1
|
Chen Z, Qin H, Yin Y, Deng DD, Qin SY, Li N, Wang K, Sun Y. Full-Color Emissive D-D-A Carbazole Luminophores: Red-to-NIR Mechano-fluorochromism, Aggregation-Induced Near-Infrared Emission, and Application in Photodynamic Therapy. Chemistry 2023; 29:e202203797. [PMID: 36545826 DOI: 10.1002/chem.202203797] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The preparation of multifunctionalized luminophores with full-color emission based on an identical core skeleton is a significative but challenging research topic. In this work, eight donor-donor-acceptor (D-D-A)-type luminogens based on a central carbazole core bearing a C6 hydrocarbon chain were designed by using different kinds of donor and acceptor units on the left and right, and synthesized in good yields. These D-D-A carbazole derivatives display deep-blue, sky-blue, cyan, green, yellow-green, yellow, orange and red fluorescence in the solid state, achieving full-color emission covering the whole visible light range under UV light illumination. Notably, the dicyano-functionalized triphenylamine-containing carbazole derivative exhibits rare aggregation-induced near-infrared emission and red-to-near-infrared mechano-fluorochromism with high contrast beyond 100 nm. Furthermore, the red-emissive luminogen can serve as a potential candidate for cell imaging and photodynamic therapy (PDT). This work not only provides reference for the construction of full-color emissive systems but also opens a new avenue to the preparation of multifunctionalized luminophores capable of simultaneous application in near-Infrared mechanical-force sensors and PDT fields.
Collapse
Affiliation(s)
- Zhao Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Huan Qin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Ya Yin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Dian-Dian Deng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Si-Yong Qin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Nan Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China.,Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| |
Collapse
|
2
|
Yang SY, Feng ZQ, Fu Z, Zhang K, Chen S, Yu YJ, Zou B, Wang K, Liao LS, Jiang ZQ. Highly Efficient Sky-Blue π-Stacked Thermally Activated Delayed Fluorescence Emitter with Multi-Stimulus Response Properties. Angew Chem Int Ed Engl 2022; 61:e202206861. [PMID: 35689409 DOI: 10.1002/anie.202206861] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Organic materials with multi-stimulus response (MSR) properties have demonstrated many potential and practical applications. Herein, a π-stacked thermally activated delayed fluorescence (TADF) material with multi-stimulus response (MSR) properties, named SDMAC, was designed and synthesized using distorted 9,9-dimethyl-10-phenyl-9,10-dihydroacridine as a donor. SDMAC possesses a rigid π-stacked configuration with intramolecular through-space interactions and exhibits aggregation-induced emission enhancement (AIEE), solvatochromic, piezochromic, and circularly polarized luminescence (CPL) under different external stimuli. The rigid molecular structure and efficient TADF properties of SDMAC can be used in displays and lighting. Using SDMAC as an emitter, the maximum external quantum efficiency (EQE) of the fabricated organic light-emitting diodes (OLEDs) is as high as 28.4 %, which make them the most efficient CP-TADF OLEDs based on the through-space charge transfer strategy. The CP organic light-emitting diodes (CP-OLEDs) exhibit circularly polarized electroluminescence (CPEL) signals.
Collapse
Affiliation(s)
- Sheng-Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zi-Qi Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiyuan Fu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Kai Zhang
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, China
| | - Song Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - You-Jun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China.,Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, China
| | - Zuo-Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
3
|
Yang S, Feng Z, Fu Z, Zhang K, Chen S, Yu Y, Zou B, Wang K, Liao L, Jiang Z. Highly Efficient Sky‐Blue π‐Stacked Thermally Activated Delayed Fluorescence Emitter with Multi‐Stimulus Response Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sheng‐Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
| | - Zi‐Qi Feng
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
| | - Zhiyuan Fu
- State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 China
| | - Kai Zhang
- Macao Institute of Materials Science and Engineering Macau University of Science and Technology Taipa 999078 China
| | - Song Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
| | - You‐Jun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
| | - Bo Zou
- State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 China
| | - Kai Wang
- State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 China
| | - Liang‐Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
- Macao Institute of Materials Science and Engineering Macau University of Science and Technology Taipa 999078 China
| | - Zuo‐Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
4
|
Hino Y, Matsuo T, Hayashi S. Structural Phase Transitions in Anthracene Crystals. Chempluschem 2022; 87:e202200157. [PMID: 35762685 DOI: 10.1002/cplu.202200157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Indexed: 01/03/2023]
Abstract
Anthracene (C14 H10 ) and its derivatives, π-conjugated molecules in acenes, have been widely researched in terms of their reactions, physical properties, and self-assembly (or crystal engineering). These molecules can be functionalized to tune reactivities, optoelectronic properties, and self-assembling abilities. Structural changes in the molecular assemblies, solid states, and crystals have recently been discovered. Therefore, a systematic discussion of anthracene's molecular structure, packing, and optical properties based on its intermolecular structure and phase transitions is important for future chemical and structural design. In the present review, we discuss anthracene's molecular design, dimer packing, and crystal structure, focusing on the structural phase transitions of its crystals. We also provide examples of the phase transitions of anthracene crystals. Changes to edge-to-face of CH-π interaction and face-to-face packing of π-π interaction affect the thermodynamic stabilities of various crystal structures. These structures can inform the prediction of structural and physical properties.
Collapse
Affiliation(s)
- Yuto Hino
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi, 782-8502, Japan
| | - Takumi Matsuo
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi, 782-8502, Japan
| | - Shotaro Hayashi
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi, 782-8502, Japan
- Research Center for Molecular Design, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi, 782-8502, Japan
| |
Collapse
|
5
|
Tokoro Y, Nakayama G, Yamamoto S, Koizumi T. Tuning Solid‐State Emission Behavior of Janus‐Type Anthracenes by Addition of Shielding Bridges. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuichiro Tokoro
- Department of Applied Chemistry School of Applied Science National Defense Academy of Japan 1-10-20 Hashirimizu Yokosuka Kanagawa 240-8501 Japan
| | - Genta Nakayama
- Department of Applied Chemistry School of Applied Science National Defense Academy of Japan 1-10-20 Hashirimizu Yokosuka Kanagawa 240-8501 Japan
| | - Shin‐ichi Yamamoto
- Department of Applied Chemistry School of Applied Science National Defense Academy of Japan 1-10-20 Hashirimizu Yokosuka Kanagawa 240-8501 Japan
| | - Toshio Koizumi
- Department of Applied Chemistry School of Applied Science National Defense Academy of Japan 1-10-20 Hashirimizu Yokosuka Kanagawa 240-8501 Japan
| |
Collapse
|
6
|
Zhang J, Zhu M, Lu Y, Zhang X, Xiao S, Lan H, Yi T. Design of Stimuli-Responsive Phenothiazine Derivatives with Triplet-Related Dual Emission and High-Contrast Mechanochromism Guided by Polymorph Prediction. Chemistry 2022; 28:e202200458. [PMID: 35411643 DOI: 10.1002/chem.202200458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 12/23/2022]
Abstract
The development of high-contrast stimulus-responsive materials with excited triplet emission is of great significance for anti-counterfeiting, sensor and memory applications, but remains a challenge. Here, we report a strategy for the rational design of stimulus-responsive phenothiazine derivatives with triplet-related dual emissions and high-contrast mechanochromism guided by Polymorph Prediction. The designed phenothiazine derivatives have the characters of simple structures, a facile synthetic procedure, and a good crystalline nature. We found that the crystals of those derivatives with the potential to form both quasi-axial (ax) and quasi-equatorial (eq) conformations could undergo conformation transition and show significant emission difference (Δλem >100 nm) under mechanical force. Meanwhile, all these phenothiazine derivatives exhibit aggregation-induced emission and emit room-temperature phosphorescence or thermally activated delayed fluorescence. The significant luminescent change of these materials under different stimuli gives them promise for applications in encryption and anti-counterfeiting.
