1
|
Zhang X, Ye Z, Li Y, Zhao Z, Ma W, Zhang F. Electrochemical Nickel-Catalyzed Cross-Electrophile Coupling of Alkenyl Triflates with α-Chloroamides. Org Lett 2024; 26:6364-6369. [PMID: 39051850 DOI: 10.1021/acs.orglett.4c02072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Cross-electrophile coupling reactions of different electrophiles have been extensively studied but mainly limited to bromides and iodides. Here, we report an electrochemically induced nickel-catalyzed cross-electrophile coupling strategy between alkenyl triflates and α-chloroamides in an undivided cell under mild reaction conditions, affording the α-functionalized amide derivatives in good to excellent yields with broad substrate scopes and good functional group tolerance. The control experiments were conducted, and a plausible mechanism was proposed.
Collapse
Affiliation(s)
- Xi Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| | - Zenghui Ye
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| | - Yicai Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| | - Ziqiang Zhao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| | - Weiyuan Ma
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| | - Fengzhi Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
2
|
Li X, Deng W, Wen Y, Wang Z, Zhou J, Li Z, Li Y, Hu J, Huang Y. Electrochemically Driven para-Selective C(sp 2)-H Alkylation Enabled by Activation of Alkyl Halides without Sacrificial Anodes. Chemistry 2024; 30:e202400010. [PMID: 38389032 DOI: 10.1002/chem.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
With alkyl halides (I, Br, Cl) as a coupling partner, an electrochemically driven strategy for para-selective C(sp2)-H alkylation of electron-deficient arenes (aryl esters, aldehydes, nitriles, and ketones) has been achieved to access diverse alkylated arenes in one step. The reaction enables the activation of alkyl halides in the absence of sacrificial anodes, achieving the formation of C(sp2)-C(sp3) bonds under mild electrolytic conditions. The utility of this protocol is reflected in high site selectivity, broad substrate scope, and scalable.
Collapse
Affiliation(s)
- Xinling Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Weijie Deng
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Yating Wen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Ziliang Wang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Jianfeng Zhou
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Zhenjie Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Yibiao Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Jinhui Hu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Yubing Huang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| |
Collapse
|
3
|
Ware SD, Zhang W, Guan W, Lin S, See KA. A guide to troubleshooting metal sacrificial anodes for organic electrosynthesis. Chem Sci 2024; 15:5814-5831. [PMID: 38665512 PMCID: PMC11041367 DOI: 10.1039/d3sc06885d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/28/2024] Open
Abstract
The development of reductive electrosynthetic reactions is often enabled by the oxidation of a sacrificial metal anode, which charge-balances the reductive reaction of interest occurring at the cathode. The metal oxidation is frequently assumed to be straightforward and innocent relative to the chemistry of interest, but several processes can interfere with ideal sacrificial anode behavior, thereby limiting the success of reductive electrosynthetic reactions. These issues are compounded by a lack of reported observations and characterization of the anodes themselves, even when a failure at the anode is observed. Here, we weave lessons from electrochemistry, interfacial characterization, and organic synthesis to share strategies for overcoming issues related to sacrificial anodes in electrosynthesis. We highlight common but underexplored challenges with sacrificial anodes that cause reactions to fail, including detrimental side reactions between the anode or its cations and the components of the organic reaction, passivation of the anode surface by an insulating native surface film, accumulation of insulating byproducts at the anode surface during the reaction, and competitive reduction of sacrificial metal cations at the cathode. For each case, we propose experiments to diagnose and characterize the anode and explore troubleshooting strategies to overcome the challenge. We conclude by highlighting open questions in the field of sacrificial-anode-driven electrosynthesis and by indicating alternatives to traditional sacrificial anodes that could streamline reaction optimization.
Collapse
Affiliation(s)
- Skyler D Ware
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Wendy Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - Weiyang Guan
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Kimberly A See
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| |
Collapse
|
4
|
Liu Y, Li P, Wang Y, Qiu Y. Electroreductive Cross-Electrophile Coupling (eXEC) Reactions. Angew Chem Int Ed Engl 2023; 62:e202306679. [PMID: 37327185 DOI: 10.1002/anie.202306679] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/18/2023]
Abstract
Electrochemistry utilizes electrons as a potent, controllable, and traceless alternative to chemical oxidants or reductants, and typically offers a more sustainable option for achieving selective organic synthesis. Recently, the merger of electrochemistry with readily available electrophiles has been recognized as a viable and increasingly popular methodology for efficiently constructing challenging C-C and C-heteroatom bonds in a sustainable manner for complex organic molecules. In this mini-review, we have systematically summarized the most recent advances in electroreductive cross-electrophile coupling (eXEC) reactions during the last decade. Our focus has been on readily available electrophiles, including aryl and alkyl organic (pseudo)halides, as well as small molecules such as CO2 , SO2 , and D2 O.
