1
|
Yang Y, Bao X, Shao Y, Gao CY. Recent advances in organic fluorescent probes for detecting phosgene, mustard gas, nerve agents and their mimics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 332:125815. [PMID: 39914287 DOI: 10.1016/j.saa.2025.125815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025]
Abstract
Chemical warfare agents (CWAs) have been notorious for a century, especially sarin and mustard gas, which have produced intolerable menace to civilian lives and environmental security. As a result, developing simple, rapid, portable, sensitive, and selective detection technologies for CWAs is critical. This review primarily covered the recent progress in developing organic fluorescent probes for detecting phosgene, mustard gas, and nerve agents and their mimics. The review mainly discussed various sensing reactions utilized in the covalent strategies like cyclization, elimination, phosphorylation, alkylation, and sprioring-opening reaction, as well as the supramolecular approaches. The comparison of these probes highlighted the successful development of fluorescent probes for CWAs, some with detection limits in nano mol/L in solution and ppb scale in vapor state within seconds. These will contribute to a more effective system for detecting and monitoring CWAs in the future and improve the ability to respond to chemical attacks. Finally, the review discussed the limitations of current probes, emphasizing the need for on-site and real-time detection. It also called for research into new mechanisms and kits for rapid early warning of various CWAs to facilitate emergency handling and decontamination.
Collapse
Affiliation(s)
- Yang Yang
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Material Science, Inner Mongolia Minzu University, Tongliao 028000 PR China.
| | - Xiaoying Bao
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Material Science, Inner Mongolia Minzu University, Tongliao 028000 PR China
| | - Yuxin Shao
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Material Science, Inner Mongolia Minzu University, Tongliao 028000 PR China
| | - Chao-Ying Gao
- Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, College of Chemistry and Material Science, Inner Mongolia Minzu University, Tongliao 028000 PR China.
| |
Collapse
|
2
|
Wu L, Li Z, Wang K, Groleau RR, Rong X, Liu X, Liu C, Lewis SE, Zhu B, James TD. Advances in Organic Small Molecule-Based Fluorescent Probes for Precision Detection of Liver Diseases: A Perspective on Emerging Trends and Challenges. J Am Chem Soc 2025. [PMID: 40036086 DOI: 10.1021/jacs.4c17092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Liver disease poses a significant challenge to global health, and its early diagnosis is crucial for improving treatment outcomes and patient prognosis. Since fluctuation of key biomarkers during the onset and progression of liver diseases can directly reflect liver health and normal/abnormal function, biomarker-based assays are vital tools for the early detection of liver disease. In this context, small molecule fluorescent probes have undeniably emerged as indispensable tools for diagnosis and analysis, with an ever-growing number of small molecule-based fluorescent probes being developed over recent years, with the sole aim of monitoring relevant biomarkers of liver disease. This perspective will focus on the development and application of probes developed primarily over the last 10 years for diagnosing a range liver disease-related processes. It will outline the foundational design strategies for developing promising probes, their optical response to key biomarkers, and how they have been demonstrated in proof-of-concept imaging applications. Current challenges and new developments in the field will be discussed, with the aim of providing insights and highlighting opportunities in the field.
Collapse
Affiliation(s)
- Luling Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Zilu Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Robin R Groleau
- Department of Life Sciences, University of Bath, Bath BA2 7AY, U.K
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xueting Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| |
Collapse
|
3
|
Ji M, Ding N, Jiang Y, Gou X, Lin S, Zhou J, Peng L, Peng H, Fang Y. Selective phosgene detection both in solution and gas phases via a unique fluorescence bright-off-brighter mechanism. SENSORS AND ACTUATORS B: CHEMICAL 2025; 426:137115. [DOI: 10.1016/j.snb.2024.137115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Tohora N, Debnath C, Ahamed S, Chourasia J, Mahato M, Ali S, Lama S, Pradhan S, Das SK. An efficient ESIPT-based ratio-/fluorimetric probe for rapid and sensitive detection of the sarin surrogate diethylchlorophosphate in solution and vapor phases. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2067-2075. [PMID: 39935397 DOI: 10.1039/d4ay02069c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Nerve agents are highly toxic compounds that are based on organophosphorus chemistry, and their use is banned by international treaties regarding chemical weapons. Among the various nerve agents, sarin is highly lethal and inhibits the neuronal transmission and signaling of acetylcholinesterase. This study reports a fluorescent probe, (E)-3-(((2-(1H-benzo[d]imidazole-2-yl)phenyl)imino)methyl)-2-methoxy-2H-chromen-4-ol (BPMC), that demonstrates exceptional efficiency in detecting diethylchlorophosphate (DCP), a sarin surrogate, in solution and vapor phases. The gradual addition of DCP to the probe solution leads to a turn-on photoluminescence transition from blue to cyan because of the extension of intramolecular charge transfer transition (ICT) and inhibition of the excited-state intramolecular proton transfer (ESIPT) process. The minimum levels of DCP for detection and quantification were determined to be 6.6 μM and 22 μM, respectively, in the presence of various analogous analytes. Additionally, a test kit made of strips of cellulose paper was successfully assembled for real-time application. Dip-stick and dip-vial-conical-flask analyses were demonstrated as effective tools for detecting and quantifying DCP in the vapor phase. Furthermore, a smartphone-based approach was executed for the practical application of BPMC, enabling immediate identification and quantification of DCP in actual danger scenarios. Thus, this work presents a new ratiometric fluorogenic probe for the detection of sarin surrogate with potential application in actual hazardous situations.
Collapse
Affiliation(s)
- Najmin Tohora
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal-734013, India.
| | - Chayan Debnath
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal-734013, India.
| | - Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal-734013, India.
| | - Jyoti Chourasia
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal-734013, India.
| | - Manas Mahato
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal-734013, India.
| | - Shreya Ali
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal-734013, India.
| | - Shubham Lama
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal-734013, India.
| | - Subekchha Pradhan
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal-734013, India.
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal-734013, India.
| |
Collapse
|
5
|
Zhang L, Zhang K, Wu M, Ding J, Feng M, Li X, Yang S, Ma H. Ultrasensitive Recognition of Trace Nerve Agents Enabled via a Thermally Activated Delayed Fluorescence-Based Fluorescent Probe. Anal Chem 2025; 97:3344-3351. [PMID: 39898537 DOI: 10.1021/acs.analchem.4c05309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The development of fluorescent probes for the detection of nerve agents has been a significant focus of research due to their lethal toxicity to humans. Inspired by the excited state properties of thermally activated delayed fluorescence (TADF), we designed two visualized fluorescence probes, PT and PPT, that exhibit characteristics of delayed fluorescence and aggregation-induced emission. These probes are intended for the rapid and highly sensitive detection of diethyl chlorophosphate (DCP). Upon exposure to DCP vapors, the PT and PPT probes demonstrated rapid fluorescence quenching in less than 5 s, which was accompanied by a color change from yellow to red. The limits of detection for the probes were determined to be 3.0 and 2.9 ppb. Furthermore, we demonstrate that the reduction of acid interference through the use of dispersed SiO2 is an important step in the fabrication of N-heterocyclic nerve agent probes. Importantly, we also constructed a portable fluorescence detector that incorporates these films as key components, validating its applicability through the successful detection of nerve agents.
