1
|
O'Donnell CR, Stark CBW. Total Synthesis of (-)-Aspidospermidine via an Enantioselective Palladium-Catalyzed Allylic Substitution Strategy. Org Lett 2024. [PMID: 39481016 DOI: 10.1021/acs.orglett.4c03445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
A total synthesis of (-)-aspidospermidine via an enantioselective Pd-catalyzed allylic substitution strategy is reported. This represents the first application of a Pd-catalyzed allylic substitution with a 3-substituted indole derivative in the synthesis of Aspidosperma alkaloids. In our synthetic route, the allylic substitution reaction was the stereo defining step. The pentacyclic framework was then constructed in a fully diastereoselective sequence. This culminated in the shortest enantioselective synthesis of aspidospermidine reported to date, in seven linear steps.
Collapse
Affiliation(s)
- Charlotte R O'Donnell
- Department of Chemistry, Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Christian B W Stark
- Department of Chemistry, Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
2
|
Long J, Liu R, Mu X, Song Z, Zhang Z, Yang Z. Development of a Strategy for the Total Synthesis of Aspidosperma Alkaloids via the Cyclobutenone-Based PET-Initiated Cationic Radical-Driven [2+2]/Retro-Mannich Reaction. Org Lett 2024; 26:2960-2964. [PMID: 38592965 DOI: 10.1021/acs.orglett.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A novel strategy for the synthesis of Aspidosperma alkaloids has been achieved via a photoredox-initiated [2+2]/retro-Mannich reaction of tryptamine-substituted enaminones as a key step. The developed chemistry has been applied to the construction of the core tetracycle of Aspidosperma alkaloids (±)-aspidospermidine and (±)-limaspermidine.
Collapse
Affiliation(s)
- Jianyu Long
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Rudong Liu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xinpeng Mu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhilin Song
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhongchao Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS) and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Ma F, Li Y, Akkarasereenon K, Qiu H, Cheung YT, Guo Z, Tong R. Aza-Achmatowicz rearrangement coupled with intermolecular aza-Friedel-Crafts enables total syntheses of uleine and aspidosperma alkaloids. Chem Sci 2024; 15:5730-5737. [PMID: 38638226 PMCID: PMC11023026 DOI: 10.1039/d4sc00601a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Aspidosperma and uleine alkaloids belong to the large family of monoterpene indole alkaloids with diverse biological activities and thus have attracted extensive synthetic interest. Reported is the development of a new synthetic strategy that allows direct C3-C2' linkage of indoles with functionalized 2-hydroxypiperidines to construct the core common to all aspidoserma and uleine alkaloids. Such indole-piperidine linkage is enabled by coupling aza-Achmatowicz rearrangement (AAR) with indoles via an intermolecular aza-Friedel-Crafts (iAFC) reaction. This AAR-iAFC reaction proceeds under mild acidic conditions with wide tolerance of functional groups (33 examples). The synthetic application of the AAR-iAFC method was demonstrated with collective total syntheses of 3 uleine-type and 6 aspidosperma alkaloids: (+)-3-epi-N-nor-dasycarpidone, (+)-3-epi-dasycarpidone, (+)-3-epi-uleine, 1,2-didehydropseudoaspidospermidine, 1,2-dehydroaspidospermidine, vincadifformine, winchinine B, aspidospermidine, and N-acetylaspidospermidine. We expect that this AAR-iAFC strategy is applicable to other monoterpene indole alkaloids with the C3-C2' linkage of indoles and piperidines.
Collapse
Affiliation(s)
- Foqing Ma
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Yunlong Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Kornkamon Akkarasereenon
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Huiying Qiu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Yuen Tsz Cheung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Zhihong Guo
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| |
Collapse
|
4
|
Hicks EF, Inoue K, Stoltz BM. Enantioselective Total Synthesis of (-)-Hunterine A Enabled by a Desymmetrization/Rearrangement Strategy. J Am Chem Soc 2024; 146:4340-4345. [PMID: 38346145 PMCID: PMC10885145 DOI: 10.1021/jacs.3c13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The first enantioselective total synthesis of (-)-hunterine A is disclosed. Our strategy employs a catalytic asymmetric desymmetrization of a symmetrical diketone and subsequent Beckmann rearrangement to construct a 5,6-α-aminoketone. A convergent 1,2-addition joins a vinyl dianion nucleophile and the enantioenriched ketone. The endgame of the synthesis features an aza-Cope/Mannich reaction and azide-olefin dipolar cycloaddition to complete the pentacyclic ring system. The synthesis is completed through a regioselective aziridine ring opening.