Collapse
Affiliation(s)
- Yaowen Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Pengfei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
5
|
Sun B, Wang ZH, Wang YZ, Gu YC, Ma C, Mei TS. Parallel paired electrolysis-enabled asymmetric catalysis: simultaneous synthesis of aldehydes/aryl bromides and chiral alcohols. Sci Bull (Beijing) 2023; 68:2033-2041. [PMID: 37507259 DOI: 10.1016/j.scib.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Metal-catalyzed asymmetric electro-reductive couplings have emerged as a powerful tool for organic synthesis, wherein a sacrificial anode is typically required. Herein, a parallel paired electrolysis (PPE)-enabled asymmetric catalysis has been developed, and the alcohols and ketones could be simultaneously converted to the corresponding aldehydes and chiral tertiary alcohols with high yields and enantioselectivity in an undivided cell. Additionally, this Ni-catalyzed asymmetric reductive coupling can well match the anodic oxidative C-H bond bromination of (hetero)arenes. This protocol opens an alternative avenue for organic synthesis.
Collapse
Affiliation(s)
- Bing Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhen-Hua Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yun-Zhao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire RE42 6EY, UK
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
6
|
Masuda R, Yasukawa T, Yamashita Y, Maki T, Yoshida T, Kobayashi S. Heterogeneous Single-Atom Zinc on Nitrogen-Doped Carbon Catalyzed Electrochemical Allylation of Imines. J Am Chem Soc 2023. [PMID: 37224473 DOI: 10.1021/jacs.3c03674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Organometallic reagents are effective for carbon-carbon bond formation; however, consumption of stoichiometric amounts of metals is problematic. We developed electrochemical allylation reactions of imines catalyzed by nitrogen-doped carbon-supported single-atom zinc, which were fixed on a cathode to afford a range of homoallylic amines efficiently. The system could suppress generation of metallic waste, and the catalyst electrode showed advantages over bulk zinc in terms of activity and robustness. An electrochemical flow reaction was also successfully performed to produce the homoallylic amine continuously with minimum amounts of waste.
Collapse
Affiliation(s)
- Ryusuke Masuda
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Yasukawa
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tei Maki
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoko Yoshida
- Research Center for Artificial Photosynthesis, Osaka Metropolitan University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Shu Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Wu H, Li X, Yang L, Chen W, Zou C, Deng W, Wang Z, Hu J, Li Y, Huang Y. Cathodic Carbonyl Alkylation of Aryl Ketones or Aldehydes with Unactivated Alkyl Halides. Org Lett 2022; 24:9342-9347. [PMID: 36484503 DOI: 10.1021/acs.orglett.2c04019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient cathodic carbonyl alkylation of aryl ketones or aldehydes with unactivated alkyl halides has been realized through the electrochemical activation of iron. The protocol is believed to include a radical-radical coupling or nucleophilic addition process, and the formation of ketyl radicals and alkyl radicals has been demonstrated. The protocol provides various tertiary or secondary alcohols by the formation of intermolecular C-C bonds under safe and mild conditions, is scalable, consumes little energy, and exhibits a broad substrate scope.
Collapse
Affiliation(s)
- Hongting Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Xinling Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Ling Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Weihao Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Canlin Zou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Weijie Deng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Ziliang Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yubing Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| |
Collapse
|
8
|
Recent advances in organic electrosynthesis using heterogeneous catalysts modified electrodes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Lin HS, Chen SJ, Huang JM. Electrosynthesis of (hetero)aryl nitriles from α-imino-oxy acids via oxidative decarboxylation/N-O cleavage. Chem Commun (Camb) 2022; 58:8974-8977. [PMID: 35861309 DOI: 10.1039/d2cc02986c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new method for the synthesis of (hetero)aryl nitriles via iminyl radicals has been developed through the electrochemical oxidative decarboxylation of α-imino-oxy acids. This protocol provides an efficient approach to nitriles with a broad range of functional-group tolerance under ambient conditions and can be applied for one-pot gram-scale synthesis.
