in the standard-of-care versus investigational arms, respectively) but overall survival favored pembrolizumab-containing therapy (median 35.3 versus 49.8 months, respectively). The most common grade ≥3 adverse events with pembrolizumab-containing therapy were anemia during neoadjuvant therapy and infection/fever postoperatively. Pembrolizumab was discontinued prematurely because of adverse events in 23% of pembrolizumab-treated patients. Combining pembrolizumab with neoadjuvant chemotherapy is feasible for HGSC considered not completely resectable; observed activity in some subgroups justifies further evaluation to improve understanding of the role of immunotherapy in HGSC.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Female
- Middle Aged
- Aged
- Neoadjuvant Therapy/methods
- Carboplatin/therapeutic use
- Carboplatin/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Paclitaxel/therapeutic use
- Paclitaxel/administration & dosage
- Paclitaxel/adverse effects
- Chemotherapy, Adjuvant/methods
- Adult
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/surgery
- Ovarian Neoplasms/mortality
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/pathology
- Cystadenocarcinoma, Serous/surgery
- Cystadenocarcinoma, Serous/mortality
- Progression-Free Survival
- Cytoreduction Surgical Procedures
- Neoplasm Staging
Collapse
Affiliation(s)
- Isabelle L Ray-Coquard
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO) and Centre Léon Bérard, University Claude Bernard, Lyon, France.
| | | | - Camille Schiffler
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO) and Centre Léon Bérard, University Claude Bernard, Lyon, France
| | | | - Olfa Derbel
- GINECO and Institut de Cancérologie, Hôpital Privé Jean Mermoz, Lyon, France
| | - Elsa Kalbacher
- GINECO and Centre Hospitalier Universitaire Jean Minjoz, Besançon, France
| | - Marianne LeHeurteur
- GINECO and Medical Oncology Department, Centre Henri-Becquerel, Rouen, France
| | - Alejandra Martinez
- GINECO and Institut Claudius Régaud, Institut Universitaire du Cancer de Toulouse (IUCT) Oncopole, Toulouse, France
| | - Corina Cornila
- GINECO and Centre Hospitalier Régional d'Orléans, Orleans, France
| | | | | | - Frank Priou
- GINECO and Centre Hospitalier Départemental Vendée, La Roche-Sur-Yon, France
| | - Nicolas Cloarec
- GINECO and Centre Hospitalier Henri Duffaut d'Avignon, Avignon, France
| | - Laurence Venat
- GINECO and Centre Hospitalier Universitaire Dupuytren, Limoges, France
| | - Frédéric Selle
- GINECO and Groupe Hospitalier Diaconesses Croix Saint-Simon, Paris, France
| | - Dominique Berton
- GINECO and Institut de Cancérologie de l'Ouest, Centre René Gauducheau, Saint-Herblain, France
| | - Olivier Collard
- GINECO and Institut de Cancérologie de la Loire, Saint-Priest-en-Jarez, France
- Center of Medical Oncology, Hôpital Privé de la Loire, Saint-Etienne, France
| | - Elodie Coquan
- GINECO and Department of Medical Oncology, Centre François Baclesse, University Caen Normandie, Caen, France
| | - Olivia Le Saux
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO) and Centre Léon Bérard, University Claude Bernard, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR INSERM 1052, Centre Léon Bérard, CNRS 5286, Lyon, France
| | - Isabelle Treilleux
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens (GINECO) and Centre Léon Bérard, University Claude Bernard, Lyon, France
| | - Sophie Gouerant
- GINECO and Medical Oncology Department, Centre Henri-Becquerel, Rouen, France
| | | | - Florence Joly
- GINECO and Department of Medical Oncology, Centre François Baclesse, University Caen Normandie, Caen, France
| | - Olivier Tredan
- GINECO and Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| |
Collapse
|
22
|
Park J, Kim JC, Lee YJ, Kim S, Kim SW, Shin EC, Lee JY, Park SH. Unique immune characteristics and differential anti-PD-1-mediated reinvigoration potential of CD8 + TILs based on BRCA1/2 mutation status in epithelial ovarian cancers. J Immunother Cancer 2024; 12:e009058. [PMID: 38964784 PMCID: PMC11227838 DOI: 10.1136/jitc-2024-009058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND We aimed to investigate the distinct immunological characteristics of the tumor immune microenvironment in epithelial ovarian cancer (EOC) according to BRCA1/2 mutations status and differential PD-1 expression levels. METHODS Tumor-infiltrating lymphocytes (TILs) were collected from patients with newly diagnosed advanced-stage EOC (YUHS cohort, n=117). This YUHS cohort was compared with The Cancer Genome Atlas (TCGA) data for ovarian serous cystadenocarcinoma (n=482), in terms of survival outcomes and immune-related gene profiles according to BRCA1/2 status. We used multicolor flow cytometry to characterize the immune phenotypes and heterogeneity of TILs with or without BRCA1/2 mutations. In vitro functional assays were conducted to evaluate the reinvigorating ability of CD8+ TILs on anti-PD-1 treatment. RESULTS We found that EOC patients with BRCA1/2 mutations (BRCA1/2mt) exhibited better survival outcomes and significantly higher tumor mutation burden (TMB), compared with BRCA1/2 non-mutated (BRCA1/2wt) patients. Furthermore, CD8+ TILs within BRCA1/2mt tumors displayed characteristics indicating more severe T-cell exhaustion than their BRCA1/2wt counterparts. Notably, the capacity for anti-PD-1-mediated reinvigoration of CD8+ TILs was significantly greater in BRCA1/2wt tumors compared with BRCA1/2mt tumors. Additionally, within the BRCA1/2wt group, the frequency of PD-1highCD8+ TILs was positively correlated with the reinvigoration capacity of CD8+ TILs after anti-PD-1 treatment. CONCLUSION Our results highlight unique immune features of CD8+ TILs in EOC and a differential response to anti-PD-1 treatment, contingent on BRCA1/2 mutation status. These findings suggest that immune checkpoint blockade may be a promising frontline therapeutic option for selected BRCA1/2wt EOC patients.