Collapse
Affiliation(s)
- Jiayu Zhang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Hubei, Yichang, 443002, P.R. China
| | - Mengna Zhu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Hubei, Yichang, 443002, P.R. China
| | - Yunxiang Lu
- Key Laboratory for Advanced Materials and Department of Chemistry, Institution East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Xinghong Zhang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Hubei, Yichang, 443002, P.R. China
| | - Shuzhang Xiao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Hubei, Yichang, 443002, P.R. China
| | - Haichuang Lan
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Hubei, Yichang, 443002, P.R. China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P.R. China
| |
Collapse
|
7
|
Yang R, Ren X, Mei L, Pan G, Li XZ, Wu Z, Zhang S, Ma W, Yu W, Fang HH, Li C, Zhu MQ, Hu Z, Sun T, Xu B, Tian W. Reversible Three-Color Fluorescence Switching of an Organic Molecule in the Solid State via "Pump-Trigger" Optical Manipulation. Angew Chem Int Ed Engl 2022; 61:e202117158. [PMID: 35102683 DOI: 10.1002/anie.202117158] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 12/19/2022]
Abstract
In photoswitches that undergo fluorescence switching upon ultraviolet irradiation, photoluminescence and photoisomerization often occur simultaneously, leading to unstable fluorescence properties. Here, we successfully demonstrated reversible solid-state triple fluorescence switching through "Pump-Trigger" multiphoton manipulation. A novel fluorescence photoswitch, BOSA-SP, achieved green, yellow, and red fluorescence under excitation by pump light and isomerization induced by trigger light. The energy ranges of photoexcitation and photoisomerization did not overlap, enabling appropriate selection of the multiphoton light for "pump" and "trigger" photoswitching, respectively. Additionally, the large free volume of the spiropyran (SP) moiety in the solid state promoted reversible photoisomerization. Switching between "pump" and "trigger" light is useful for three-color tunable switching cell imaging, which can be exploited in programmable fluorescence switching. Furthermore, we exploited reversible dual-fluorescence switching in a single molecular system to successfully achieve two-color super-resolution imaging.
Collapse
Affiliation(s)
- Runqing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| | - Xue Ren
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China.,Department of Oncological Gynecology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Lijun Mei
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guocui Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| | - Xiao-Ze Li
- State Key Laboratory of Precision Measurement Technology & Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Zhiyuan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| | - Song Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| | - Wenyue Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| | - Weili Yu
- GPL Photonic Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Hong-Hua Fang
- State Key Laboratory of Precision Measurement Technology & Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street No. 2699, Changchun, 130012, China
| |
Collapse
|
8
|
Yao ZQ, Wang K, Liu R, Yuan YJ, Pang JJ, Li QW, Shao TY, Li ZG, Feng R, Zou B, Li W, Xu J, Bu XH. Dynamic Full-Color Tuning of Organic Chromophore in a Multi-Stimuli-Responsive 2D Flexible MOF. Angew Chem Int Ed Engl 2022; 61:e202202073. [PMID: 35191149 DOI: 10.1002/anie.202202073] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 12/12/2022]
Abstract
Developing universal stimuli-responsive materials capable of emitting a broad spectrum of colors is highly desirable. Herein, we deliberately grafted a conformation-adaptable organic chromophore into the established coordination space of a flexible metal-organic framework (MOF). In terms of the coupled structural transformations and the space confinement, the chromophore in the MOF matrix underwent well-regulated conformational changes under physical and chemical stimuli, simultaneously displaying thermo-, piezo-, and solvato-fluoro-chromism with color tunability over the visible range. Owing to the resilient nature and the reduced dimensionality of the selected coordination space, all three color modulations behaved in a sensitive and self-reversible manner, each following a linear correlation of the emission maximum with stimulus. Single-crystal X-ray diffraction of the variable-temperature structures and solvent-inclusion crystals elucidated the intricate color varying mechanisms.
Collapse
Affiliation(s)
- Zhao-Quan Yao
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Rui Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Yi-Jia Yuan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jing-Jing Pang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Quan Wen Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Tian Yin Shao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Zhi Gang Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Rui Feng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Wei Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Jian Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China.,State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
9
|
Gouthaman S, Jayaraj A, Sugunalakshmi M, Sivaraman G, P CAS. Supramolecular self-assembly mediated aggregation-induced emission of fluorene-derived cyanostilbenes: multifunctional probes for live cell-imaging. J Mater Chem B 2022; 10:2238-2250. [PMID: 35294959 DOI: 10.1039/d1tb02322e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first discovery of aggregation-induced emission (AIE), whereby luminogen aggregation plays a positive role in enhancing the light-emission efficiency, has piqued the interest of many researchers as it opens up a new avenue for the exploration of practically beneficial luminescent materials. Diverse AIE-active luminogens (or AIEgens) with tunable emission colours and very high quantum yields (up to unity) in the solid state have been extensively utilised in a broad range of fields including optoelectronics, energy and bioscience. In this article, we describe novel fluorene-based fluorogens that exhibit bright emission in the solid-state, mechanical stimuli-responsive optical properties and aggregation-induced emissive ability, and were able to modulate their donor and acceptor properties. The target compounds were synthesized by a Knoevenagel condensation followed by Suzuki cross-coupling reaction, which tends to result in good yields. The target cyanostilbenes (4a-4d) show different reversibly switched states with high contrast through morphology modulation and demonstrate solvatochromic, vapochromic, and AIE properties. These results strongly suggest that compound 4d has better properties than the other derivatives (4a-c) due to the presence of extended donor-acceptor ability. Moreover, density-functional theory (DFT) calculations strongly support the UV-Vis and fluorescence spectral studies. The formation of nano-flakes and cuboid-shaped nanocrystals was further confirmed by FE-SEM and AFM studies. The synthesized compound 4d displayed very bright emission in the solid state and in the aggregate state as compared with the other derivatives (4a-4c). These results might be due to the presence of high-color contrast, which is an advantage for elucidation and overcomes the challenges exhibited in live-cell imaging applications. Moreover, an MTT assay on live A549 cells incubated with the target compound (4d) showed very low cytotoxicity even at high concentrations.
Collapse
Affiliation(s)
- Siddan Gouthaman
- Organic Chemistry Division, CSIR-Central Leather Research Institute (CLRI), Adyar, Chennai-600020, India. .,Department of Cellular Organization and Signaling, National Center for Biological Science-NCBS, Bangalore-560065, India
| | - Anjitha Jayaraj
- Main Group Organometallics Materials, Supramolecular Chemistry and Catalysis Lab, Department of Chemistry, National Institute of Technology, Calicut, 673601, India.
| | - Madurai Sugunalakshmi
- Organic Chemistry Division, CSIR-Central Leather Research Institute (CLRI), Adyar, Chennai-600020, India.
| | - Gandhi Sivaraman
- Department of Chemistry, Gandhigram Rural Institute-Deemed to be University, Gandhigram, 624032, Dindigul, Tamilnadu, India.
| | - Chinna Ayya Swamy P
- Main Group Organometallics Materials, Supramolecular Chemistry and Catalysis Lab, Department of Chemistry, National Institute of Technology, Calicut, 673601, India.