Collapse
Affiliation(s)
- Hui-Shan Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Shu-Jun Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
10
|
Li P, Guo C, Wang S, Ma D, Feng T, Wang Y, Qiu Y. Facile and general electrochemical deuteration of unactivated alkyl halides. Nat Commun 2022; 13:3774. [PMID: 35773255 PMCID: PMC9247074 DOI: 10.1038/s41467-022-31435-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/16/2022] [Indexed: 01/18/2023] Open
Abstract
Herein, a facile and general electroreductive deuteration of unactivated alkyl halides (X = Cl, Br, I) or pseudo-halides (X = OMs) using D2O as the economical deuterium source was reported. In addition to primary and secondary alkyl halides, sterically hindered tertiary chlorides also work very well, affording the target deuterodehalogenated products with excellent efficiency and deuterium incorporation. More than 60 examples are provided, including late-stage dehalogenative deuteration of natural products, pharmaceuticals, and their derivatives, all with excellent deuterium incorporation (up to 99% D), demonstrating the potential utility of the developed method in organic synthesis. Furthermore, the method does not require external catalysts and tolerates high current, showing possible use in industrial applications.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chengcheng Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dengke Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
11
|
Del Río-Rodríguez R, Fragoso-Jarillo L, Garrido-Castro AF, Maestro MC, Fernández-Salas JA, Alemán J. General electrochemical Minisci alkylation of N-heteroarenes with alkyl halides. Chem Sci 2022; 13:6512-6518. [PMID: 35756520 PMCID: PMC9172443 DOI: 10.1039/d2sc01799g] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Herein, we report, a general, facile and environmentally friendly Minisci-type alkylation of N-heteroarenes under simple and straightforward electrochemical conditions using widely available alkyl halides as radical precursors. Primary, secondary and tertiary alkyl radicals have been shown to be efficiently generated and coupled with a large variety of N-heteroarenes. The method presents a very high functional group tolerance, including various heterocyclic-based natural products, which highlights the robustness of the methodology. This applicability has been further proved in the synthesis of various interesting biologically valuable building blocks. In addition, we have proposed a mechanism based on different proofs and pieces of electrochemical evidence.
Collapse
Affiliation(s)
| | - Lorena Fragoso-Jarillo
- Organic Chemistry Department, Universidad Autónoma de Madrid Módulo 2 28049 Madrid Spain
| | | | - M Carmen Maestro
- Organic Chemistry Department, Universidad Autónoma de Madrid Módulo 2 28049 Madrid Spain
| | - Jose A Fernández-Salas
- Organic Chemistry Department, Universidad Autónoma de Madrid Módulo 2 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid Madrid Spain
| | - José Alemán
- Organic Chemistry Department, Universidad Autónoma de Madrid Módulo 2 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid Madrid Spain
- Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid Spain
| |
Collapse
|
12
|
Chen W, Ni S, Wang Y, Pan Y. Electrochemical-Promoted Nickel-Catalyzed Reductive Allylation of Aryl Halides. Org Lett 2022; 24:3647-3651. [PMID: 35579336 DOI: 10.1021/acs.orglett.2c01247] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Compared with conventional reductive coupling, reductive coupling under electrochemical conditions without external reductants is greener, milder, and more efficient and is of increasing interest to organic chemists. In this work, we report the sacrificial anode, nickel-catalyzed electrochemical allylation reaction of aryl and alkyl halides. The reaction can be applied to a range of allylation reagents such as trifluoroalkenes, oxalates, and acetates.
Collapse
Affiliation(s)
- Wangzhe Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Zhou HJ, Huang JM. Hydropyridylation of α,β-Unsaturated Esters through Electroreduction of 4-Cyanopyridine. J Org Chem 2022; 87:5328-5338. [PMID: 35385272 DOI: 10.1021/acs.joc.2c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A mild and highly efficient method for the hydropyridylation of α,β-unsaturated esters has been developed. This protocol provides the products smoothly with a wide substrate scope in an undivided cell under ambient conditions. Moreover, studies showed that the scope could be extended to other unsaturated compounds, including enones and aldehydes.