Collapse
Affiliation(s)
- Junsik Park
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
- Department of Obstetrics and Gynecology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea (the Republic of)
| | - Jung Chul Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
- Department of Obstetrics and Gynecology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea (the Republic of)
| | - Yong Jae Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Sang Wun Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| | - Jung Yun Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| |
Collapse
|
23
|
González-Martín A, Chung HC, Saada-Bouzid E, Yanez E, Senellart H, Cassier PA, Basu B, Corr BR, Girda E, Dutcus C, Okpara CE, Ghori R, Jin F, Groisberg R, Lwin Z. Lenvatinib plus pembrolizumab for patients with previously treated advanced ovarian cancer: Results from the phase 2 multicohort LEAP-005 study. Gynecol Oncol 2024; 186:182-190. [PMID: 38718741 DOI: 10.1016/j.ygyno.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVES The phase 2, multicohort, open-label LEAP-005 study evaluated lenvatinib plus pembrolizumab in patients with previously treated advanced solid tumors. We report outcomes from the ovarian cancer cohort. METHODS Eligible patients had metastatic/unresectable ovarian cancer and had received 3 previous lines of therapy. Patients received lenvatinib 20 mg/day plus pembrolizumab 200 mg every 3 weeks. Treatment continued until progression, unacceptable toxicity, or (for pembrolizumab) completion of 35 cycles. Primary endpoints were objective response rate (ORR) per RECIST version 1.1 and safety. Secondary endpoints included duration of response (DOR), progression-free survival (PFS), and overall survival (OS). RESULTS Thirty-one patients were enrolled. 39% had high grade serous ovarian cancer, 23% were platinum-sensitive, 55% were platinum-resistant, 23% were platinum-refractory, and 84% had tumors that had a PD-L1 combined positive (CPS) score ≥1. ORR (95% CI) was 26% (12%-45%) by investigator assessment and 35% (19%-55%) by blinded independent central review (BICR). Per BICR, median DOR was 9.2 (1.5+ to 37.8+) months. ORRs (95% CI) by BICR were 35% (9/26 patients; 17%-56%) for PD-L1 CPS ≥ 1 disease and 50% (2/4 patients; 7%-93%) for PD-L1 CPS < 1 disease. Median (95% CI) PFS by BICR and OS were 6.2 (4.0-8.5) months and 21.3 (11.7-32.3) months, respectively. Treatment-related AEs occurred in 94% of patients (grade 3-4, 77%). One patient died from treatment-related hypovolemic shock. CONCLUSIONS Lenvatinib plus pembrolizumab demonstrated antitumor activity as fourth line therapy in patients with advanced ovarian cancer, and no unanticipated safety signals were identified. Responses were observed regardless of PD-L1 status.
Collapse
Affiliation(s)
- Antonio González-Martín
- Department of Medical Oncology, Cancer Center Clinica Universidad de Navarra, Madrid, Spain.
| | - Hyun Cheol Chung
- Department of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Esma Saada-Bouzid
- Department of Medical Oncology, Centre Antoine Lacassagne, Université Côte d'Azur, Nice, France.
| | - Eduardo Yanez
- Oncology-Hematology Unit, University of Frontera, Araucanía, Chile.
| | | | | | - Bristi Basu
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK.
| | | | - Eugenia Girda
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| | | | | | | | - Fan Jin
- Merck & Co., Inc., Rahway, NJ, USA.
| | | | - Zarnie Lwin
- Royal Brisbane and Women's Hospital and University of Queensland, Herston, Queensland, Australia.
| |
Collapse
|
24
|
Farajimakin O. The Role of Immunotherapy in the Treatment of Gynecologic Cancers: A Systematic Review. Cureus 2024; 16:e65638. [PMID: 39205726 PMCID: PMC11351005 DOI: 10.7759/cureus.65638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Gynecologic cancers remain a significant health burden worldwide. Immunotherapy has emerged as a promising treatment approach across various cancer types. To evaluate the efficacy and safety of immune checkpoint inhibitors, alone or in combination with other therapies, in the treatment of gynecologic cancers. We searched PubMed/MEDLINE, Cochrane Library, Embase, Web of Science, and ClinicalTrials.gov for clinical trials of immunotherapy in gynecologic cancers. Randomized controlled trials and prospective studies were included. MMAT tool was used to assess the quality of the studies. Risk of bias was assessed using appropriate tools for each study design. Seventeen studies met inclusion criteria, encompassing ovarian, endometrial, and cervical cancers. Immune checkpoint inhibitors, particularly in combination with standard therapies, demonstrated improved progression-free survival across multiple trials. Notable results include improved outcomes with pembrolizumab in endometrial and cervical cancers, and promising combinations of PARP inhibitors with checkpoint inhibitors in ovarian cancer. Safety profiles were generally consistent with known effects of immunotherapy. Immunotherapy shows significant promise in improving outcomes for patients with gynecologic cancers. Further research is needed to optimize patient selection and combination strategies.
Collapse
|
25
|
Lin H, Wu CH, Fu HC, Ou YC. Evolving treatment paradigms for platinum-resistant ovarian cancer: An update narrative review. Taiwan J Obstet Gynecol 2024; 63:471-478. [PMID: 39004472 DOI: 10.1016/j.tjog.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 07/16/2024] Open
Abstract
Platinum-resistant ovarian cancer (PROC) refers to disease progression within 6 months after the completion of platinum-based chemotherapy. Historically, treatment options for PROC were limited with a poor prognosis and non-platinum single agent plus bevacizumab has been the mainstay of treatment. Fortunately, there have been notable advancements in recent years, leading to an advance in treatment paradigms for this challenging disease. Various combinations of chemotherapy, targeted agents such as poly (ADP-ribose) polymerase (PARP) inhibitors, and immunotherapy are being explored for an improved treatment outcome. Antibody-drug conjugates targeting folate receptor alpha, which deliver a cytotoxic payload directly to cancer cells, have emerged as a promising therapeutic approach for PROC. WEE1 inhibitors, such as adavosertib, function by inhibiting the WEE1 kinase activity, leading to premature entry of a cell into mitosis phase and thus increased DNA damage. It has been observed that cancer cells with TP53 mutations may be more sensitive to WEE1 inhibitors. Biomarker testing such as analysis of the expression level of folate receptor alpha or mutation in TP53 may be applicable for identifying patients who are more likely to respond to the specific therapy, enabling a more personalized treatment approach. This overview summarizes key clinical findings on the efficacy and safety of theses novel biomarker-driven therapeutic approaches.
Collapse
Affiliation(s)
- Hao Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Hsuan Wu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hung-Chun Fu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Che Ou
- Department of Obstetrics and Gynecology, Chia-Yi Chang Gung Memorial Hospital, Chia-Yi, Taiwan.
| |
Collapse
|
26
|
Nozaki T, Sakamoto I, Kagami K, Amemiya K, Hirotsu Y, Mochizuki H, Omata M. Clinical and molecular biomarkers predicting response to PARP inhibitors in ovarian cancer. J Gynecol Oncol 2024; 35:e55. [PMID: 38330378 PMCID: PMC11262903 DOI: 10.3802/jgo.2024.35.e55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/22/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
OBJECTIVE To determine the useful biomarker for predicting the effects of poly-(ADP ribose)-polymerase (PARP) inhibitors in Japanese patients with ovarian cancer. METHODS We collected clinical information and performed molecular biological analysis on 42 patients with ovarian, fallopian tube, and primary peritoneal carcinomas who received PARP inhibitors. RESULTS Among the analyzed patients with ovarian cancer, 23.8% had germline BRCA mutation (gBRCAm), 42.9% had homologous recombination repair-related gene mutation (HRRm), and 61.1% had a genomic instability score (GIS) of ≥42. Patients with HRRm had a significantly longer progression-free survival (PFS) than those without HRRm (median PFS 35.6 vs. 7.9 months; p=0.009), with a particularly marked increase in PFS in patients with gBRCAm (median PFS 42.3 months). Similarly, among patients with recurrent ovarian cancer, those with HRRm had a longer PFS than those without HRRm (median PFS 42.3 vs. 7.7 months; p=0.040). Multivariate Cox proportional hazards regression analysis found that performance status and gBRCAm status were independent factors associated with prolonged PFS with PARP inhibitors. In recurrent ovarian cancer, multivariate regression analysis identified platinum-free interval (PFI) in addition to performance status as a significant predictor of PFS. On the contrary, no significant association was observed between PFS and a GIS of ≥42 used in clinical practice. CONCLUSION We found that HRRm can be a useful biomarker for predicting the effects of PARP inhibitors in treating ovarian cancer and that the PFI can also be useful in recurrent ovarian cancer.