Collapse
Affiliation(s)
- Lijia Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Kongqing Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Mingyang Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jiantong Ding
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Miao Feng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Xiaobai Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Shilong Yang
- Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Northeast Forestry University, Harbin 150040, China
| | - Hongwei Ma
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
6
|
Zhu B, Yang X, Jiang L, Chen T, Wang S, Zeng L. A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. CHINESE CHEM LETT 2025; 36:110222. [DOI: 10.1016/j.cclet.2024.110222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Zhao F, Liu X, Li X, Cai Z, Zhang Y. Two-dimensional photonic crystal acetylcholinesterase hydrogel and organohydrogel sensors for efficient detection of organophosphorus compounds. Biosens Bioelectron 2025; 267:116845. [PMID: 39406073 DOI: 10.1016/j.bios.2024.116845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
Sensors capable of detecting organophosphorus (OP) compounds have attracted the most attention owing to severe OP contamination worldwide. Despite many years of research, the developed OP sensors mainly focused on detecting water-soluble OPs in proper environments and the exploration of OP sensors suitable in resource-limited areas is extremely challenging. Here, a simple two-dimensional photonic crystal (2D PC) hydrogel featuring capabilities of effectively quantitative determination of OP compounds is facilely constructed by immobilizing the enzyme acetylcholinesterase (AChE) onto a bovine serum albumin (BSA) protein hydrogel. Owing to the specific interaction between AChE and OP compounds, the OP compounds are easily bound to the hydrogel, triggering volume phase transition and resulting in apparent Debye diffraction ring variations. The resulting hydrogel sensors show a limit of detection (LoD) of 2.23 nM for trichlorfon and 0.07 nM for diethyl methylphosphonate (DMPP), respectively. On the basis of the hydrogel, a responsive organohydrogel is facilely fabricated utilizing a solvent exchange strategy to meet the requirements of applications in harsh environments and detection of the non-water-soluble OP compounds. The organohydrogel sensors, however, demonstrated a LoD of 0.70 μM for trichlorfon and 4.46 μM for DMPP, respectively. This work provides new light on the development of next-generation stable, low-cost, and portable field sensing devices.
Collapse
Affiliation(s)
- Fangyuan Zhao
- School of Instrumentation and Optoelectronic Engineering, School of Space and Environment, Beihang University, Beijing 100191, China
| | - Xinye Liu
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Xiaomin Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhongyu Cai
- School of Instrumentation and Optoelectronic Engineering, School of Space and Environment, Beihang University, Beijing 100191, China.
| | - Yuqi Zhang
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China.
| |
Collapse
|
8
|
Dartar S, Kaya BU, Yayak YÖ, Vural E, Emrullahoğlu M. Tailored BODIPY-based fluorogenic probes for phosgene detection: a comparative evaluation of recognition sites. J Mater Chem B 2024; 12:12282-12290. [PMID: 39474672 DOI: 10.1039/d4tb02040e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
We constructed two novel boron-dipyrromethene (BODIPY)-based fluorescent probes, BOPD and BOBA, each equipped with the phosgene specific recognition units o-phenylenediamine (OPD) and o-aminobenzylamine (OBA) at the 2-position of the BODIPY core. BOPD and BOBA represent rare examples of BODIPY-based probes that operate by modulating an intramolecular charge transfer process (ICT), as validated by computational studies. We systematically compared the analytic performance of those recognition units while focusing on selectivity, fluorescence turn-on ratios and response times. Probe BOBA, equipped with OBA as the recognition unit, demonstrated a remarkably low detection limit (i.e., 1.40 nM) and a rapid response time (<10 s) for triphosgene. By comparison, BOPD, featuring an OPD unit, showed superior selectivity towards triphosgene, with a detection limit of 93 nM and a response time of up to 30 s. A portable sensing platform was developed by loading BOPD onto test strips made of TLC plates, nonwoven materials and small-headed cotton swabs, which were assessed for their effectiveness in detecting phosgene. We additionally performed the first successful application of a fluorescent probe, namely BOPD, for monitoring the accumulation of phosgene in plants.
Collapse
Affiliation(s)
- Suay Dartar
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, Urla 35430, Turkiye.
| | - Beraat Umur Kaya
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, Urla 35430, Turkiye.
| | - Yanki Öncü Yayak
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, Urla 35430, Turkiye.
| | - Ezgi Vural
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, Urla 35430, Turkiye.
| | - Mustafa Emrullahoğlu
- Department of Photonics, Faculty of Science, Izmir Institute of Technology, Turkiye
| |
Collapse
|
9
|
Mao P, Song Y, Zhao X, Wu W, Wang Y. A Ratiometric Benzimidazole-Based Fluorescent Probe for The Recognition of Phosgene in Solution and Gaseous Phases. J Fluoresc 2024:10.1007/s10895-024-03847-x. [PMID: 39007931 DOI: 10.1007/s10895-024-03847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Considering the high toxicity and widespread application of phosgene, there is an urgent need to develop a simple and sensitive method for detecting phosgene. In this work, we designed and synthesized a novel ratiometric fluorescent probe 1 containing fluorophores of benzimidazole and benzothiazole. Probe 1 showed excellent sensitivity (< 30 s) and selectivity (LOD = 3.82 nM) for phosgene and significant ratiometric fluorescence changes. In addition, 1-loaded polystyrene membrane test strips were used to conveniently and efficiently detect phosgene gas (0.5 ppm) via the naked eye and the RGB APP of the smartphone, indicating that this probe has great potential for phosgene detection in the gaseous phase.
Collapse
Affiliation(s)
- Pandong Mao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, PR China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, PR China
| | - Yufei Song
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, PR China
| | - Xiaolei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, PR China
| | - Weina Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, PR China.
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, PR China.
| |
Collapse
|
10
|
Zhao L, Chen R, Jia C, Liu J, Liu G, Cheng T. BODIPY Based OFF-ON Fluorescent Probe for Endogenous Carbon Monoxide Imaging in Living Cells. J Fluoresc 2024; 34:1793-1799. [PMID: 37615893 DOI: 10.1007/s10895-023-03403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Carbon monoxide (CO) is one of the signaling molecules that are ubiquitous in humans, which involves in the regulation of human physiology and pathology. In this work, the probe PEC was designed and synthesized based on BODIPY fluorophore that can selectively detect CO through reducing the nitro group to amino group, resulting in a "turn-on" fluorescence response with a simultaneous increase in the concentration of CO. The response is selective over a variety of relevant reactive free radicals, ions, and amino acid species. PEC has the advantages of good stability, good water solubility, and obvious changes in fluorescence signals. In addition, PEC can be used to detect and track endogenous CO in living cells.
Collapse
Affiliation(s)
- Lei Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Rui Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Cheng Jia
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Jiandong Liu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guohua Liu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Tanyu Cheng
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
11
|
Maiti A, Ahamed S, Tohora N, Roy D, Ray T, Sahana S, Roy MN. A Pyrene Coupled Azaine-linkage Chromo-fluorogenic Probe for Specific Detection of Sarin Gas Stimulant, Diethylchlorophosphate. J Fluoresc 2024:10.1007/s10895-024-03681-1. [PMID: 38795209 DOI: 10.1007/s10895-024-03681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/20/2024] [Indexed: 05/27/2024]
Abstract
Owing to the extreme toxicity and easy synthesis protocol of G-series nerve agents, developing an efficient sensor for selective detection is necessary. Although various traditional methods are utilized to identify these nerve agents, chromo-fluorogenic probes have gained attractive attention from the scientific communities. In the present contribution, we have introduced a new symmetrical aza-substituted chromo-fluorogenic sensor, BPH, for specific detection of sarin gas, one of the fatal G-series nerve agents surrogate, diethylchlorophosphate (DCP). BPH shows a noticeable naked eye colorimetric change from pale yellow to light pink in the presence of DCP, displaying highly intense bright greenish cyan color photoluminosity under a 365 nm UV lamp,which is also manifested from the color chromaticity diagram. A BPH-staining paper stirps-based test kit experiment has been demonstrated for the on-site detection of nerve agent mimics. A more attractive and efficient application of BPH as a sarin gas vapor phase sensor mimics DCP in solid and solution phases. The BPH-based chromo-fluorogenic sensor shows excellent selectivity toward DCP with a detection and quantification limit in the µM range. This report invokes a new way for the researchers to detect DCP employing a simple chromo-fluorogenic sensor, which could be prepared by a time-saving, straightforward, handy protocol from the cost-effective starting materials.