Collapse
Affiliation(s)
- Hua-Jian Zhou
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
14
|
Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chem Rev 2022; 122:3180-3218. [PMID: 34797053 PMCID: PMC9714963 DOI: 10.1021/acs.chemrev.1c00614] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew B Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jaime R Cabrera-Pardo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tammy D Pham
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Skylar Blank
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
15
|
Wan JL, Cui JF, Zhong WQ, Huang JM. Iminyl-radicals by electrochemical decarboxylation of α-imino-oxy acids: construction of indole-fused polycyclics. Chem Commun (Camb) 2021; 57:10242-10245. [PMID: 34528040 DOI: 10.1039/d1cc03891e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Iminyl radicals are reactive intermediates that can be used for the construction of various valuable heterocycles. Herein, the electrochemical decarboxylation of α-imino-oxy acids for the generation of iminyl radicals has been accomplished under exogenous-oxidant- and metal-free conditions through the use of nBu4NBr as a mediator. The resulting iminyl radicals undergo intramolecular cyclization smoothly with the adjacent (hetero)arenes to afford a series of indole-fused polycyclic compounds.
Collapse
Affiliation(s)
- Jin-Lin Wan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Jian-Feng Cui
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Wei-Qiang Zhong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
16
|
Qi XK, Guo L, Yao LJ, Gao H, Yang C, Xia W. Multicomponent Synthesis of α-Branched Tertiary and Secondary Amines by Photocatalytic Hydrogen Atom Transfer Strategy. Org Lett 2021; 23:4473-4477. [PMID: 34028283 DOI: 10.1021/acs.orglett.1c01412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A multicomponent carbonyl alkylative amination reaction is described. A variety of N-arylamines, aldehydes, and hydrocarbons have been examined as reaction substrates using tetrabutylammonium decatungstate as photocatalyst, providing the corresponding α-branched tertiary and secondary amines in good to moderate yields. The reaction proceeds through the generation of alkyl radicals by a light-promoted hydrogen atom transfer process followed by free radical addition to iminium ions generated in situ.
Collapse
Affiliation(s)
- Xu-Kuan Qi
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Li-Juan Yao
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Han Gao
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
17
|
Mondal B, Roy UK. Making and breaking of Zn–C bonds in the cases of allyl and propargyl organozincs. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Yin Z, Pang H, Guo X, Lin H, Muzzio M, Shen M, Wei K, Yu C, Williard P, Sun S. CuPd Nanoparticles as a Robust Catalyst for Electrochemical Allylic Alkylation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zhouyang Yin
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Huan Pang
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Xuefeng Guo
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Honghong Lin
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Michelle Muzzio
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Mengqi Shen
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Kecheng Wei
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Chao Yu
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Paul Williard
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Shouheng Sun
- Department of Chemistry Brown University Providence RI 02906 USA
| |
Collapse
|
19
|
Yin Z, Pang H, Guo X, Lin H, Muzzio M, Shen M, Wei K, Yu C, Williard P, Sun S. CuPd Nanoparticles as a Robust Catalyst for Electrochemical Allylic Alkylation. Angew Chem Int Ed Engl 2020; 59:15933-15936. [DOI: 10.1002/anie.202006293] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Zhouyang Yin
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Huan Pang
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Xuefeng Guo
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Honghong Lin
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Michelle Muzzio
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Mengqi Shen
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Kecheng Wei
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Chao Yu
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Paul Williard
- Department of Chemistry Brown University Providence RI 02906 USA
| | - Shouheng Sun
- Department of Chemistry Brown University Providence RI 02906 USA
| |
Collapse
|
20
|
Rogier J, Anani L, Coelho A, Massicot F, Machado-Rodrigues C, Behr JB, Vasse JL. Homoallylic amines as efficient chiral inducing frameworks in the conjugate addition of amides to α,β-unsaturated esters. An entry to enantio-enriched diversely substituted amines. Org Biomol Chem 2020; 18:2632-2636. [PMID: 31998930 DOI: 10.1039/d0ob00034e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diastereoselective conjugate addition of secondary homoallylamines, obtained in the enantioenriched form via allylmetallation of imines, to α,β-unsaturated esters is reported. This method allows access to valuable building blocks as well as heterocyclic skeletons, providing tertiary amines bearing two chains integrating a stereogenic center adjacent to the nitrogen atom.