Collapse
Affiliation(s)
- Takahiro Nozaki
- Department of Gynecology, Yamanashi Central Hospital, Kofu, Japan.
| | - Ikuko Sakamoto
- Department of Gynecology, Yamanashi Central Hospital, Kofu, Japan
| | - Keiko Kagami
- Department of Gynecology, Yamanashi Central Hospital, Kofu, Japan
| | - Kenji Amemiya
- Genome Analysis Center, Yamanashi Central Hospital, Kofu, Japan
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, Kofu, Japan
| | | | - Masao Omata
- Genome Analysis Center, Yamanashi Central Hospital, Kofu, Japan
- University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Xu C, Li X. Trends and frontiers of maintenance therapy for ovarian cancer over the past 20 years: a bibliometric analysis. Future Oncol 2024; 20:1925-1942. [PMID: 38864301 PMCID: PMC11497917 DOI: 10.1080/14796694.2024.2357378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
Aim: To summarize and analyze the research trends and frontiers in maintenance therapy for ovarian cancer over the past 20 years.Methods: Relevant articles were identified in Web of Science, and analyzed using CiteSpace and Excel.Results: 1204 articles from 61 countries led by the USA and England were included. 6821 authors, 2345 institutions and 292 journals have participated in the publication of papers, but the collaboration between them was not very close. The annual publication volume has increased significantly since 2015. Drug combination therapy, genetic testing, management of adverse reaction and prognostic factors are research trends and frontiers of this field.Conclusion: This is the first bibliometric research in this field, which can provide some references for researchers.
Collapse
Affiliation(s)
- Chunju Xu
- Department of Gynecology, Qianjiang Central Hospital of Chongqing, Qianjiang District, Chongqing, China
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xia Li
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
28
|
Zhou L, Wan Y, Zhang L, Meng H, Yuan L, Zhou S, Cheng W, Jiang Y. Beyond monotherapy: An era ushering in combinations of PARP inhibitors with immune checkpoint inhibitors for solid tumors. Biomed Pharmacother 2024; 175:116733. [PMID: 38754267 DOI: 10.1016/j.biopha.2024.116733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
The introduction of PARP inhibitors (PARPis) and immune checkpoint inhibitors (ICIs) has marked a significant shift in the treatment landscape for solid tumors. Emerging preclinical evidence and initial clinical trials have indicated that the synergistic application of PARPis and ICIs may enhance treatment efficacy and potentially improve long-term patient outcomes. Nonetheless, how to identify specific tumor types and molecular subgroups most likely to benefit from this combination remains an area of ongoing research. This review thoroughly examines current studies on the co-administration of PARPis and ICIs across various solid tumors. It explores the underlying mechanisms of action, evaluates clinical efficacy, identifies potential responder populations, and delineates common adverse events alongside strategic management approaches. The aim is to offer a detailed understanding of this combination therapy, potentially guiding future therapeutic strategies for solid tumors.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Lin Zhang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Huangyang Meng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Lin Yuan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Shulin Zhou
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
29
|
Li X, Poire A, Jeong KJ, Zhang D, Ozmen TY, Chen G, Sun C, Mills GB. C5aR1 inhibition reprograms tumor associated macrophages and reverses PARP inhibitor resistance in breast cancer. Nat Commun 2024; 15:4485. [PMID: 38802355 PMCID: PMC11130309 DOI: 10.1038/s41467-024-48637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Although Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have been approved in multiple diseases, including BRCA1/2 mutant breast cancer, responses are usually transient requiring the deployment of combination therapies for optimal efficacy. Here we thus explore mechanisms underlying sensitivity and resistance to PARPi using two intrinsically PARPi sensitive (T22) and resistant (T127) syngeneic murine breast cancer models in female mice. We demonstrate that tumor associated macrophages (TAM) potentially contribute to the differential sensitivity to PARPi. By single-cell RNA-sequencing, we identify a TAM_C3 cluster, expressing genes implicated in anti-inflammatory activity, that is enriched in PARPi resistant T127 tumors and markedly decreased by PARPi in T22 tumors. Rps19/C5aR1 signaling is selectively elevated in TAM_C3. C5aR1 inhibition or transferring C5aR1hi cells increases and decreases PARPi sensitivity, respectively. High C5aR1 levels in human breast cancers are associated with poor responses to immune checkpoint blockade. Thus, targeting C5aR1 may selectively deplete pro-tumoral macrophages and engender sensitivity to PARPi and potentially other therapies.
Collapse
Affiliation(s)
- Xi Li
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Alfonso Poire
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kang Jin Jeong
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Dong Zhang
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Tugba Yildiran Ozmen
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gordon B Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
30
|
Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M, Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer 2024; 23:108. [PMID: 38762484 PMCID: PMC11102195 DOI: 10.1186/s12943-024-02023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.
Collapse
Affiliation(s)
- Xin Lin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Kuan Kang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Mei Yi
- Department of Dermotology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
31
|
Lliberos C, Richardson G, Papa A. Oncogenic Pathways and Targeted Therapies in Ovarian Cancer. Biomolecules 2024; 14:585. [PMID: 38785992 PMCID: PMC11118117 DOI: 10.3390/biom14050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most aggressive forms of gynaecological malignancies. Survival rates for women diagnosed with OC remain poor as most patients are diagnosed with advanced disease. Debulking surgery and platinum-based therapies are the current mainstay for OC treatment. However, and despite achieving initial remission, a significant portion of patients will relapse because of innate and acquired resistance, at which point the disease is considered incurable. In view of this, novel detection strategies and therapeutic approaches are needed to improve outcomes and survival of OC patients. In this review, we summarize our current knowledge of the genetic landscape and molecular pathways underpinning OC and its many subtypes. By examining therapeutic strategies explored in preclinical and clinical settings, we highlight the importance of decoding how single and convergent genetic alterations co-exist and drive OC progression and resistance to current treatments. We also propose that core signalling pathways such as the PI3K and MAPK pathways play critical roles in the origin of diverse OC subtypes and can become new targets in combination with known DNA damage repair pathways for the development of tailored and more effective anti-cancer treatments.
