1
|
Emsley L. Spiers Memorial Lecture: NMR crystallography. Faraday Discuss 2024. [PMID: 39405130 PMCID: PMC11477664 DOI: 10.1039/d4fd00151f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
Chemical function is directly related to the spatial arrangement of atoms. Consequently, the determination of atomic-level three-dimensional structures has transformed molecular and materials science over the past 60 years. In this context, solid-state NMR has emerged to become the method of choice for atomic-level characterization of complex materials in powder form. In the following we present an overview of current methods for chemical shift driven NMR crystallography, illustrated with applications to complex materials.
Collapse
Affiliation(s)
- Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
2
|
Ahlawat S, Shukla BN, Singh V, Sharma Y, Choudhary P, Rao A. GLYCOCINS: The sugar peppered antimicrobials. Biotechnol Adv 2024; 75:108415. [PMID: 39033836 DOI: 10.1016/j.biotechadv.2024.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Glycosylated bacteriocins, known as glycocins, were first discovered in 2011. These bioactive peptides are produced by bacteria to gain survival advantages. They exhibit diverse types of glycans and demonstrate varied antimicrobial activity. Currently, there are 13 experimentally known glycocins, with over 250 identified in silico across different bacterial phyla. Notably, glycocins are recognized for their glycan-mediated antimicrobial activity, proving effective against drug-resistant and foodborne pathogens. Many glycocins contain rare S-linked glycans. Glycosyltransferases (GTs), responsible for transferring sugar to glycocins and involved in glycocin biosynthesis, often cluster together in the producer's genome. This clustering makes them valuable for custom glycoengineering with diverse substrate specificities. Heterologous expression of glycocins has paved the way for the establishment of microbial factories for glycopeptide and glycoconjugate production across various industries. In this review, we emphasize the primary roles of fully and partially characterized glycocins and their glycosylating enzymes. Additionally, we explore how specific glycan structures facilitate these functions in antibacterial activities. Furthermore, we discuss newer approaches and increasing efforts aimed at exploiting bacterial glycobiology for the development of food preservatives and as replacements or complements to traditional antibiotics, particularly in the face of antibiotic-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Shimona Ahlawat
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India
| | | | - Vaidhvi Singh
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Yogita Sharma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | | | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India; Current address: Food Safety and Standards Authority of India (FSSAI), New Delhi 110002, India.
| |
Collapse
|
3
|
Duran EC, Rafiuddin MR, Shen Y, Hunt SA, Mir AH, Eggeman AS. 3D electron diffraction studies of synthetic rhabdophane (DyPO 4·nH 2O). Acta Crystallogr C Struct Chem 2024; 80:612-619. [PMID: 39226422 PMCID: PMC11451015 DOI: 10.1107/s2053229624007885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
In this study, we report the results of continuous rotation electron diffraction studies of single DyPO4·nH2O (rhabdophane) nanocrystals. The diffraction patterns can be fit to a trigonal lattice (P3121) with lattice parameters a = 7.019 (5) and c = 6.417 (5) Å. However, there is also a set of diffuse background scattering features present that are associated with a disordered superstructure that is double these lattice parameters and fits with an arrangement of water molecules present in the structure pore. Pair distribution function (PDF) maps based on the diffuse background allowed the extent of the water correlation to be estimated, with 2-3 nm correlation along the c axis and ∼5 nm along the a/b axis.
Collapse
Affiliation(s)
- Ercin C. Duran
- Department of Materials, University of Manchester, M13 9PL, United Kingdom
- Department of Metallurgical and Materials Engineering, Istanbul Technical University, Türkiye
| | | | - Yazhou Shen
- Department of Materials, University of Manchester, M13 9PL, United Kingdom
| | - Simon A. Hunt
- Department of Materials, University of Manchester, M13 9PL, United Kingdom
| | - Anamul Haq Mir
- School of Computing and Engineering, University of Huddersfield, HD1 3DH, United Kingdom
| | | |
Collapse
|
4
|
Torodii D, Holmes JB, Moutzouri P, Nilsson Lill SO, Cordova M, Pinon AC, Grohe K, Wegner S, Putra OD, Norberg S, Welinder A, Schantz S, Emsley L. Crystal structure validation of verinurad via proton-detected ultra-fast MAS NMR and machine learning. Faraday Discuss 2024. [PMID: 39297322 PMCID: PMC11411500 DOI: 10.1039/d4fd00076e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 09/25/2024]
Abstract
The recent development of ultra-fast magic-angle spinning (MAS) (>100 kHz) provides new opportunities for structural characterization in solids. Here, we use NMR crystallography to validate the structure of verinurad, a microcrystalline active pharmaceutical ingredient. To do this, we take advantage of 1H resolution improvement at ultra-fast MAS and use solely 1H-detected experiments and machine learning methods to assign all the experimental proton and carbon chemical shifts. This framework provides a new tool for elucidating chemical information from crystalline samples with limited sample volume and yields remarkably faster acquisition times compared to 13C-detected experiments, without the need to employ dynamic nuclear polarization.