| |
Collapse
|
10
|
Yao Z, Wang K, Liu R, Yuan Y, Pang J, Li QW, Shao TY, Li ZG, Feng R, Zou B, Li W, Xu J, Bu X. Dynamic Full‐Color Tuning of Organic Chromophore in a Multi‐Stimuli‐Responsive 2D Flexible MOF. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhao‐Quan Yao
- School of Materials Science and Engineering National Institute for Advanced Materials TKL of Metal and Molecule-Based Material Chemistry Nankai University Tianjin 300350 China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics Jilin University Changchun 130012 China
| | - Rui Liu
- School of Materials Science and Engineering National Institute for Advanced Materials TKL of Metal and Molecule-Based Material Chemistry Nankai University Tianjin 300350 China
| | - Yi‐Jia Yuan
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jing‐Jing Pang
- School of Materials Science and Engineering National Institute for Advanced Materials TKL of Metal and Molecule-Based Material Chemistry Nankai University Tianjin 300350 China
| | - Quan Wen Li
- School of Materials Science and Engineering National Institute for Advanced Materials TKL of Metal and Molecule-Based Material Chemistry Nankai University Tianjin 300350 China
| | - Tian Yin Shao
- State Key Laboratory of Superhard Materials, College of Physics Jilin University Changchun 130012 China
| | - Zhi Gang Li
- School of Materials Science and Engineering National Institute for Advanced Materials TKL of Metal and Molecule-Based Material Chemistry Nankai University Tianjin 300350 China
| | - Rui Feng
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics Jilin University Changchun 130012 China
| | - Wei Li
- School of Materials Science and Engineering National Institute for Advanced Materials TKL of Metal and Molecule-Based Material Chemistry Nankai University Tianjin 300350 China
| | - Jian Xu
- School of Materials Science and Engineering National Institute for Advanced Materials TKL of Metal and Molecule-Based Material Chemistry Nankai University Tianjin 300350 China
| | - Xian‐He Bu
- School of Materials Science and Engineering National Institute for Advanced Materials TKL of Metal and Molecule-Based Material Chemistry Nankai University Tianjin 300350 China
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
11
|
Yang R, Ren X, Mei L, Pan G, Li X, Wu Z, Zhang S, Ma W, Yu W, Fang H, Li C, Zhu M, Hu Z, Sun T, Xu B, Tian W. Reversible Three‐Color Fluorescence Switching of an Organic Molecule in the Solid State via “Pump–Trigger” Optical Manipulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Runqing Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Xue Ren
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
- Department of Oncological Gynecology The First Hospital of Jilin University Changchun 130012 China
| | - Lijun Mei
- Wuhan National Laboratory for Optoelectronics (WNLO) School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
| | - Guocui Pan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Xiao‐Ze Li
- State Key Laboratory of Precision Measurement Technology & Instruments Department of Precision Instrument Tsinghua University Beijing 100084 China
| | - Zhiyuan Wu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Song Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Wenyue Ma
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Weili Yu
- GPL Photonic Laboratory State Key Laboratory of Applied Optics Changchun Institute of Optics Fine Mechanics and Physics Chinese Academy of Sciences Changchun 130033 China
| | - Hong‐Hua Fang
- State Key Laboratory of Precision Measurement Technology & Instruments Department of Precision Instrument Tsinghua University Beijing 100084 China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics (WNLO) School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
| | - Ming‐Qiang Zhu
- Wuhan National Laboratory for Optoelectronics (WNLO) School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan 430074 China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education The First Hospital of Jilin University Changchun 130061 China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education The First Hospital of Jilin University Changchun 130061 China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| |
Collapse
|
12
|
Ito S, Sekine R, Munakata M, Yamashita M, Tachikawa T. Mechanochromic Luminescence (MCL) of Purely Organic Two-Component Dyes: Wide-Range MCL over 300 nm and Two-Step MCL by Charge-Transfer Complexation. Chemistry 2021; 27:13982-13990. [PMID: 34405922 DOI: 10.1002/chem.202102700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Indexed: 12/30/2022]
Abstract
Despite recent extensive studies on mechanochromic luminescence (MCL), rational control over the magnitude of the emission-wavelength shift in response to mechanical stimuli remains challenging. In the present study, a two-component donor-acceptor approach has been applied to create a variety of organic MCL composites that exhibit remarkable emission-wavelength switching. Dibenzofuran-based bis(1-pyrenylmethyl)diamine and typical organic fluorophores have been employed as donor and acceptor dyes, respectively. Outstanding wide-range MCL with an emission-wavelength shift of over 300 nm has been achieved by mixing the diamine with 3,4,9,10-perylenetetracarboxylic diimide. Unprecedented two-step MCL in response to mechanical stimuli of different intensity has also been realized for a two-component mixture with 9,10-anthraquinone. Fluorescence microscopy observations at the single-particle level revealed that the segregation and mixing of the two-component dyes contribute to the stimuli-responsive emission-color switching of the MCL composites.
Collapse
Affiliation(s)
- Suguru Ito
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Ryohei Sekine
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Masayasu Munakata
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Maho Yamashita
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Takashi Tachikawa
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.,Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
13
|
Garain BC, Das S, Pati SK. Delineating Conformation Control in the Photophysical Behaviour of a Molecular Donor-Acceptor-Donor Triad. Chemphyschem 2021; 22:2297-2304. [PMID: 34412152 DOI: 10.1002/cphc.202100518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/17/2021] [Indexed: 12/23/2022]
Abstract
Mechanochromic luminescent materials, exhibiting a change in luminescence behavior under external stimuli have emerged as one of the promising candidates for upcoming efficient OLEDs. Recently mechanochromic luminescence was reported in a donor-acceptor-donor (D-A-D) triad featuring two phenothiazine units separated by a dibenzo[a,j]phenazine motif. The triad follows different emissive routes ranging from phosphorescence to TADF based on the conformational switching of the D units. In this article, we investigate such conformation-dependent photophysical behavior of this triad through theoretical calculations. By analyzing the nature of ground state, excited state and factors determining the reverse ISC crossing rates associated with the relative orientation of the D and A units, we delineate the effect of the conformational changes on their photophysical properties. Our findings reveal that axial orientation of both the donor groups enhances the overlap between HOMO and LUMO leading to a large singlet-triplet gap ( Δ E S T ) which drives phosphorescence emission. On the contrary, the equatorial orientation of the donor groups minimizes Δ E S T to facilitate rISC making the conformers TADF active. The role of several geometric factors affecting the photophysical properties of the conformers is also highlighted. Finally, we show how to regulate the population difference among the conformers by functionalizing the triad to harvest the maximum TADF efficiency.
Collapse
Affiliation(s)
- Bidhan Chandra Garain
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| | - Shubhajit Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India.,Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fedéralé de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Swapan K Pati
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| |
Collapse
|
14
|
Ishi-I T, Tanaka H, Kichise R, Davin C, Matsuda T, Aizawa N, Park IS, Yasuda T, Matsumoto T. Regulation of Multicolor Fluorescence Changes Found in Donor-acceptor-type Mechanochromic Fluorescent Dyes. Chem Asian J 2021; 16:2136-2145. [PMID: 34145774 DOI: 10.1002/asia.202100538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/12/2021] [Indexed: 11/10/2022]
Abstract
The regulation of multicolor fluorescence changes in mechanochromic fluorescence (MCF) remains a challenging task. Herein, we report the regulation of MCF using a donor-acceptor structure. Two crystal polymorphs, BTD-pCHO(O) and BTD-pCHO(R) produced by the introduction of formyl groups to an MCF dye, respond to a mechanical stimulus, allowing a three-color fluorescence change. Specifically, the orange-colored fluorescence of the metastable BTD-pCHO(O) polymorph changed to a deep-red color in the amorphous-like state to finally give a red color in the stable BTD-pCHO(R) polymorph. This change occurred by mechanical grinding followed by vapor fuming. The two different crystal packing patterns were selectively regulated by the electronic effect of the introduced functional groups. The two types of selectively formed crystals in BTD(F)-pCHO bearing fluorine atoms, and BTD(OMe)-pCHO bearing methoxy groups, respond to mechanical grinding, allowing for the regulation of multicolor MCL from a three-color change to two different types of two-color changes.