Collapse
Affiliation(s)
- Carolina Lliberos
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
- Neil Beauglehall Department of Medical Oncology Research, Cabrini Health, Malvern, VIC 3144, Australia
| | - Gary Richardson
- Neil Beauglehall Department of Medical Oncology Research, Cabrini Health, Malvern, VIC 3144, Australia
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
| |
Collapse
|
32
|
De Lazzari G, Opattova A, Arena S. Novel frontiers in urogenital cancers: from molecular bases to preclinical models to tailor personalized treatments in ovarian and prostate cancer patients. J Exp Clin Cancer Res 2024; 43:146. [PMID: 38750579 PMCID: PMC11094891 DOI: 10.1186/s13046-024-03065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Over the last few decades, the incidence of urogenital cancers has exhibited diverse trends influenced by screening programs and geographical variations. Among women, there has been a consistent or even increased occurrence of endometrial and ovarian cancers; conversely, prostate cancer remains one of the most diagnosed malignancies, with a rise in reported cases, partly due to enhanced and improved screening efforts.Simultaneously, the landscape of cancer therapeutics has undergone a remarkable evolution, encompassing the introduction of targeted therapies and significant advancements in traditional chemotherapy. Modern targeted treatments aim to selectively address the molecular aberrations driving cancer, minimizing adverse effects on normal cells. However, traditional chemotherapy retains its crucial role, offering a broad-spectrum approach that, despite its wider range of side effects, remains indispensable in the treatment of various cancers, often working synergistically with targeted therapies to enhance overall efficacy.For urogenital cancers, especially ovarian and prostate cancers, DNA damage response inhibitors, such as PARP inhibitors, have emerged as promising therapeutic avenues. In BRCA-mutated ovarian cancer, PARP inhibitors like olaparib and niraparib have demonstrated efficacy, leading to their approval for specific indications. Similarly, patients with DNA damage response mutations have shown sensitivity to these agents in prostate cancer, heralding a new frontier in disease management. Furthermore, the progression of ovarian and prostate cancer is intricately linked to hormonal regulation. Ovarian cancer development has also been associated with prolonged exposure to estrogen, while testosterone and its metabolite dihydrotestosterone, can fuel the growth of prostate cancer cells. Thus, understanding the interplay between hormones, DNA damage and repair mechanisms can hold promise for exploring novel targeted therapies for ovarian and prostate tumors.In addition, it is of primary importance the use of preclinical models that mirror as close as possible the biological and genetic features of patients' tumors in order to effectively translate novel therapeutic findings "from the bench to the bedside".In summary, the complex landscape of urogenital cancers underscores the need for innovative approaches. Targeted therapy tailored to DNA repair mechanisms and hormone regulation might offer promising avenues for improving the management and outcomes for patients affected by ovarian and prostate cancers.
Collapse
Affiliation(s)
- Giada De Lazzari
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Alena Opattova
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
- Department of Oncology, University of Torino, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
| |
Collapse
|
33
|
Ma J, Song J, Yi X, Zhang S, Huang L, Sun L, Gao R, Han C. Impact of Drp1-regulated changes in T cell activity on the combined antitumor effects of PARPi and PD-1 inhibitors. Int Immunopharmacol 2024; 132:112006. [PMID: 38581995 DOI: 10.1016/j.intimp.2024.112006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
This study aimed to investigate the influence of dynamin-related protein 1 (Drp1)-regulated T cells on the antitumor effects of poly (ADP-ribose) polymerase inhibitors (PARPi) combined with programmed cell death protein 1 (PD-1) inhibitors to identify potential targets for enhancing immunotherapy efficacy. We found that T cells with high expression of Drp1 promoted the inhibitory and killing effects of the PARPi and PD-1 inhibitor combination on lung cancer cells in vivo and in vitro. This synergistic mechanism involves Drp1-regulated promotion of activation, migration, and intratumor infiltration of effector T cells; inhibition of negative immunomodulatory cells in the tumor microenvironment; and suppression of PARPi-induced upregulation of PD-L1 expression in tumor cells. These findings suggest that Drp1 could serve as a new target for comprehensively improving the tumor microenvironment, enhancing immunotherapy efficacy, and reversing immunotherapy resistance.
Collapse
Affiliation(s)
- Jietao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Song
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xiaofang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Letian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ruolin Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chengbo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
34
|
Liu JF, Gaillard S, Wahner Hendrickson AE, Yeku O, Diver E, Gunderson Jackson C, Arend R, Ratner E, Samnotra V, Gupta D, Chung J, Zhang H, Compton N, Baines A, Bacqué E, Liu X, Felicetti B, Konecny GE. Niraparib, Dostarlimab, and Bevacizumab as Combination Therapy in Pretreated, Advanced Platinum-Resistant Ovarian Cancer: Findings From Cohort A of the OPAL Phase II Trial. JCO Precis Oncol 2024; 8:e2300693. [PMID: 38754056 PMCID: PMC11371093 DOI: 10.1200/po.23.00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 05/18/2024] Open
Abstract
PURPOSE To report the results of OPAL (ClinicalTrials.gov identifier: NCT03574779) cohort A, a single-arm substudy of niraparib plus dostarlimab and bevacizumab for the treatment of advanced, platinum-resistant ovarian cancer (PROC). METHODS Participants with PROC who received 1-2 previous lines of therapy were treated with niraparib (200 or 300 mg once daily), dostarlimab (500 mg once every 3 weeks for four 21-day cycles, followed by 1,000 mg once every 6 weeks), and bevacizumab (15 mg/kg once every 3 weeks). The primary end point was investigator-assessed objective response rate (ORR) per RECIST v1.1. Safety was also assessed. Exploratory biomarker end points included evaluation of changes in the tumor molecular profile and microenvironment using baseline and on-treatment tumor samples. RESULTS Of 41 enrolled participants (median age, 66.0 years [range, 37-83 years]), 9.8% had tumors that were BRCA-mutated, 19.5% were homologous recombination (HR)-deficient, and 17.1% were HR repair (HRR)-mutated. As of the cutoff date, all participants discontinued treatment. The ORR was 17.1% (80% CI, 9.8 to 27.0), including one complete response (2.4%); the disease control rate was 73.2% (80% CI, 62.3 to 82.2). Two participants withdrew before first postbaseline scan because of adverse events (AEs). Grade ≥3 treatment-emergent AEs were reported in 92.7% of participants, with the most common being hypertension (26.8%). Response was not correlated with BRCA, HRR, HR deficiency (HRD), or PD-L1 status. Changes suggesting immune activation were observed in on-treatment samples after triplet therapy. CONCLUSION Results demonstrated modest activity of niraparib, dostarlimab, and bevacizumab in participants with PROC, many of whom had prognostic factors for poor treatment response. Most participants with response were bevacizumab-naïve. No association was found with HRD, BRCA, or PD-L1 status. AEs were consistent with previous monotherapy reports, except that hypertension was reported more frequently.
Collapse
|
35
|
Zhao SJ, Prior D, Heske CM, Vasquez JC. Therapeutic Targeting of DNA Repair Pathways in Pediatric Extracranial Solid Tumors: Current State and Implications for Immunotherapy. Cancers (Basel) 2024; 16:1648. [PMID: 38730598 PMCID: PMC11083679 DOI: 10.3390/cancers16091648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
DNA damage is fundamental to tumorigenesis, and the inability to repair DNA damage is a hallmark of many human cancers. DNA is repaired via the DNA damage repair (DDR) apparatus, which includes five major pathways. DDR deficiencies in cancers give rise to potential therapeutic targets, as cancers harboring DDR deficiencies become increasingly dependent on alternative DDR pathways for survival. In this review, we summarize the DDR apparatus, and examine the current state of research efforts focused on identifying vulnerabilities in DDR pathways that can be therapeutically exploited in pediatric extracranial solid tumors. We assess the potential for synergistic combinations of different DDR inhibitors as well as combinations of DDR inhibitors with chemotherapy. Lastly, we discuss the immunomodulatory implications of targeting DDR pathways and the potential for using DDR inhibitors to enhance tumor immunogenicity, with the goal of improving the response to immune checkpoint blockade in pediatric solid tumors. We review the ongoing and future research into DDR in pediatric tumors and the subsequent pediatric clinical trials that will be critical to further elucidate the efficacy of the approaches targeting DDR.
