1
|
Zhao XG, Zhao YX, Liu QY, He SG. Dry Reforming of Methane to Syngas Mediated by Rhodium-Cobalt Oxide Cluster Anions Rh 2CoO . J Phys Chem Lett 2024; 15:9167-9174. [PMID: 39213481 DOI: 10.1021/acs.jpclett.4c01961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Dry reforming of methane (DRM) to syngas is an important route to co-convert CH4 and CO2. However, the highly endothermic nature of DRM induces the thermocatalysis to commonly operate at high temperatures that inevitably causes coke deposition through pyrolysis of methane. Herein, benefiting from the mass spectrometric experiments complemented with quantum chemical calculations, we have discovered that the bimetallic oxide cluster Rh2CoO- can mediate the co-conversion of CH4 and CO2 at room temperature giving rise to two free H2 molecules and two adsorbed CO molecules (COads). The only elementary step requiring the input of external energy (e.g., high temperature) is desorption of COads from the reaction intermediate Rh2CoOC2O2-. The doping effect of Co has also been clarified that the Co could tune the charge distribution and orbital energy of the active metal Rh, enabling the enhancement of cluster reactivity toward C-H activation, which is essential to facilitating the DRM to syngas. This work not only underlines the importance of temperature control over elementary steps in practical thermocatalysis but also identifies a promising active species containing the late 3d transition metal to drive DRM to syngas. The findings could provide novel insights into design of bimetallic catalysts for co-conversion of CH4 and CO2 at low temperatures.
Collapse
Affiliation(s)
- Xi-Guan Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
2
|
Zhang FX, Wang M, Ma JB. Conversion of Carbon Dioxide into a Series of CB xO y- Compounds Mediated by LaB 3,4O 2- Anions: Synergy of the Electron Transfer and Lewis Pair Mechanisms to Construct B-C Bonds. Inorg Chem 2024; 63:14206-14215. [PMID: 39012836 DOI: 10.1021/acs.inorgchem.4c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Converting CO2 into value-added products containing B-C bonds is a great challenge, especially for multiple B-C bonds, which are versatile building blocks for organoborane chemistry. In the condensed phase, the B-C bond is typically formed through transition metal-catalyzed direct borylation of hydrocarbons via C-H bond activation or transition metal-catalyzed insertion of carbenes into B-H bonds. However, excessive amounts of powerful boryl reagents are required, and products containing B-C bonds are complex. Herein, a novel method to construct multiple B-C bonds at room temperature is proposed by the gas-phase reactions of CO2 with LaBmOn- (m = 1-4, n = 1 or 2). Mass spectrometry and density functional theory calculations are applied to investigate these reactions, and a series of new compounds, CB2O2-, CB3O3-, and CB3O2-, which possess B-C bonds, are generated in the reactions of LaB3,4O2- with CO2. When the number of B atoms in the clusters is reduced to 2 or 1, there is only CO-releasing channel, and no CBxOy- compounds are released. Two major factors are responsible for this quite intriguing reactivity: (1) Synergy of electron transfer and boron-boron Lewis acid-base pair mechanisms facilitates the rupture of C═O double bond in CO2. (2) The boron sites in the clusters can efficiently capture the newly formed CO units in the course of reactions, favoring the formation of B-C bonds. This finding may provide fundamental insights into the CO2 transformation driven by clusters containing lanthanide atoms and how to efficiently build B-C bonds under room temperature.
Collapse
Affiliation(s)
- Feng-Xiang Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
3
|
Androutsopoulos A, Sader S, Miliordos E. Potential of Molecular Catalysts with Electron-Rich Transition Metal Centers for Addressing Long-Standing Chemistry Enigmas. J Phys Chem A 2024; 128:4401-4411. [PMID: 38797970 DOI: 10.1021/acs.jpca.4c01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Molecular complexes with electron-rich metal centers are highlighted as potential catalysts for the following five important chemical transformations: selective conversion of methane to methanol, capture and utilization of carbon dioxide, fixation of molecular nitrogen, water splitting, and recycling of perfluorochemicals. Our initial focus lies on negatively charged metal centers and ligands that can stabilize anionic metal atoms. Catalysts with electron-rich metal atoms (CERMAs) can sustain catalytic cycles with a "ping-pong" mechanism, where one or more electrons are transferred from the metal center to the substrate and back. The donated electrons can activate the chemical bonds of the substrate by populating its antibonding orbitals. At the last step of the catalytic cycle, the electrons return to the metal and the product interacts only weakly with the formed anion, which enables the solvent molecules to remove the product fast from the catalytic cycle and prevent subsequent unfavorable reactions. This process resembles electrocatalysis, but the metal serves as both an anode and a cathode (molecular electrocatalysis). We also analyze the usage of CERMAs as the base of Frustrated Lewis pairs proposing a new type of bimetallic catalysts. This Featured Article aspires to initiate systematic experimental and theoretical studies on CERMAs and their reactivity, the potential of which has probably been underestimated in the literature.
Collapse
Affiliation(s)
| | - Safaa Sader
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | | |
Collapse
|
4
|
Irikura KK. Ab initio spectroscopy and thermochemistry of the platinum hydride ions, PtH+ and PtH. J Chem Phys 2024; 160:184309. [PMID: 38738614 DOI: 10.1063/5.0207505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
Rovibrational levels of low-lying electronic states of the gas-phase, diatomic molecules, PtH+ and PtH-, are computed on potential-energy functions obtained by using a hybrid spin-orbit configuration-interaction procedure. PtH- has a well-separated Σ0++1 ground state, while the first two electronic states of PtH+ (Σ0++1 and 3Δ3) are nearly degenerate. Combining the experimental photoelectron (PE) spectra of PtH- with theoretical photodetachment spectroscopy leads to an improved value for the electron affinity of PtH, EA(PtH) = (1.617 ± 0.015) eV. When PtH- is a product of photodissociation of PtHCO2-, its PE spectrum is broad because of rotational excitation. Temperature-dependent thermodynamic functions and thermochemistry of dissociation are computed from the theoretical energy levels. Previously published energetic quantities for PtH+ and PtH- are revised. The ground 1Σ+ term of PtH+ is not well described using single-reference theory.
Collapse
Affiliation(s)
- Karl K Irikura
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899 , USA
| |
Collapse
|
5
|
Zamora B, Nyulászi L, Höltzl T. CO 2 and H 2 Activation on Zinc-Doped Copper Clusters. Chemphyschem 2024; 25:e202300409. [PMID: 38057146 DOI: 10.1002/cphc.202300409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/25/2023] [Indexed: 12/08/2023]
Abstract
Here we systematically investigate the CO2 and H2 activation and dissociation on small Cun Zn0/+ (n=3-6) clusters using Density Functional Theory. We show that Cu6 Zn is a superatom, displaying an increased HOMO-LUMO gap and is inert towards CO2 or H2 activation or dissociation. While other neutral clusters weakly activate CO2 , the cationic clusters preferentially bind the CO2 in monodentate nonactivated way. Notably, Cu4 Zn allows for the dissociation of activated CO2 , whereas larger clusters destabilize all activated CO2 binding modes. Conversely, H2 dissociation is favored on all clusters examined, except for Cu6 Zn. Cu3 Zn+ and Cu4 Zn, favor the formation of formate through the H2 dissociation pathway rather than CO2 dissociation. These findings suggest the potential of these clusters as synthetic targets and underscore their significance in the realm of CO2 hydrogenation.