Collapse
Affiliation(s)
- Elliot F Hicks
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kengo Inoue
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Lakshman MK, Sebastian D, Pradhan P, Neary MC, Piette AM, Trzebiatowski SP, Henriques AEK, Willoughby PH. Nitrene C-H Bond Insertion Approach to Carbazolones and Indolones, and a Reactivity Departure for 7-Membered Analogues. Chemistry 2023; 29:e202302995. [PMID: 37751465 DOI: 10.1002/chem.202302995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
A modular platform for facile access to 1,2,3,9-tetrahydro-4H-carbazol-4-ones (H4 -carbazolones) and 3,4-dihydrocyclopenta[b]indol-1(2H)-ones (H2 -indolones) is described. The requisite 6- and 5-membered 2-arylcycloalkane-1,3-dione precursors were readily obtained through a Cu-catalyzed arylation of 1,3-cyclohexanediones or by a ring expansion of aryl succinoin derivatives. Enolization of one carbonyl group in the diones, conversion to a leaving group, and subsequent azidation gave 2-aryl-3-azidocycloalk-2-en-1-ones. This two-step, one-pot azidation is highly regioselective with unsymmetrically substituted 2-arylcyclohexane-1,3-diones. The regioselectivity, which is important for access to single isomers of 3,3-disubstituted carbazolones, was analyzed mechanistically and computationally. Finally, a Rh-catalyzed nitrene/nitrenoid insertion into the ortho C-H bond of the aryl moiety gave the H4 -carbazolones and H2 -indolones. One carbazolone was elaborated to an intermediate reported in the total synthesis of N-decarbomethoxychanofruticosinate, (-)-aspidospermidine, (+)-kopsihainanine A. With 2-phenylcycloheptane-1,3-dione, prepared from cyclohexanone and benzaldehyde, the azidation reaction was readily accomplished. However, the Rh-catalyzed reaction unexpectedly led to a labile but characterizable azirine rather than the indole derivative. Computations were performed to understand the differences in reactivities of the 5- and 6-membered 2-aryl-3-azidocycloalk-2-en-1-ones in comparison to the 7-membered analogue, and to support the structural assignment of the azirine.
Collapse
Affiliation(s)
- Mahesh K Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
- The Graduate Center of the City University of New York, The Ph.D. Program in Chemistry, 365 Fifth Avenue, New York, NY 10016, USA
| | - Dellamol Sebastian
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
- The Graduate Center of the City University of New York, The Ph.D. Program in Chemistry, 365 Fifth Avenue, New York, NY 10016, USA
| | - Padmanava Pradhan
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Michelle C Neary
- Department of Chemistry, Hunter College, 695 Park Avenue, New York, NY 10065, USA
| | - Alexis M Piette
- Department of Chemistry, Ripon College, 300 W. Seward St., Ripon, WI 54971, USA
| | | | | | | |
Collapse
|
6
|
Wang N, Xiao X, Liu CX, Yao H, Huang N, Zou K. Recent Advances in the Total Synthesis of <i>Aspidosperma</i> and <i>Kopsia</i> Alkaloids Using Tetracyclic Pyridocarbazoles as Versatile Building Blocks. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Xiao Xiao
- Zhejiang University of Technology CHINA
| | | | - Hui Yao
- China Three Gorges University CHINA
| | | | - Kun Zou
- China Three Gorges University CHINA
| |
Collapse
|
7
|
Wang X, Yuan L, Xu X, Ji S. Base-controlled annulation of tryptamine-derived isocyanides with nitrile imines for access to polycyclic spiroindoline derivatives. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
An Y, Wu M, Li W, Li Y, Wang Z, Xue Y, Tang P, Chen F. The total synthesis of (-)-strempeliopine via palladium-catalyzed decarboxylative asymmetric allylic alkylation. Chem Commun (Camb) 2022; 58:1402-1405. [PMID: 34994369 DOI: 10.1039/d1cc06278f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the work reported herein, the concise and enantioselective total synthesis of the Schizozygine alkaloid (-)-strempeliopine was developed. This synthetic strategy featured the palladium-catalyzed decarboxylative asymmetric allylic alkylation of N-benzoyl lactam to set up the absolute configuration at the C20 position, a highly diastereoselective one-pot Bischler-Napieralski/lactamization and iminium reduction sequence for the construction of the pentacyclic core structure, and the late-stage dearomative addition of indole, leading to the otherwise difficult-to-achieve hexacyclic indoline framework with complete control of four neighbouring stereocenters.
Collapse
Affiliation(s)
- Yi An
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Mengjuan Wu
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Weijian Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yaling Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zhenzhen Wang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yansong Xue
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Pei Tang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. .,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
9
|
Zhao S, Sirasani G, Andrade RB. Aspidosperma and Strychnos alkaloids: Chemistry and biology. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2021; 86:1-143. [PMID: 34565505 DOI: 10.1016/bs.alkal.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Of Nature's nearly 3000 unique monoterpene indole alkaloids derived from tryptophan, those members belonging to the Aspidosperma and Strychnos families continue to impact the fields of natural products (i.e., isolation, structure determination, biosynthesis) and organic chemistry (i.e., chemical synthesis, methodology development) among others. This review covers the biological activity (Section 2), biosynthesis (Section 3), and synthesis of both classical and novel Aspidosperma (Section 4), Strychnos (Section 5), and selected bis-indole (Section 6) alkaloids. Technological advancements in genetic sequencing and bioinformatics have deepened our understanding of how Nature assembles these intriguing molecules. The proliferation of innovative synthetic strategies and tactics for the synthesis of the alkaloids covered in this review, which include contributions from over fifty research groups from around the world, are a testament to the creative power and technical skills of synthetic organic chemists. To be sure, Nature-the Supreme molecular architect and source of a dazzling array of irresistible chemical logic puzzles-continues to inspire scientists across multiple disciplines and will certainly continue to do so for the foreseeable future.