Collapse
Affiliation(s)
- Johann Rogier
- Institut de Chimie Moléculaire de Reims, CNRS (UMR 7312) and Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France.
| | - Lilia Anani
- Institut de Chimie Moléculaire de Reims, CNRS (UMR 7312) and Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France.
| | - Aurélien Coelho
- Institut de Chimie Moléculaire de Reims, CNRS (UMR 7312) and Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France.
| | - Fabien Massicot
- Institut de Chimie Moléculaire de Reims, CNRS (UMR 7312) and Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France.
| | - Carine Machado-Rodrigues
- Institut de Chimie Moléculaire de Reims, CNRS (UMR 7312) and Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France.
| | - Jean-Bernard Behr
- Institut de Chimie Moléculaire de Reims, CNRS (UMR 7312) and Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France.
| | - Jean-Luc Vasse
- Institut de Chimie Moléculaire de Reims, CNRS (UMR 7312) and Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France.
| |
Collapse
|
21
|
Singh M, Kant Sharma L, Dubey R, Kumar Patel M, Prakash V, Krishna Pal Singh R. An Electrochemical Approach for the Direct Synthesis of 3, 5‐Disubstituted 1, 2, 4‐Triazoles from Nitriles and Hydrazides. ChemistrySelect 2020. [DOI: 10.1002/slct.201904510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Manjula Singh
- Electrochemical Laboratory of Green Synthesis, Department of ChemistryUniversity of Allahabad Allahabad 211002 India
| | - Laxmi Kant Sharma
- Electrochemical Laboratory of Green Synthesis, Department of ChemistryUniversity of Allahabad Allahabad 211002 India
| | - Rahul Dubey
- Electrochemical Laboratory of Green Synthesis, Department of ChemistryUniversity of Allahabad Allahabad 211002 India
| | - Manoj Kumar Patel
- Electrochemical Laboratory of Green Synthesis, Department of ChemistryUniversity of Allahabad Allahabad 211002 India
| | - Ved Prakash
- Electrochemical Laboratory of Green Synthesis, Department of ChemistryUniversity of Allahabad Allahabad 211002 India
| | - Rana Krishna Pal Singh
- Electrochemical Laboratory of Green Synthesis, Department of ChemistryUniversity of Allahabad Allahabad 211002 India
| |
Collapse
|
22
|
Wu Z, Feng XX, Wang QD, Liu XY, Rao W, Yang JM, Shen ZL. An efficient Bi/NH4I-mediated addition reaction for the highly diastereoselective synthesis of homoallylic alcohols in aqueous media. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Jia J, Lefebvre Q, Rueping M. Reductive coupling of imines with redox-active esters by visible light photoredox organocatalysis. Org Chem Front 2020. [DOI: 10.1039/c9qo01428d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The direct alkylation of imines with redox-active esters by visible light photoorganocatalysis provides a direct way for accessing α-branched secondary amines which are found in numerous bioactive molecules.
Collapse
Affiliation(s)
- Jiaqi Jia
- Institute of Organic Chemistry
- RWTH Aachen
- Aachen
- Germany
| | | | - Magnus Rueping
- Institute of Organic Chemistry
- RWTH Aachen
- Aachen
- Germany
- King Abdullah University of Science and Technology (KAUST)
| |
Collapse
|
24
|
Zhang Z, Rogers CR, Weiss EA. Energy Transfer from CdS QDs to a Photogenerated Pd Complex Enhances the Rate and Selectivity of a Pd-Photocatalyzed Heck Reaction. J Am Chem Soc 2019; 142:495-501. [DOI: 10.1021/jacs.9b11278] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhengyi Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Cameron R. Rogers
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Emily A. Weiss
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
25
|
Copper(II)-catalyzed preparation of alkylindium compounds and applications in cross-coupling reactions both in aqueous media. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Mondal B, Mandal SP, Kundu M, Adhikari U, Roy UK. Synthesis and characterization of nano−zinc wire using a self designed unit galvanic cell in aqueous medium and its reactivity in propargylation of aldehydes. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Feng X, Wu Z, Wang Q, Chen B, Rao W, Yang J, Shen Z. Cesium carbonate‐catalyzed indium insertion into alkyl iodides and their synthetic utilities in cross‐coupling reactions. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xue‐Xin Feng
- School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
- School of PharmacyYancheng Teachers University Yancheng 224007 China
| | - Zhen Wu
- School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
- School of PharmacyYancheng Teachers University Yancheng 224007 China
| | - Qing‐Dong Wang
- School of PharmacyYancheng Teachers University Yancheng 224007 China
| | - Bing‐Zhi Chen
- School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Weidong Rao