Collapse
Affiliation(s)
- Bárbara Zamora
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, 1111-, Budapest, Műegytem rkp 3, Hungary
| | - László Nyulászi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, 1111-, Budapest, Műegytem rkp 3, Hungary
- HUN-REN-BME Computation Driven Chemistry research group, 1111-, Budapest, Műegytem rkp. 3, Hungary
| | - Tibor Höltzl
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, 1111-, Budapest, Műegytem rkp 3, Hungary
- HUN-REN-BME Computation Driven Chemistry research group, 1111-, Budapest, Műegytem rkp. 3, Hungary
- Furukawa Electric Institute of Technology, Nanomaterials Science Group, 1158, Budapest, Késmárk utca 28/A, Hungary
| |
Collapse
|
6
|
Tang SY. Metal Effect on Cationic [Cp 2MH] + (M = Group 4 and 5)-Mediated CO 2 Hydrogenation in the Gas Phase. J Phys Chem A 2023; 127:7094-7100. [PMID: 37595129 DOI: 10.1021/acs.jpca.3c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Effective CO2 hydrogenation has recently attracted quite some attention for producing more valuable chemical oxygenates (such as methanol, formate) in mild conditions. However, the influence of the metal center on the CO2 activation remains unclear. First, electrospray ionization mass spectrometry (ESI-MS) was employed to explore the direct CO2 hydrogenation to formic acid mediated by [Cp2MH]+ (M = Zr, Hf) in the gas phase at room temperature. The key formate intermediate [Cp2M(O2CH)]+ (M = Zr, Hf) was confirmed by traveling wave ion mobility spectrometry (TWIMS). Second, to gain insights into the metal effect, the CO2 hydrogenation process involving Group 4 (i.e., Ti, Zr, Hf) transition metals was calculated along with Group 5 (i.e., V, Nb, Ta) by density functional theory (DFT) methods. The CO2 insertion process was found to be the rate-limiting step. For [Cp2TiH]+, [Cp2ZrH]+, [Cp2HfH]+, [Cp2VH]+, [Cp2NbH]+, and [Cp2TaH]+, the barriers are +7.7, +6.5, +5.9, +9.2, +8.0, and +6.3 kcal/mol, respectively. [Cp2HfH]+-mediated CO2 hydrogenation occurs the most rapidly, as revealed by MS. According to the orbital analysis on the CO2 insertion transition state, the electron-deficient metal center resulting in a low-lying lowest unoccupied molecular orbital (LUMO) could interact more favorably with the π bond of deformed CO2, which was also consistent with the natural bond orbital (NBO) results. Last but not the least, NBO charges on the metal centers were found to correlate linearly well with the CO2 insertion barriers rather than hydride affinity. Thus, the reactivity of different metal hydride complexes with CO2 to produce a formate could be estimated by the NBO charge on metals. Our findings might provide a series of candidates for the catalyst as well as guidance for catalyst design in mild CO2 hydrogenation.
Collapse
Affiliation(s)
- Shi-Ya Tang
- SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266000, P. R. China
- SINOPEC Key Laboratory of Plasma Technology, Qingdao 266000, P. R. China
| |
Collapse
|
7
|
Irikura KK. Ab initio spectroscopy and thermochemistry of diatomic platinum hydride, PtH. J Chem Phys 2023; 158:2888845. [PMID: 37144716 DOI: 10.1063/5.0145567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Rovibrational levels of low-lying electronic states of the diatomic molecule PtH are computed using non-relativistic wavefunction methods and a relativistic core pseudopotential. Dynamical electron correlation is treated at the coupled-cluster with single and double excitations and a perturbative estimate of triple excitations level, with basis-set extrapolation. Spin-orbit coupling is treated by configuration interaction in a basis of multireference configuration interaction states. The results compare favorably with available experimental data, especially for low-lying electronic states. For the yet-unobserved first excited state, Ω = 1/2, we predict constants including Te = (2036 ± 300) cm-1 and ΔG1/2 = (2252.5 ± 8) cm-1. Temperature-dependent thermodynamic functions, and thermochemistry of dissociation, are computed from the spectroscopic data. The ideal-gas enthalpy of formation is ΔfH298.15o(PtH) = (449.1 ± 4.5) kJ mol-1 (uncertainties expanded by k = 2). The experimental data are reinterpreted, using a somewhat speculative procedure, to yield the bond length Re = (1.5199 ± 0.0006) Å.
Collapse
Affiliation(s)
- Karl K Irikura
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
8
|
Irikura KK. Theoretical dissociation, ionization, and spin–orbit energetics of the diatomic platinum hydrides PtH, PtH +, and PtH –. J Chem Phys 2022; 157:104304. [DOI: 10.1063/5.0107501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spin–orbit configuration interaction (SO-CI) and coupled-cluster [CCSDT(Q)] theoretical methods are combined to evaluate zero-temperature thermochemical properties of PtH, PtH+, and PtH−. We obtain vibrational zero-point energies and spin–orbit stabilization energies, which lead to predictions for observable quantities: ionization energy IE(PtH) = (9.44 ± 0.07) eV; electron affinity EA(PtH) = (1.65 ± 0.04) eV; and dissociation energies D0(Pt–H) = (329.6 ± 3.9) kJ mol−1, D0(Pt+–H) = (279.3 ± 5.7) kJ mol−1, and D0(Pt−–H) = (285.0 ± 2.4) kJ mol−1 (uncertainty coverage factor = 2). Compared with available experiments, our value of D0(Pt+–H) is higher by (8 ± 8) kJ mol−1, EA(PtH) is higher by 0.15 eV, and D0(Pt–H) is lower than the upper bound by (2 ± 4) kJ mol−1.
Collapse
Affiliation(s)
- Karl K. Irikura
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, USA
| |
Collapse
|
9
|
Mechanochemical synthesis of carbene copper complexes for CO2 hydrogenation to formate. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Gibbard JA, Verlet JRR. Photoelectron imaging of PtI 2 - and its PtI - photodissociation product. J Chem Phys 2022; 156:134303. [PMID: 35395905 DOI: 10.1063/5.0085610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The photoelectron imaging of PtI2 - is presented over photon energies ranging from hν = 3.2 to 4.5 eV. The electron affinity of PtI2 is found to be 3.4 ± 0.1 eV, and the photoelectron spectrum contains three distinct peaks corresponding to three low-lying neutral states. Using a simple d-block model and the measured photoelectron angular distributions, the three states are tentatively assigned. Photodissociation of PtI2 - is also observed, leading to the formation of I- and of PtI-. The latter allows us to determine the electron affinity of PtI to be 2.35 ± 0.10 eV. The spectrum of PtI- is similarly structured with three peaks which, again, can be tentatively assigned using a similar model that agrees with the photoelectron angular distributions.