Collapse
Affiliation(s)
- Senzhi Zhao
- Department of Chemistry, Temple University, Philadelphia, PA, United States
| | | | - Rodrigo B Andrade
- Department of Chemistry, Temple University, Philadelphia, PA, United States
| |
Collapse
|
10
|
Abstract
The asymmetric alkylation of enolates is a particularly versatile method for the construction of α-stereogenic carbonyl motifs, which are ubiquitous in synthetic chemistry. Over the past several decades, the focus has shifted to the development of new catalytic methods that depart from classical stoichiometric stereoinduction strategies (e.g., chiral auxiliaries, chiral alkali metal amide bases, chiral electrophiles, etc.). In this way, the enantioselective alkylation of prochiral enolates greatly improves the step- and redox-economy of this process, in addition to enhancing the scope and selectivity of these reactions. In this review, we summarize the origin and advancement of catalytic enantioselective enolate alkylation methods, with a directed emphasis on the union of prochiral nucleophiles with carbon-centered electrophiles for the construction of α-stereogenic carbonyl derivatives. Hence, the transformative developments for each distinct class of nucleophile (e.g., ketone enolates, ester enolates, amide enolates, etc.) are presented in a modular format to highlight the state-of-the-art methods and current limitations in each area.
Collapse
Affiliation(s)
- Timothy B Wright
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - P Andrew Evans
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, P. R. of China
| |
Collapse
|
11
|
Yang L, Huang S, Huang R, Hou A, Zhang S, Su H, Ding X, Lin B, Cheng M, Liu Y. Total Syntheses of Aspidospermidine, N-Methylaspidospermidine, N-Acetylaspidospermidine, and Aspidospermine via a Tandem Cyclization of Tryptamine-Ynamide. Org Lett 2021; 23:6471-6476. [PMID: 34339196 DOI: 10.1021/acs.orglett.1c02287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The total syntheses of aspidospermidine, N-methylaspidospermidine, N-acetylaspidospermidine, and aspidospermine were achieved from a common pentacyclic indoline intermediate. The common pentacyclic indoline intermediate was synthesized on a gram scale through a Stork-enamine alkylation of 1H-pyrrolo[2,3-d]carbazole derivatives, which were prepared through a Brønsted acid-catalyzed tandem cyclization of tryptamine-ynamide. The scalable synthesis of 1H-pyrrolo[2,3-d]carbazole afforded facile access and a practical approach to the Aspidosperma indole alkaloid family.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Siwen Huang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Rongkang Huang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Anbin Hou
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Sen Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Hongwei Su
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Xiaohong Ding
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| |
Collapse
|
12
|
Du J, Wang X, Wang H, Wei J, Huang X, Song J, Zhang J. Photoinduced Palladium-Catalyzed Intermolecular Radical Cascade Cyclization of N-Arylacrylamides with Unactivated Alkyl Bromides. Org Lett 2021; 23:5631-5635. [PMID: 34236201 DOI: 10.1021/acs.orglett.1c01698] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A mild visible-light-induced Pd-catalyzed intermolecular radical cascade reaction of N-arylacrylamides with unactivated alkyl bromides is disclosed. Photoexcited Pd complexes transfer a single electron in this protocol, and hybrid alkyl Pd-radical species are involved as the key reaction intermediates. Sophisticated bioactive oxindole derivatives bearing various substituents and substitution patterns can be efficiently afforded through this approach.
Collapse
Affiliation(s)
- Juan Du
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xing Wang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Hongling Wang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Jinhu Wei
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xuan Huang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Jun Song
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Junmin Zhang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
13
|
Connon R, Roche B, Rokade BV, Guiry PJ. Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis. Chem Rev 2021; 121:6373-6521. [PMID: 34019404 PMCID: PMC8277118 DOI: 10.1021/acs.chemrev.0c00844] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/27/2022]
Abstract
The chiral oxazoline motif is present in many ligands that have been extensively applied in a series of important metal-catalyzed enantioselective reactions. This Review aims to provide a comprehensive overview of the most significant applications of oxazoline-containing ligands reported in the literature starting from 2009 until the end of 2018. The ligands are classified not by the reaction to which their metal complexes have been applied but by the nature of the denticity, chirality, and donor atoms involved. As a result, the continued development of ligand architectural design from mono(oxazolines), to bis(oxazolines), to tris(oxazolines) and tetra(oxazolines) and variations thereof can be more easily monitored by the reader. In addition, the key transition states of selected asymmetric transformations will be given to illustrate the features that give rise to high levels of asymmetric induction. As a further aid to the reader, we summarize the majority of schemes with representative examples that highlight the variation in % yields and % ees for carefully selected substrates. This Review should be of particular interest to the experts in the field but also serve as a useful starting point to new researchers in this area. It is hoped that this Review will stimulate both the development/design of new ligands and their applications in novel metal-catalyzed asymmetric transformations.