- Jiangsu Key Laboratory of Biomass‐based Green Fuels and Chemicals, College of Chemical EngineeringNanjing Forestry University Nanjing 210037 China
| | - Jin‐Ming Yang
- School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
- School of PharmacyYancheng Teachers University Yancheng 224007 China
| | - Zhi‐Liang Shen
- School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| |
Collapse
|
28
|
Lin DZ, Huang JM. Synthesis of 3-Formylindoles via Electrochemical Decarboxylation of Glyoxylic Acid with an Amine as a Dual Function Organocatalyst. Org Lett 2019; 21:5862-5866. [DOI: 10.1021/acs.orglett.9b01971] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dian-Zhao Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
29
|
Jian W, Wang H, Du K, Zhong W, Huang J. Electrochemical Synthesis of 3‐Bromoimidazo[1,2‐a]pyridines Directly from 2‐Aminopyridines and
alpha
‐Bromoketones. ChemElectroChem 2019. [DOI: 10.1002/celc.201900406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wen‐Qian Jian
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. CHINA
| | - Hai‐Bin Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. CHINA
| | - Ke‐Si Du
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. CHINA
| | - Wei‐Qiang Zhong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. CHINA
| | - Jing‐Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P. R. CHINA
| |
Collapse
|
30
|
Cheng BQ, Zhao SW, Song XD, Chu XQ, Rao W, Loh TP, Shen ZL. Lead-Mediated Highly Diastereoselective Allylation of Aldehydes with Cyclic Allylic Halides. J Org Chem 2019; 84:5348-5356. [DOI: 10.1021/acs.joc.9b00370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bu-Qing Cheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Shi-Wen Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xuan-Di Song
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Weidong Rao
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
31
|
Li F, Lin D, He T, Zhong W, Huang J. Electrochemical Decarboxylative Trifluoromethylation of
α, β‐
Unsaturated Carboxylic Acids with CF
3
SO
2
Na. ChemCatChem 2019. [DOI: 10.1002/cctc.201900438] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fang‐Yuan Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Wushan, Tianhe, Guangzhou 510640 P.R. China
| | - Dian‐Zhao Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Wushan, Tianhe, Guangzhou 510640 P.R. China
| | - Tian‐Jun He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Wushan, Tianhe, Guangzhou 510640 P.R. China
| | - Wei‐Qiang Zhong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Wushan, Tianhe, Guangzhou 510640 P.R. China
| | - Jing‐Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Wushan, Tianhe, Guangzhou 510640 P.R. China
| |
Collapse
|
32
|
Yang SM, He TJ, Lin DZ, Huang JM. Electrosynthesis of (E)-Vinyl Thiocyanates from Cinnamic Acids via Decarboxylative Coupling Reaction. Org Lett 2019; 21:1958-1962. [DOI: 10.1021/acs.orglett.8b04136] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Shun-Ming Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Tian-Jun He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Dian-Zhao Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
33
|
Stereoselective synthesis of sulfur-containing β-enaminonitrile derivatives through electrochemical Csp 3-H bond oxidative functionalization of acetonitrile. Nat Commun 2019; 10:833. [PMID: 30783088 PMCID: PMC6381189 DOI: 10.1038/s41467-019-08762-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Incorporation of nitrile groups into fine chemicals is of particular interest through C(sp3)-H bonds activation of alkyl nitriles in the synthetic chemistry due to the highly efficient atom economy. However, the direct α-functionalization of alkyl nitriles is usually limited to its enolate chemistry. Here we report an electro-oxidative C(sp3)-H bond functionalization of acetonitrile with aromatic/aliphatic mercaptans for the synthesis of sulfur-containing β-enaminonitrile derivatives. These tetrasubstituted olefin products are stereoselectively synthesized and the stereoselectivity is enhanced in the presence of a phosphine oxide catalyst. With iodide as a redox catalyst, activation of C(sp3)-H bond to produce cyanomethyl radicals proceeds smoothly at a decreased anodic potential, and thus highly chemoselective formation of C-S bonds and enamines is achieved. Importantly, the process is carried out at ambient temperature and can be easily scaled up.
Collapse
|
34
|
Liu XY, Cheng BQ, Guo YC, Chu XQ, Rao W, Loh TP, Shen ZL. Iron-mediated highly diastereoselective allylation of carbonyl compounds with cyclic allylic halides. Org Chem Front 2019. [DOI: 10.1039/c9qo00210c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An efficient iron-mediated highly diastereoselective allylation reaction of carbonyl compounds with cyclic allylic halides using a catalytic amount of bismuth(iii) chloride is reported.