Collapse
Affiliation(s)
- Tsutomu Ishi-I
- Department of Biochemistry and Applied Chemistry, National Institute of Technology, Kurume College, 1-1-1 Komorino, Kurume, 830-8555, Japan
| | - Honoka Tanaka
- Department of Biochemistry and Applied Chemistry, National Institute of Technology, Kurume College, 1-1-1 Komorino, Kurume, 830-8555, Japan.,Material Engineering Advanced Course, Advanced Engineering School, National Institute of Technology, Kurume College, 1-1-1 Komorino, Kurume, 830-8555, Japan
| | - Rihoko Kichise
- Department of Biochemistry and Applied Chemistry, National Institute of Technology, Kurume College, 1-1-1 Komorino, Kurume, 830-8555, Japan.,Material Engineering Advanced Course, Advanced Engineering School, National Institute of Technology, Kurume College, 1-1-1 Komorino, Kurume, 830-8555, Japan
| | - Christopher Davin
- Department of Biochemistry and Applied Chemistry, National Institute of Technology, Kurume College, 1-1-1 Komorino, Kurume, 830-8555, Japan
| | - Takaaki Matsuda
- Department of Biochemistry and Applied Chemistry, National Institute of Technology, Kurume College, 1-1-1 Komorino, Kurume, 830-8555, Japan
| | - Naoya Aizawa
- INAMORI Frontier Research Center (IFRC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - In Seob Park
- INAMORI Frontier Research Center (IFRC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takuma Yasuda
- INAMORI Frontier Research Center (IFRC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Taisuke Matsumoto
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-kohen, Kasuga, 816-8580, Japan
| |
Collapse
|
15
|
Li W, Gu Q, Wang X, Zhang D, Wang Y, He X, Wang W, Yang H. AIE‐Active Chiral [3]Rotaxanes with Switchable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100934] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wei‐Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Qingyi Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Dan‐Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Yu‐Te Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
16
|
Li W, Gu Q, Wang X, Zhang D, Wang Y, He X, Wang W, Yang H. AIE‐Active Chiral [3]Rotaxanes with Switchable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021; 60:9507-9515. [DOI: 10.1002/anie.202100934] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/07/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Wei‐Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Qingyi Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Dan‐Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Yu‐Te Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
17
|
Nishiuchi T, Kisaka K, Kubo T. Synthesis of Anthracene‐Based Cyclic π‐Clusters and Elucidation of their Properties Originating from Congested Aromatic Planes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tomohiko Nishiuchi
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Kazuki Kisaka
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Takashi Kubo
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
18
|
Nishiuchi T, Kisaka K, Kubo T. Synthesis of Anthracene-Based Cyclic π-Clusters and Elucidation of their Properties Originating from Congested Aromatic Planes. Angew Chem Int Ed Engl 2021; 60:5400-5406. [PMID: 33219584 DOI: 10.1002/anie.202013349] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Indexed: 11/07/2022]
Abstract
Synthesis and properties of anthracene-based cyclic π-clusters which possess two and four anthracene units are discussed. The optimal cyclization conditions were determined based on a nickel(0)-mediated reaction that afforded a cyclic anthracene dimer as the major product. Bringing two anthracene planes in close proximity in a face-to-face manner resulted in red-shifted absorption owing to the narrowing of the HOMO-LUMO gap. The cyclic anthracene dimer exhibits multi-stimuli responsiveness due to high π-congestion. For example, photoirradiation on the anthracene dimer affords its photoisomer having C-C bonds that are longer than 1.65 Å, which can undergo thermal reversion under gentle heating. This enabled mechanochromism of the photoisomer (colorless) to the original anthracene dimer (red). Photoisomerization was also observed in the crystalline state, accompanied by crystal jumping or collapsing, that is, the photosalient effect.
Collapse
Affiliation(s)
- Tomohiko Nishiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kazuki Kisaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
19
|
Diao L, Zhang J, Wang R, Liu G, Pu S. Synthesis and properties of asymmetric 9, 10-dithienylanthracene derivatives with AIEE properties and their applications in cell imaging. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Wang Z, Yu F, Chen W, Wang J, Liu J, Yao C, Zhao J, Dong H, Hu W, Zhang Q. Rational Control of Charge Transfer Excitons Toward High‐Contrast Reversible Mechanoresponsive Luminescent Switching. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zongrui Wang
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Fei Yu
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Wangqiao Chen
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Jianfeng Wang
- Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 210000 P. R. China
| | - Jinyu Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Changjiang Yao
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Jianfeng Zhao
- Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 210000 P. R. China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wenping Hu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University, and Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Qichun Zhang
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
- Department of Materials Science and Engineering City University of Hong Kong Kowloon, Hong Kong SAR China
| |
Collapse
|
21
|
Wang Z, Yu F, Chen W, Wang J, Liu J, Yao C, Zhao J, Dong H, Hu W, Zhang Q. Rational Control of Charge Transfer Excitons Toward High‐Contrast Reversible Mechanoresponsive Luminescent Switching. Angew Chem Int Ed Engl 2020; 59:17580-17586. [DOI: 10.1002/anie.202005933] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Zongrui Wang
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Fei Yu
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Wangqiao Chen
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Jianfeng Wang
- Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 210000 P. R. China
| | - Jinyu Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Changjiang Yao
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Jianfeng Zhao
- Institute of Advanced Materials (IAM) Nanjing Tech University Nanjing 210000 P. R. China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wenping Hu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University, and Collaborative Innovation Center of Chemical Science, and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Qichun Zhang
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
- Department of Materials Science and Engineering City University of Hong Kong Kowloon, Hong Kong SAR China
| |
Collapse
|
22
|
Yang M, Park IS, Miyashita Y, Tanaka K, Yasuda T. Mechanochromic Delayed Fluorescence Switching in Propeller-Shaped Carbazole-Isophthalonitrile Luminogens with Stimuli-Responsive Intramolecular Charge-Transfer Excited States. Angew Chem Int Ed Engl 2020; 59:13955-13961. [PMID: 32369229 DOI: 10.1002/anie.202005584] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 12/27/2022]
Abstract
Herein, the universal design of high-efficiency stimuli-responsive luminous materials endowed with mechanochromic luminescence (MCL) and thermally activated delayed fluorescence (TADF) functions is reported. The origin of the unique stimuli-triggered TADF switching for a series of carbazole-isophthalonitrile-based donor-acceptor (D-A) luminogens is demonstrated based on systematic photophysical and X-ray analysis, coupled with theoretical calculations. It was revealed that a tiny alteration of the intramolecular D-A twisting in the excited-state structures governed by the solid morphologies is responsible for this dynamic TADF switching behavior. This concept is applicable to the fabrication of bicolor emissive organic light-emitting diodes using a single TADF emitter.