Collapse
Affiliation(s)
- Robert Connon
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Brendan Roche
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Balaji V. Rokade
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J. Guiry
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
14
|
Katahara S, Sugiyama Y, Yamane M, Komiya Y, Sato T, Chida N. Five-Step Total Synthesis of (±)-Aspidospermidine by a Lactam Strategy via an Azomethine Ylide. Org Lett 2021; 23:3058-3063. [DOI: 10.1021/acs.orglett.1c00735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Seiya Katahara
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yasukazu Sugiyama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Mina Yamane
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yukinori Komiya
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Noritaka Chida
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
15
|
Xie X, She X. Concise Total Syntheses of Bioactive Alkaloids Enabled by Development or Application of Cascade Reactions: A Personnel Adventure. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xingang Xie
- State Key laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Xuegong She
- State Key laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| |
Collapse
|
16
|
Hu XD, Chen ZH, Zhao J, Sun RZ, Zhang H, Qi X, Liu WB. Enantioselective Synthesis of α-All-Carbon Quaternary Center-Containing Carbazolones via Amino-palladation/Desymmetrizing Nitrile Addition Cascade. J Am Chem Soc 2021; 143:3734-3740. [DOI: 10.1021/jacs.1c00840] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xu-Dong Hu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Zi-Hao Chen
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Jing Zhao
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Rui-Ze Sun
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Hui Zhang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiaotian Qi
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Wen-Bo Liu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
17
|
Li C, Ragab SS, Liu G, Tang W. Enantioselective formation of quaternary carbon stereocenters in natural product synthesis: a recent update. Nat Prod Rep 2021; 37:276-292. [PMID: 31515549 DOI: 10.1039/c9np00039a] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: 2013-2018 Natural products bearing quaternary carbon stereocenters have attracted tremendous interest from the synthetic community due to their diverse biological activities and fascinating molecular architectures. However, the construction of these molecules in an enantioselective fashion remains a long-standing challenge because of the lack of efficient asymmetric catalytic methods for installing these motifs. The rapid progress in the development of new-generation efficient chiral catalysts has opened the door for several asymmetric reactions, such as Michael addition, dearomative cyclization, polyene cyclization, α-arylation, cycloaddition, allylation, for the construction of quaternary carbon stereocenters in a highly enantioselective fashion. These asymmetric catalytic methods have greatly facilitated the synthesis of complex natural products with improved output and overall efficiency. In this concise review, we highlight the progress in the last six years in complex natural product synthesis, in which at least one quaternary carbon stereocenter has been constructed via asymmetric catalytic technologies, with particular emphasis on the analysis of the stereochemical model of each enantioselective transformation.
Collapse
Affiliation(s)
- Chengxi Li
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China.
| | - Sherif Shaban Ragab
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China. and Photochemistry Department, Chemical Industries Research Division, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Guodu Liu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China. and Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China.
| |
Collapse
|
18
|
Wang W, Dai J, Yang Q, Deng YH, Peng F, Shao Z. Palladium-Catalyzed Asymmetric Direct Intermolecular Allylation of α-Aryl Cyclic Vinylogous Esters: Divergent Synthesis of (+)-Oxomaritidine and (−)-Mesembrine. Org Lett 2021; 23:920-924. [DOI: 10.1021/acs.orglett.0c04125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wei Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jun Dai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Qiqiong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Fangzhi Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, and School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
19
|
Wang N, Jiang X. Synthetic Approaches to Tricyclic Aminoketones in the Total Synthesis of Aspidosperma and Kopsia Alkaloids. CHEM REC 2020; 21:295-314. [PMID: 33289266 DOI: 10.1002/tcr.202000131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Aspidosperma and kopsia alkaloids are significant functional molecules because of their potent biological activities. Their intricate structures present an intrinsic synthetic challenge and thus attract significant attention from synthetic organic academic community. Over the past decades, a series of elegant strategies has been developed, in particular, the Stork's original Fischer indolization of tricyclic aminoketones 1. Herein, we report a comprehensive review on various synthetic approaches access to tricyclic aminoketones 1 and provide a practical guidance to readers whose are interested in employing tricyclic aminoketones 1 as versatile building blocks in the realm of total synthesis of aspidosperma, kopsia and structurally related alkaloids.