Collapse
Affiliation(s)
- Arpita Maiti
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Najmin Tohora
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Debadrita Roy
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Tanusree Ray
- Department of Chemistry, Siliguri College, Siliguri, India
| | - Sudip Sahana
- Department of Chemistry, Saldiha College, Bankura, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
12
|
Xiao F, Lei D, Liu C, Li Y, Ren W, Li J, Li D, Zu B, Dou X. Coherent Modulation of the Aggregation Behavior and Intramolecular Charge Transfer in Small Molecule Probes for Sensitive and Long-term Nerve Agent Monitoring. Angew Chem Int Ed Engl 2024; 63:e202400453. [PMID: 38323751 DOI: 10.1002/anie.202400453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
Aggregation-induced emission (AIE) shows promising performance in chemical sensing relying on the change of the emission behavior of the probe molecule monomers to the aggregated product. However, whether the response contrast could be further boosted by utilizing the emission property of the aggregated probe and the aggregated product remains a big challenge. Here, an exciting AIE probe regulation strategy was proposed by coherently modulating the aggregation behavior and the intramolecular charge transfer (ICT) property of the probes and thus an aggregated-to-aggregated colorimetric-fluorescent dual-mode detection was achieved. The blue emissive film obtained with the optimal AIE probe has been proven to be effective to recognize the vapor of nerve agent analog DCP in air by emitting a sharp green fluorescence. In addition, a porous polymer-based wet sensing chip loaded with the probe enables the immediate response to DCP vapor with a limit of detection (LOD) of 1.7 ppb, and it was further integrated into a wearable watch device for long-term monitoring of DCP vapor up to two weeks. We expect the present probe design strategy would greatly deepen the AIE-based science and provide new insights for long-term monitoring sensors toward trace hazardous substances.
Collapse
Affiliation(s)
- Fangfang Xiao
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da Lei
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Chaogan Liu
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Yushu Li
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Wenfei Ren
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiguang Li
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Dezhong Li
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Baiyi Zu
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Maiti A, Sultana T, Rajbanshi B, Bhaumik B, Roy N, Nath Roy M. An efficient imine-linkage colorimetric probe for specific recognition of saringas surrogate, diethylchlorophosphate. Microchem J 2024; 199:109977. [DOI: 10.1016/j.microc.2024.109977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Mahato M, Sultana T, Maiti A, Ahamed S, Tohora N, Ghanta S, Das SK. Highly selective and sensitive chromogenic recognition of sarin gas mimicking diethylchlorophosphate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1371-1382. [PMID: 38349024 DOI: 10.1039/d3ay02306k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
The high-level toxic effects of organophosphate (OP) nerve agents severely threaten national security and public health. Generating trustworthy, accurate methods for quickly identifying these poisonous chemicals is urgently necessary. In this study, we have presented an azine-based colorimetric sensor (HBD) for the highly sensitive and selective identification of poisonous sarin gas surrogate diethylchlorophosphate (DCP). Our introduced sensor shows a purple color in contact with DCP, which is fully reversible upon the addition of triethylamine (TEA). The detection limit of our sensor for the toxic nerve agent mimic DCP is in the μM range. We have fabricated a test kit to verify the capability of HBD for on-the-spot identification of DCP to execute its practical use. To prove that HBD is an effective chemosensor, dip-stick investigation was conducted to detect DCP in the vaporous stage in the presence of different OPs, inorganic phosphates (IPs), and many other deadly analytes. A cellphone-based display method was also undertaken for on-the-spot recognition and measurement of DCP in isolated regions.
Collapse
Affiliation(s)
- Manas Mahato
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Tuhina Sultana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Arpita Maiti
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Najmin Tohora
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Susanta Ghanta
- Department of Chemistry, National Institute of Technology, Agartala, Barjala, Jirania, Tripura 799046, India
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| |
Collapse
|
15
|
Sultana T, Mahato M, Tohora N, Ahamed S, Maiti A, Das SK. A Phenanthroimidazole-Based Luminophore for Selective and Specific Identification of Sarin Simulant, Diethylchlorophosphate. J Fluoresc 2024:10.1007/s10895-024-03631-x. [PMID: 38421600 DOI: 10.1007/s10895-024-03631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
The simplicity of synthesis, significant toxicity of organophosphorus-containing nerve agents, and ease of use of their in-terrorism attacks highlight the necessity to create efficient probes and precise methods for detecting these chemicals. This study developed luminogenic probe 4-(1 H-phenanthrene imidazole-2-yl) benzaldehyde, PB for selectively recognizing lethal chemical sarin mimicking diethylchlorophosphate (DCP) with µM detection limit. Following the addition of DCP to the PB solution, the fluorescence changed from bluish-cyan to green simultaneously; after the insertion of triethylamine (TEA) into the PB-DCP phosphorylated solution, the fluorescence of the original one came back, and it occurred five times. A paper strip-based test kit and dip-stick experiments have been executed to demonstrate the practical applicability of our sensor PB and instant, on-site recognition of the target analyte DCP. An experiment has been investigated using a smartphone and red-green-blue (RGB) color analysis, which offers a novel way for the fast, on-site visual detection and quantification of DCP in actual samples. It also reduces equipment costs, speeds up detection times, and substantially simplifies the operation procedure.
Collapse
Affiliation(s)
- Tuhina Sultana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Manas Mahato
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Najmin Tohora
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Arpita Maiti
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
16
|
Sultana T, Mahato M, Tohora N, Ahamed S, Maiti A, Ghanta S, Das SK. A benzoxazole-triphenylamine conjugated fluorogenic probe for specific detection of sarin gas mimic diethylchlorophosphate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:759-771. [PMID: 38227020 DOI: 10.1039/d3ay01819a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
In this study, an excellent chromo-fluorogenic PMPA probe, (E)-4-(((4-(benzoxazole-2-yl)phenyl)imino)methyl)-N,N-diphenylamine, is introduced for the detection of sarin gas mimic diethyl chlorophosphate (DCP) in solution and gaseous phases. On adding DCP into PMPA solution in a pure DMSO and water-DMSO (4 : 1) medium, it exhibits a hypsochromic shift from yellow to colorless and from no fluorescence to highly intense blue-violet photoluminescence via the formation of a phosphorylated PMPA-DCP product due to the inhibition of intramolecular charge transfer (ICT) and photoinduced electron transfer (PET) mechanism. The sensor could detect DCP in the presence of several other notorious guest analytes with a detection limit in the μM range. Moreover, to accomplish the on-spot detection of DCP and explore the practical applicability of the probe, a paper strip-based test kit, "dip-stick" method, and, more interestingly, a real sample analysis was demonstrated in spiked soil samples.