Collapse
Affiliation(s)
- Daria Torodii
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Jacob B Holmes
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pinelopi Moutzouri
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Sten O Nilsson Lill
- Data Science & Modelling, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Manuel Cordova
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Arthur C Pinon
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Kristof Grohe
- Bruker BioSpin GmbH & Co KG, 76275 Ettlingen, Germany
| | | | - Okky Dwichandra Putra
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Stefan Norberg
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, 43183 Gothenburg, Sweden
| | - Anette Welinder
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, 43183 Gothenburg, Sweden
| | - Staffan Schantz
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, 43183 Gothenburg, Sweden
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Leung HW, Copley RCB, Lampronti GI, Day SJ, Saunders LK, Johnstone DN, Midgley PA. From formulation to structure: 3D electron diffraction for the structure solution of a new indomethacin polymorph from an amorphous solid dispersion. IUCRJ 2024; 11:744-748. [PMID: 39194259 PMCID: PMC11364028 DOI: 10.1107/s2052252524008121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
3D electron diffraction (3DED) is increasingly employed to determine molecular and crystal structures from micro-crystals. Indomethacin is a well known, marketed, small-molecule non-steroidal anti-inflammatory drug with eight known polymorphic forms, of which four structures have been elucidated to date. Using 3DED, we determined the structure of a new ninth polymorph, σ, found within an amorphous solid dispersion, a product formulation sometimes used for active pharmaceutical ingredients with poor aqueous solubility. Subsequently, we found that σ indomethacin can be produced from direct solvent evaporation using dichloromethane. These results demonstrate the relevance of 3DED within drug development to directly probe product formulations.
Collapse
Affiliation(s)
- Helen W. Leung
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUnited Kingdom
| | | | - Giulio I. Lampronti
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUnited Kingdom
| | - Sarah J. Day
- Beamline I11Diamond Light SourceDidcotOxfordOX11 0DEUnited Kingdom
| | - Lucy K. Saunders
- Beamline I11Diamond Light SourceDidcotOxfordOX11 0DEUnited Kingdom
| | | | - Paul A. Midgley
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUnited Kingdom
| |
Collapse
|
6
|
Kumar A, Jha KK, Olech B, Goral T, Malinska M, Woźniak K, Dominiak PM. TAAM refinement on high-resolution experimental and simulated 3D ED/MicroED data for organic molecules. Acta Crystallogr C Struct Chem 2024; 80:264-277. [PMID: 38934273 PMCID: PMC11225613 DOI: 10.1107/s2053229624005357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
3D electron diffraction (3D ED), or microcrystal electron diffraction (MicroED), has become an alternative technique for determining the high-resolution crystal structures of compounds from sub-micron-sized crystals. Here, we considered L-alanine, α-glycine and urea, which are known to form good-quality crystals, and collected high-resolution 3D ED data on our in-house TEM instrument. In this study, we present a comparison of independent atom model (IAM) and transferable aspherical atom model (TAAM) kinematical refinement against experimental and simulated data. TAAM refinement on both experimental and simulated data clearly improves the model fitting statistics (R factors and residual electrostatic potential) compared to IAM refinement. This shows that TAAM better represents the experimental electrostatic potential of organic crystals than IAM. Furthermore, we compared the geometrical parameters and atomic displacement parameters (ADPs) resulting from the experimental refinements with the simulated refinements, with the periodic density functional theory (DFT) calculations and with published X-ray and neutron crystal structures. The TAAM refinements on the 3D ED data did not improve the accuracy of the bond lengths between the non-H atoms. The experimental 3D ED data provided more accurate H-atom positions than the IAM refinements on the X-ray diffraction data. The IAM refinements against 3D ED data had a tendency to lead to slightly longer X-H bond lengths than TAAM, but the difference was statistically insignificant. Atomic displacement parameters were too large by tens of percent for L-alanine and α-glycine. Most probably, other unmodelled effects were causing this behaviour, such as radiation damage or dynamical scattering.
Collapse
Affiliation(s)
- Anil Kumar
- Biological and Chemical Research Centre Faculty of Chemistry University of Warsaw, ul Żwirki i Wigury 101 02-089 Warszawa Poland
| | - Kunal Kumar Jha
- Biological and Chemical Research Centre Faculty of Chemistry University of Warsaw, ul Żwirki i Wigury 101 02-089 Warszawa Poland
- Centre of New Technologies University of Warsaw, ul S Banacha 2c 02-097 Warszawa Poland
| | - Barbara Olech
- Biological and Chemical Research Centre Faculty of Chemistry University of Warsaw, ul Żwirki i Wigury 101 02-089 Warszawa Poland
- Centre of New Technologies University of Warsaw, ul S Banacha 2c 02-097 Warszawa Poland
| | - Tomasz Goral
- Biological and Chemical Research Centre Faculty of Chemistry University of Warsaw, ul Żwirki i Wigury 101 02-089 Warszawa Poland
- Centre of New Technologies University of Warsaw, ul S Banacha 2c 02-097 Warszawa Poland
| | - Maura Malinska
- Faculty of Chemistry University of Warsaw, Pasteura 1 02-093 Warszawa Poland
| | - Krzysztof Woźniak
- Centre of New Technologies University of Warsaw, ul S Banacha 2c 02-097 Warszawa Poland
- Faculty of Chemistry University of Warsaw, Pasteura 1 02-093 Warszawa Poland
| | - Paulina Maria Dominiak
- Biological and Chemical Research Centre Faculty of Chemistry University of Warsaw, ul Żwirki i Wigury 101 02-089 Warszawa Poland
| |
Collapse
|
7
|
Acehan D, Spoth KA, Budziszewski GR, Snell ME, Campomizzi CS, Lynch ML, Bowman SE. Reaching the potential of electron diffraction. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:102007. [PMID: 39055735 PMCID: PMC11271257 DOI: 10.1016/j.xcrp.2024.102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Microcrystal electron diffraction (MicroED) is an emerging structural technique in which submicron crystals are used to generate diffraction data for structural studies. Structures allow for the study of molecular-level architecture and drive hypotheses about modes of action, mechanisms, dynamics, and interactions with other molecules. Combining cryoelectron microscopy (cryo-EM) instrumentation with crystallographic techniques, MicroED has led to three-dimensional structural models of small molecules, peptides, and proteins and has generated tremendous interest due to its ability to use vanishingly small crystals. In this perspective, we describe the current state of the field for MicroED methodologies, including making and detecting crystals of the appropriate size for the technique, as well as ways to best handle and characterize these crystals. Our perspective provides insight into ways to unlock the full range of potential for MicroED to access previously intractable samples and describes areas of future development.