Collapse
Affiliation(s)
- Nengzhong Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
20
|
Mohammadkhani L, Heravi MM. Applications of Transition-Metal-Catalyzed Asymmetric Allylic Substitution in Total Synthesis of Natural Products: An Update. CHEM REC 2020; 21:29-68. [PMID: 33206466 DOI: 10.1002/tcr.202000086] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/14/2023]
Abstract
Metal-catalyzed asymmetric allylic substitution (AAS) reaction is one of the most synthetically useful reactions catalyzed by metal complexes for the formation of carbon-carbon and carbon-heteroatom bonds. It comprises the substitution of allylic substrates with a wide range of nucleophiles or SN 2'-type allylic substitution, which results in the formation of the above-mentioned bonds with high levels of enantioselective induction. AAS reaction tolerates a broad range of functional groups, thus has been successfully applied in the asymmetric synthesis of a wide range of optically pure compounds. This reaction has been extensively used in the total synthesis of several complex molecules, especially natural products. In this review, we try to highlight the applications of metal (Pd, Ir, Mo, or Cu)-catalyzed AAS reaction in the total synthesis of the biologically active natural products, as a key step, updating the subject from 2003 till date.
Collapse
Affiliation(s)
- Leyla Mohammadkhani
- Department of Chemistry, School of Sciences, Alzahra University Vanak, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Sciences, Alzahra University Vanak, Tehran, Iran
| |
Collapse
|
21
|
Affiliation(s)
- Karre Nagaraju
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Dongshun Ni
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
22
|
Nagaraju K, Ni D, Ma D. Total Synthesis of Kopsinitarine E. Angew Chem Int Ed Engl 2020; 59:22039-22042. [DOI: 10.1002/anie.202011093] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Karre Nagaraju
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Dongshun Ni
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
23
|
Martin G, Angyal P, Egyed O, Varga S, Soós T. Total Syntheses of Dihydroindole Aspidosperma Alkaloids: Reductive Interrupted Fischer Indolization Followed by Redox Diversification. Org Lett 2020; 22:4675-4679. [PMID: 32497431 PMCID: PMC7467818 DOI: 10.1021/acs.orglett.0c01472] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 01/22/2023]
Abstract
We report a novel reductive interrupted Fischer indolization process for the concise assembly of the 20-oxoaspidospermidine framework. This rapid complexity generating route paves the way toward various dihydroindole Aspidosperma alkaloids with different C-5 side chain redox patterns. The end-game redox modulations were accomplished by modified Wolff-Kishner reaction and photo-Wolff rearrangement, enabling the total synthesis of (-)-aspidospermidine, (-)-limaspermidine, and (+)-17-demethoxy-N-acetylcylindrocarine and the formal total synthesis of (-)-1-acetylaspidoalbidine.
Collapse
Affiliation(s)
- Gábor Martin
- Institute
of Organic Chemistry, Research Centre for
Natural Sciences, 2 Magyar tudósok krt., Budapest, H-1117, Hungary
| | - Péter Angyal
- Institute
of Organic Chemistry, Research Centre for
Natural Sciences, 2 Magyar tudósok krt., Budapest, H-1117, Hungary
| | - Orsolya Egyed
- Instrumentation
Center, Research Centre for Natural Sciences, 2 Magyar tudósok krt., Budapest, H-1117, Hungary
| | - Szilárd Varga
- Institute
of Organic Chemistry, Research Centre for
Natural Sciences, 2 Magyar tudósok krt., Budapest, H-1117, Hungary
| | - Tibor Soós
- Institute
of Organic Chemistry, Research Centre for
Natural Sciences, 2 Magyar tudósok krt., Budapest, H-1117, Hungary
| |
Collapse
|
24
|
Delayre B, Piemontesi C, Wang Q, Zhu J. TiCl
3
‐Mediated Synthesis of 2,3,3‐Trisubstituted Indolenines: Total Synthesis of (+)‐1,2‐Dehydroaspidospermidine, (+)‐Condyfoline, and (−)‐Tubifoline. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bastien Delayre
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Cyril Piemontesi
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|
25
|
Delayre B, Piemontesi C, Wang Q, Zhu J. TiCl
3
‐Mediated Synthesis of 2,3,3‐Trisubstituted Indolenines: Total Synthesis of (+)‐1,2‐Dehydroaspidospermidine, (+)‐Condyfoline, and (−)‐Tubifoline. Angew Chem Int Ed Engl 2020; 59:13990-13997. [DOI: 10.1002/anie.202005380] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Bastien Delayre
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Cyril Piemontesi
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne EPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|
26
|
Varga S, Angyal P, Martin G, Egyed O, Holczbauer T, Soós T. Total Syntheses of (−)‐Minovincine and (−)‐Aspidofractinine through a Sequence of Cascade Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Szilárd Varga
- Institute of Organic Chemistry Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
| | - Péter Angyal
- Institute of Organic Chemistry Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
| | - Gábor Martin
- Institute of Organic Chemistry Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
| | - Orsolya Egyed
- Instrumentation Center Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
| | - Tamás Holczbauer
- Institute of Organic Chemistry Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
- Instrumentation Center Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
| | - Tibor Soós
- Institute of Organic Chemistry Research Centre for Natural Sciences 2 Magyar tudósok krt. 1117 Budapest Hungary
| |
Collapse
|
27
|
Varga S, Angyal P, Martin G, Egyed O, Holczbauer T, Soós T. Total Syntheses of (-)-Minovincine and (-)-Aspidofractinine through a Sequence of Cascade Reactions. Angew Chem Int Ed Engl 2020; 59:13547-13551. [PMID: 32351014 PMCID: PMC7497198 DOI: 10.1002/anie.202004769] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Indexed: 12/31/2022]
Abstract
We report 8‐step syntheses of (−)‐minovincine and (−)‐aspidofractinine using easily available and inexpensive reagents and catalyst. A key element of the strategy was the utilization of a sequence of cascade reactions to rapidly construct the penta‐ and hexacyclic frameworks. These cascade transformations included organocatalytic Michael‐aldol condensation, a multistep anionic Michael‐SN2 cascade reaction, and Mannich reaction interrupted Fischer indolization. To streamline the synthetic routes, we also investigated the deliberate use of steric effect to secure various chemo‐ and regioselective transformations.