Collapse
Affiliation(s)
- Tuhina Sultana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Manas Mahato
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Najmin Tohora
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Arpita Maiti
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| | - Susanta Ghanta
- Department of Chemistry, National Institute of Technology, Barjala, Jirania, Agartala, Tripura 799046, India
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
| |
Collapse
|
17
|
Li X, Zou S, Pan M, Wu M, Mo W, Cheng Z, Peng J, Chen C, Ma H. A portable and accessible Probe: Smartphone assisted colorimetric nerve agent detection. Microchem J 2024; 197:109895. [DOI: 10.1016/j.microc.2024.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Chen C, Zhang W, Ke Y, Jiang L, Hu X. A highly sensitive fluorescence probe for on-site detection of nerve agent mimic diethylchlorophosphonate DCP. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:515-523. [PMID: 38205668 DOI: 10.1039/d3ay02091f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Nerve agents are the most toxic chemical warfare agents that pose severe threat to human health and public security. In this work, we developed a novel fluorescent probe NZNN based on naphthylimide and o-phenylenediamine to detect nerve agent mimic diethylchlorophosphonate (DCP). DCP underwent a specific nucleophilic reaction with the o-phenylenediamine group of NZNN to produce a significant fluorescence turn-on response with high selectivity, exceptional linearity, bright fluorescence, rapid response (<6 s) and a low detection limit (30.1 nM). Furthermore, a portable sensing device was fabricated for real-time detection of DCP vapor with excellent performance. This portable and sensitive device is favorable for monitoring environmental pollution and defense against chemical warfare agents.
Collapse
Affiliation(s)
- Changzhou Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Wei Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yingjun Ke
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Lirong Jiang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China.
| | - Xichao Hu
- School of Food and Drug, Luoyang Normal University, Luoyang, Henan, 471934, China.
| |
Collapse
|
19
|
Feng Y, Nie J, Xie S, He Z, Hong H, Li J, Huang Y, Chen L, Li Y. Potassium xanthate-promoted reductive sulfuration reaction: from aldehydes to thiol, disulfide, and thioester derivatives. Chem Commun (Camb) 2024; 60:1140-1143. [PMID: 38189083 DOI: 10.1039/d3cc05637f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Herein, we developed a synthetic strategy for the direct construction of C-S bonds to obtain biologically active sulfur-containing compounds and a methodology involving the reductive sulfuration of aldehydes or ketones to obtain diverse substituted thiol, disulfide, and thioester derivatives. EtOCS2K is demonstrated as a potential substitute for the Berzelius reagent or Lawesson's reagent for the construction of C-S bonds.
Collapse
Affiliation(s)
- Yingqi Feng
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental & Chemical Engineering, Wuyi University, Jiangmen 529020, China.
| | - Jinli Nie
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental & Chemical Engineering, Wuyi University, Jiangmen 529020, China.
| | - Sijie Xie
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental & Chemical Engineering, Wuyi University, Jiangmen 529020, China.
| | - Ziqing He
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental & Chemical Engineering, Wuyi University, Jiangmen 529020, China.
| | - Huanliang Hong
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental & Chemical Engineering, Wuyi University, Jiangmen 529020, China.
| | - Jian Li
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental & Chemical Engineering, Wuyi University, Jiangmen 529020, China.
| | - Yubing Huang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental & Chemical Engineering, Wuyi University, Jiangmen 529020, China.
| | - Lu Chen
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental & Chemical Engineering, Wuyi University, Jiangmen 529020, China.
| | - Yibiao Li
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental & Chemical Engineering, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
20
|
Liu L, Li S, Luo W, Yao J, Liu T, Qin M, Huang Z, Ding L, Fang Y. Compact device prototype for turn-on fluorescence detection of sarin based on reactive 4,4-diaryloxy-BODIPY derivatives. SENSORS & DIAGNOSTICS 2024; 3:1651-1658. [DOI: 10.1039/d4sd00228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
4,4-Diaryloxy-BODIPYs were presented for fluorescence turn-on detection of sarin in solution media. A compact tubular sensor and a sensing platform prototype were fabricated for in situ detection of real agents and simulants at the sub-mM level.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Sheng Li
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Wendan Luo
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Jiashuang Yao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Molin Qin
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Zhiyan Huang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
21
|
Lalitha R, Wu SP, Velmathi S. Ratiometric Fluorescent Probe for the Detection of Nanomolar Phosgene in Solution and Gaseous Phase: Advancing Crime Detection Applications. Chem Res Toxicol 2023; 36:2010-2018. [PMID: 37994028 DOI: 10.1021/acs.chemrestox.3c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Phosgene, an exceptionally hazardous gas, poses a grave concern for the health and safety of the general public. The present study describes a fluorescent ratiometric probe for phosgene employing 2-(naphthalen-2-yl) benzo[d]oxazol-5-amine (NOA) with an amino group as the recognition site. NOA detects phosgene through the intramolecular charge transfer mechanism. The electron-rich amine group of NOA attacks the electrophilic carbonyl group of phosgene, resulting in a quick response within 20 s. NOA demonstrates a low detection limit of 60 nM while maintaining high selectivity and sensitivity toward phosgene. The final product was isolated and verified by nuclear magnetic resonance spectroscopy. The probe can detect phosgene not just quickly in a solution environment but also in its solid state. The probe's applications in fingerprint imaging and bioimaging are also demonstrated.
Collapse
Affiliation(s)
- Raguraman Lalitha
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | - Shu Pao Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, ROC
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| |
Collapse
|
22
|
Bi WZ, Geng Y, Zhang WJ, Li CY, Ni CS, Ma QJ, Feng SX, Chen XL, Qu LB. Highly sensitive and selective detection of triphosgene with a 2-(2'-hydroxyphenyl)benzimidazole derived fluorescent probe. RSC Adv 2023; 13:30771-30776. [PMID: 37869386 PMCID: PMC10587890 DOI: 10.1039/d3ra06061f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023] Open
Abstract
In this work, a 2-(2'-hydroxyphenyl)benzimidazole derived fluorescent probe, 2-(2'-hydroxy-4'-aminophenyl)benzimidazole (4-AHBI), was synthesized and its fluorescent behavior toward triphosgene were evaluated. The results showed that 4-AHBI exhibited high sensitivity (limit of detection, 0.08 nM) and excellent selectivity for triphosgene over other acyl chlorides including phosgene in CH2Cl2 solution. Moreover, 4-AHBI loaded test strips were prepared for the practical sensing of triphosgene.
Collapse
Affiliation(s)
- Wen-Zhu Bi
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou China 450046
- Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application Zhengzhou China 450046
| | - Yang Geng
- Department of Pharmacy, Zhengzhou Railway Vocational and Technical College Zhengzhou 450046 China
| | - Wen-Jie Zhang
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou China 450046
| | - Chen-Yu Li
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou China 450046
| | - Chu-Sen Ni
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou China 450046
| | - Qiu-Juan Ma
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou China 450046
- Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application Zhengzhou China 450046
| | - Su-Xiang Feng
- Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application Zhengzhou China 450046
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine Zhengzhou 450046 China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of P. R. China Zhengzhou 450046 China
| | - Xiao-Lan Chen
- College of Chemistry, Zhengzhou University Zhengzhou 450052 China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University Zhengzhou 450052 China
| |
Collapse
|
23
|
Hu X, Ke Y, Ye H, Zhu B, Rodrigues J, Sheng R. Toward public security monitoring: A perspective of optical molecular probes for phosgene and mustard gas detection. DYES AND PIGMENTS 2023; 216:111379. [DOI: https:/doi.org/10.1016/j.dyepig.2023.111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
24
|
Hu X, Ke Y, Ye H, Zhu B, Rodrigues J, Sheng R. Toward public security monitoring: A perspective of optical molecular probes for phosgene and mustard gas detection. DYES AND PIGMENTS 2023; 216:111379. [DOI: 10.1016/j.dyepig.2023.111379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
25
|
Miao XL, Feng W, Song QH. A class of property-tunable fluorescent probes for rapid, sensitive and specific detection of phosgene in solution and the gas phase. DYES AND PIGMENTS 2023; 216:111348. [DOI: 10.1016/j.dyepig.2023.111348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Mallik S, Chand Pal S, Acharyya S, Verma SP, Mandal A, Guha PK, Das MC, Goswami DK. MOF-Assimilated High-Sensitive Organic Field-Effect Transistors for Rapid Detection of a Chemical Warfare Agent. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37317896 DOI: 10.1021/acsami.3c05185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The selective and rapid detection of trace amounts of highly toxic chemical warfare agents has become imperative for efficiently using military and civilian defense. Metal-organic frameworks (MOFs) are a class of inorganic-organic hybrid porous material that could be potential next-generation toxic gas sensors. However, the growth of a MOF thin film for efficiently utilizing the material properties for fabricating electronic devices has been challenging. Herein, we report a new approach to efficiently integrate MOF as a receptor through diffusion-induced ingress into the grain boundaries of the pentacene semiconducting film in the place of the most adaptive chemical functionalization method for sensor fabrication. We used bilayer conducting channel-based organic field-effect transistors (OFETs) as a sensing platform comprising CPO-27-Ni as the sensing layer, coated on the pentacene layer, showed a strong response toward sensing of diethyl sulfide, which is one of the stimulants of bis (2-chloroethyl) sulfide, a highly toxic sulfur mustard (HD). Using OFET as a sensing platform, these sensors can be a potential candidate for trace amounts of sulfur mustard detection below 10 ppm in real time as wearable devices for onsite uses.