Collapse
Affiliation(s)
- Devrim Acehan
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA
- University at Buffalo, Jacobs School of Medicine and Biomedical Science, Department of Structural Biology, Buffalo, NY 14203, USA
- University of Rochester, School of Medicine and Dentistry, Department of Biochemistry and Biophysics, Rochester, NY 14642, USA
| | | | | | | | | | - Miranda L. Lynch
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA
- University at Buffalo, Jacobs School of Medicine and Biomedical Science, Department of Structural Biology, Buffalo, NY 14203, USA
| | - Sarah E.J. Bowman
- Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA
- University at Buffalo, Jacobs School of Medicine and Biomedical Science, Department of Structural Biology, Buffalo, NY 14203, USA
- University at Buffalo, Jacobs School of Medicine and Biomedical Science, Department of Biochemistry, Buffalo, NY 14203, USA
| |
Collapse
|
8
|
Aragon M, Bowman SEJ, Chen CH, de la Cruz MJ, Decato DA, Eng ET, Flatt KM, Gulati S, Li Y, Lomba CJ, Mercado B, Miller J, Palatinus L, Rice WJ, Waterman D, Zimanyi CM. Applying 3D ED/MicroED workflows toward the next frontiers. Acta Crystallogr C Struct Chem 2024; 80:179-189. [PMID: 38712546 PMCID: PMC11150879 DOI: 10.1107/s2053229624004078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
We report on the latest advancements in Microcrystal Electron Diffraction (3D ED/MicroED), as discussed during a symposium at the National Center for CryoEM Access and Training housed at the New York Structural Biology Center. This snapshot describes cutting-edge developments in various facets of the field and identifies potential avenues for continued progress. Key sections discuss instrumentation access, research applications for small molecules and biomacromolecules, data collection hardware and software, data reduction software, and finally reporting and validation. 3D ED/MicroED is still early in its wide adoption by the structural science community with ample opportunities for expansion, growth, and innovation.
Collapse
Affiliation(s)
- Mahira Aragon
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, New York 10027, USA
| | - Sarah E. J. Bowman
- Hauptman-Woodward Medical Research Institute, 700 Ellicott St, Buffalo, New York 14203, USA
| | - Chun-Hsing Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
| | - M. Jason de la Cruz
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Daniel A. Decato
- Chemistry and Biochemistry, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA
| | - Edward T. Eng
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, New York 10027, USA
| | - Kristen M. Flatt
- Materials Research Laboratory, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, USA
| | | | - Yuchen Li
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Charles J. Lomba
- Department of Physics, Quantitative Biology Institute, Yale University, 260 Whitney Ave., New Haven, Connecticut 06520-8103, USA
| | - Brandon Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Jessalyn Miller
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, New York 10027, USA
| | - Lukáš Palatinus
- Institute of Physics of the CAS/NanED, Na Slovance 1999/2, Prague 192000, Czech Republic
| | - William J. Rice
- Department of Cell Biology, NYU Grossman School of Medicine, 540 First Ave, New York, New York 10016, USA
| | - David Waterman
- Research Complex at Harwell, UKRI–STFC Rutherford Appleton Laboratory, Harwell, Didcot, Oxfordshire, OX11 0FA, England, United Kingdom
| | - Christina M. Zimanyi
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, New York 10027, USA
| |
Collapse
|
9
|
Vlahakis N, Holton J, Sauter NK, Ercius P, Brewster AS, Rodriguez JA. 3D Nanocrystallography and the Imperfect Molecular Lattice. Annu Rev Phys Chem 2024; 75:483-508. [PMID: 38941528 DOI: 10.1146/annurev-physchem-083122-105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Crystallographic analysis relies on the scattering of quanta from arrays of atoms that populate a repeating lattice. While large crystals built of lattices that appear ideal are sought after by crystallographers, imperfections are the norm for molecular crystals. Additionally, advanced X-ray and electron diffraction techniques, used for crystallography, have opened the possibility of interrogating micro- and nanoscale crystals, with edges only millions or even thousands of molecules long. These crystals exist in a size regime that approximates the lower bounds for traditional models of crystal nonuniformity and imperfection. Accordingly, data generated by diffraction from both X-rays and electrons show increased complexity and are more challenging to conventionally model. New approaches in serial crystallography and spatially resolved electron diffraction mapping are changing this paradigm by better accounting for variability within and between crystals. The intersection of these methods presents an opportunity for a more comprehensive understanding of the structure and properties of nanocrystalline materials.