Collapse
Affiliation(s)
- Szilárd Varga
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary
| | - Péter Angyal
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary
| | - Gábor Martin
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary
| | - Orsolya Egyed
- Instrumentation Center, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary
| | - Tamás Holczbauer
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary.,Instrumentation Center, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok krt., 1117, Budapest, Hungary
| |
Collapse
|
28
|
Wang Z. Palladium-catalyzed asymmetric dearomative cyclization in natural product synthesis. Org Biomol Chem 2020; 18:4354-4370. [PMID: 32459269 DOI: 10.1039/d0ob00818d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Asymmetric catalysis is a rapidly growing field in modern organic chemistry and has been indispensable for the synthesis of enantioenriched materials to meet demands from the academies to pharmaceutical industries. Asymmetric dearomative cyclization catalyzed by transition metals has been a hot research area in the last decade. Fascinated by its ability to construct sterically hindered quaternary stereogenic center(s) through dearomatization and simultaneously forging new ring structure(s) through cyclization, palladium-catalyzed asymmetric dearomative cyclization has been applied to the synthesis of structurally complicated natural products and it is increasingly prevalent in the literature. In particular, the resultant product from dearomative cyclization, which usually carries one or more unsaturated C-C bond(s), allows further functional group transformations. Previously reported applications of palladium-catalyzed asymmetric dearomative cyclization in natural product synthesis are presented here and discussed in depth.
Collapse
Affiliation(s)
- Zhuo Wang
- Southern University of Science and Technology, School of Medicine, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
29
|
Usman M, Hu X, Liu W. Recent Advances and Perspectives in the Synthesis and Applications of Tetrahydrocarbazol‐4‐ones†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Muhammad Usman
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education); College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Xu‐Dong Hu
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education); College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Wen‐Bo Liu
- Sauvage Center for Molecular Sciences; Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education); College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
30
|
Zhang H, Chen P, Yang H, Ma S, Wang Z, Xie X, Wang X, Li H, She X. A Strategy to Construct cis-Hydrocarbazole via Nickel/Lewis Acid Dual-Catalyzed Arylcyanation. J Org Chem 2020; 85:3954-3962. [DOI: 10.1021/acs.joc.9b03243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 TianShui South Road, Lanzhou 730000, China
| | - Peiqi Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 TianShui South Road, Lanzhou 730000, China
| | - Hesi Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 TianShui South Road, Lanzhou 730000, China
| | - Shiqiang Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 TianShui South Road, Lanzhou 730000, China
| | - Zemin Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 TianShui South Road, Lanzhou 730000, China
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 TianShui South Road, Lanzhou 730000, China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 TianShui South Road, Lanzhou 730000, China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 TianShui South Road, Lanzhou 730000, China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 TianShui South Road, Lanzhou 730000, China
| |
Collapse
|
31
|
Kalshetti MG, Argade NP. The indole-based subincanadine alkaloids and their biogenetic congeners. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2020; 83:187-223. [PMID: 32098650 DOI: 10.1016/bs.alkal.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The tryptamine-derived polycyclic bridged bioactive indole alkaloids subincanadines A-G were isolated in 2002 by Ohsaki and coworkers from the bark of the Brazilian medicinal plant Aspidosperma subincanum. Kobayashi proposed that subincanadines D-F could be biosynthetically resulting from stemmadenine via two different pathways and, furthermore, that the subincanadines A-C could be biogenetically resulting from subincanadines D and E. Kam and coworkers, in their focused efforts, isolated five indole alkaloids from Malaysian Kopsia arborea species, namely valparicine, apparicine, arboridinine, arborisidine, and arbornamine in combination with subincanadine E. On the basis of structural features, it has been proposed and proved in some examples that subincanadine E is a biogenetic precursor of these five different bioactive indole alkaloids bearing complex structural architectures. All important information on isolation, characterization, bioactivity, probable biogenetic pathways, and more specifically racemic and enantioselective total synthesis of subincanadine alkaloids and their biogenetic congeners are summarized in the present chapter. Special importance is given to the total synthesis and the synthetic strategies intended therein, comprising a set of main reactions.