Collapse
Affiliation(s)
- Jemma A Gibbard
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
11
|
Zhou L, Peng L, Ji J, Ma W, Hu J, Wu Y, Geng J, Hu X. Cyclic (alkyl)(amino)carbene-copper supported on SBA-15 as an efficient and recyclable catalyst for CO2 hydrogenation to formate. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Liu G, Ariyarathna IR, Zhu Z, Ciborowski SM, Miliordos E, Bowen KH. Molecular-level electrocatalytic CO 2 reduction reaction mediated by single platinum atoms. Phys Chem Chem Phys 2022; 24:4226-4231. [PMID: 35132978 DOI: 10.1039/d1cp05189j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The activation and transformation of H2O and CO2 mediated by electrons and single Pt atoms is demonstrated at the molecular level. The reaction mechanism is revealed by the synergy of mass spectrometry, photoelectron spectroscopy, and quantum chemical calculations. Specifically, a Pt atom captures an electron and activates H2O to form a H-Pt-OH- complex. This complex reacts with CO2via two different pathways to form formate, where CO2 is hydrogenated, or to form bicarbonate, where CO2 is carbonated. The overall formula of this reaction is identical to a typical electrochemical CO2 reduction reaction on a Pt electrode. Since the reactants are electrons and isolated, single atoms and molecules, we term this reaction a molecular-level electrochemical CO2 reduction reaction. Mechanistic analysis reveals that the negative charge distribution on the Pt-H and the -OH moieties in H-Pt-OH- is critical for the hydrogenation and carbonation of CO2. The realization of the molecular-level CO2 reduction reaction provides insights into the design of novel catalysts for the electrochemical conversion of CO2.
Collapse
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA.
| | - Isuru R Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA.
| | - Sandra M Ciborowski
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA.
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA.
| |
Collapse
|
13
|
Ren Y, Yang Y, Zhao YX, He SG. Conversion of Methane with Oxygen to Produce Hydrogen Catalyzed by Triatomic Rh 3 - Cluster Anion. JACS AU 2022; 2:197-203. [PMID: 35098236 PMCID: PMC8790732 DOI: 10.1021/jacsau.1c00469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 06/14/2023]
Abstract
Metal catalysts, especially noble metals, have frequently been prepared upon downsizing from nanoparticles to subnanoclusters to catalyze the important reaction of partial oxidation of methane (POM) in order to optimize the catalytic performance and conserve metal resources. Here, benefiting from mass spectrometric experiments in conjunction with photoelectron spectroscopy and quantum chemical calculations, we successfully determine that metal cluster anions composed of only three Rh atoms (Rh3 -) can catalyze the POM reaction with O2 to produce 2H2 + CO2 under thermal collision conditions (∼300 K). The interdependence between CH4 and O2 to protect Rh3 - from collapse and to promote conversion of CH4 → 2H2 has been clarified. This study not only provides a promising metal cluster displaying good catalytic behavior in POM reaction under mild conditions but also reveals a strictly molecular-level mechanism of direct partial oxidation for the production of hydrogen, a promising renewable energy source in the 21st century.
Collapse
Affiliation(s)
- Yi Ren
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuan Yang
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yan-Xia Zhao
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing
National Laboratory for Molecular Sciences and CAS Research/Education
Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing
National Laboratory for Molecular Sciences and CAS Research/Education
Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| |
Collapse
|
14
|
Zhou L, Yao C, Ma W, Hu J, Wu Y, Zhang Z, Hu X. CO2 hydrogenation to formate catalyzed by highly stable and recyclable carbene-iridium under mild condition. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Chu LY, Wang M, Ma JB. Conversion of carbon dioxide to a novel molecule NCNBO - mediated by NbBN 2- anions at room temperature. Phys Chem Chem Phys 2021; 23:22613-22619. [PMID: 34596195 DOI: 10.1039/d1cp03613k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The activation of carbon dioxide (CO2) mediated by NbBN2- cluster anions under the conditions of thermal collision has been investigated by time-of-flight mass spectrometry combined with density functional theory calculations. Two CO double bonds in the CO2 molecule are completely broken and two C-N bonds are further generated to form the novel molecule NCNBO-. To the best of our knowledge, this new molecule is synthesized and reported for the first time. In addition, one oxygen atom transfer channel produces another product, NbBN2O-. Both of the Nb and B atoms in NbBN2- donate electrons to reduce CO2, and the carbon atom originating from CO2 serves as an electron reservoir. The reaction of NbB- with N2 was also investigated theoretically, and the formation of NbBN2- from this reaction is thermodynamically and kinetically quite favorable, indicating that NCNBO- might be produced from the coupling of N2 and CO2 mediated by NbB- anions.
Collapse
Affiliation(s)
- Lan-Ye Chu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| | - Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| |
Collapse
|
16
|
Szalay M, Buzsáki D, Barabás J, Faragó E, Janssens E, Nyulászi L, Höltzl T. Screening of transition metal doped copper clusters for CO 2 activation. Phys Chem Chem Phys 2021; 23:21738-21747. [PMID: 34549207 DOI: 10.1039/d1cp02220b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Activation of CO2 is the first step towards its reduction to more useful chemicals. Here we systematically investigate the CO2 activation mechanism on Cu3X (X is a first-row transition metal atom) using density functional theory computations. The CO2 adsorption energies and the activation mechanisms depend strongly on the selected dopant. The dopant electronegativity, the HOMO-LUMO gap and the overlap of the frontier molecular orbitals control the CO2 dissociation efficiency. Our calculations reveal that early transition metal-doped (Sc, Ti, V) clusters exhibit a high CO2 adsorption energy, a low activation barrier for its dissociation, and a facile regeneration of the clusters. Thus, early transition metal-doped copper clusters, particularly Cu3Sc, may be efficient catalysts for the carbon capture and utilization process.
Collapse
Affiliation(s)
- Máté Szalay
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
| | - Dániel Buzsáki
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
| | - Júlia Barabás
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
| | - Endre Faragó
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
| | - Ewald Janssens
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200D, BE-3001 Leuven, Belgium
| | - László Nyulászi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary. .,MTA-BME Computation Driven Research Group, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Tibor Höltzl
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary. .,MTA-BME Computation Driven Research Group, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.,Furukawa Electric Institute of Technology, Nanomaterials Science Group, Késmárk utca 28/A, H-1158 Budapest, Hungary
| |
Collapse
|
17
|
Li Q, Xu B, Huang T, Yu W, Wang X. Activation of CO 2 by Alkaline-Earth Metal Hydrides: Matrix Infrared Spectra and DFT Calculations of HM(O 2CH) and (MH 2)(HCOOH) Complexes (M = Sr, Ba). Inorg Chem 2021; 60:11466-11473. [PMID: 34291929 DOI: 10.1021/acs.inorgchem.1c01477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions of MH2 (M = Sr, Ba) with CO2 were explored in pure parahydrogen at 3.5 K using matrix isolation infrared spectroscopy and quantum chemical calculations. The formate complex HM(η2-O2CH) and formic acid complex (MH2)(HCOOH) were trapped and identified by isotopic substitutions and density functional theory (DFT) frequency calculations. Natural population analysis and the CO2 reduction mechanism demonstrate that hydride ion transfer from a metal hydride to a CO2 moiety facilitates the stabilization of such complexes.