Collapse
Affiliation(s)
- Minlang Yang
- INAMORI Frontier Research Center (IFRC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - In Seob Park
- INAMORI Frontier Research Center (IFRC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yasuhiro Miyashita
- Odawara Research Center, Nippon Soda Co., Ltd., 345 Takada, Odawara, Kanagawa, 250-0280, Japan
| | - Katsunori Tanaka
- Odawara Research Center, Nippon Soda Co., Ltd., 345 Takada, Odawara, Kanagawa, 250-0280, Japan
| | - Takuma Yasuda
- INAMORI Frontier Research Center (IFRC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
23
|
Wang Z, Zhu CY, Fu PY, Mo JT, Ruan J, Pan M, Su CY. Enhanced Long Persistent Luminescence by Multifold Interpenetration in Metal-Organic Frameworks. Chemistry 2020; 26:7458-7462. [PMID: 32162421 DOI: 10.1002/chem.202000362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/09/2020] [Indexed: 12/29/2022]
Abstract
Metal-organic frameworks (MOFs) with long persistent luminescence (LPL) have attracted widespread attention due to potential applications in displays, anticounterfeiting, and so on. However, MOFs often have large pore size, which restricts the formation of efficient inter- and intramolecular interactions to realize LPL. Herein, a new approach to achieving LPL in MOFs by multifold interpenetration of discrete frameworks is reported. By comparison between threefold- and twofold-interpenetrating MOFs, it was found that the former, which have higher multiplicity and denser frameworks, can be endowed with enhanced inter- and intramolecular interactions, and thus enhanced LPL is obtained. Meanwhile, metal-cluster and heavy-halogen effects could also cause variations in LPL duration and color.
Collapse
Affiliation(s)
- Zheng Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Cheng-Yi Zhu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Peng-Yan Fu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Jun-Ting Mo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Jia Ruan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| |
Collapse
|
24
|
Yang M, Park IS, Miyashita Y, Tanaka K, Yasuda T. Mechanochromic Delayed Fluorescence Switching in Propeller‐Shaped Carbazole–Isophthalonitrile Luminogens with Stimuli‐Responsive Intramolecular Charge‐Transfer Excited States. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Minlang Yang
- INAMORI Frontier Research Center (IFRC) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Department of Applied Chemistry Graduate School of Engineering Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - In Seob Park
- INAMORI Frontier Research Center (IFRC) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yasuhiro Miyashita
- Odawara Research Center Nippon Soda Co., Ltd. 345 Takada Odawara Kanagawa 250-0280 Japan
| | - Katsunori Tanaka
- Odawara Research Center Nippon Soda Co., Ltd. 345 Takada Odawara Kanagawa 250-0280 Japan
| | - Takuma Yasuda
- INAMORI Frontier Research Center (IFRC) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Department of Applied Chemistry Graduate School of Engineering Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
25
|
Liu Y, Li A, Xu S, Xu W, Liu Y, Tian W, Xu B. Reversible Luminescent Switching in an Organic Cocrystal: Multi‐Stimuli‐Induced Crystal‐to‐Crystal Phase Transformation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002220] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yingjie Liu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Aisen Li
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Yu Liu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| |
Collapse
|
26
|
Liu Y, Li A, Xu S, Xu W, Liu Y, Tian W, Xu B. Reversible Luminescent Switching in an Organic Cocrystal: Multi‐Stimuli‐Induced Crystal‐to‐Crystal Phase Transformation. Angew Chem Int Ed Engl 2020; 59:15098-15103. [DOI: 10.1002/anie.202002220] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/02/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Yingjie Liu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Aisen Li
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Yu Liu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| |
Collapse
|
27
|
Cai X, Liu B. Aggregation‐Induced Emission: Recent Advances in Materials and Biomedical Applications. Angew Chem Int Ed Engl 2020; 59:9868-9886. [DOI: 10.1002/anie.202000845] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaolei Cai
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
28
|
Cai X, Liu B. Aggregation‐Induced Emission: Recent Advances in Materials and Biomedical Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000845] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaolei Cai
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
29
|
Chen X, Liu ZF, Jin WJ. The Effect of Electron Donation and Intermolecular Interactions on Ultralong Phosphorescence Lifetime of 4-Carnoyl Phenylboronic Acids. J Phys Chem A 2020; 124:2746-2754. [PMID: 32172561 DOI: 10.1021/acs.jpca.9b11943] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purely organic phosphors with persistent room-temperature phosphorescence (RTP) demonstrate promising potential applications in optoelectronic area, bioimaging, and chemical sensing. However, it is still a formidable challenge to further design new organic phosphors due to the unclear mechanism to produce ultralong phosphorescence lifetimes. This paper investigates the correlation between the ultralong phosphorescence lifetime and structure of a series of 4-carbonylphenylboronic acid derivatives in the crystal state. Experimental and calculation results reveal that the electron-donating effect of substituents makes the phosphorescence lifetime longer by not only weakening the vibration relaxation of the excited triplet state but also increasing the energy of T1. Moreover, numerous intermolecular interactions for reducing nonradiative relaxation and the degree of the π-π stacking for stabilizing the triplet state are beneficial to the persistent RTP. The work is conducted to clarify the structure-property correlation of phosphorescent materials and design new persistent phosphors. Finally, an attempt is completed using phosphorescent materials to design two-dimensional or three-dimensional codes and anticounterfeiting applications.
Collapse
Affiliation(s)
- Xue Chen
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zheng-Fei Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei Jun Jin
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
30
|
Wang B, Wang K, Wei C. Piezochromism of Cruciform‐Shaped Luminophores: Suitable Molecular Design to Enhance Colour Difference and Sensitivity. ChemistrySelect 2020. [DOI: 10.1002/slct.202000566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bin Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationInstitute of Molecular ScienceShanxi University Taiyuan 030006 P. R. China
- School of Basic Medical SciencesShanxi Medical University Taiyuan 030001 P. R. China
| | - Kai Wang
- State Key Laboratory of Superhard MaterialsJilin University Changchun 130012 P. R. China
| | - ChunYing Wei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationInstitute of Molecular ScienceShanxi University Taiyuan 030006 P. R. China
| |
Collapse
|
31
|
Xi D, Xu Y, Xu R, Wang Z, Liu D, Shen Q, Yue L, Dang D, Meng L. A Facilely Synthesized Dual-State Emission Platform for Picric Acid Detection and Latent Fingerprint Visualization. Chemistry 2020; 26:2741-2748. [PMID: 31886910 DOI: 10.1002/chem.201905169] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/16/2019] [Indexed: 01/28/2023]
Abstract
To achieve a highly efficient, dual-state emission platform for picric acid (PA) detection and latent fingerprint (LFP) visualization, flexible alkyl chains have been facilely attached to the commercial organic dye 3,4,9,10-perylenetetracarboxylic dianhydride to provide the target perylenetetracarboxylate molecules PTCA-C4, PTCA-C6, and PTCA-C12. Interestingly, all these molecules exhibited impressive fluorescence characteristics with high photoluminescence quantum yields (PLQYs) of around 93.0 % in dilute solution. Also, emissive features were observed in the solid state because close molecular packing is prevented by the alkyl chains, especially for PTCA-C6, which has a high PLQY value of 49.0 %. Benefiting from its impressive fluorescence performance in both solution and as aggregates, PTCA-C6 was used as a dual-state emission platform for PA detection and also LFP visualization. For example, double-responsive fluorescence quenching in solution was observed in PA detection studies, resulting in high quenching constants (KSV ) and also low limit-of-detection values. Furthermore, the fingerprint powder based on PTCA-C6 also presented an impressive performance on various substrates in terms of fluorescence intensity and resolution, clearly providing the specific fine details of latent fingerprints. These results demonstrate that the facilely synthesized PTCA-C6 with efficient dual-state emission exhibits great potential in the real-world applications of PA detection and LFP visualization.