Collapse
|
32
|
Ogawa S, Miyata K, Kawakami S, Tanaka S, Kitamura M. CpRuII-chiral bisamidine complex catalyzed asymmetric Carroll-type decarboxylative allylation of β-keto allyl esters. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Ma S, Long D, Chen P, Shi H, Li H, Fang R, Wang X, Xie X, She X. Synthesis of 2,3-disubstituted indoles via a tandem reaction. Org Chem Front 2020. [DOI: 10.1039/d0qo00765j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A wide array of 2,3-disubstituted indoles were accessed in modest to good yields via a tandem reduction/condensation/fragmentation/cyclization sequence. Differential fragmentation made the reaction more complicated.
Collapse
Affiliation(s)
- Shiqiang Ma
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Dan Long
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Peiqi Chen
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Hongliang Shi
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Ran Fang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
34
|
Affiliation(s)
- Hongjin Xu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - He Huang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Cui Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanjun Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Xinxiang 453007, China
| |
Collapse
|
35
|
Li W, Dong Z, Zhang Y, Zeng Z, Usman M, Liu WB. Cu-Catalyzed Arylation/Acyl Migration Cascade Reaction of Enaminones: Access to N-Fused Polycyclic and 2,3-Disubstituted Indoles. J Org Chem 2019; 84:7995-8005. [DOI: 10.1021/acs.joc.9b00866] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Weishuang Li
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, Hubei, China
| | - Zhan Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, Hubei, China
| | - Yan Zhang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, Hubei, China
| | - Zhen Zeng
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, Hubei, China
| | - Muhammad Usman
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, Hubei, China
| | - Wen-Bo Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, Hubei, China
| |
Collapse
|
36
|
Yang H, Tang W. Efficient Enantioselective Syntheses of Chiral Natural Products Facilitated by Ligand Design. CHEM REC 2019; 20:23-40. [PMID: 31025478 DOI: 10.1002/tcr.201900003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/27/2019] [Indexed: 12/23/2022]
Abstract
The employment of enantioselective transition-metal-catalyzed transformations as key steps in asymmetric natural product syntheses have attracted considerable attention in recent years owing to their versatile synthetic utilities, mild conditions and high efficiency in chirality generation. The chiral catalysts or supporting ligands are believed to be crucial for the requisite reactivity and enantioselectivity. Therefore, the rational design of chiral ligands is at the heart of developing new asymmetric transition-metal catalyzed reactions and provides an avenue to the asymmetric synthesis of natural products. Our group has been engaged in the development of transition-metal-catalyzed enantioselective cross-coupling, cyclization and other related reactions and the application of these methodologies to natural product syntheses. In this account, we summarized our recent synthetic efforts towards the efficient total syntheses of several different types of natural products including terpenes, alkaloids and polyketides facilitated by the design of a series of versatile P-chiral phosphorous ligands.
Collapse
Affiliation(s)
- He Yang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai, 200032
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai, 200032
| |
Collapse
|
37
|
Pritchett BP, Stoltz BM. Enantioselective palladium-catalyzed allylic alkylation reactions in the synthesis of Aspidosperma and structurally related monoterpene indole alkaloids. Nat Prod Rep 2019; 35:559-574. [PMID: 29658039 DOI: 10.1039/c7np00069c] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to the end of 2017 Enantioselective Pd-catalyzed allylic alkylations of prochiral enolates represent a powerful tool for the construction of all-carbon quaternary stereocenters. This review describes the emergence of such reactions as strategic linchpins that enable efficient, stereocontrolled syntheses of Aspidosperma and related monoterpene indole alkaloids.
Collapse
Affiliation(s)
- Beau P Pritchett
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena, CA 91125, USA.
| | | |
Collapse
|
38
|
Tong X, Shi B, Liang K, Liu Q, Xia C. Enantioselective Total Synthesis of (+)‐Flavisiamine F via Late‐Stage Visible‐Light‐Induced Photochemical Cyclization. Angew Chem Int Ed Engl 2019; 58:5443-5446. [PMID: 30884052 DOI: 10.1002/anie.201901241] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/18/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaogang Tong
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of Botany, CAS Kunming 650201 Yunnan China
| | - Bingfei Shi
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
| | - Qian Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of Botany, CAS Kunming 650201 Yunnan China
| |
Collapse
|
39
|
Tong X, Shi B, Liang K, Liu Q, Xia C. Enantioselective Total Synthesis of (+)‐Flavisiamine F via Late‐Stage Visible‐Light‐Induced Photochemical Cyclization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaogang Tong
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of Botany, CAS Kunming 650201 Yunnan China
| | - Bingfei Shi
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
| | - Qian Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education and Yunnan Province)State Key Laboratory for Conservation and Utilization of Bio-Resources in YunnanSchool of Chemical Science and TechnologyYunnan University Kunming 650091 China
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of Botany, CAS Kunming 650201 Yunnan China
| |
Collapse
|
40
|
|
41
|
Kalshetti MG, Argade NP. Progress in total synthesis of subincanadine alkaloids and their congeners. Org Biomol Chem 2019; 17:745-761. [PMID: 30574985 DOI: 10.1039/c8ob02565g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A concise account of isolation, characterization, bioactivity, plausible biogenetic pathways, and most importantly, total synthesis of structurally fascinating and biologically imperious indole-based subincanadine alkaloids and their biogenetic congeners are described in the present review with special emphasis on total synthesis and therein an involved set of key reactions.