Collapse
Affiliation(s)
- Qian Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bing Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tengfei Huang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenjie Yu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefeng Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
18
|
Liu G, Ciborowski SM, Montone GR, Sawyer WH, Kiran B, Kandalam AK, Bowen KH. Ligated aluminum cluster anions, LAl n- ( n = 1-14, L = N[Si(Me) 3] 2). Phys Chem Chem Phys 2021; 23:15209-15215. [PMID: 34231587 DOI: 10.1039/d1cp01020d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A wide range of low oxidation state aluminum-containing cluster anions, LAln- (n = 1-14, L = N[Si(Me)3]2), were produced via reactions between aluminum cluster anions and hexamethyldisilazane (HMDS). These clusters were identified by mass spectrometry, with a few of them (n = 4, 6, and 7) further characterized by a synergy of anion photoelectron spectroscopy and density functional theory (DFT) based calculations. As compared to a previously reported method which reacts anionic aluminum hydrides with ligands, the direct reactions between aluminum cluster anions and ligands promise a more general synthetic scheme for preparing low oxidation state, ligated aluminum clusters over a large size range. Computations revealed structures in which a methyl-group of the ligand migrated onto the surface of the metal cluster, thereby resulting in "two metal-atom" insertion between Si-CH3 bond.
Collapse
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Sandra M Ciborowski
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Georgia R Montone
- Department of Physics & Engineering, West Chester University, West Chester, PA 19383, USA.
| | - William H Sawyer
- Department of Physics & Engineering, West Chester University, West Chester, PA 19383, USA.
| | - Boggavarapu Kiran
- Department of Chemistry and Physics, McNeese State University, Lake Charles, LA 70609, USA
| | - Anil K Kandalam
- Department of Physics & Engineering, West Chester University, West Chester, PA 19383, USA.
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
19
|
Yang Y, Li YK, Zhao YX, Wei GP, Ren Y, Asmis KR, He SG. Catalytic Co-Conversion of CH 4 and CO 2 Mediated by Rhodium-Titanium Oxide Anions RhTiO 2. Angew Chem Int Ed Engl 2021; 60:13788-13792. [PMID: 33890352 PMCID: PMC8251526 DOI: 10.1002/anie.202103808] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 01/26/2023]
Abstract
Catalytic co‐conversion of methane with carbon dioxide to produce syngas (2 H2+2 CO) involves complicated elementary steps and almost all the elementary reactions are performed at the same high temperature conditions in practical thermocatalysis. Here, we demonstrate by mass spectrometric experiments that RhTiO2− promotes the co‐conversion of CH4 and CO2 to free 2 H2+CO and an adsorbed CO (COads) at room temperature; the only elementary step that requires the input of external energy is desorption of COads from the RhTiO2CO− to reform RhTiO2−. This study not only identifies a promising active species for dry (CO2) reforming of methane to syngas, but also emphasizes the importance of temperature control over elementary steps in practical catalysis, which may significantly alleviate the carbon deposition originating from the pyrolysis of methane.
Collapse
Affiliation(s)
- Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P.R. China
| | - Ya-Ke Li
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P.R. China
| | - Gong-Ping Wei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P.R. China
| | - Yi Ren
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Knut R Asmis
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P.R. China
| |
Collapse
|
20
|
Yang Y, Li Y, Zhao Y, Wei G, Ren Y, Asmis KR, He S. Gemeinsame katalytische Umsetzung von CH
4
und CO
2
durch Rhodium‐Titanoxid‐Anionen RhTiO
2
−. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
- University of Chinese Academy of Sciences Beijing 100049 V.R. China
- Beijing National Laboratory for Molecular Sciences and CASResearch/Education Centre of Excellence in Molecular Sciences Beijing 100190 V.R. China
| | - Ya‐Ke Li
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie Universität Leipzig Linnéstraße 2 04103 Leipzig Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Yan‐Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
- Beijing National Laboratory for Molecular Sciences and CASResearch/Education Centre of Excellence in Molecular Sciences Beijing 100190 V.R. China
| | - Gong‐Ping Wei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
- University of Chinese Academy of Sciences Beijing 100049 V.R. China
- Beijing National Laboratory for Molecular Sciences and CASResearch/Education Centre of Excellence in Molecular Sciences Beijing 100190 V.R. China
| | - Yi Ren
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
| | - Knut R. Asmis
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie Universität Leipzig Linnéstraße 2 04103 Leipzig Deutschland
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
- University of Chinese Academy of Sciences Beijing 100049 V.R. China
- Beijing National Laboratory for Molecular Sciences and CASResearch/Education Centre of Excellence in Molecular Sciences Beijing 100190 V.R. China
| |
Collapse
|
21
|
Zhao YX, Zhao XG, Yang Y, Ruan M, He SG. Rhodium chemistry: A gas phase cluster study. J Chem Phys 2021; 154:180901. [PMID: 34241019 DOI: 10.1063/5.0046529] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to the extraordinary catalytic activity in redox reactions, the noble metal, rhodium, has substantial industrial and laboratory applications in the production of value-added chemicals, synthesis of biomedicine, removal of automotive exhaust gas, and so on. The main drawback of rhodium catalysts is its high-cost, so it is of great importance to maximize the atomic efficiency of the precious metal by recognizing the structure-activity relationship of catalytically active sites and clarifying the root cause of the exceptional performance. This Perspective concerns the significant progress on the fundamental understanding of rhodium chemistry at a strictly molecular level by the joint experimental and computational study of the reactivity of isolated Rh-based gas phase clusters that can serve as ideal models for the active sites of condensed-phase catalysts. The substrates cover the important organic and inorganic molecules including CH4, CO, NO, N2, and H2. The electronic origin for the reactivity evolution of bare Rhx q clusters as a function of size is revealed. The doping effect and support effect as well as the synergistic effect among heteroatoms on the reactivity and product selectivity of Rh-containing species are discussed. The ingenious employment of diverse experimental techniques to assist the Rh1- and Rh2-doped clusters in catalyzing the challenging endothermic reactions is also emphasized. It turns out that the chemical behavior of Rh identified from the gas phase cluster study parallels the performance of condensed-phase rhodium catalysts. The mechanistic aspects derived from Rh-based cluster systems may provide new clues for the design of better performing rhodium catalysts including the single Rh atom catalysts.