Collapse
Affiliation(s)
- Niko Vlahakis
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; and STROBE, NSF Science and Technology Center, University of California, Los Angeles, California, USA;
| | - James Holton
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
- Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, California, USA
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
| | - Jose A Rodriguez
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; and STROBE, NSF Science and Technology Center, University of California, Los Angeles, California, USA;
| |
Collapse
|
10
|
Lightowler M, Li S, Ou X, Cho J, Liu B, Li A, Hofer G, Xu J, Yang T, Zou X, Lu M, Xu H. Phase Identification and Discovery of an Elusive Polymorph of Drug-Polymer Inclusion Complex Using Automated 3D Electron Diffraction. Angew Chem Int Ed Engl 2024; 63:e202317695. [PMID: 38380831 DOI: 10.1002/anie.202317695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024]
Abstract
3D electron diffraction (3D ED) has shown great potential in crystal structure determination in materials, small organic molecules, and macromolecules. In this work, an automated, low-dose and low-bias 3D ED protocol has been implemented to identify six phases from a multiple-phase melt-crystallisation product of an active pharmaceutical ingredient, griseofulvin (GSF). Batch data collection under low-dose conditions using a widely available commercial software was combined with automated data analysis to collect and process over 230 datasets in three days. Accurate unit cell parameters obtained from 3D ED data allowed direct phase identification of GSF Forms III, I and the known GSF inclusion complex (IC) with polyethylene glycol (PEG) (GSF-PEG IC-I), as well as three minor phases, namely GSF Forms II, V and an elusive new phase, GSF-PEG IC-II. Their structures were then directly determined by 3D ED. Furthermore, we reveal how the stabilities of the two GSF-PEG IC polymorphs are closely related to their crystal structures. These results demonstrate the power of automated 3D ED for accurate phase identification and direct structure determination of complex, beam-sensitive crystallisation products, which is significant for drug development where solid form screening is crucial for the overall efficacy of the drug product.
Collapse
Affiliation(s)
- Molly Lightowler
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Shuting Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jungyoun Cho
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Binbin Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ao Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gerhard Hofer
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Jiaoyan Xu
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Taimin Yang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Ming Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hongyi Xu
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| |
Collapse
|
11
|
Krysiak Y, Plana-Ruiz S, Fink L, Alig E, Bahnmüller U, Kolb U, Schmidt MU. High Temperature Electron Diffraction on Organic Crystals: In Situ Crystal Structure Determination of Pigment Orange 34. J Am Chem Soc 2024; 146:9880-9887. [PMID: 38536667 PMCID: PMC11009952 DOI: 10.1021/jacs.3c14800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Small molecule structures and their applications rely on good knowledge of their atomic arrangements. However, the crystal structures of these compounds and materials, which are often composed of fine crystalline domains, cannot be determined with single-crystal X-ray diffraction. Three-dimensional electron diffraction (3D ED) is already becoming a reliable method for the structure analysis of submicrometer-sized organic materials. The reduction of electron beam damage is essential for successful structure determination and often prevents the analysis of organic materials at room temperature, not to mention high temperature studies. In this work, we apply advanced 3D ED methods at different temperatures enabling the accurate structure determination of two phases of Pigment Orange 34 (C34H28N8O2Cl2), a biphenyl pyrazolone pigment that has been industrially produced for more than 80 years and used for plastics application. The crystal structure of the high-temperature phase, which can be formed during plastic coloration, was determined at 220 °C. For the first time, we were able to observe a reversible phase transition in an industrial organic pigment in the solid state, even with atomic resolution, despite crystallites being submicrometer in size. By localizing hydrogen atoms, we were even able to detect the tautomeric state of the molecules at different temperatures. This demonstrates that precise, fast, and low-dose 3D ED measurements enable high-temperature studies the door for general in situ studies of nanocrystalline materials at the atomic level.
Collapse
Affiliation(s)
- Yaşar Krysiak
- Institute
of Inorganic Chemistry, Leibniz University
Hannover, Callinstraße 9, 30167 Hannover, Germany
| | - Sergi Plana-Ruiz
- Department
of Materials and Geoscience, Technische
Universität Darmstadt, Petersenstrasse 23, 64287 Darmstadt, Germany
- LENS,
MIND/IN2UB, Departament d’Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - Lothar Fink
- Institute
of Inorganic and Analytical Chemistry, Goethe
University Frankfurt am Main, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Edith Alig
- Institute
of Inorganic and Analytical Chemistry, Goethe
University Frankfurt am Main, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Ulrich Bahnmüller
- Institute
of Inorganic Chemistry, Leibniz University
Hannover, Callinstraße 9, 30167 Hannover, Germany
| | - Ute Kolb
- Department
of Materials and Geoscience, Technische
Universität Darmstadt, Petersenstrasse 23, 64287 Darmstadt, Germany
- Institute
of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Martin U. Schmidt
- Institute
of Inorganic and Analytical Chemistry, Goethe
University Frankfurt am Main, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Alexander BW, Bartfield NM, Gupta V, Mercado BQ, Del Campo M, Herzon SB. An oxidative photocyclization approach to the synthesis of Securiflustra securifrons alkaloids. Science 2024; 383:849-854. [PMID: 38386756 DOI: 10.1126/science.adl6163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Securines and securamines are cytotoxic alkaloids that contain reactive alkene and heterocyclic residues embedded in skeletons comprising four to six oxidized rings. This structural complexity imparts a rich chemistry to the isolates but has impeded synthetic access to the structures in the nearly three decades since their isolation. We present a flexible route to eight isolates that exemplify the three skeletal classes of metabolites. The route proceeds by the modular assembly of the advanced azides 38 and 49 (13 steps, 6 to 10% yield), sequential oxidative photocyclizations, and late-stage functional group manipulations. With this approach, the targets were obtained in 17 to 19 steps, 12 to 13 purifications, and 0.5 to 3.5% overall yield. The structure of an advanced intermediate was elucidated by microcrystal electron diffraction (MicroED) analysis. The route will support structure-function and target identification studies of the securamines.