Collapse
Affiliation(s)
- Sophia J. Zhao
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| | - Daniel Prior
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| | - Christine M. Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Juan C. Vasquez
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| |
Collapse
|
36
|
Wang R, He S, Long J, Wang Y, Jiang X, Chen M, Wang J. Emerging therapeutic frontiers in cancer: insights into posttranslational modifications of PD-1/PD-L1 and regulatory pathways. Exp Hematol Oncol 2024; 13:46. [PMID: 38654302 DOI: 10.1186/s40164-024-00515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
The interaction between programmed cell death ligand 1 (PD-L1), which is expressed on the surface of tumor cells, and programmed cell death 1 (PD-1), which is expressed on T cells, impedes the effective activation of tumor antigen-specific T cells, resulting in the evasion of tumor cells from immune-mediated killing. Blocking the PD-1/PD-L1 signaling pathway has been shown to be effective in preventing tumor immune evasion. PD-1/PD-L1 blocking antibodies have garnered significant attention in recent years within the field of tumor treatments, given the aforementioned mechanism. Furthermore, clinical research has substantiated the efficacy and safety of this immunotherapy across various tumors, offering renewed optimism for patients. However, challenges persist in anti-PD-1/PD-L1 therapies, marked by limited indications and the emergence of drug resistance. Consequently, identifying additional regulatory pathways and molecules associated with PD-1/PD-L1 and implementing judicious combined treatments are imperative for addressing the intricacies of tumor immune mechanisms. This review briefly outlines the structure of the PD-1/PD-L1 molecule, emphasizing the posttranslational modification regulatory mechanisms and related targets. Additionally, a comprehensive overview on the clinical research landscape concerning PD-1/PD-L1 post-translational modifications combined with PD-1/PD-L1 blocking antibodies to enhance outcomes for a broader spectrum of patients is presented based on foundational research.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pathology, Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Shiwei He
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Jie Wang
- Department of Pathology, Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
37
|
Liu C, Qian X, Yu C, Xia X, Li J, Li Y, Xie Y, Gao G, Song Y, Zhang M, Xue H, Wang X, Sun H, Liu J, Deng W, Guo X. Inhibition of ATM promotes PD-L1 expression by activating JNK/c-Jun/TNF-α signaling axis in triple-negative breast cancer. Cancer Lett 2024; 586:216642. [PMID: 38278470 DOI: 10.1016/j.canlet.2024.216642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype of breast cancer. Anti-PD-1/PD-L1 treatment for advanced TNBC is still limited to PD-L1-positive patients. Ataxia telangiectasia mutated (ATM) is a switch molecule for homologous recombination and repair. In this study, we found a significant negative correlation between ATM and PD-L1 in 4 TNBC clinical specimens by single-cell RNA sequencing (scRNA-seq), which was confirmed by immunochemical staining in 86 TNBC specimens. We then established ATM knockdown TNBC stable cell lines to perform in vitro studies and animal experiments, proving the negative regulation of PD-L1 by ATM via suppression of tumor necrosis factor-alpha (TNF-α), which was confirmed by cytokine array analysis of TNBC cell line and analysis of clinical specimens. We further found that ATM inhibits TNF-α via inactivating JNK/c-Jun by scRNA-seq, Western blot and luciferase reporter assays. Finally, we identified a negative correlation between changes in phospho-ATMS1981 and PD-L1 levels in TNBC post- and pre-neoadjuvant therapy. This study reveals a novel mechanism by which ATM negatively regulates PD-L1 by downregulating JNK/c-Jun/TNF-α in TNBC, shedding light on the wide application of immune checkpoint blockade therapy for treating multi-line-resistant TNBC.
Collapse
Affiliation(s)
- Chenying Liu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiaolong Qian
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Chunyan Yu
- Tianjin Institute of Immunology, Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoqing Xia
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jiazhen Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yaqing Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yongjie Xie
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Guangshen Gao
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yuanming Song
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Meiyan Zhang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Huiqin Xue
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xiaozi Wang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui Sun
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jing Liu
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Weimin Deng
- Tianjin Institute of Immunology, Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaojing Guo
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
38
|
Mahadevia H, Ponvilawan B, Al-Obaidi A, Buckley J, Subramanian J, Bansal D. Exceptional synergistic response of PARP inhibitor and immune checkpoint inhibitor in esophageal adenocarcinoma with a germline BRCA2 mutation: a case report. Ther Adv Med Oncol 2024; 16:17588359241242406. [PMID: 38559611 PMCID: PMC10981852 DOI: 10.1177/17588359241242406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) and poly (ADP-ribose) polymerase (PARP) inhibitors have shown efficacy in various tumors. A significant therapeutic challenge with either ICIs or PARP inhibitors as monotherapy is treatment failure from intrinsic primary resistance or the development of secondarily acquired resistance after a period of responsiveness. The combination of PARP inhibitors and ICIs could mitigate this by potentiating treatment response. We describe an 83-year-old male patient who initially presented with abdominal pain, and weight loss along with alternating constipation and diarrhea. Imaging and biopsy revealed metastatic esophageal adenocarcinoma. Genomic testing revealed germline BRCA2 mutation. The patient initially underwent a few cycles of chemoimmunotherapy. However, due to intolerance to chemotherapy, the patient's case was discussed at a multidisciplinary molecular tumor board. He was switched to PARP inhibitor olaparib and ICI nivolumab. This combination led to a durable complete response. A combination of poly-ADP ribose polymerase inhibitor (PARPi) plus ICI may work in synergy through various mechanisms including enhanced neoantigen expression, release of immune-activating cytokines, and increased programmed death-ligand 1 expression. This may culminate in accentuated efficacy outcomes with a manageable safety profile. This exceptional response with ICI and PARPi in our case is consistent with the synergistic value of this combination, and prospective studies are warranted to definitively characterize clinical utility.
Collapse
Affiliation(s)
- Himil Mahadevia
- Department of Internal Medicine, University of Missouri–Kansas City, Kansas City, MO, USA
| | - Ben Ponvilawan
- Department of Internal Medicine, University of Missouri–Kansas City, Kansas City, MO, USA
| | - Ammar Al-Obaidi
- Department of Hematology and Oncology, University of Missouri–Kansas City, Kansas City, MO, USA
| | - Jennifer Buckley
- Department of Radiology, Saint Luke’s Hospital, Kansas City, MO, USA
| | | | - Dhruv Bansal
- Department of Hematology and Oncology, Saint Luke’s Cancer Institute, 4401 Wornall Road, Kansas City, MO 64111, USA
| |
Collapse
|
39
|
Velagapudi UK, Rouleau-Turcotte É, Billur R, Shao X, Patil M, Black BE, Pascal JM, Talele TT. Novel modifications of PARP inhibitor veliparib increase PARP1 binding to DNA breaks. Biochem J 2024; 481:437-460. [PMID: 38372302 PMCID: PMC11070930 DOI: 10.1042/bcj20230406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Catalytic poly(ADP-ribose) production by PARP1 is allosterically activated through interaction with DNA breaks, and PARP inhibitor compounds have the potential to influence PARP1 allostery in addition to preventing catalytic activity. Using the benzimidazole-4-carboxamide pharmacophore present in the first generation PARP1 inhibitor veliparib, a series of 11 derivatives was designed, synthesized, and evaluated as allosteric PARP1 inhibitors, with the premise that bulky substituents would engage the regulatory helical domain (HD) and thereby promote PARP1 retention on DNA breaks. We found that core scaffold modifications could indeed increase PARP1 affinity for DNA; however, the bulk of the modification alone was insufficient to trigger PARP1 allosteric retention on DNA breaks. Rather, compounds eliciting PARP1 retention on DNA breaks were found to be rigidly held in a position that interferes with a specific region of the HD domain, a region that is not targeted by current clinical PARP inhibitors. Collectively, these compounds highlight a unique way to trigger PARP1 retention on DNA breaks and open a path to unveil the pharmacological benefits of such inhibitors with novel properties.