Collapse
Affiliation(s)
- Samik Mallik
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Snehanjan Acharyya
- Advance Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Shiv Prakash Verma
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ajoy Mandal
- Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Prasanta Kumar Guha
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Advance Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Dipak Kumar Goswami
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
27
|
Tohora N, Mahato M, Sultana T, Ahamed S, Das SK. A benzoxazole-based turn-on fluorosensor for rapid and sensitive detection of sarin surrogate, diethylchlorophosphate. Anal Chim Acta 2023; 1255:341111. [PMID: 37032052 DOI: 10.1016/j.aca.2023.341111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
A benzoxazole-based fluorosensor (IMP) has been synthesized and employed for the selective and sensitive detection of sarin surrogate, diethylchlorophosphate (DCP) in solution, and gas phase, respectively. Remarkable turn-on fluorescence is observed due to the introduction of DCP in the solution of IMP because of inhibition of the intramolecular charge transfer process and disruption of the excited state intramolecular proton transfer (ESIPT) mechanism. The synthesized IMP-based fluorescence sensor exhibits excellent selectivity, high sensitivity, and a wide linear range of 15-60 μM with a detection limit of 44 nM. Low-intense to highly intensified visible violet color could be seen by the naked eye under a portable 365 nm UV lamp due to the addition of DCP in the solution of IMP. IMP-stained paper strips-based test kit experiment has been demonstrated to detect traces of DCP in stockpiles of related analytes. A dip-stick experiment for the detection of DCP vapor has also been demonstrated. The effectiveness of IMP in detecting DCP established that it might be used as a signal tool for real sample analysis.
Collapse
|
28
|
Zhang Y, Qiu X, Wang B, Liu X, Cheng Y, Rong X, Kuang Y, Sun L, Liu J, Luck RL, Liu H. An effective fluorescent probe for detection of phosgene based on naphthalimide dyes in liquid and gaseous phases. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122189. [PMID: 36512960 DOI: 10.1016/j.saa.2022.122189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/12/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
A fluorescent probe was developed for the detection of phosgene based on 1,8-naphthalimide, of which o-diaminobenzene was used as the recognition moiety. The probe does not fluoresce due to nonradiative decay. The probe reacts rapidly with phosgene via an intramolecular cyclization reaction, which induces large fluorescence due to increased rigidity in the resulting molecule and a low detection limit (0.23 nM). This probe has excellent selectivity for phosgene against competing interference analytes and, in the form of probe-loaded test paper, is an extremely sensitive method for phosgene sensing in the gas phase below 1 ppm concentrations.
Collapse
Affiliation(s)
- Yibin Zhang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Xianyu Qiu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Boling Wang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Xiaoling Liu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Yueting Cheng
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Xiaoqian Rong
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Yanhong Kuang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Lin Sun
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Jun Liu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States.
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States.
| |
Collapse
|
29
|
Ahamed S, Mahato M, Tohora N, Sultana T, Sahoo R, Ghanta S, Das SK. A PET and ESIPT-communicated ratiometric, turn-on chromo-fluorogenic sensor for rapid and sensitive detection of sarin gas mimic, diethylchlorophosphate. Talanta 2023; 258:124448. [PMID: 36940571 DOI: 10.1016/j.talanta.2023.124448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Fast and precise identification of toxic G-series nerve agents in the solution and vapor phase is urgently needed to save human beings from unwanted wars and terrorist attacks, which is challenging to execute practically. In this article, we have designed and synthesized a sensitive and selective phthalimide-based chromo-fluorogenic sensor, DHAI, by a simple condensation process that shows ratiometric and turns on chromo-fluorogenic behavior towards Sarin gas mimic diethylchlorophosphate (DCP) in liquid and vapor phases, respectively. A colorimetric change, from yellow to colorless, is observed in the DHAI solution due to the introduction of DCP in daylight. A remarkable cyan color photoluminescence enhancement is noticed in the presence of DCP in the DHAI solution, which is observable to the naked under a portable 365 nm UV lamp. The mechanistic aspects of the detection of DCP by employing DHAI have been revealed by time-resolved photoluminescence decay analysis and 1H NMR titration investigation. Our probe DHAI exhibits linear photoluminescence enhancement from 0 to 500 μM with a detection limit of nanomolar range from non-aqueous to semi-aqueous media. For practical utility, a DHAI-stained test kit employing Whatman-41 filter paper has been fabricated and used as a portable and displayable photonic device for on-site detection of Sarin gas surrogate, DCP. Also, a dip-stick experiment has been demonstrated to identify the vapor of Sarin gas mimics DCP colorimetrically and fluorometrically. The concentrations of DCP in various water samples have been evaluated with the help of a standard fluorescence curve for real sample analysis.
Collapse
Affiliation(s)
- Sabbir Ahamed
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Manas Mahato
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Najmin Tohora
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Tuhina Sultana
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | - Rajkumar Sahoo
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Susanta Ghanta
- Department of Chemistry, National Institute of Technology, Agartala, Tripura, 799046, India
| | - Sudhir Kumar Das
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
30
|
Chen Q, Liu J, Liu S, Zhang J, He L, Liu R, Jiang H, Han X, Zhang K. Visual and Rapid Detection of Nerve Agent Mimics in Gas and Solution Phase by a Simple Fluorescent Probe. Anal Chem 2023; 95:4390-4394. [PMID: 36802493 DOI: 10.1021/acs.analchem.2c04891] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Chemical nerve agents are highly toxic organophosphorus compounds that are easy to obtain and can be utilized by terrorists to threaten homeland security and human safety. Those organophosphorus nerve agents contain nucleophilic ability that can react with acetylcholinesterase leading to muscular paralysis and human death. Therefore, there is great importance to explore a reliable and simple method to detect chemical nerve agents. Herein, the o-phenylenediamine-linked dansyl chloride as a colorimetric and fluorescent probe has been prepared to detect specific chemical nerve agent stimulants in the solution and vapor phase. The o-phenylenediamine unit serves as a detection site that can react with diethyl chlorophosphate (DCP) in a rapid response within 2 min. A satisfied relationship line was obtained between fluorescent intensity and the concentration of DCP in the range of 0-90 μM. In the optimized conditions, we conducted the fluorescent titration to measure the limits of detection (0.082 μM) with the fluorescent enhancement up to 18-fold. Fluorescence titration and NMR studies were also conducted to explore the detection mechanism, indicating that the formation of phosphate ester causes the intensity of fluorescent change during the PET process. Finally, probe 1 coated with the paper test is utilized to detect DCP vapor and solution by the naked eye. We expect that this probe may give some admiration to design the small molecule organic probe and applied in the selectivity detection of chemical nerve agents.