Collapse
Affiliation(s)
| | - Noah M Bartfield
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Vaani Gupta
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
- Chemical and Biological Instrumentation Center, Yale University, New Haven, CT 06511, USA
| | - Mark Del Campo
- Rigaku Americas Corporation, The Woodlands, TX 77381, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
13
|
Haymaker A, Nannenga BL. Advances and applications of microcrystal electron diffraction (MicroED). Curr Opin Struct Biol 2024; 84:102741. [PMID: 38086321 PMCID: PMC10882645 DOI: 10.1016/j.sbi.2023.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 02/08/2024]
Abstract
Microcrystal electron diffraction, commonly referred to as MicroED, has become a powerful tool for high-resolution structure determination. The method makes use of cryogenic transmission electron microscopes to collect electron diffraction data from crystals that are several orders of magnitude smaller than those used by other conventional diffraction techniques. MicroED has been used on a variety of samples including soluble proteins, membrane proteins, small organic molecules, and materials. Here we will review the MicroED method and highlight recent advancements to the methodology, as well as describe applications of MicroED within the fields of structural biology and chemical crystallography.
Collapse
Affiliation(s)
- Alison Haymaker
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Brent L Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
14
|
Delgadillo D, Burch JE, Kim LJ, de Moraes LS, Niwa K, Williams J, Tang MJ, Lavallo VG, Khatri Chhetri B, Jones CG, Rodriguez IH, Signore JA, Marquez L, Bhanushali R, Woo S, Kubanek J, Quave C, Tang Y, Nelson HM. High-Throughput Identification of Crystalline Natural Products from Crude Extracts Enabled by Microarray Technology and microED. ACS CENTRAL SCIENCE 2024; 10:176-183. [PMID: 38292598 PMCID: PMC10823509 DOI: 10.1021/acscentsci.3c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024]
Abstract
The structural determination of natural products (NPs) can be arduous because of sample heterogeneity. This often demands iterative purification processes and characterization of complex molecules that may be available only in miniscule quantities. Microcrystal electron diffraction (microED) has recently shown promise as a method to solve crystal structures of NPs from nanogram quantities of analyte. However, its implementation in NP discovery remains hampered by sample throughput and purity requirements, akin to traditional NP-discovery workflows. In the methods described herein, we leverage the resolving power of transmission electron microscopy (TEM) and the miniaturization capabilities of deoxyribonucleic acid (DNA) microarray technology to address these challenges through the establishment of an NP screening platform, array electron diffraction (ArrayED). In this workflow, an array of high-performance liquid chromatography (HPLC) fractions taken from crude extracts was deposited onto TEM grids in picoliter-sized droplets. This multiplexing of analytes on TEM grids enables 1200 or more unique samples to be simultaneously inserted into a TEM instrument equipped with an autoloader. Selected area electron diffraction analysis of these microarrayed grids allows for the rapid identification of crystalline metabolites. In this study, ArrayED enabled structural characterization of 14 natural products, including four novel crystal structures and two novel polymorphs, from 20 crude extracts. Moreover, we identify several chemical species that would not be detected by standard mass spectrometry (MS) or ultraviolet-visible (UV/vis) spectroscopy and crystal forms that would not be characterized using traditional methods.