Collapse
Affiliation(s)
- Xuan-Yu Liu
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Bu-Qing Cheng
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Yi-Cong Guo
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Weidong Rao
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| |
Collapse
|
35
|
Liu X, Cheng B, Guo Y, Chu X, Li Y, Loh T, Shen Z. Bismuth‐Mediated Diastereoselective Allylation Reaction of Carbonyl Compounds with Cyclic Allylic Halides or Cinnamyl Halide. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuan‐Yu Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
| | - Bu‐Qing Cheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
| | - Yi‐Cong Guo
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
| | - Xue‐Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
| | - Yong‐Xin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Teck‐Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Zhi‐Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
| |
Collapse
|
36
|
Yun J, Zhi M, Shi W, Chu X, Shen Z, Loh T. Indium(III)‐Catalyzed Hydration and Hydroalkoxylation of α,β‐Unsaturated Ketones in Aqueous Media. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jin‐Jin Yun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
| | - Man‐Ling Zhi
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
| | - Wen‐Xiao Shi
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
| | - Xue‐Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
| | - Zhi‐Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
| | - Teck‐Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 People's Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
37
|
Abstract
An electrochemical bisindolylation of ethers was developed. Carried out under ambient conditions and in the absence of any chemical oxidants, this reaction exhibits a broad substrate scope and good functional group compatibility.
Collapse
Affiliation(s)
- Ke-Si Du
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , China
| |
Collapse
|
38
|
Lin DZ, Huang JM. Electrochemical N-Formylation of Amines via Decarboxylation of Glyoxylic Acid. Org Lett 2018; 20:2112-2115. [DOI: 10.1021/acs.orglett.8b00698] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Dian-Zhao Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
39
|
Yan M, Kawamata Y, Baran PS. Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance. Chem Rev 2017; 117:13230-13319. [PMID: 28991454 PMCID: PMC5786875 DOI: 10.1021/acs.chemrev.7b00397] [Citation(s) in RCA: 1962] [Impact Index Per Article: 280.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electrochemistry represents one of the most intimate ways of interacting with molecules. This review discusses advances in synthetic organic electrochemistry since 2000. Enabling methods and synthetic applications are analyzed alongside innate advantages as well as future challenges of electroorganic chemistry.
Collapse
Affiliation(s)
| | | | - Phil S. Baran
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
40
|
Affiliation(s)
- Yangye Jiang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Kun Xu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Chengchu Zeng
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
41
|
Abstract
The preparation and transformation of heterocyclic structures have always been of great interest in organic chemistry. Electrochemical technique provides a versatile and powerful approach to the assembly of various heterocyclic structures. In this review, we examine the advance in relation to the electrochemical construction of heterocyclic compounds published since 2000 via intra- and intermolecular cyclization reactions.
Collapse
Affiliation(s)
- Yangye Jiang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering , Beijing University of Technology , Beijing 100124 , China
| | - Kun Xu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering , Beijing University of Technology , Beijing 100124 , China.,College of Chemistry and Pharmaceutical Engineering , Nanyang Normal University , Nanyang , Henan 473061 , China
| | - Chengchu Zeng
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering , Beijing University of Technology , Beijing 100124 , China
| |
Collapse
|
42
|
Zhao Y, Lai YL, Du KS, Lin DZ, Huang JM. Electrochemical Decarboxylative Sulfonylation of Cinnamic Acids with Aromatic Sulfonylhydrazides to Vinyl Sulfones. J Org Chem 2017; 82:9655-9661. [DOI: 10.1021/acs.joc.7b01741] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yin-Long Lai
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Ke-Si Du
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Dian-Zhao Lin
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jing-Mei Huang
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
43
|
Lai YL, Huang JM. Palladium-Catalyzed Electrochemical Allylic Alkylation between Alkyl and Allylic Halides in Aqueous Solution. Org Lett 2017; 19:2022-2025. [DOI: 10.1021/acs.orglett.7b00473] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yin-Long Lai