Collapse
Affiliation(s)
- Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xi-Guan Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Man Ruan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
22
|
Liu YZ, Chen JJ, Li XN, He SG. Activation of Carbon Dioxide by CoCD n- ( n = 0-4) Anions. J Phys Chem A 2021; 125:3710-3717. [PMID: 33899469 DOI: 10.1021/acs.jpca.1c02229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Laser ablation generated CoCDn- (n = 0-4) anions were mass selected and then reacted with CO2 in an ion trap reactor. The reactions were characterized by mass spectrometry and quantum chemical calculations. The experimental results demonstrated that the CoC- anion can convert CO2 into CO. In contrast, the bare Co- anion is inert toward CO2. Coordinated D ligands can modify the reactivity of CoCD1-4- in which CoCD1-3- can reduce CO2 into CO selectively and CoCD4- can only adsorb CO2. The crucial roles of the coordinated C and D ligands to tune the reactivity of CoCDn- (n = 0-4) toward CO2 were rationalized by theoretical calculations. Note that the hydrogenation process that is usually observed in the reactions of gas-phase metal hydrides with CO2 is completely suppressed for the reactions CoCDn- + CO2. This study provides insights into the molecular-level origin for the observations that CO can be selectively generated from CO2 catalyzed by cobalt-containing carbides in heterogeneous catalysis.
Collapse
Affiliation(s)
- Yun-Zhu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
23
|
Wang J, Zhou C, Gao Z, Feng X, Yamamoto Y, Bao M. Unsupported Nanoporous Palladium Catalyst for Highly Selective Hydrogenation of Carbon Dioxide and Sodium Bicarbonate into Formate. ChemCatChem 2021. [DOI: 10.1002/cctc.202100148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jixiao Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
| | - ChuanCheng Zhou
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
| | - Zhanming Gao
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
- Research Organization of Science and Technology Ritsumeikan University Kusatsu Shiga 525-8577 Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 P. R. China
- Department School of Chemical Engineering Dalian University of Technology Panjin 124221 P. R. China
| |
Collapse
|
24
|
Trivedi M, Kumar A, Husain A, Rath NP. Copper(I) Complexes Containing PCP Ligand Catalyzed Hydrogenation of Carbon Dioxide to Formate under Ambient Conditions. Inorg Chem 2021; 60:4385-4396. [PMID: 33735573 DOI: 10.1021/acs.inorgchem.0c01937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The five new copper(I) complexes [Cu2(μ-Cl)2(κ1-PCPt-Bu)] (1), [Cu2(μ-Br)2(κ1-PCPt-Bu)] (2), [Cu2(μ-I)2(κ1-PCPt-Bu)] (3), [Cu2(μ-CN)2(κ1-PCPt-Bu)] (4), and [Cu4(μ3-SCN)4(κ1-PCPt-Bu)2]·CH2Cl2 (5) bearing a 1,3-bis[(di-tert-butylphosphino)methyl]benzene ligand were synthesized and characterized spectroscopically, and the molecular structures of 1, 3, and 5 were determined by single-crystal X-ray diffraction techniques. Structural studies for 1 and 3 revealed their binuclear structures with Cu···Cu separations of 2.609(3) and 2.6359(19) Å, respectively. However, 5 has a tetranuclear cubane structure with an 18-electron configuration at each copper without any metal-metal bonds. The two copper centers in 1 and 3 are bonded to one bridging PCPt-Bu ligand in a κ1-manner and two bridging (pseudo)halido ligands in a μ2-bonding mode to generate a nonplanar Cu2(μ-X)2 framework. The four copper centers in 5 are at the vertices of a tetrahedron. Each copper center has pseudo-tetrahedral coordination provided by two bridging PCPt-Bu ligands in a κ1-manner and the four bridging thiocyanate groups in a μ3-manner. These complexes were used as catalysts for the hydrogenation of CO2 to formate in the presence of DBU as a base to produce valuable energy-rich chemicals, and therefore it is a promising, safe, and simple strategy to conduct reactions under ambient pressure at room temperature. Among all of the five copper(I) complex based catalysts, 3 displayed the best catalytic performance with turnover number (TON) values of 38-8700 in 12-48 h of reaction at 25-80 °C. The outstanding catalytic performance of [Cu2(μ-I)2(κ1-PCPt-Bu)] (3) makes it a potential candidate for realizing the large-scale production of formate by CO2 hydrogenation.
Collapse
Affiliation(s)
- Manoj Trivedi
- Department of Chemistry, University of Delhi, Delhi 110007, India.,Department of Chemistry, Sri Vankateswara College, University of Delhi, New Delhi 110021, India
| | - Abhinav Kumar
- Department of Chemistry, University of Lucknow, Lucknow 226007, India
| | - Ahmad Husain
- Department of Chemistry, DAV University Jalandhar, Jalandhar 144012, India
| | - Nigam P Rath
- Department of Chemistry & Biochemistry and Centre for Nanoscience, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121-4499, United States
| |
Collapse
|
25
|
Liu G, Zhu Z, Marshall M, Blankenhorn M, Bowen KH. CO 2 Activation and Hydrogenation by Palladium Hydride Cluster Anions. J Phys Chem A 2021; 125:1747-1753. [PMID: 33620232 DOI: 10.1021/acs.jpca.1c00204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometric analysis of the anionic products of interaction between palladium hydride anions, PdH-, and carbon dioxide, CO2, in a reaction cell shows an efficient generation of the PdHCO2- intermediate and isolated formate product. Multiple isomers of the PdHCO2- intermediates are identified by a synergy between negative ion photoelectron spectroscopy and quantum-chemical calculations. It is shown that a direct mechanism, in which the H atom in PdH- directly activates and hydrogenates CO2, leads to the formation of the formate product. An indirect mechanism, on the other hand, leads to a stable HPdCO2- structure, where CO2 is chemisorbed onto the Pd atom.
Collapse
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mary Marshall
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Moritz Blankenhorn
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
26
|
Marshall M, Zhu Z, Harris R, Bowen KH, Wang W, Wang J, Gong C, Zhang X. ThH 5 : An Actinide-Containing Superhalogen Molecule. Chemphyschem 2021; 22:5-8. [PMID: 33247491 DOI: 10.1002/cphc.202000918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Indexed: 11/09/2022]
Abstract
Thorium and its compounds have been widely investigated as important nuclear materials. Previous research focused on the potential use of thorium hydrides, such as ThH2 , ThH4 , and Th4 H15 , as nuclear fuels. Here, we report studies of the anion, ThH5 - , by anion photoelectron spectroscopy and computations. The resulting experimental and theoretical vertical detachment energies (VDE) for ThH5 - are 4.09 eV and 4.11 eV, respectively. These values and the agreement between theory and experiment facilitated the characterization of the structure of the ThH5 - anion and showed its neutral counterpart, ThH5 to be a superhalogen. ThH5 - , which exhibits a C4v structure with five Th-H single bonds, possesses the largest known H/M ratio among the actinide elements, M. The adaptive natural density partitioning (AdNDP) method was used to further analyze the chemical bonding of ThH5 - and to confirm the existence of five Th-H single bonds in the ThH5 - molecular anion.