Collapse
Affiliation(s)
- David
A. Delgadillo
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Jessica E. Burch
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Lee Joon Kim
- Department of Chemistry
and Biochemistry, and Department of Chemical and Biomolecular
Engineering, University of California, Los
Angeles, Los Angeles, California 90095, United States
| | - Lygia S. de Moraes
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Kanji Niwa
- Department of Chemistry
and Biochemistry, and Department of Chemical and Biomolecular
Engineering, University of California, Los
Angeles, Los Angeles, California 90095, United States
| | - Jason Williams
- Department of Chemistry
and Biochemistry, and Department of Chemical and Biomolecular
Engineering, University of California, Los
Angeles, Los Angeles, California 90095, United States
| | - Melody J. Tang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Vincent G. Lavallo
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Bhuwan Khatri Chhetri
- School
of Biological Sciences, School of Chemistry
and Biochemistry, and Neuroscience Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christopher G. Jones
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Isabel Hernandez Rodriguez
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Joshua A. Signore
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Lewis Marquez
- Molecular
and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, Georgia 30322, United States
| | - Riya Bhanushali
- School
of Biological Sciences, School of Chemistry
and Biochemistry, and Neuroscience Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sunmin Woo
- Center
for the Study of Human Health, Emory University, Atlanta, Georgia 30322, United States
| | - Julia Kubanek
- School
of Biological Sciences, School of Chemistry
and Biochemistry, and Neuroscience Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Cassandra Quave
- Molecular
and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, Georgia 30322, United States
- Center
for the Study of Human Health, Emory University, Atlanta, Georgia 30322, United States
- Department
of Dermatology, Emory University School
of Medicine, Atlanta, Georgia 30322, United
States
| | - Yi Tang
- Department of Chemistry
and Biochemistry, and Department of Chemical and Biomolecular
Engineering, University of California, Los
Angeles, Los Angeles, California 90095, United States
| | - Hosea M. Nelson
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
15
|
Hogan-Lamarre P, Luo Y, Bücker R, Miller RJD, Zou X. STEM SerialED: achieving high-resolution data for ab initio structure determination of beam-sensitive nanocrystalline materials. IUCRJ 2024; 11:62-72. [PMID: 38038991 PMCID: PMC10833385 DOI: 10.1107/s2052252523009661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Serial electron diffraction (SerialED), which applies a snapshot data acquisition strategy for each crystal, was introduced to tackle the problem of radiation damage in the structure determination of beam-sensitive materials by three-dimensional electron diffraction (3DED). The snapshot data acquisition in SerialED can be realized using both transmission and scanning transmission electron microscopes (TEM/STEM). However, the current SerialED workflow based on STEM setups requires special external devices and software, which limits broader adoption. Here, we present a simplified experimental implementation of STEM-based SerialED on Thermo Fisher Scientific STEMs using common proprietary software interfaced through Python scripts to automate data collection. Specifically, we utilize TEM Imaging and Analysis (TIA) scripting and TEM scripting to access the STEM functionalities of the microscope, and DigitalMicrograph scripting to control the camera for snapshot data acquisition. Data analysis adapts the existing workflow using the software CrystFEL, which was developed for serial X-ray crystallography. Our workflow for STEM SerialED can be used on any Gatan or Thermo Fisher Scientific camera. We apply this workflow to collect high-resolution STEM SerialED data from two aluminosilicate zeolites, zeolite Y and ZSM-25. We demonstrate, for the first time, ab initio structure determination through direct methods using STEM SerialED data. Zeolite Y is relatively stable under the electron beam, and STEM SerialED data extend to 0.60 Å. We show that the structural model obtained using STEM SerialED data merged from 358 crystals is nearly identical to that using continuous rotation electron diffraction data from one crystal. This demonstrates that accurate structures can be obtained from STEM SerialED. Zeolite ZSM-25 is very beam-sensitive and has a complex structure. We show that STEM SerialED greatly improves the data resolution of ZSM-25, compared with serial rotation electron diffraction (SerialRED), from 1.50 to 0.90 Å. This allows, for the first time, the use of standard phasing methods, such as direct methods, for the ab initio structure determination of ZSM-25.
Collapse
Affiliation(s)
- Pascal Hogan-Lamarre
- Department of Physics, University of Toronto, 80 George Street, Toronto, Ontario M5S 3H6, Canada
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Yi Luo
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106, Sweden
| | - Robert Bücker
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - R. J. Dwayne Miller
- Department of Physics, University of Toronto, 80 George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Chemistry, University of Toronto, 80 George Street, Toronto, Ontario M5S 3H6, Canada
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106, Sweden
| |
Collapse
|
16
|
Danelius E, Bu G, Wieske LHE, Gonen T. MicroED as a Powerful Tool for Structure Determination of Macrocyclic Drug Compounds Directly from Their Powder Formulations. ACS Chem Biol 2023; 18:2582-2589. [PMID: 37944119 PMCID: PMC10728894 DOI: 10.1021/acschembio.3c00611] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Macrocycles are important drug leads with many advantages including the ability to target flat and featureless binding sites as well as to act as molecular chameleons and thereby reach intracellular targets. However, due to their complex structures and inherent flexibility, macrocycles are difficult to study structurally, and there are limited structural data available. Herein, we use the cryo-EM method MicroED to determine the novel atomic structures of several macrocycles that have previously resisted structural determination. We show that structures of similar complexity can now be obtained rapidly from nanograms of material and that different conformations of flexible compounds can be derived from the same experiment. These results will have an impact on contemporary drug discovery as well as natural product exploration.
Collapse
Affiliation(s)
- Emma Danelius
- Howard
Hughes Medical Institute, University of
California Los Angeles, Los Angeles, California 90095, United States
- Department
of Biological Chemistry, University of California
Los Angeles, 615 Charles E.Young Drive South, Los Angeles, California 90095, United States
| | - Guanhong Bu
- Department
of Biological Chemistry, University of California
Los Angeles, 615 Charles E.Young Drive South, Los Angeles, California 90095, United States
| | - Lianne H. E. Wieske
- Department
of Chemistry − BMC, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| | - Tamir Gonen
- Howard
Hughes Medical Institute, University of
California Los Angeles, Los Angeles, California 90095, United States
- Department
of Biological Chemistry, University of California
Los Angeles, 615 Charles E.Young Drive South, Los Angeles, California 90095, United States
- Department
of Physiology, University of California
Los Angeles, 615 Charles E. Young Drive South, Los Angeles, California 90095, United States
| |
Collapse
|
17
|
de la Cruz MJ, Eng ET. Scaling up cryo-EM for biology and chemistry: The journey from niche technology to mainstream method. Structure 2023; 31:1487-1498. [PMID: 37820731 PMCID: PMC10841453 DOI: 10.1016/j.str.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Cryoelectron microscopy (cryo-EM) methods have made meaningful contributions in a wide variety of scientific research fields. In structural biology, cryo-EM routinely elucidates molecular structure from isolated biological macromolecular complexes or in a cellular context by harnessing the high-resolution power of the electron in order to image samples in a frozen, hydrated environment. For structural chemistry, the cryo-EM method popularly known as microcrystal electron diffraction (MicroED) has facilitated atomic structure generation of peptides and small molecules from their three-dimensional crystal forms. As cryo-EM has grown from an emerging technology, it has undergone modernization to enable multimodal transmission electron microscopy (TEM) techniques becoming more routine, reproducible, and accessible to accelerate research across multiple disciplines. We review recent advances in modern cryo-EM and assess how they are contributing to the future of the field with an eye to the past.