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jing-Mei Huang
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
44
|
Gong M, Huang JM. Electrochemical Oxidative C−H/N−H Coupling between γ-Lactams and Anilines. Chemistry 2016; 22:14293-6. [DOI: 10.1002/chem.201602454] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Ming Gong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou Guangdong 510640 P. R. China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou Guangdong 510640 P. R. China
| |
Collapse
|
45
|
Wang HB, Huang JM. Decarboxylative Coupling ofα-Keto Acids withortho-Phenylenediamines Promoted by an Electrochemical Method in Aqueous Media. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201501167] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Qian P, Bi M, Su J, Zha Z, Wang Z. Electrosynthesis of (E)-Vinyl Sulfones Directly from Cinnamic Acids and Sodium Sulfinates via Decarboxylative Sulfono Functionalization. J Org Chem 2016; 81:4876-82. [DOI: 10.1021/acs.joc.6b00661] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Peng Qian
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Meixiang Bi
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jihu Su
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhenggen Zha
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
47
|
Lai YL, Ye JS, Huang JM. Electrochemical Synthesis of Benzazoles from Alcohols and o
-Substituted Anilines with a Catalytic Amount of CoII
Salt. Chemistry 2016; 22:5425-9. [DOI: 10.1002/chem.201505074] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Yin-Long Lai
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou Guangdong 510640 P. R. China
| | - Jian-Shan Ye
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou Guangdong 510640 P. R. China
| | - Jing-Mei Huang
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou Guangdong 510640 P. R. China
| |
Collapse
|
48
|
Coffinet M, Lamy S, Jaroschik F, Vasse JL. Cyclopent-2-enylaluminium as allylzinc precursor for the diastereoselective allylmetallation of non-racemic imines: applications to the synthesis of enantiomerically enriched heterocycles. Org Biomol Chem 2016; 14:69-73. [PMID: 26563731 DOI: 10.1039/c5ob02184g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The generation of cyclopent-2-enylzinc from cyclopentadiene based on a titanium-catalyzed hydroalumination/transmetallation sequence is described. Applied to the allylmetallation of phenylglycinol-derived imines, this sequence leads to homoallylic amines with moderate to good stereoselectivities. The synthesis of disubstituted azetidines and piperidines illustrates the potential of the method.
Collapse
Affiliation(s)
- Michaël Coffinet
- Institut de Chimie Moléculaire de Reims, CNRS (UMR 7312) and Université de Reims, 51687 Reims Cedex 2, France.
| | - Samantha Lamy
- Institut de Chimie Moléculaire de Reims, CNRS (UMR 7312) and Université de Reims, 51687 Reims Cedex 2, France.
| | - Florian Jaroschik
- Institut de Chimie Moléculaire de Reims, CNRS (UMR 7312) and Université de Reims, 51687 Reims Cedex 2, France.
| | - Jean-Luc Vasse
- Institut de Chimie Moléculaire de Reims, CNRS (UMR 7312) and Université de Reims, 51687 Reims Cedex 2, France.
| |
Collapse
|
49
|
Chen T, Cai C. Imidazolylpyridine-In(OTf)3 catalyzed enantioselective allylation of ketimines derived from isatins. Org Biomol Chem 2016; 14:5019-22. [DOI: 10.1039/c6ob00551a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An enantioselective In(OTf)3-catalyzed allylation of ketimines derived from isatins in the presence of an imidazolylpyridine ligand is described.
Collapse
Affiliation(s)
- Tingting Chen
- College of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing
- China
| | - Chun Cai
- College of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing
- China
| |
Collapse
|
50
|
Drouillat B, Wright K, Quinodoz P, Marrot J, Couty F. Aza-[2,3]-Wittig Sigmatropic Rearrangement of Allylic Tertiary Amines: A Successful Example with High Chirality Transfer. J Org Chem 2015; 80:6936-40. [DOI: 10.1021/acs.joc.5b01230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- B. Drouillat
- Institut Lavoisier
de Versailles,
UMR 8180. Université de Versailles St-Quentin-en-Yvelines. 45, av. des Etats-Unis, 78035 Versailles Cedex, France
| | - K. Wright
- Institut Lavoisier
de Versailles,
UMR 8180. Université de Versailles St-Quentin-en-Yvelines. 45, av. des Etats-Unis, 78035 Versailles Cedex, France
| | - P. Quinodoz
- Institut Lavoisier
de Versailles,
UMR 8180. Université de Versailles St-Quentin-en-Yvelines. 45, av. des Etats-Unis, 78035 Versailles Cedex, France
| | - J. Marrot
- Institut Lavoisier
de Versailles,
UMR 8180. Université de Versailles St-Quentin-en-Yvelines. 45, av. des Etats-Unis, 78035 Versailles Cedex, France
| | - F. Couty
- Institut Lavoisier
de Versailles,
UMR 8180. Université de Versailles St-Quentin-en-Yvelines. 45, av. des Etats-Unis, 78035 Versailles Cedex, France
| |
Collapse
|