Collapse
Affiliation(s)
- Mary Marshall
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rachel Harris
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Wei Wang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin, 300071, China
| | - Jie Wang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin, 300071, China
| | - Chu Gong
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin, 300071, China
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin, 300071, China
| |
Collapse
|
27
|
Huang T, Yu W, Cheng J, Cong F, Xu B, Wang X. CO2 activation by ligand-free manganese hydrides in a parahydrogen matrix. Chem Commun (Camb) 2021; 57:2301-2304. [DOI: 10.1039/d0cc08256b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of MnH2 with CO2 gave insertion product HMn(η2-O2CH) by concerted hydride ion transfer.
Collapse
Affiliation(s)
- Tengfei Huang
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Wenjie Yu
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Juanjuan Cheng
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Fei Cong
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Bing Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Xuefeng Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| |
Collapse
|
28
|
Wang W, Wang J, Gong C, Zhu Z, Bowen KH, Zhang X. Magic Clusters PtMg 2,3 H 5 - Facilitated by Local σ-Aromaticity. Chemphyschem 2020; 21:2388-2391. [PMID: 32869438 DOI: 10.1002/cphc.202000691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/27/2020] [Indexed: 11/07/2022]
Abstract
The concept of local aromaticity has been successfully utilized in understanding the stability of certain atomic clusters. However, all the skeleton atoms in these clusters are covered by at least one local aromatic feature, collectively making the multiple local aromaticities coexist globally. Herein we show the robustness of local aromaticity as a tool for the discovery of novel magic clusters: not all of the skeleton atoms need to be covered by an aromatic feature to make the cluster magic. In this study, the PtMg2,3 H5 - cluster anions are generated by a unique high-current pulsed discharge ion source and found to be magic numbers using mass spectrometry. Photoelectron spectroscopy and calculations confirm that only the PtH4 2- kernels in these clusters are locally aromatic. Based on these results, we propose that local aromaticity can be gainfully utilized as a new potential magic rule in the search for magic numbers.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jie Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chu Gong
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhaoguo Zhu
- Departments of Chemistry and Material Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kit H Bowen
- Departments of Chemistry and Material Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Xinxing Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
29
|
Liu YZ, Li XN, He SG. Reactivity of Iron Hydride Anions Fe 2H n- ( n = 0-3) with Carbon Dioxide. J Phys Chem A 2020; 124:8414-8420. [PMID: 32936643 DOI: 10.1021/acs.jpca.0c06986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hydrogenation of CO2 into value-added complexes is of great importance for both environmental and economic issues. Metal hydrides are good models for the active sites to explore the nature of CO2 hydrogenation; however, the fundamental insights into C-H bond formation are still far from clear because of the complexity of real-life catalysts. Herein, gas-phase reactions of the Fe2Hn- (n = 0-3) anions with CO2 were investigated using mass spectrometry and quantum chemical calculations. The experimental results showed that the reduction of CO2 into CO dominates all of these reactions, whereas Fe2H- and Fe2H2- can induce the hydrogenation of CO2 effectively to give rise to products Fe(HCO2)- and HFe(HCO2)-, respectively. The mechanistic aspects and the reactivity of Fe2Hn- with an increased number of H atoms in CO2 hydrogenation were rationalized by theoretical calculations.
Collapse
Affiliation(s)
- Yun-Zhu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
30
|
Wang W, Wang J, Gong C, Mu C, Zhang D, Zhang X. Designer Mg−Mg and Zn−Zn single bonds facilitated by double aromaticity in the M2B7− (M=Mg, Zn) clusters. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2004057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wei Wang
- Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jie Wang
- Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chu Gong
- Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chaonan Mu
- Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dongmei Zhang
- Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinxing Zhang
- Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
31
|
Affiliation(s)
- Li-hui Mou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Gui-duo Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Zi-yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
32
|
Zhao YX, Yang B, Li HF, Zhang Y, Yang Y, Liu QY, Xu HG, Zheng WJ, He SG. Photoassisted Selective Steam and Dry Reforming of Methane to Syngas Catalyzed by Rhodium-Vanadium Bimetallic Oxide Cluster Anions at Room Temperature. Angew Chem Int Ed Engl 2020; 59:21216-21223. [PMID: 32767516 DOI: 10.1002/anie.202010026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 01/12/2023]
Abstract
Photoassisted steam reforming and dry (CO2 ) reforming of methane (SRM and DRM) at room temperature with high syngas selectivity have been achieved in the gas-phase catalysis for the first time. The catalysts used are bimetallic rhodium-vanadium oxide cluster anions of Rh2 VO1-3 - . Both the oxidation of methane and reduction of H2 O/CO2 can take place efficiently in the dark while the pivotal step to govern syngas selectivity is photo-excitation of the reaction intermediates Rh2 VO2,3 CH2 - to specific electronically excited states that can selectively produce CO and H2 . Electronic excitation over Rh2 VO2,3 CH2 - to control the syngas selectivity is further confirmed from the comparison with the thermal excitation of Rh2 VO2,3 CH2 - , which leads to diversity of products. The atomic-level mechanism obtained from the well-controlled cluster reactions provides insight into the process of selective syngas production from the photocatalytic SRM and DRM reactions over supported metal oxide catalysts.
Collapse
Affiliation(s)
- Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Hai-Fang Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yan Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Hong-Guang Xu
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Wei-Jun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
33
|
Zhao Y, Yang B, Li H, Zhang Y, Yang Y, Liu Q, Xu H, Zheng W, He S. Photoassisted Selective Steam and Dry Reforming of Methane to Syngas Catalyzed by Rhodium–Vanadium Bimetallic Oxide Cluster Anions at Room Temperature. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan‐Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Hai‐Fang Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yan Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Qing‐Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Hong‐Guang Xu
- State Key Laboratory of Molecular Reaction Dynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Wei‐Jun Zheng
- State Key Laboratory of Molecular Reaction Dynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
34
|
Liu G, Poths P, Zhang X, Zhu Z, Marshall M, Blankenhorn M, Alexandrova AN, Bowen KH. CO 2 Hydrogenation to Formate and Formic Acid by Bimetallic Palladium-Copper Hydride Clusters. J Am Chem Soc 2020; 142:7930-7936. [PMID: 32250623 DOI: 10.1021/jacs.0c01855] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mass spectrometric analysis of the anionic products of interaction between bimetallic palladium-copper tetrahydride anions, PdCuH4-, and carbon dioxide, CO2, in a reaction cell shows an efficient generation of the PdCuCO2H4- intermediate and formate/formic acid complexes. Multiple structures of PdCuH4- and PdCuCO2H4- are identified by a synergy between anion photoelectron spectroscopy and quantum chemical calculations. The higher energy PdCuH4- isomer is shown to drive the catalytic hydrogenation of CO2, emphasizing the importance of accounting for higher energy isomers for cluster catalytic activity. This study represents the first example of CO2 hydrogenation by bimetallic hydride clusters.