Collapse
Affiliation(s)
- M Jason de la Cruz
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Edward T Eng
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA.
| |
Collapse
|
18
|
Pedrini A, Marchetti D, Pinalli R, Massera C. Stimuli-Responsive, Dynamic Supramolecular Organic Frameworks. Chempluschem 2023; 88:e202300383. [PMID: 37675865 DOI: 10.1002/cplu.202300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
Supramolecular organic frameworks (SOFs) are a class of three-dimensional, potentially porous materials obtained by the self-assembly of organic building blocks held together by weak interactions such as hydrogen bonds, halogen bonds, π⋅⋅⋅π stacking and dispersion forces. SOFs are being extensively studied for their potential applications in gas storage and separation, catalysis, guest encapsulation and sensing. The supramolecular forces that guide their self-assembly endow them with an attractive combination of crystallinity and flexibility, providing intelligent dynamic materials that can respond to external stimuli in a reversible way. The present review article will focus on SOFs showing dynamic behaviour when exposed to different stimuli, highlighting fundamental aspects such as the combination of tectons and supramolecular interactions involved in the framework formation, structure-property relationship and their potential applications.
Collapse
Affiliation(s)
- Alessandro Pedrini
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Danilo Marchetti
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
- Center for Materials Interfaces, Electron Crystallography, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Roberta Pinalli
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Chiara Massera
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
19
|
Lin J, Unge J, Gonen T. Distinct Conformations of Mirabegron Determined by MicroED. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304476. [PMID: 37847906 PMCID: PMC10700164 DOI: 10.1002/advs.202304476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Indexed: 10/19/2023]
Abstract
Mirabegron, commonly known as "Myrbetriq", has been widely prescribed as a medicine for overactive bladder syndrome for over a decade. However, the structure of the drug and what conformational changes it may undergo upon binding its receptor remain unknown. In this study, the authors employed microcrystal electron diffraction (MicroED) to reveal its elusive three-dimensional (3D) structure. They find that the drug adopts two distinct conformational states (conformers) within the asymmetric unit. Analysis of hydrogen bonding and packing demonstrated that the hydrophilic groups are embedded within the crystal lattice, resulting in a hydrophobic surface and low water solubility. Structural comparison revealed the presence of trans- and cis- forms in conformers 1 and 2, respectively. Comparison of the structures of Mirabegron alone with that of the drug bound to its receptor, the beta 3 adrenergic receptor (β3AR) suggests that the drug undergoes major conformational change to fit in the receptor agonist binding site. This research highlights the efficacy of MicroED in determining the unknown and polymorphic structures of active pharmaceutical ingredients (APIs) directly from powders.
Collapse
Affiliation(s)
- Jieye Lin
- Department of Biological ChemistryUniversity of California615 Charles E. Young Drive SouthLos AngelesCA90095USA
| | - Johan Unge
- Department of Biological ChemistryUniversity of California615 Charles E. Young Drive SouthLos AngelesCA90095USA
| | - Tamir Gonen
- Department of Biological ChemistryUniversity of California615 Charles E. Young Drive SouthLos AngelesCA90095USA
- Department of PhysiologyUniversity of California615 Charles E. Young Drive SouthLos AngelesCA90095USA
- Howard Hughes Medical InstituteUniversity of CaliforniaLos AngelesCA90095USA
| |
Collapse
|
20
|
Wang X, Li J, Lei J, Xu X, Zheng Y, Chen J, Tian X, Gou Q. Fluorination effects probed in 4-fluoroacetophenone and its monohydrate. Phys Chem Chem Phys 2023; 25:25450-25457. [PMID: 37712319 DOI: 10.1039/d3cp01578e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Rotational spectra of the 4-fluoroacetophenone monomer and its monohydrate were investigated by Fourier transform microwave spectroscopy complemented with quantum chemical calculations. One conformer of 4-fluoroacetophenone and two isomers of 4-fluoroacetophenone-H2O have been observed in the pulsed jets. The observation of all mono-substituted 13C isotopologues in natural abundance allows an accurate structural determination of the 4-fluoroacetophenone monomer. Both detected isomers of 4-fluoroacetophenone-H2O are stabilized by a dominant O-H⋯O and a secondary C-H⋯O hydrogen bond. The fluorination effects on the geometries, intermolecular non-covalent interactions and V3 barrier of the methyl internal rotation were analysed. The relative population ratio of the two observed isomers for 4-fluoroacetophenone-H2O was also estimated to be NI/NII ≈ 7/1.