Collapse
Affiliation(s)
- Uday Kiran Velagapudi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York 11439, USA
| | - Élise Rouleau-Turcotte
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal H3T 1J4 Canada
| | - Ramya Billur
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - Xuwei Shao
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York 11439, USA
| | - Manisha Patil
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York 11439, USA
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - John M. Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal H3T 1J4 Canada
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York 11439, USA
| |
Collapse
|
40
|
Lei C, Kong X, Li Y, Yang H, Zhang K, Wang Z, Chang H, Xuan L. PD-1/PD-L1 Inhibitor - Related Adverse Events and Their Management in Breast Cancer. J Cancer 2024; 15:2770-2787. [PMID: 38577606 PMCID: PMC10988294 DOI: 10.7150/jca.85433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/03/2024] [Indexed: 04/06/2024] Open
Abstract
As the positive results of multiple clinical trials were released, the Programmed cell death 1 (PD-1) and Programmed cell death ligand 1 (PD-L1) inhibitors emerge as the focus of integrative breast cancer treatment. PD-1/PD-L1 inhibitors are often used as a sequential agent to be combined with other agents such as chemotherapeutic agents, targeted agents, and radiation therapy. As multiple therapies are administered simultaneously or in sequence, they are prone to a variety of adverse effects on patients while achieving efficacy. It is a challenge for clinicians to maintaining the balance between immune-related adverse effects(irAEs) and treatment efficacy. Previous literatures have paid lots of attention on the adverse effects caused by immunosuppressive agents themselves, while there is a dearth of the research on the management of adverse immune effects during the combination of immunotherapy with other treatments. In this review, we discuss the overall incidence of irAEs caused by PD-1/PD-L1 inhibitors in combination with various types of treatments in breast cancer, including chemotherapy, CTLA-4 inhibitors, targeted therapy, and radiotherapy, and systematically summarizes the clinical management to each organ-related adverse immune reaction. It is important to emphasize that in the event of irAEs such as neurological, hematologic, and cardiac toxicity, there is no alternative treatment but to terminate immunotherapy. Thus, seeking more effective strategy of irAEs' management is imminent and clinicians are urged to raise the awareness of the management of adverse immune reactions.
Collapse
Affiliation(s)
- Chuqi Lei
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaiyu Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hu Chang
- Administration Office, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lixue Xuan
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
41
|
Freyer G, Floquet A, Tredan O, Carrot A, Langlois-Jacques C, Lopez J, Selle F, Abdeddaim C, Leary A, Dubot-Poitelon C, Fabbro M, Gladieff L, Lamuraglia M. Bevacizumab, olaparib, and durvalumab in patients with relapsed ovarian cancer: a phase II clinical trial from the GINECO group. Nat Commun 2024; 15:1985. [PMID: 38443333 PMCID: PMC10914754 DOI: 10.1038/s41467-024-45974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
Most patients with advanced ovarian cancer (AOC) ultimately relapse after platinum-based chemotherapy. Combining bevacizumab, olaparib, and durvalumab likely drives synergistic activity. This open-label phase 2 study (NCT04015739) aimed to assess activity and safety of this triple combination in female patients with relapsed high-grade AOC following prior platinum-based therapy. Patients were treated with olaparib (300 mg orally, twice daily), the bevacizumab biosimilar FKB238 (15 mg/kg intravenously, once-every-3-weeks), and durvalumab (1.12 g intravenously, once-every-3-weeks) in nine French centers. The primary endpoint was the non-progression rate at 3 months for platinum-resistant relapse or 6 months for platinum-sensitive relapse per RECIST 1.1 and irRECIST. Secondary endpoints were CA-125 decline with CA-125 ELIMination rate constant K (KELIM-B) per CA-125 longitudinal kinetics over 100 days, progression free survival and overall survival, tumor response, and safety. Non-progression rates were 69.8% (90%CI 55.9%-80.0%) at 3 months for platinum-resistant relapse patients (N = 41), meeting the prespecified endpoint, and 43.8% (90%CI 29.0%-57.4%) at 6 months for platinum-sensitive relapse (N = 33), not meeting the prespecified endpoint. Median progression-free survival was 4.1 months (95%CI 3.5-5.9) and 4.9 months (95%CI 2.9-7.0) respectively. Favorable KELIM-B was associated with better survival. No toxic deaths or major safety signals were observed. Here we show that further investigation of this triple combination may be considered in AOC patients with platinum-resistant relapse.
Collapse
Affiliation(s)
- Gilles Freyer
- Department of Medical Oncology, Lyon 1 University, Lyon, France.
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France.
- Institut de Cancérologie des HCL, Lyon, France.
| | - Anne Floquet
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Department of Medical Oncology - Gynecological Tumors, Institut Bergonié, Bordeaux, France
| | - Olivier Tredan
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Aurore Carrot
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- EMR 3738, UFR Lyon-Sud, Université Lyon1, Lyon, France
| | - Carole Langlois-Jacques
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Biostatistics and Bioinformatics Department, Hospices Civils de Lyon, Lyon, France
| | - Jonathan Lopez
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Lyon, France
| | - Frédéric Selle
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Department of Medical Oncology, Groupe Hospitalier Diaconesses Croix Saint-Simon, Paris, France
| | - Cyril Abdeddaim
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Gynecologic Oncology Department, Centre Oscar Lambret, Lille, France
| | - Alexandra Leary
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Oncology Department, Institut Gustave Roussy, Villejuif, France
| | - Coraline Dubot-Poitelon
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Medical Oncology, Institut Curie Saint Cloud, Paris, France
| | - Michel Fabbro
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Department of Medical Oncology, Institut du Cancer de Montpellier, Montpellier, France
| | - Laurence Gladieff
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Medical Oncology, Institut Claudius Regaud IUCT-Oncopole, Toulouse, France
| | - Michele Lamuraglia
- GINECO (Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'Ovaire, Paris, France
- Medical Oncology, Institut de Cancérologie du CHUSE, Saint-Etienne, France
| |
Collapse
|
42
|
Mecca M, Picerno S, Cortellino S. The Killer's Web: Interconnection between Inflammation, Epigenetics and Nutrition in Cancer. Int J Mol Sci 2024; 25:2750. [PMID: 38473997 DOI: 10.3390/ijms25052750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammation is a key contributor to both the initiation and progression of tumors, and it can be triggered by genetic instability within tumors, as well as by lifestyle and dietary factors. The inflammatory response plays a critical role in the genetic and epigenetic reprogramming of tumor cells, as well as in the cells that comprise the tumor microenvironment. Cells in the microenvironment acquire a phenotype that promotes immune evasion, progression, and metastasis. We will review the mechanisms and pathways involved in the interaction between tumors, inflammation, and nutrition, the limitations of current therapies, and discuss potential future therapeutic approaches.