Collapse
Affiliation(s)
- Qian Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Jiaxu Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Shengjun Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Jian Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Lifang He
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Renyong Liu
- Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, Anhui, China
| | - Hui Jiang
- Beijing Institute of Pharmaceutical Chemistry, State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| |
Collapse
|
31
|
Meng WQ, Sedgwick AC, Kwon N, Sun M, Xiao K, He XP, Anslyn EV, James TD, Yoon J. Fluorescent probes for the detection of chemical warfare agents. Chem Soc Rev 2023; 52:601-662. [PMID: 36149439 DOI: 10.1039/d2cs00650b] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemical warfare agents (CWAs) are toxic chemicals that have been intentionally developed for targeted and deadly use on humans. Although intended for military targets, the use of CWAs more often than not results in mass civilian casualties. To prevent further atrocities from occurring during conflicts, a global ban was implemented through the chemical weapons convention, with the aim of eliminating the development, stockpiling, and use of CWAs. Unfortunately, because of their relatively low cost, ease of manufacture and effectiveness on mass populations, CWAs still exist in today's world. CWAs have been used in several recent terrorist-related incidents and conflicts (e.g., Syria). Therefore, they continue to remain serious threats to public health and safety and to global peace and stability. Analytical methods that can accurately detect CWAs are essential to global security measures and for forensic analysis. Small molecule fluorescent probes have emerged as attractive chemical tools for CWA detection, due to their simplicity, ease of use, excellent selectivity and high sensitivity, as well as their ability to be translated into handheld devices. This includes the ability to non-invasively image CWA distribution within living systems (in vitro and in vivo) to permit in-depth evaluation of their biological interactions and allow potential identification of therapeutic countermeasures. In this review, we provide an overview of the various reported fluorescent probes that have been designed for the detection of CWAs. The mechanism for CWA detection, change in optical output and application for each fluorescent probe are described in detail. The limitations and challenges of currently developed fluorescent probes are discussed providing insight into the future development of this research area. We hope the information provided in this review will give readers a clear understanding of how to design a fluorescent probe for the detection of a specific CWA. We anticipate that this will advance our security systems and provide new tools for environmental and toxicology monitoring.
Collapse
Affiliation(s)
- Wen-Qi Meng
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| | - Mingxue Sun
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Kai Xiao
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, 800 Xiangying Rd., Shanghai 200433, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China. .,The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China.,National Center for Liver Cancer, Shanghai 200438, China
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
32
|
Kumar V, Kim H, Pandey B, James TD, Yoon J, Anslyn EV. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century. Chem Soc Rev 2023; 52:663-704. [PMID: 36546880 DOI: 10.1039/d2cs00651k] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical warfare agents (CWAs) are among the most prominent threats to the human population, our peace, and social stability. Therefore, their detection and quantification are of utmost importance to ensure the security and protection of mankind. In recent years, significant developments have been made in supramolecular chemistry, analytical chemistry, and molecular sensors, which have improved our capability to detect CWAs. Fluorescent and colorimetric chemosensors are attractive tools that allow the selective, sensitive, cheap, portable, and real-time analysis of the potential presence of CWAs, where suitable combinations of selective recognition and transduction can be integrated. In this review, we provide a detailed discussion on recently reported molecular sensors with a specific focus on the sensing of each class of CWAs such as nerve agents, blister agents, blood agents, and other toxicants. We will also discuss the current technology used by military forces, and these discussions will include the type of instrumentation and established protocols. Finally, we will conclude this review with our outlook on the limitations and challenges in the area and summarize the potential of promising avenues for this field.
Collapse
Affiliation(s)
- Vinod Kumar
- Process and Technology Development Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India.
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Bipin Pandey
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| |
Collapse
|
33
|
Feng W, Liu XJ, Xue MJ, Song QH. Bifunctional Fluorescent Probes for the Detection of Mustard Gas and Phosgene. Anal Chem 2023; 95:1755-1763. [PMID: 36596643 DOI: 10.1021/acs.analchem.2c05178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mustard gas [sulfur mustard (SM)] and phosgene are the most frequently used chemical warfare agents (CWAs), which pose a serious threat to human health and national security, and their rapid and accurate detection is essential to respond to terrorist attacks and industrial accidents. Herein, we developed a fluorescent probe with o-hydroxythioketone as two sensing sites, AQso, which can detect and distinguish mustard gas and phosgene. The dual-sensing-site probe AQso reacts with mustard gas to form a cyclic product with high sensitivity [limit of detection (LOD) = 70 nM] and is highly selective to SM over phosgene, SM analogues, active alkylhalides, acylhalides, and nerve agent mimics, in ethanol solutions. When encountering phosgene, AQso rapidly converts to cyclic carbonate, which is sensitive (LOD = 14 nM) and highly selective. Their sensing mechanisms of AQso to mustard gas and phosgene were well demonstrated by separation and characterization of the sensing products. Furthermore, a facile test strip with the probe was prepared to distinguish 2-chloroethyl ethyl sulfide (CEES) and phosgene in the gas phase by different fluorescence colors and response rates. Not using the complicated instrument, the qualitative and quantitative detection of CEES or phosgene can be achieved only by measuring the red-green-blue (RGB) channel intensity of the test strip after being exposed to CEES or phosgene gas by the smartphone with an RGB color application.
Collapse
Affiliation(s)
- Wei Feng
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiao-Jun Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Min-Jie Xue
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
34
|
Jindal G, Kaur N. Fluorimetric Recognition of Nerve Agent Mimic Diethylchlorophosphate Along with Cu 2+/Hg 2+ Ions Using Imidazole Possessing Sensor. J Fluoresc 2023; 33:359-371. [PMID: 36418615 DOI: 10.1007/s10895-022-03069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022]
Abstract
An imidazole possessing sensor (1) has been designed and developed by simple one step reaction and characterization was done by using common spectroscopic methods. The fluorimetric sensing of nerve agent mimic, DCP, was carried out by observing blue shift in spectra accompanied with quenching in semi-aqueous solvent. The sensor was found proficient for the detection of DCP amongst other phosphates with detection limit of 69 nM. Furthermore, upon incorporation of various metal ions to CH3CN:H2O (4:1, v/v) solution of 1 (λex 340 nm), the fluorescent probe turned non-fluorescent only in presence of Cu2+/Hg2+ ions. This was accompanied by fluorescent color change from light blue to yellow in case of Hg2+ and colorless in case of Cu2+ ions. Moreover, practical applications of sensor 1 were investigated for recognition of Cu2+ and Hg2+ ions in real water samples along with the detection of DCP in soil samples from different areas. Differential emission changes observed with addition of Hg2+ ions and DCP led to observation of "NOR" and an "INHIBIT" molecular photonic logic operations at 446 and 385 nm, respectively.