Collapse
Affiliation(s)
- Duo Xi
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Yanzi Xu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Ruohan Xu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Zhi Wang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Daomeng Liu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Qifei Shen
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Ling Yue
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Dongfeng Dang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| | - Lingjie Meng
- School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis, and Modulation of Condensed Matter, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China.,Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an, 710049, P.R. China
| |
Collapse
|
32
|
Sagara Y, Takahashi K, Nakamura T, Tamaoki N. Mechanochromic Luminescence from Crystals Consisting of Intermolecular Hydrogen-Bonded Sheets. Chem Asian J 2020; 15:478-482. [PMID: 31889429 DOI: 10.1002/asia.201901679] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/29/2019] [Indexed: 12/23/2022]
Abstract
Introduction of functional groups that can form intermolecular hydrogen bonds into highly-emissive luminophores is a promising way to induce mechanochromic luminescence. Herein, we report that a 9,10-bis(phenylethynyl)anthracene derivative featuring two amide groups forms green-emissive crystals based on two-dimensional hydrogen-bonded molecular sheets. Mechanical grinding changed the emission from green to yellow, owing to a transition from a crystalline to an amorphous phase. Infrared spectroscopy revealed that mechanical stimuli disrupted the linear hydrogen-bonding formation. A thermal treatment recovered the original green photoluminescence.
Collapse
Affiliation(s)
- Yoshimitsu Sagara
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
- JST-PRESTO, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan
| | - Kiyonori Takahashi
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Takayoshi Nakamura
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| |
Collapse
|
33
|
Li W, Huang Q, Mao Z, Zhao J, Wu H, Chen J, Yang Z, Li Y, Yang Z, Zhang Y, Aldred MP, Chi Z. Selective Expression of Chromophores in a Single Molecule: Soft Organic Crystals Exhibiting Full‐Colour Tunability and Dynamic Triplet‐Exciton Behaviours. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915556] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wenlang Li
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Qiuyi Huang
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Zhu Mao
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Juan Zhao
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Huiyan Wu
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Junru Chen
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Zhan Yang
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Yang Li
- Instrumental Analysis and Research Center (IARC)Sun Yat-sen University Guangzhou 510275 China
| | - Zhiyong Yang
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Yi Zhang
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Matthew P. Aldred
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
- MPAldred Bolton, Greater Manchester England BL1 2AL UK
| | - Zhenguo Chi
- PCFM LabGDHPPC LabGuangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional FilmsState Key Laboratory of OEMTSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
34
|
Li W, Huang Q, Mao Z, Zhao J, Wu H, Chen J, Yang Z, Li Y, Yang Z, Zhang Y, Aldred MP, Chi Z. Selective Expression of Chromophores in a Single Molecule: Soft Organic Crystals Exhibiting Full-Colour Tunability and Dynamic Triplet-Exciton Behaviours. Angew Chem Int Ed Engl 2020; 59:3739-3745. [PMID: 31863709 DOI: 10.1002/anie.201915556] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 12/30/2022]
Abstract
Soft luminescent materials are attractive for optoelectronic applications, however, switching dominant chromophores for property enrichment remains a challenge. Herein, we report the first case of a soft organic molecule (DOS) featuring selective expression of chromophores. In response to various external stimuli, different chromophores of DOS can take turns working through conformation changes, exhibiting full-colour emissions peaking from 469 nm to 583 nm from ten individual single crystals. Dynamic triplet-exciton behaviours including thermally activated delayed fluorescence (TADF), room-temperature phosphorescence (RTP), mechanoluminescence (ML), and distinct mechano-responsive luminescence (MRL) can all be realized. This novel designed DOS molecule provides a multifunctional platform for detection of volatile organic compounds (VOCs), multicolour dynamic displays, sensing, anticounterfeiting, and hopefully many others.
Collapse
Affiliation(s)
- Wenlang Li
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiuyi Huang
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhu Mao
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Juan Zhao
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huiyan Wu
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Junru Chen
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhan Yang
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yang Li
- Instrumental Analysis and Research Center (IARC), Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhiyong Yang
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yi Zhang
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Matthew P Aldred
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.,MPAldred, Bolton, Greater Manchester, England, BL1 2AL, UK
| | - Zhenguo Chi
- PCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
35
|
Wang R, Liang Y, Liu G, Pu S. Aggregation-induced emission compounds based on 9,10-diheteroarylanthracene and their applications in cell imaging. RSC Adv 2020; 10:2170-2179. [PMID: 35494608 PMCID: PMC9048432 DOI: 10.1039/c9ra09290k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/04/2020] [Indexed: 01/01/2023] Open
Abstract
Four centrosymmetric 9,10-diheteroarylanthracene (DHA) derivatives, including 9,10-dithienylanthracene (DTA), 9,10-difurylanthracene (DFA), 9,10-di-(N-t-butyloxycarboryl-2-pyrryl)anthracene (DBPA), and 9,10-dipyrrylanthracene (DPA) have been synthesized and characterized.
Collapse
Affiliation(s)
- Renjie Wang
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Yunfei Liang
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| |
Collapse
|
36
|
Huang G, Xia Q, Huang W, Tian J, He Z, Li BS, Tang BZ. Multiple Anti‐Counterfeiting Guarantees from a Simple Tetraphenylethylene Derivative – High‐Contrasted and Multi‐State Mechanochromism and Photochromism. Angew Chem Int Ed Engl 2019; 58:17814-17819. [DOI: 10.1002/anie.201910530] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/12/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Guangxi Huang
- Key Laboratory of New Lithium-Ion Battery and Mesoporous MaterialCollege of Chemistry and Environmental EngineeringShenzhen University 1066 Xueyuan Avenue, Nanshan Shenzhen 518055 China
| | - Qing Xia
- Key Laboratory of New Lithium-Ion Battery and Mesoporous MaterialCollege of Chemistry and Environmental EngineeringShenzhen University 1066 Xueyuan Avenue, Nanshan Shenzhen 518055 China
| | - Wenbin Huang
- School of ScienceHarbin Institute of Technology, Shenzhen HIT Campus of University Town Shenzhen 518055 China
| | - Jianwu Tian
- Institute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
| | - Zikai He
- School of ScienceHarbin Institute of Technology, Shenzhen HIT Campus of University Town Shenzhen 518055 China
| | - Bing Shi Li
- Key Laboratory of New Lithium-Ion Battery and Mesoporous MaterialCollege of Chemistry and Environmental EngineeringShenzhen University 1066 Xueyuan Avenue, Nanshan Shenzhen 518055 China
| | - Ben Zhong Tang
- Department of ChemistryHong Kong Branch of Chinese National Engineering ResearchCenter for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| |
Collapse
|
37
|
Huang G, Xia Q, Huang W, Tian J, He Z, Li BS, Tang BZ. Multiple Anti‐Counterfeiting Guarantees from a Simple Tetraphenylethylene Derivative – High‐Contrasted and Multi‐State Mechanochromism and Photochromism. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910530] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Guangxi Huang