Collapse
Affiliation(s)
- Marisabel Mecca
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Simona Picerno
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Salvatore Cortellino
- Laboratory of Preclinical and Translational Research, Responsible Research Hospital, 86100 Campobasso, CB, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, 80138 Naples, NA, Italy
- S.H.R.O. Italia Foundation ETS, 10060 Candiolo, TO, Italy
| |
Collapse
|
43
|
Hirschl N, Leveque W, Granitto J, Sammarco V, Fontillas M, Penson RT. PARP Inhibitors: Strategic Use and Optimal Management in Ovarian Cancer. Cancers (Basel) 2024; 16:932. [PMID: 38473293 DOI: 10.3390/cancers16050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors have become an established part of the anticancer armamentarium. Discovered in the 1980s, PARP inhibitors (PARPis) were initially developed to exploit the presence of BRCA mutations, which disrupt the homologous recombination repair of deoxyribonucleic acid (DNA) via synthetic lethality, an intrinsic vulnerability caused by the cell's dependence on other DNA repair mechanisms for which PARP is an essential contributor. PARPi use expanded with the demonstration of clinical benefit when other mechanisms of high-fidelity DNA damage response were present in cancer cells called homologous repair deficiency (HRD). Recently, new data have resulted in the voluntary withdrawal of later-line treatment indications for all the available PARPis used in ovarian cancer because of a negative impact on overall survival (OS). PARPi switch maintenance to consolidate a response to platinum-based therapy is recommended for earlier treatment lines to have the greatest impact on the chance of cure and length of survival. This article reviews the clinical utility of PARPis and how to integrate them into best practices.
Collapse
Affiliation(s)
- Nicholas Hirschl
- Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
| | - Wildnese Leveque
- Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
| | - Julia Granitto
- Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
| | - Valia Sammarco
- Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
| | | | - Richard T Penson
- Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
| |
Collapse
|
44
|
Jiang X, Yin S, Yin X, Wang Y, Fang T, Yang S, Bian X, Li G, Xue Y, Zhang L. A prognostic marker LTBP1 is associated with epithelial mesenchymal transition and can promote the progression of gastric cancer. Funct Integr Genomics 2024; 24:30. [PMID: 38358412 DOI: 10.1007/s10142-024-01311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
LTBP1 is closely related to TGF-β1 function as an essential component, which was unclear in gastric cancer (GC). Harbin Medical University (HMU)-GC cohort and The Cancer Genome Atlas (TCGA) dataset were combined to form a training cohort to calculate the connection between LTBP1 mRNA expression, prognosis and clinicopathological features. The training cohort was also used to verify the biological function of LTBP1 and its relationship with immune microenvironment and chemosensitivity. In the tissue microarrays (TMAs), immunohistochemical (IHC) staining was performed to observe LTBP1 protein expression. The correlation between LTBP1 protein expression level and prognosis was also analyzed, and a nomogram model was constructed. Western blotting (WB) was used in cell lines to assess LTBP1 expression. Transwell assays and CCK-8 were employed to assess LTBP1's biological roles. In compared to normal gastric tissues, LTBP1 expression was upregulated in GC tissues, and high expression was linked to a bad prognosis for GC patients. Based on a gene enrichment analysis, LTBP1 was primarily enriched in the TGF-β and EMT signaling pathways. Furthermore, high expression of LTBP1 in the tumor microenvironment was positively correlated with an immunosuppressive response. We also found that LTBP1 expression (p = 0.006) and metastatic lymph node ratio (p = 0.044) were independent prognostic risk factors for GC patients. The prognostic model combining LTBP1 expression and lymph node metastasis ratio reliably predicted the prognosis of GC patients. In vitro proliferation and invasion of MKN-45 GC cells were inhibited and their viability was decreased by LTBP1 knockout. LTBP1 plays an essential role in the development and progression of GC, and is a potential prognostic biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Xinju Jiang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shengjie Yin
- Department of Medical Oncology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia Autonomous Region, China
| | - Xin Yin
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yufei Wang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Tianyi Fang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuo Yang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiulan Bian
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China
| | - Guoli Li
- Department of Colorectal and Anal Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, Inner Mongolia Autonomous Region, China
| | - Yingwei Xue
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Zhang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
45
|
Xia D, Xu X, Du P. Comments on "Randomized, two-arm, non-comparative phase 2 study of olaparib plus cediranib or durvalumab in HRR-mutated, platinum-resistant ovarian cancer: A substudy of KGOG 3045". Int J Cancer 2024; 154:762-763. [PMID: 37907806 DOI: 10.1002/ijc.34785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Affiliation(s)
- Dongyue Xia
- Department of Gynaecology and Obstetrics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Xueyuan Xu
- Department of Gynaecology and Obstetrics, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
- South China Normal University, Guangzhou, China
| | - Pei Du
- Department of Gynaecology and Obstetrics, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
46
|
Deng M, Tang F, Chang X, Liu P, Ji X, Hao M, Wang Y, Yang R, Ma Q, Zhang Y, Miao J. Immunotherapy for Ovarian Cancer: Disappointing or Promising? Mol Pharm 2024; 21:454-466. [PMID: 38232985 DOI: 10.1021/acs.molpharmaceut.3c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Ovarian cancer, one of the deadliest malignancies, lacks effective treatment, despite advancements in surgical techniques and chemotherapy. Thus, new therapeutic approaches are imperative to improving treatment outcomes. Immunotherapy, which has demonstrated considerable success in managing various cancers, has already found its place in clinical practice. This review aims to provide an overview of ovarian tumor immunotherapy, including its basics, key strategies, and clinical research data supporting its potential. In particular, this discussion highlights promising strategies such as checkpoint inhibitors, vaccines, and pericyte transfer, both individually and in combination. However, the advancement of new immunotherapies necessitates large controlled randomized trials, which will undoubtedly shape the future of ovarian cancer treatment.