Collapse
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Patricia Poths
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 605 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Xinxing Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Mary Marshall
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Moritz Blankenhorn
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 605 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
35
|
Chaudhary K, Trivedi M, Masram DT, Kumar A, Kumar G, Husain A, Rath NP. A highly active copper catalyst for the hydrogenation of carbon dioxide to formate under ambient conditions. Dalton Trans 2020; 49:2994-3000. [PMID: 32083266 DOI: 10.1039/c9dt04662c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon dioxide (CO2) is an important reactant and can be used for the syntheses of various types of industrially important chemicals. Hence, investigation concerning the conversion of CO2 into valuable energy-rich chemicals is an important and current topic in molecular catalysis. Recent research on molecular catalysts has led to improved rates for conversion of CO2 to energy-rich products such as formate, but the catalysts based on first-row transition metals are underdeveloped. Copper(i) complexes containing the 1,1'-bis(di-tert-butylphosphino) ferrocene ligand were found to promote the catalytic hydrogenation of CO2 to formate in the presence of DBU as the base, where the catalytic conversion of CO2via hydrogenation is achieved using in situ gaseous H2 (granulated tin metal and concentrated HCl) to produce valuable energy-rich chemicals, and therefore it is a promising, safe and simple strategy to conduct reactions under ambient pressure at room temperature. Towards this goal, we report an efficient copper(i) complex based catalyst [CuI(dtbpf)] to achieve ambient-pressure CO2 hydrogenation catalysis for generating the formate salt (HCO2-) with turnover number (TON) values of 326 to 1.065 × 105 in 12 to 48 h of reaction at 25 °C to 80 °C. The outstanding catalytic performance of [CuI(dtbpf)] makes it a potential candidate for realizing the large-scale production of formate by CO2 hydrogenation.
Collapse
Affiliation(s)
- Karan Chaudhary
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Manoj Trivedi
- Department of Chemistry, University of Delhi, Delhi-110007, India. and Department of Chemistry, Rajdhani College, University of Delhi, New Delhi-110005, India
| | - D T Masram
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Abhinav Kumar
- Department of Chemistry, University of Lucknow, Lucknow-226007, India
| | - Girijesh Kumar
- Department of Chemistry and Center of Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India
| | - Ahmad Husain
- Department of Chemistry, DAV University Jalandhar, Jalandhar-144012, India
| | - Nigam P Rath
- Department of Chemistry & Biochemistry and Centre for Nanoscience, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121-4499, USA.
| |
Collapse
|
36
|
Zhou HY, Wang M, Ding YQ, Ma JB. Nb2BN2− cluster anions reduce four carbon dioxide molecules: reactivity enhancement by ligands. Dalton Trans 2020; 49:14081-14087. [DOI: 10.1039/d0dt02680h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thermal gas-phase reactions of Nb2BN2− cluster anions with carbon dioxide have been explored by using the art of time-of-flight mass spectrometry and density functional theory calculations.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Yong-Qi Ding
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| |
Collapse
|
37
|
Yang Y, Yang B, Zhao Y, Jiang L, Li Z, Ren Y, Xu H, Zheng W, He S. Direct Conversion of Methane with Carbon Dioxide Mediated by RhVO
3
−
Cluster Anions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction DynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Yan‐Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Li‐Xue Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Zi‐Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Yi Ren
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Hong‐Guang Xu
- State Key Laboratory of Molecular Reaction DynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Wei‐Jun Zheng
- State Key Laboratory of Molecular Reaction DynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
38
|
Yang Y, Yang B, Zhao YX, Jiang LX, Li ZY, Ren Y, Xu HG, Zheng WJ, He SG. Direct Conversion of Methane with Carbon Dioxide Mediated by RhVO 3 - Cluster Anions. Angew Chem Int Ed Engl 2019; 58:17287-17292. [PMID: 31553114 DOI: 10.1002/anie.201911195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 11/09/2022]
Abstract
Direct conversion of methane with carbon dioxide to value-added chemicals is attractive but extremely challenging because of the thermodynamic stability and kinetic inertness of both molecules. Herein, the first dinuclear cluster species, RhVO3 - , has been designed to mediate the co-conversion of CH4 and CO2 to oxygenated products, CH3 OH and CH2 O, in the temperature range of 393-600 K. The resulting cluster ions RhVO3 CO- after CH3 OH formation can further desorb the [CO] unit to regenerate the RhVO3 - cluster, leading to the successful establishment of a catalytic cycle for methanol production from CH4 and CO2 (CH4 +CO2 →CH3 OH+CO). The exceptional activity of Rh-V dinuclear oxide cluster (RhVO3 - ) identified herein provides a new mechanism for co-conversion of two very stable molecules CH4 and CO2 .
Collapse
Affiliation(s)
- Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Li-Xue Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Yi Ren
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Hong-Guang Xu
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Wei-Jun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
39
|
Mou LH, Li ZY, Liu QY, He SG. Size-Dependent Association of Cobalt Deuteride Cluster Anions Co 3D n- (n = 0-4) with Dinitrogen. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1956-1963. [PMID: 31236780 DOI: 10.1007/s13361-019-02226-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Dinitrogen (N2) activation by metal hydride species is of fundamental interest and practical importance while the role of hydrogen in N2 activation is not well studied. Herein, the structures of Co3Dn- (n = 0-4) clusters and their reactions with N2 have been studied by using a combined experimental and computational approach. The mass spectrometry experiments identified that the Co3Dn- (n = 2-4) clusters could adsorb N2 while the Co3Dn- (n = 0 and 1) clusters were inert. The photoelectron imaging spectroscopy indicated that the electron detachment energies of Co3D2-4- are smaller than those of Co3D0,1-, which characterized that it is easier to transfer electrons from Co3D2-4- than from Co3D0,1- to activate N2. The density functional theory calculations generally supported the experimental observations. Further analysis revealed that the H atoms in the Co3Hn- (n = 2-4) clusters generally result in higher energies of the Co 3d orbitals in comparison with the Co3Hn- (n = 0 and 1) systems. By forming chemical bonds with H atoms, the Co atoms of Co3H2-4- are less negatively charged with respect to the naked Co3- system, which leads to higher N2 binding energies of Co3H2-4N2- than that of Co3N2-.
Collapse
Affiliation(s)
- Li-Hui Mou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- CAS Research/Education Center of Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, People's Republic of China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- CAS Research/Education Center of Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, People's Republic of China.
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- CAS Research/Education Center of Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, People's Republic of China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- CAS Research/Education Center of Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, People's Republic of China.
| |
Collapse
|
40
|
Wang M, Sun C, Cui J, Zhang Y, Ma J. Clean and Efficient Transformation of CO2 to Isocyanic Acid: The Important Role of Triatomic Cation ScNH+. J Phys Chem A 2019; 123:5762-5767. [DOI: 10.1021/acs.jpca.9b02133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100190, China
| | - Chuanxin Sun
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100190, China
| | - Jiatong Cui
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100190, China
| | - Yunhong Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100190, China
| | - Jiabi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100190, China
| |
Collapse
|
41
|
Selective Activation of the C−H Bond in Methane by Single Platinum Atomic Anions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Liu G, Zhu Z, Ciborowski SM, Ariyarathna IR, Miliordos E, Bowen KH. Selective Activation of the C-H Bond in Methane by Single Platinum Atomic Anions. Angew Chem Int Ed Engl 2019; 58:7773-7777. [PMID: 30968506 DOI: 10.1002/anie.201903252] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 01/21/2023]
Abstract
Mass spectrometric analysis of the anionic products of interaction between platinum atomic anions, Pt- , and methane, CH4 and CD4 , in a collision cell shows the preferred generation of [PtCH4 ]- and [PtCD4 ]- complexes and a low tendency toward dehydrogenation. [PtCH4 ]- is shown to be H-Pt-CH3 - by a synergy between anion photoelectron spectroscopy and quantum chemical calculations, implying the rupture of a single C-H bond. The calculated reaction pathway accounts for the observed selective activation of methane by Pt- . This study presents the first example of methane activation by a single atomic anion.