- Key Laboratory of New Lithium-Ion Battery and Mesoporous MaterialCollege of Chemistry and Environmental EngineeringShenzhen University 1066 Xueyuan Avenue, Nanshan Shenzhen 518055 China
| | - Qing Xia
- Key Laboratory of New Lithium-Ion Battery and Mesoporous MaterialCollege of Chemistry and Environmental EngineeringShenzhen University 1066 Xueyuan Avenue, Nanshan Shenzhen 518055 China
| | - Wenbin Huang
- School of ScienceHarbin Institute of Technology, Shenzhen HIT Campus of University Town Shenzhen 518055 China
| | - Jianwu Tian
- Institute of ChemistryChinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China
| | - Zikai He
- School of ScienceHarbin Institute of Technology, Shenzhen HIT Campus of University Town Shenzhen 518055 China
| | - Bing Shi Li
- Key Laboratory of New Lithium-Ion Battery and Mesoporous MaterialCollege of Chemistry and Environmental EngineeringShenzhen University 1066 Xueyuan Avenue, Nanshan Shenzhen 518055 China
| | - Ben Zhong Tang
- Department of ChemistryHong Kong Branch of Chinese National Engineering ResearchCenter for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| |
Collapse
|
38
|
Takeda Y, Mizuno H, Okada Y, Okazaki M, Minakata S, Penfold T, Fukuhara G. Hydrostatic Pressure‐Controlled Ratiometric Luminescence Responses of a Dibenzo[
a,j
]phenazine‐Cored Mechanoluminophore. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900190] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Youhei Takeda
- Department of Applied Chemistry Graduate School of Engineering Osaka University Yamadaoka 2-1, Suita Osaka 565-0871 Japan
| | - Hiroaki Mizuno
- Department of Chemistry Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8511 Japan
| | - Yusuke Okada
- Department of Chemistry Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8511 Japan
| | - Masato Okazaki
- Department of Applied Chemistry Graduate School of Engineering Osaka University Yamadaoka 2-1, Suita Osaka 565-0871 Japan
| | - Satoshi Minakata
- Department of Applied Chemistry Graduate School of Engineering Osaka University Yamadaoka 2-1, Suita Osaka 565-0871 Japan
| | - Thomas Penfold
- Chemistry School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU United Kingdom
| | - Gaku Fukuhara
- Department of Chemistry Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8511 Japan
- JST, PRESTO 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
39
|
Wang XY, Zhang J, Yin J, Liu SH. Multiple Photoluminescent Processes from Pyrene Derivatives with Aggregation- and Mechano-Induced Excimer Emission. Chem Asian J 2019; 14:2903-2910. [PMID: 31286655 DOI: 10.1002/asia.201900798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/04/2019] [Indexed: 11/06/2022]
Abstract
Two novel pyrene-based isocyanide gold(I) complexes have been designed and synthesized. The different structures lead to distinct and diverse photophysical properties both in solution and in the aggregate state. Multiple photoluminescence, involving monomer emission, locally excited emission and excimer emission, are observed. Notably, an excimer is formed by aggregation in solution and external mechanical stimulation in the solid state, showing aggregation- and mechano-induced excimer emission.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jing Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
40
|
Li K, Lin Y, Lu C. Aggregation-Induced Emission for Visualization in Materials Science. Chem Asian J 2019; 14:715-729. [PMID: 30629327 DOI: 10.1002/asia.201801760] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/05/2019] [Indexed: 12/31/2022]
Abstract
Fluorescent imaging techniques have attracted much attention as a powerful tool to realize the visualization of structural and morphological evolution of various materials. However, the traditional fluorescent dyes usually suffered from aggregation-caused quenching, which severely limits the visualization results. In contrast, aggregation-induced emission (AIE) molecules with high quantum yields in the condensed state showed great opportunities for imaging techniques. In this feature article, recent progresses in visualization with AIE molecules are discussed. Assembly processes including crystallization, gelation process, and dissipative assembly have been observed. To better study information obtained regarding the processes, visualization during reactions, phase transitions, and molecular motions are successfully presented. Based on these successes, AIE molecules were further applied for phase recognition, macro-dispersion evaluation, and damage detection. Finally, we also present the outlook and perspectives, in our opinion, for the development of visualization by AIE molecules.
Collapse
Affiliation(s)
- Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 79, 100029, Beijing, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 79, 100029, Beijing, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 79, 100029, Beijing, China
| |
Collapse
|
41
|
Guan J, Xu F, Tian C, Pu L, Yuan MS, Wang J. Tricolor Luminescence Switching by Thermal and Mechanical Stimuli in the Crystal Polymorphs of Pyridyl-substituted Fluorene. Chem Asian J 2018; 14:216-222. [DOI: 10.1002/asia.201801476] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/21/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Jianping Guan
- College of Chemistry & Pharmacy; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Fan Xu
- College of Chemistry & Pharmacy; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Chang Tian
- College of Veterinary; Northwest A&F University Yangling; Shaanxi 712100 China
| | - Liang Pu
- College of Chemistry & Pharmacy; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Mao-Sen Yuan
- College of Chemistry & Pharmacy; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Jinyi Wang
- College of Chemistry & Pharmacy; Northwest A&F University; Yangling Shaanxi 712100 China
| |
Collapse
|
42
|
Jia XR, Yu HJ, Chen J, Gao WJ, Fang JK, Qin YS, Hu XK, Shao G. Stimuli-Responsive Properties of Aggregation-Induced-Emission Compounds Containing a 9,10-Distyrylanthracene Moiety. Chemistry 2018; 24:19053-19059. [DOI: 10.1002/chem.201804315] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Xiang-Rui Jia
- School of Chemistry; Sun Yat-sen University; Guangzhou 510275 P. R. China
| | - Hui-Juan Yu
- School of Chemistry; Sun Yat-sen University; Guangzhou 510275 P. R. China
- Shenzhen Research Institute; Sun Yat-sen University; Shenzhen 518057 P. R. China
| | - Jian Chen
- School of Chemistry; Sun Yat-sen University; Guangzhou 510275 P. R. China
- Shenzhen Research Institute; Sun Yat-sen University; Shenzhen 518057 P. R. China
| | - Wei-Jie Gao
- School of Chemistry; Sun Yat-sen University; Guangzhou 510275 P. R. China
- Shenzhen Research Institute; Sun Yat-sen University; Shenzhen 518057 P. R. China
| | - Jing-Kun Fang
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing 210094 P. R. China
| | - Yuan-Shou Qin
- Zeloq (Shenzhen) Technology Co. Ltd.; Shenzhen 518104 P. R. China
| | - Xiao-Kai Hu
- Institute of Frontier Materials; Deakin University; Geelong 3216 Australia
| | - Guang Shao
- School of Chemistry; Sun Yat-sen University; Guangzhou 510275 P. R. China
- Shenzhen Research Institute; Sun Yat-sen University; Shenzhen 518057 P. R. China
| |
Collapse
|
43
|
Liu Y, Zeng Q, Zou B, Liu Y, Xu B, Tian W. Piezochromic Luminescence of Donor-Acceptor Cocrystals: Distinct Responses to Anisotropic Grinding and Isotropic Compression. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810149] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yingjie Liu
- State Key Laboratory of Supramolecular Structure and Materials; Institute of Theoretical Chemistry; Jilin University; Qianjin Street No. 2699 Changchun 130012 China
| | - Qingxin Zeng
- State Key Laboratory of Superhard Materials; Jilin University; Qianjin Street No. 2699 Changchun 130012 China
| | - Bo Zou
- State Key Laboratory of Superhard Materials; Jilin University; Qianjin Street No. 2699 Changchun 130012 China
| | - Yu Liu