Collapse
Affiliation(s)
- Mengqi Deng
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Fan Tang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Xiangyu Chang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Penglin Liu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Xuechao Ji
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Menglin Hao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Yixiao Wang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Ruiye Yang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Qingqing Ma
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
- Nanyuan Hospital of Fengtai District, Beijing 100006, China
| | - Yubo Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Shandong 266011, China
| | - Jinwei Miao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| |
Collapse
|
47
|
Elyashiv O, Aleohin N, Migdan Z, Leytes S, Peled O, Tal O, Levy T. The Poor Prognosis of Acquired Secondary Platinum Resistance in Ovarian Cancer Patients. Cancers (Basel) 2024; 16:641. [PMID: 38339392 PMCID: PMC10854926 DOI: 10.3390/cancers16030641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVE The goal of this study was to evaluate response to treatment and survival in epithelial ovarian cancer patients with acquired secondary platinum resistance (SPR) compared to patients with primary platinum resistance (PPR). METHODS Patients were categorized as PPR (patients with disease recurrence occurring during or <6 months after completing first-line platinum-based chemotherapy) and SPR (patients with previously platinum-sensitive disease that developed platinum resistance on subsequent treatments). Clinico-pathological variables and treatment outcomes were compared. RESULTS Of the 118 patients included in this study, 60 had PPR and 58 developed SPR. The SPR women had a significantly higher rate of optimal debulking during their upfront and interval operations, significantly lower CA-125 levels during their primary treatment, and a significantly higher complete and partial response rate to primary chemotherapy. Once platinum resistance appeared, no significant difference in survival was observed between the two groups. The median PFS was 2 months in the PPR group and 0.83 months in the SPR group (p = 0.085). Also, no significant difference was found in post-platinum-resistant relapse survival, with a median of 17.63 months in the PPR and 20.26 months in the SPR group (p = 0.515). CONCLUSIONS Platinum resistance is an important prognostic factor in women with EOC. Patients with SPR acquire the same poor treatment outcome as with PPR. There is a great need for future research efforts to discover novel strategies and biological treatments to reverse resistance and improve survival.
Collapse
Affiliation(s)
- Osnat Elyashiv
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon 58100, Israel; (O.E.); (Z.M.); (O.P.); (O.T.)
- Tel Aviv Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Natalie Aleohin
- Tel Aviv Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Zohar Migdan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon 58100, Israel; (O.E.); (Z.M.); (O.P.); (O.T.)
- Tel Aviv Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Sophia Leytes
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon 58100, Israel; (O.E.); (Z.M.); (O.P.); (O.T.)
- Tel Aviv Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Ofri Peled
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon 58100, Israel; (O.E.); (Z.M.); (O.P.); (O.T.)
- Tel Aviv Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Ori Tal
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon 58100, Israel; (O.E.); (Z.M.); (O.P.); (O.T.)
- Tel Aviv Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Tally Levy
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon 58100, Israel; (O.E.); (Z.M.); (O.P.); (O.T.)
- Tel Aviv Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
48
|
Daly GR, AlRawashdeh MM, McGrath J, Dowling GP, Cox L, Naidoo S, Vareslija D, Hill ADK, Young L. PARP Inhibitors in Breast Cancer: a Short Communication. Curr Oncol Rep 2024; 26:103-113. [PMID: 38236558 PMCID: PMC10891270 DOI: 10.1007/s11912-023-01488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW In the last decade, poly (ADP-ribose) polymerase (PARP) inhibitors have been approved in the treatment of several cancers, such as breast and ovarian cancer. This article aims to discuss the current uses, limitations, and future directions for PARP inhibitors (PARPis) in the treatment of breast cancer. RECENT FINDINGS Following the results of the OlympiAD and EMBRACA trials, PARPis were approved in HER2-negative breast cancer with a germline BRCA mutation. We reviewed this class of drugs' mechanism of action, efficacy, and limitations, as well as further studies that discussed resistance, impaired homologous recombination repair (HRR), and the combination of PARPis with other drugs. Improving understanding of HRR, increasing the ability to target resistance, and combining PARPis with other novel agents are continuing to increase the clinical utility of PARPis.
Collapse
Affiliation(s)
- Gordon R Daly
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland.
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland.
| | - Maen Monketh AlRawashdeh
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Jason McGrath
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gavin P Dowling
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Luke Cox
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sindhuja Naidoo
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Damir Vareslija
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Arnold D K Hill
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Leonie Young
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
49
|
Chen J, Hu S, Sun M, Shi J, Zhang H, Yu H, Yang Z. Recent advances and clinical translation of liposomal delivery systems in cancer therapy. Eur J Pharm Sci 2024; 193:106688. [PMID: 38171420 DOI: 10.1016/j.ejps.2023.106688] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/23/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024]
Abstract
The limitations of conventional cancer treatment are driving the emergence and development of nanomedicines. Research in liposomal nanomedicine for cancer therapy is rapidly increasing, opening up new horizons for cancer treatment. Liposomal nanomedicine, which focuses on targeted drug delivery to improve the therapeutic effect of cancer while reducing damage to normal tissues and cells, has great potential in the field of cancer therapy. This review aims to clarify the advantages of liposomal delivery systems in cancer therapy. We describe the recent understanding of spatiotemporal fate of liposomes in the organism after different routes of drug administration. Meanwhile, various types of liposome-based drug delivery systems that exert their respective advantages in cancer therapy while reducing side effects were discussed. Moreover, the combination of liposomal agents with other therapies (such as photodynamic therapy and photothermal therapy) has demonstrated enhanced tumor-targeting efficiency and therapeutic efficacy. Finally, the opportunities and challenges faced by the field of liposome nanoformulations for entering the clinical treatment of cancer are highlighted.
Collapse
Affiliation(s)
- Jiayi Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Siyuan Hu
- School of Life Sciences, Jilin University, Changchun, China
| | - Man Sun
- School of Life Sciences, Jilin University, Changchun, China
| | - Jianan Shi
- School of Life Sciences, Jilin University, Changchun, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Hongmei Yu
- China-Japan Union Hospital, Jilin University, Changchun, China.
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
50
|
Kanev PB, Atemin A, Stoynov S, Aleksandrov R. PARP1 roles in DNA repair and DNA replication: The basi(c)s of PARP inhibitor efficacy and resistance. Semin Oncol 2024; 51:2-18. [PMID: 37714792 DOI: 10.1053/j.seminoncol.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/10/2023] [Indexed: 09/17/2023]
Abstract
Genome integrity is under constant insult from endogenous and exogenous sources. In order to cope, eukaryotic cells have evolved an elaborate network of DNA repair that can deal with diverse lesion types and exhibits considerable functional redundancy. PARP1 is a major sensor of DNA breaks with established and putative roles in a number of pathways within the DNA repair network, including repair of single- and double-strand breaks as well as protection of the DNA replication fork. Importantly, PARP1 is the major target of small-molecule PARP inhibitors (PARPi), which are employed in the treatment of homologous recombination (HR)-deficient tumors, as the latter are particularly susceptible to the accumulation of DNA damage due to an inability to efficiently repair highly toxic double-strand DNA breaks. The clinical success of PARPi has fostered extensive research into PARP biology, which has shed light on the involvement of PARP1 in various genomic transactions. A major goal within the field has been to understand the relationship between catalytic inhibition and PARP1 trapping. The specific consequences of inhibition and trapping on genomic stability as a basis for the cytotoxicity of PARP inhibitors remain a matter of debate. Finally, PARP inhibition is increasingly recognized for its capacity to elicit/modulate anti-tumor immunity. The clinical potential of PARP inhibition is, however, hindered by the development of resistance. Hence, extensive efforts are invested in identifying factors that promote resistance or sensitize cells to PARPi. The current review provides a summary of advances in our understanding of PARP1 biology, the mechanistic nature, and molecular consequences of PARP inhibition, as well as the mechanisms that give rise to PARPi resistance.
Collapse
Affiliation(s)
- Petar-Bogomil Kanev
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Aleksandar Atemin
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stoyno Stoynov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Radoslav Aleksandrov
- Laboratory of Genomic Stability, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|