Collapse
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sandra M Ciborowski
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Isuru R Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
43
|
Liu G, Ciborowski SM, Zhu Z, Chen Y, Zhang X, Bowen KH. The metallo-formate anions, M(CO2)−, M = Ni, Pd, Pt, formed by electron-induced CO2 activation. Phys Chem Chem Phys 2019; 21:10955-10960. [DOI: 10.1039/c9cp01915d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The metallo-formate anions, M(CO2)−, M = Ni, Pd, and Pt, were formed by electron-induced CO2 activation.
Collapse
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University
- Baltimore
- USA
| | | | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University
- Baltimore
- USA
| | - Yinlin Chen
- Department of Chemistry, Johns Hopkins University
- Baltimore
- USA
| | - Xinxing Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University
- Tianjin 300071
- China
| | - Kit H. Bowen
- Department of Chemistry, Johns Hopkins University
- Baltimore
- USA
| |
Collapse
|
44
|
Liu G, Miliordos E, Ciborowski SM, Tschurl M, Boesl U, Heiz U, Zhang X, Xantheas SS, Bowen K. Communication: Water activation and splitting by single metal-atom anions. J Chem Phys 2018; 149:221101. [DOI: 10.1063/1.5050913] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Evangelos Miliordos
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Sandra M. Ciborowski
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Martin Tschurl
- Institute for Physical Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Ulrich Boesl
- Institute for Physical Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Ulrich Heiz
- Institute for Physical Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Xinxing Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 30071, China
| | - Sotiris S. Xantheas
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Kit Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
45
|
Zhao T, Hu X, Wu Y, Zhang Z. Hydrogenation of CO2
to Formate with H2
: Transition Metal Free Catalyst Based on a Lewis Pair. Angew Chem Int Ed Engl 2018; 58:722-726. [DOI: 10.1002/anie.201809634] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/04/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Tianxiang Zhao
- Separation Engineering Research Center; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| | - Xingbang Hu
- Separation Engineering Research Center; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| | - Youting Wu
- Separation Engineering Research Center; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| | - Zhibing Zhang
- Separation Engineering Research Center; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| |
Collapse
|
46
|
Zhao T, Hu X, Wu Y, Zhang Z. Hydrogenation of CO2
to Formate with H2
: Transition Metal Free Catalyst Based on a Lewis Pair. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tianxiang Zhao
- Separation Engineering Research Center; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| | - Xingbang Hu
- Separation Engineering Research Center; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| | - Youting Wu
- Separation Engineering Research Center; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| | - Zhibing Zhang
- Separation Engineering Research Center; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| |
Collapse
|
47
|
Green AE, Justen J, Schöllkopf W, Gentleman AS, Fielicke A, Mackenzie SR. IR Signature of Size-Selective CO2
Activation on Small Platinum Cluster Anions, Pt
n
−
(n
=4-7). Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alice E. Green
- Department of Chemistry; University of Oxford; Physical and Theoretical Chemistry Laboratory; South Parks Road Oxford OX1 3QZ UK
| | - Jasmin Justen
- Institute for Optics and Atomic Physics; Technische Universität Berlin; Hardenbergstrasse 36 10623 Berlin Germany
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg, 4-6 14195 Berlin Germany
| | - Alexander S. Gentleman
- Department of Chemistry; University of Oxford; Physical and Theoretical Chemistry Laboratory; South Parks Road Oxford OX1 3QZ UK
| | - André Fielicke
- Institute for Optics and Atomic Physics; Technische Universität Berlin; Hardenbergstrasse 36 10623 Berlin Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg, 4-6 14195 Berlin Germany
| | - Stuart R. Mackenzie
- Department of Chemistry; University of Oxford; Physical and Theoretical Chemistry Laboratory; South Parks Road Oxford OX1 3QZ UK
| |
Collapse
|
48
|
Green AE, Justen J, Schöllkopf W, Gentleman AS, Fielicke A, Mackenzie SR. IR Signature of Size-Selective CO 2 Activation on Small Platinum Cluster Anions, Pt n - (n=4-7). Angew Chem Int Ed Engl 2018; 57:14822-14826. [PMID: 30207020 DOI: 10.1002/anie.201809099] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Indexed: 11/09/2022]
Abstract
Infrared multiple photon dissociation spectroscopy (IR-MPD) has been employed to determine the nature of CO2 binding to size-selected platinum cluster anions, Ptn - (n=4-7). Interpreted in conjunction with density functional theory simulations, the results illustrate that the degree of CO2 activation can be controlled by the size of the metal cluster, with dissociative activation observed on all clusters n≥5. Of potential practical significance, in terms of the use of CO2 as a useful C1 feedstock, CO2 is observed molecularly-bound, but highly activated, on the Pt4 - cluster. It is trapped behind a barrier on the reactive potential energy surface which prevents dissociation.
Collapse
Affiliation(s)
- Alice E Green
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK
| | - Jasmin Justen
- Institute for Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg, 4-6, 14195, Berlin, Germany
| | - Alexander S Gentleman
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK
| | - André Fielicke
- Institute for Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg, 4-6, 14195, Berlin, Germany
| | - Stuart R Mackenzie
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK
| |
Collapse
|
49
|
Chen Q, Zhao YX, Jiang LX, Chen JJ, He SG. Coupling of Methane and Carbon Dioxide Mediated by Diatomic Copper Boride Cations. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang Chen
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
| | - Li-Xue Jiang
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
50
|
Chen Q, Zhao YX, Jiang LX, Chen JJ, He SG. Coupling of Methane and Carbon Dioxide Mediated by Diatomic Copper Boride Cations. Angew Chem Int Ed Engl 2018; 57:14134-14138. [PMID: 30203446 DOI: 10.1002/anie.201808780] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 11/11/2022]
Abstract
The use of CH4 and CO2 to produce value-added chemicals via direct C-C coupling is a challenging chemistry problem because of the inertness of these two molecules. Herein, mass spectrometric experiments and high-level quantum-chemical calculations have identified the first diatomic species (CuB+ ) that can couple CH4 with CO2 under thermal collision conditions to produce ketene (H2 C=C=O), an important intermediate in synthetic chemistry. The order to feed the reactants (CH4 and CO2 ) is important and CH4 should be firstly fed to produce the C2 product. Molecular-level mechanisms including control of product selectivity have been revealed for coupling of CH4 with CO2 under mild conditions.
Collapse
Affiliation(s)
- Qiang Chen
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Li-Xue Jiang
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|