- State Key Laboratory of Supramolecular Structure and Materials; Institute of Theoretical Chemistry; Jilin University; Qianjin Street No. 2699 Changchun 130012 China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials; Institute of Theoretical Chemistry; Jilin University; Qianjin Street No. 2699 Changchun 130012 China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials; Institute of Theoretical Chemistry; Jilin University; Qianjin Street No. 2699 Changchun 130012 China
| |
Collapse
|
44
|
Zuo B, Bai L, Li Z, Xu H, Li Y, Wang X. A Nanoconfinement Effect Imposed by the Limited End-to-End Distance of the Grafted Chains on a Molecular Aggregation of Polymer Brushes with Crystalline Side Groups. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Biao Zuo
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lu Bai
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhiying Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hao Xu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yun Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
45
|
Liu Y, Zeng Q, Zou B, Liu Y, Xu B, Tian W. Piezochromic Luminescence of Donor-Acceptor Cocrystals: Distinct Responses to Anisotropic Grinding and Isotropic Compression. Angew Chem Int Ed Engl 2018; 57:15670-15674. [DOI: 10.1002/anie.201810149] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Yingjie Liu
- State Key Laboratory of Supramolecular Structure and Materials; Institute of Theoretical Chemistry; Jilin University; Qianjin Street No. 2699 Changchun 130012 China
| | - Qingxin Zeng
- State Key Laboratory of Superhard Materials; Jilin University; Qianjin Street No. 2699 Changchun 130012 China
| | - Bo Zou
- State Key Laboratory of Superhard Materials; Jilin University; Qianjin Street No. 2699 Changchun 130012 China
| | - Yu Liu
- State Key Laboratory of Supramolecular Structure and Materials; Institute of Theoretical Chemistry; Jilin University; Qianjin Street No. 2699 Changchun 130012 China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials; Institute of Theoretical Chemistry; Jilin University; Qianjin Street No. 2699 Changchun 130012 China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials; Institute of Theoretical Chemistry; Jilin University; Qianjin Street No. 2699 Changchun 130012 China
| |
Collapse
|
46
|
Sagara Y, Tamaoki N, Fukuhara G. Cyclophane-Based Fluorescence Tuning Induced by Hydrostatic Pressure Changes. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800163] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yoshimitsu Sagara
- Research Institute for Electronic Science; Hokkaido University N20, W10, Kita-Ku, Sapporo; Hokkaido 001-0020 Japan
- JST-PRESTO Honcho 4-1-8, Kawaguchi; Saitama 332-0012 Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science; Hokkaido University N20, W10, Kita-Ku, Sapporo; Hokkaido 001-0020 Japan
| | - Gaku Fukuhara
- JST-PRESTO Honcho 4-1-8, Kawaguchi; Saitama 332-0012 Japan
- Department of Chemistry; Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-Ku; Tokyo 152-8551 Japan
| |
Collapse
|
47
|
Huang B, Chen WC, Li Z, Zhang J, Zhao W, Feng Y, Tang BZ, Lee CS. Manipulation of Molecular Aggregation States to Realize Polymorphism, AIE, MCL, and TADF in a Single Molecule. Angew Chem Int Ed Engl 2018; 57:12473-12477. [DOI: 10.1002/anie.201806800] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Bin Huang
- Center of Super-Diamond and Advanced Films (COSDAF); Department of Chemistry; City University of Hong Kong; 83 Tat Chee Avenue, Kowloon Hong Kong SAR China
- Jiangsu Key Laboratory of Biofunctional Molecule; College of Life Sciences and Chemistry; Jiangsu Second Normal University; Nanjing 210013 China
| | - Wen-Cheng Chen
- Center of Super-Diamond and Advanced Films (COSDAF); Department of Chemistry; City University of Hong Kong; 83 Tat Chee Avenue, Kowloon Hong Kong SAR China
| | - Zijing Li
- Jiangsu Key Laboratory of Biofunctional Molecule; College of Life Sciences and Chemistry; Jiangsu Second Normal University; Nanjing 210013 China
| | - Jinfeng Zhang
- Center of Super-Diamond and Advanced Films (COSDAF); Department of Chemistry; City University of Hong Kong; 83 Tat Chee Avenue, Kowloon Hong Kong SAR China
| | - Weijun Zhao
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong P. R. China
| | - Yan Feng
- Jiangsu Key Laboratory of Biofunctional Molecule; College of Life Sciences and Chemistry; Jiangsu Second Normal University; Nanjing 210013 China
| | - Ben Zhong Tang
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF); Department of Chemistry; City University of Hong Kong; 83 Tat Chee Avenue, Kowloon Hong Kong SAR China
| |
Collapse
|
48
|
Huang B, Chen WC, Li Z, Zhang J, Zhao W, Feng Y, Tang BZ, Lee CS. Manipulation of Molecular Aggregation States to Realize Polymorphism, AIE, MCL, and TADF in a Single Molecule. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806800] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Bin Huang
- Center of Super-Diamond and Advanced Films (COSDAF); Department of Chemistry; City University of Hong Kong; 83 Tat Chee Avenue, Kowloon Hong Kong SAR China
- Jiangsu Key Laboratory of Biofunctional Molecule; College of Life Sciences and Chemistry; Jiangsu Second Normal University; Nanjing 210013 China
| | - Wen-Cheng Chen
- Center of Super-Diamond and Advanced Films (COSDAF); Department of Chemistry; City University of Hong Kong; 83 Tat Chee Avenue, Kowloon Hong Kong SAR China
| | - Zijing Li
- Jiangsu Key Laboratory of Biofunctional Molecule; College of Life Sciences and Chemistry; Jiangsu Second Normal University; Nanjing 210013 China
| | - Jinfeng Zhang
- Center of Super-Diamond and Advanced Films (COSDAF); Department of Chemistry; City University of Hong Kong; 83 Tat Chee Avenue, Kowloon Hong Kong SAR China
| | - Weijun Zhao
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong P. R. China
| | - Yan Feng
- Jiangsu Key Laboratory of Biofunctional Molecule; College of Life Sciences and Chemistry; Jiangsu Second Normal University; Nanjing 210013 China
| | - Ben Zhong Tang
- Department of Chemistry; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF); Department of Chemistry; City University of Hong Kong; 83 Tat Chee Avenue, Kowloon Hong Kong SAR China
| |
Collapse
|
49
|
Xia G, Shen S, Hu XM, Jiang Z, Xu K, Wang M, Wang H. Controlling Crystal Structures and Multiple Thermo- and Vapochromic Behaviors of Benzimidazole-Based Squaraine Dyes by Molecular Design and Solvent Adjustment. Chemistry 2018; 24:13205-13212. [DOI: 10.1002/chem.201801518] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Guomin Xia
- Institute for Advanced Study and College of Chemistry; Nanchang University; Xuefu Road 999 330031 Nanchang City P.R. China
| | - Shen Shen
- Institute for Advanced Study and College of Chemistry; Nanchang University; Xuefu Road 999 330031 Nanchang City P.R. China
| | - Xin-Ming Hu
- Carbon Dioxide Activation Center (CADIAC); Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry; Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Zhengjun Jiang
- Institute for Advanced Study and College of Chemistry; Nanchang University; Xuefu Road 999 330031 Nanchang City P.R. China
| | - Kaikai Xu
- Institute for Advanced Study and College of Chemistry; Nanchang University; Xuefu Road 999 330031 Nanchang City P.R. China
| | - Mingda Wang
- Institute for Advanced Study and College of Chemistry; Nanchang University; Xuefu Road 999 330031 Nanchang City P.R. China
| | - Hongming Wang
- Institute for Advanced Study and College of Chemistry; Nanchang University; Xuefu Road 999 330031 Nanchang City P.R. China
| |
Collapse
|
50
|
Yamakado T, Takahashi S, Watanabe K, Matsumoto Y, Osuka A, Saito S. Conformational Planarization versus Singlet Fission: Distinct Excited‐State Dynamics of Cyclooctatetraene‐Fused Acene Dimers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802185] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Takuya Yamakado
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Shota Takahashi
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Kazuya Watanabe
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Yoshiyasu Matsumoto
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Shohei Saito
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
- JST-PRESTO FRONTIER Japan
| |
Collapse
|