Collapse
Affiliation(s)
- Manojkumar G Kalshetti
- Division of Organic Chemistry, National Chemical Laboratory (CSIR), Pune 411 008, India.
| | | |
Collapse
|
42
|
Tan F, Cheng HG. Catalytic asymmetric synthesis of tetrahydrocarbazoles. Chem Commun (Camb) 2019; 55:6151-6164. [DOI: 10.1039/c9cc02486g] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This feature article summarises recent advances in catalytic asymmetric synthesis of THCs, with emphases on reaction type and reaction mechanism.
Collapse
Affiliation(s)
- Fen Tan
- Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients
- Hubei University of Education
- Wuhan 430205
- China
| | - Hong-Gang Cheng
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
43
|
Yang B, Zhai X, Feng S, Hu D, Deng Y, Shao Z. Organocatalyzed Intermolecular Asymmetric Allylic Dearomatization of Both α- and β-Naphthols. Org Lett 2018; 21:330-334. [PMID: 30585495 DOI: 10.1021/acs.orglett.8b03934] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The first highly stereoselective intermolecular catalytic asymmetric dearomatization (CADA) of α-naphthols through C-C formation and the first asymmetric allylic dearomatization of naphthols by chiral organocatalysis have been achieved. These new and complete atom-economic reactions provide enantioriched α- and β-naphthalenones bearing an all-carbon quaternary center.
Collapse
Affiliation(s)
- Binmiao Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Xuejie Zhai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Shubo Feng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Dongyan Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Yuhua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| |
Collapse
|
44
|
Bergès J, García B, Muñiz K. An Electrophilic Bromine Redox Catalysis for the Synthesis of Indole Alkaloid Building Blocks by Selective Aliphatic C−H Amination. Angew Chem Int Ed Engl 2018; 57:15891-15895. [DOI: 10.1002/anie.201808939] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Julien Bergès
- Institute of Chemical Research of Catalonia (ICIQ); The Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
| | - Belén García
- Institute of Chemical Research of Catalonia (ICIQ); The Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
| | - Kilian Muñiz
- Institute of Chemical Research of Catalonia (ICIQ); The Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
- ICREA; Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
45
|
Bergès J, García B, Muñiz K. Eine elektrophile Brom-Redoxkatalyse zur Synthese von Alkaloidbausteinen durch selektive aliphatische C-H-Aminierung. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Julien Bergès
- Institute of Chemical Research of Catalonia (ICIQ); The Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spanien
| | - Belén García
- Institute of Chemical Research of Catalonia (ICIQ); The Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spanien
| | - Kilian Muñiz
- Institute of Chemical Research of Catalonia (ICIQ); The Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spanien
- ICREA; Pg. Lluís Companys 23 08010 Barcelona Spanien
| |
Collapse
|
46
|
Liu J, Mishra S, Aponick A. Enol Acetates: Versatile Substrates for the Enantioselective Intermolecular Tsuji Allylation. J Am Chem Soc 2018; 140:16152-16158. [DOI: 10.1021/jacs.8b08746] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ji Liu
- Florida Center for Heterocyclic Compounds and Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Sourabh Mishra
- Florida Center for Heterocyclic Compounds and Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Aaron Aponick
- Florida Center for Heterocyclic Compounds and Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
47
|
McPherson KE, Croatt MP, Morehead AT, Sargent AL. DFT Mechanistic Investigation of an Enantioselective Tsuji–Trost Allylation Reaction. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kate E. McPherson
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Mitchell P. Croatt
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Andrew T. Morehead
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Andrew L. Sargent
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
48
|
Yao X, Shan X, Zu L. Divergent Coupling of 2-Carbonyl-anilines and Diazo-cyclopentanones: Asymmetric Total Synthesis of (+)-Leucomidine A. Org Lett 2018; 20:6498-6501. [DOI: 10.1021/acs.orglett.8b02823] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaotong Yao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xiaosong Shan
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Liansuo Zu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
49
|
Ni D, Wei Y, Ma D. Thiourea-Catalyzed Asymmetric Michael Addition of Carbazolones to 2-Chloroacrylonitrile: Total Synthesis of 5,22-Dioxokopsane, Kopsinidine C, and Demethoxycarbonylkopsin. Angew Chem Int Ed Engl 2018; 57:10207-10211. [DOI: 10.1002/anie.201805905] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Dongshun Ni
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Yi Wei
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Dawei Ma
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| |
Collapse
|
50
|
Ni D, Wei Y, Ma D. Thiourea-Catalyzed Asymmetric Michael Addition of Carbazolones to 2-Chloroacrylonitrile: Total Synthesis of 5,22-Dioxokopsane, Kopsinidine C, and Demethoxycarbonylkopsin. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805905] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dongshun Ni
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Yi Wei
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| | - Dawei Ma
- State Key Laboratory of Bioorganic and Natural Products Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 China
| |
Collapse
|