Collapse
Affiliation(s)
- Gitanjali Jindal
- Department of Chemistry, Panjab University, Chandigarh, 160014, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
35
|
Sultana T, Mahato M, Tohora N, Ahamed S, Pramanik P, Ghanta S, Kumar Das S. A Phthalimide-based Turn on Fluorosensor for Selective and Rapid Detection of G-Series Nerve Agent’s Mimics. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
36
|
Biswas A, Maji A, Gharami S, Mondal TK. An ICT-based organic framework for the fluorogenic detection of lethal pulmonary agent phosgene. NEW J CHEM 2023; 47:17154-17162. [DOI: 10.1039/d3nj02580b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
A biphenyl-benzoimidazole based (BPCI) chemodosimeter has been developed for the rapid, sensitive and ratiometric detection of lethal pulmonary agent phosgene.
Collapse
Affiliation(s)
- Amitav Biswas
- Department of Chemistry, Jadavpur University, Kolkata-700 032, India
| | - Atanu Maji
- Department of Chemistry, Jadavpur University, Kolkata-700 032, India
| | - Saswati Gharami
- Department of Chemistry, Jadavpur University, Kolkata-700 032, India
| | | |
Collapse
|
37
|
Yu C, He JH, Lu JM. Ion-in-Conjugation: A Promising Concept for Multifunctional Organic Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204023. [PMID: 36285771 DOI: 10.1002/smll.202204023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Most organic semiconductors (OSCs) consist of conjugated skeletons with flexible peripheral chains. Their weak intermolecular interactions from dispersion and induction forces result in environmental susceptibilities and are unsuitable for many multifunctional applications where direct exposure to external environments is unavoidable, such as gas absorption, chemical sensing, and catalysis. To exploit the advantages of inorganic semiconductors in OSCs, ion-in-conjugation (IIC) materials are proposed. An IIC material refers to any conjugated material (molecules, polymers, and crystals) in Kekule's structural formula containing stoichiometric ionic states in its conjugated backbone in the electronic ground state. In this review, the definitions, structures, synthesis, properties, and applications of IIC materials are described briefly. Four types of IIC material, including zwitterionic conjugated molecules/polymers, conjugated ionic dyes, π-d conjugated molecules and polymers, and coordinatively doped polymers, are reported. Their applications in gas sensing, humidity sensing, resistive memory devices, and thermal/photo-/electro-catalysis are demonstrated. The challenges and opportunities for future research are also discussed. It is expected that this work will inspire the design of new organic electronic information materials.
Collapse
Affiliation(s)
- Chuang Yu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jing-Hui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Jian-Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
38
|
Explorations into the meso-substituted BODIPY-based fluorescent probes for biomedical sensing and imaging. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Du X, Gong Y, Ren Y, Fu L, Duan R, Zhang Y, Zhang Y, Zhao J, Che Y. Development of Binary Coassemblies for Sensitively and Selectively Detecting Gaseous Sarin. Anal Chem 2022; 94:16418-16426. [DOI: 10.1021/acs.analchem.2c03712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Xiaoming Du
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Gong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Ren
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyang Fu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Duan
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yibin Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jincai Zhao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanke Che
- Beijing National Laboratory for Molecular Science, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Liu B, Zhou M, Huang Y, Du B, Wang L, Xu Z, Qin T, Peng X. Rapid and ratiometric fluorescent detection of phosgene by a red-emissive ESIPT-based-benzoquinolone probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121619. [PMID: 35853258 DOI: 10.1016/j.saa.2022.121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Phosgene is a highly toxic gas that poses a serious threat to human health and public safety. Therefore, it is of great importance to develop an available detection method enabling on-the-spot measurement of phosgene. In this paper, we report a novel ESIPT fluorescent probe for phosgene detection based on quinolone fluorophore. This probe exhibits rapid response (in 10 s), stable signal output (last for 10 min), high sensitivity (LOD ∼ 6.7 nM), and distinct emission color change (red to green) towards phosgene. The sensing mechanism was investigated by using 1H NMR, HRMS and fluorescence lifetime techniques, confirming that the amidation reaction between phosgene and quinolone effectively suppressed the ESIPT process of probe. Eventually, this probe was fabricated into polymer nanofibers by electrospinning and successfully employed to monitor gaseous phosgene with high specificity. This work provided a promising analytical tool for rapid and ratiometric detection of phosgene both in solution and in the gas phase.
Collapse
Affiliation(s)
- Bin Liu
- College of Materials Science and Engineering, State Key Laboratory of Fine Chemicals-Shenzhen Research Institute, Shenzhen University, Shenzhen 518060, PR China.
| | - Mei Zhou
- College of Materials Science and Engineering, State Key Laboratory of Fine Chemicals-Shenzhen Research Institute, Shenzhen University, Shenzhen 518060, PR China
| | - Yingying Huang
- College of Materials Science and Engineering, State Key Laboratory of Fine Chemicals-Shenzhen Research Institute, Shenzhen University, Shenzhen 518060, PR China
| | - Bing Du
- College of Materials Science and Engineering, State Key Laboratory of Fine Chemicals-Shenzhen Research Institute, Shenzhen University, Shenzhen 518060, PR China
| | - Lei Wang
- College of Materials Science and Engineering, State Key Laboratory of Fine Chemicals-Shenzhen Research Institute, Shenzhen University, Shenzhen 518060, PR China
| | - Zhongyong Xu
- College of Materials Science and Engineering, State Key Laboratory of Fine Chemicals-Shenzhen Research Institute, Shenzhen University, Shenzhen 518060, PR China.
| | - Tianyi Qin
- College of Materials Science and Engineering, State Key Laboratory of Fine Chemicals-Shenzhen Research Institute, Shenzhen University, Shenzhen 518060, PR China.
| | - Xiaojun Peng
- College of Materials Science and Engineering, State Key Laboratory of Fine Chemicals-Shenzhen Research Institute, Shenzhen University, Shenzhen 518060, PR China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| |
Collapse
|
41
|
Song YF, Wu WN, Wang Y, Zhao XL, Fan YC, Xu ZH. Europium (III) complex-based fluorescent probe for instantaneous, selective, and sensitive detection of phosgene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121553. [PMID: 35792481 DOI: 10.1016/j.saa.2022.121553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Phosgene (carbonyl chloride, COCl2) is a widely used colorless gas in organic synthesis. However, its high toxicity sets a severe potential damage of public safety. As the fluorescence method has the advantages of simple operation and real-time detection of phosgene, it is extremely important to develop a fluorescent phosgene probe for public health and safety. This study aimed to present a simple Eu3+ complex (1) with 2-hydroxyl-1H-benzimidazole moiety as a novel phosgene probe. Probe 1 exhibited characteristic emission of Eu3+ in CH3CN solution, which was specifically quenched after encountering phosgene. The change in the solution color from light red to dark could be easily distinguished with the naked eye under a 365 nm ultraviolet lamp. Finally, the test paper with probe 1 was fabricated for effortless, selective, and visual detection of phosgene gas.
Collapse
Affiliation(s)
- Yu-Fei Song
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Wei-Na Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yuan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Xiao-Lei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yun-Chang Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Zhi-Hong Xu
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, PR China; The College of Chemistry, Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
42
|
Mahato M, Ahamed S, Tohora N, Sultana T, Ghanta S, Das SK. A Coumarin151 Derived Ratiomteric and Turn on Chemosensor for Rapid Detection of Sarin Surrogate. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Ye H, Ke Y, Yue C, Xie P, Sheng R, Zeng L. 5G smartphone-adaptable fluorescence sensing platform for simultaneous detection of toxic formaldehyde and phosgene in different emission channels. DYES AND PIGMENTS 2022; 207:110782. [DOI: 10.1016/j.dyepig.2022.110782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
44
|
Solea AB, Curty C, Fromm KM, Allemann C, Mamula Steiner O. A Rapid, Highly Sensitive and Selective Phosgene Sensor Based on 5,6-Pinenepyridine. Chemistry 2022; 28:e202201772. [PMID: 35731617 PMCID: PMC9804803 DOI: 10.1002/chem.202201772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 01/09/2023]
Abstract
The toxicity of phosgene (COCl2 ) combined with its extensive use as a reactant and building block in the chemical industry make its fast and accurate detection a prerequisite. We have developed a carboxylic derivative of 5,6-pinenepyridine which is able to act as colorimetric and fluorimetric sensor for phosgene in air and solution. For the first time, the formation of a pyrido-[2,1-a]isoindolone was used for this purpose. In solution, the sensing reaction is extremely fast (under 5 s), selective and highly sensitive, with a limit of detection (LOD) of 9.7 nM/0.8 ppb. When fixed on a solid support, the sensor is able to detect the presence of gaseous phosgene down to concentrations of 0.1 ppm, one of the lowest values reported to date.
Collapse
Affiliation(s)
- Atena B. Solea
- Haute école d'ingénierie et d'architectureHEIA-FRUniversity of Applied Sciences of Western SwitzerlandHES-SOPérolles 80CH-1705FribourgSwitzerland,Department of ChemistryUniversity of FribourgChemin du Musée 91700FribourgSwitzerland
| | | | - Katharina M. Fromm
- Department of ChemistryUniversity of FribourgChemin du Musée 91700FribourgSwitzerland
| | - Christophe Allemann
- Haute école d'ingénierie et d'architectureHEIA-FRUniversity of Applied Sciences of Western SwitzerlandHES-SOPérolles 80CH-1705FribourgSwitzerland
| | - Olimpia Mamula Steiner
- Haute école d'ingénierie et d'architectureHEIA-FRUniversity of Applied Sciences of Western SwitzerlandHES-SOPérolles 80CH-1705FribourgSwitzerland
| |
Collapse
|
45
|
Mo W, Zhu Z, Kong F, Li X, Chen Y, Liu H, Cheng Z, Ma H, Li B. Controllable synthesis of conjugated microporous polymer films for ultrasensitive detection of chemical warfare agents. Nat Commun 2022; 13:5189. [PMID: 36057648 PMCID: PMC9440894 DOI: 10.1038/s41467-022-32878-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/22/2022] [Indexed: 01/05/2023] Open
Abstract
Nerve agents, one of the most toxic chemical warfare agents, seriously threaten human life and public security. The high toxicity of nerve agents makes the development of fluorescence sensors with suitable limit of detection challenging. Here, we propose a sensor design based on a conjugated microporous polymer film for the detection of diethyl chlorophosphate, a substitute of Sarin, with low detection limit of 2.5 ppt. This is due to the synergy of the susceptible on-off effect of hybridization and de-hybridization of hybrid local and charge transfer (HLCT) materials and the microporous structure of CMP films facilitating the inward diffusion of DCP vapors, and the extended π-conjugated structure. This strategy provides a new idea for the future development of gas sensors. In addition, a portable sensor is successfully integrated based on TCzP-CMP films that enables wireless, remote, ultrasensitive, and real-time detection of DCP vapors.
Collapse
Affiliation(s)
- Wanqi Mo
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Zihao Zhu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Fanwei Kong
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xiaobai Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China.
- Post-doctoral Mobile Research Station of Forestry Engineering, Northeast Forestry University, Harbin, 150040, P. R. China.
| | - Yu Chen
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huaqian Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Zhiyong Cheng
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Hongwei Ma
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China.
- Post-doctoral Mobile Research Station of Forestry Engineering, Northeast Forestry University, Harbin, 150040, P. R. China.
| | - Bin Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China.
- Post-doctoral Mobile Research Station of Forestry Engineering, Northeast Forestry University, Harbin, 150040, P. R. China.
| |
Collapse
|
46
|
Shu W, Yu J, Wang H, Yu A, Xiao L, Li Z, Zhang H, Zhang Y, Wu Y. Rational design of a reversible fluorescent probe for sensing GSH in mitochondria. Anal Chim Acta 2022; 1220:340081. [DOI: 10.1016/j.aca.2022.340081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/01/2022]
|
47
|
Zhang L, Chen J, Zhang X, Wang Y, Cen J, Shi G, Sun M, Wang X, Meng W, Xiao K. Rapid detection of nerve agents in environmental and biological samples using a fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121171. [PMID: 35325854 DOI: 10.1016/j.saa.2022.121171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Nerve agents are highly toxic chemical warfare agents that are easy to synthesize and have recently been applied many times in local wars and terrorist attacks. Fluorescent probes have been widely used in life science and medical research due to their features of short reaction time, high sensitivity and good selectivity. Herein, two fluorescent compounds, NMU-1 and NMU-2, were synthesized for the selective detection of nerve agents. NMU-1 exhibited good detection performance for nerve agents. With increasing nerve agent concentration, the fluorescence signal of NMU-1 at 498 nm gradually decreased with an excellent linear relationship. NMU-1 exhibited a low LOD (4.6 μM for DCP and 8.41 μM for soman), a rapid response (less than 3 min) and a large Stokes shift (98 nm) along with obvious color changes. Due to its high sensitivity and good selectivity, NMU-1 was successfully applied to image nerve agents in living PC12 cells. Furthermore, NMU-1 was used as a key element to develop chemical warfare agent test paper, which exhibited significant fluorescent changes under hand-held 365-nm UV light upon contact with nerve agents.
Collapse
Affiliation(s)
- Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, China.
| | - Jiasheng Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, China
| | - Xinyue Zhang
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Yurun Wang
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jinfeng Cen
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Guiyan Shi
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Mingxue Sun
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xianyou Wang
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Wenqi Meng
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Kai Xiao
- Department of Protective Medicine Against Chemical Agents, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
48
|
Zhu B, Sheng R, Chen T, Rodrigues J, Song QH, Hu X, Zeng L. Molecular engineered optical probes for chemical warfare agents and their mimics: Advances, challenges and perspectives. Coord Chem Rev 2022. [DOI: https://doi.org/10.1016/j.ccr.2022.214527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Molecular engineered optical probes for chemical warfare agents and their mimics: Advances, challenges and perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214527] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
50
|
Mandal M, Guria UN, Halder S, Karak A, Banik D, Jana K, Kar A, Mahapatra AK. A dual-channel chemodosimetric sensor for discrimination between hypochlorite and nerve-agent mimic DCP: application on human breast cancer cells. Org Biomol Chem 2022; 20:4803-4814. [PMID: 35647766 DOI: 10.1039/d2ob00721e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A styryl bridge containing a triphenylamine-thioimidazole hydrazine-based dual-analyte-responsive fluorescent sensor was designed and synthesized for the detection of the nerve gas simulant diethyl chlorophosphate (DCP) and hypochlorite (OCl-) for the first time. Hypochlorite induces oxidative intramolecular cyclization to give a triazole structure, which exhibited blue fluorescence with excellent selectivity and a low detection limit (8.05 × 10-7 M) in solution. Conversely, the probe forms a phosphorylated intermediate with diethyl chlorophosphate, which undergoes further hydrolyzation and presents green fluorescence in a ratiometric mode with a low detection limit (3.56 × 10-8 M). Additionally, the as-designed sensor was utilized to construct a portable kit for real-time monitoring of DCP in a discriminatory, simple and safe manner. Lastly, the probe was also productively employed for in situ imaging of OCl- and DCP in the living cell.
Collapse
Affiliation(s)
- Moumi Mandal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India.
| | - Uday Narayan Guria
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India.
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata-700 054, India
| | - Anirban Karak
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India.
| | - Dipanjan Banik
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India.
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata-700 054, India
| | - Arik Kar
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India.
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711 103, India.
| |
Collapse
|