Collapse
Affiliation(s)
- Xiujuan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Jiayi Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Juncheng Lei
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Xuefang Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Yang Zheng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Junhua Chen
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| | - Xiao Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Qian Gou
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, Daxuecheng South Rd. 55, 401331, Chongqing, China
| |
Collapse
|
21
|
Cordova M, Moutzouri P, Nilsson Lill SO, Cousen A, Kearns M, Norberg ST, Svensk Ankarberg A, McCabe J, Pinon AC, Schantz S, Emsley L. Atomic-level structure determination of amorphous molecular solids by NMR. Nat Commun 2023; 14:5138. [PMID: 37612269 PMCID: PMC10447443 DOI: 10.1038/s41467-023-40853-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023] Open
Abstract
Structure determination of amorphous materials remains challenging, owing to the disorder inherent to these materials. Nuclear magnetic resonance (NMR) powder crystallography is a powerful method to determine the structure of molecular solids, but disorder leads to a high degree of overlap between measured signals, and prevents the unambiguous identification of a single modeled periodic structure as representative of the whole material. Here, we determine the atomic-level ensemble structure of the amorphous form of the drug AZD4625 by combining solid-state NMR experiments with molecular dynamics (MD) simulations and machine-learned chemical shifts. By considering the combined shifts of all 1H and 13C atomic sites in the molecule, we determine the structure of the amorphous form by identifying an ensemble of local molecular environments that are in agreement with experiment. We then extract and analyze preferred conformations and intermolecular interactions in the amorphous sample in terms of the stabilization of the amorphous form of the drug.
Collapse
Affiliation(s)
- Manuel Cordova
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pinelopi Moutzouri
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Sten O Nilsson Lill
- Data Science & Modelling, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Alexander Cousen
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Martin Kearns
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Stefan T Norberg
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Anna Svensk Ankarberg
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - James McCabe
- Early Product Development and Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Arthur C Pinon
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Staffan Schantz
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden.
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
22
|
Danelius E, Bu G, Wieske H, Gonen T. MicroED as a powerful tool for structure determination of macrocyclic drug compounds directly from their powder formulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551405. [PMID: 37577574 PMCID: PMC10418104 DOI: 10.1101/2023.07.31.551405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Macrocycles are important drug leads with many advantages including the ability to target flat and featureless binding sites as well as act as molecular chameleons and thereby reach intracellular targets. However, due to their complex structures and inherent flexibility, macrocycles are difficult to study structurally and there are limited structural data available. Herein, we use the cryo-EM method MicroED to determine the novel atomic structures of several macrocycles which have previously resisted structural determination. We show that structures of similar complexity can now be obtained rapidly from nanograms of material, and that different conformations of flexible compounds can be derived from the same experiment. These results will have impact on contemporary drug discovery as well as natural product exploration.
Collapse
Affiliation(s)
- E Danelius
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E.Young Drive South, Los Angeles, CA 90095, USA
| | - G Bu
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E.Young Drive South, Los Angeles, CA 90095, USA
| | - H Wieske
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| | - T Gonen
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E.Young Drive South, Los Angeles, CA 90095, USA
- Department of Physiology, University of California Los Angeles, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Lin J, Unge J, Gonen T. Distinct Conformations of Mirabegron Determined by MicroED. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546957. [PMID: 37425799 PMCID: PMC10326998 DOI: 10.1101/2023.06.28.546957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Mirabegron, commonly known as "Myrbetriq", has been widely prescribed as a medicine for overactive bladder syndrome for over a decade. However, the structure of the drug and what conformational changes it may undergo upon binding its receptor remain unknown. In this study, we employed microcrystal electron diffraction (MicroED) to reveal its elusive three-dimensional (3D) structure. We find that the drug adopts two distinct conformational states (conformers) within the asymmetric unit. Analysis of hydrogen bonding and packing demonstrated that the hydrophilic groups were embedded within the crystal lattice, resulting in a hydrophobic surface and low water solubility. Structural comparison revealed the presence of trans- and cis- forms in conformers 1 and 2, respectively. Comparison of the structures of Mirabegron alone with that of the drug bound to its receptor,1 the beta 3 adrenergic receptor (β3AR) suggests that the drug undergoes major conformational change to fit in the receptor agonist binding site. This research highlights the efficacy of MicroED in determining the unknown and polymorphic structures of active pharmaceutical ingredients (APIs) directly from powders.
Collapse
Affiliation(s)
- Jieye Lin
- Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E. Young Drive South, Los Angeles, California 90095, United States
| | - Johan Unge
- Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E. Young Drive South, Los Angeles, California 90095, United States
| | - Tamir Gonen
- Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E. Young Drive South, Los Angeles, California 90095, United States
- Department of Physiology, University of California, Los Angeles, 615 Charles E. Young Drive South, Los Angeles, California 90095, United States
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
24
|
DiBello M, Healy AR, Nikolayevskiy H, Xu Z, Herzon SB. Structure Elucidation of Secondary Metabolites: Current Frontiers and Lingering Pitfalls. Acc Chem Res 2023; 56:1656-1668. [PMID: 37220079 PMCID: PMC10468810 DOI: 10.1021/acs.accounts.3c00183] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Analytical methods allow for the structure determination of submilligram quantities of complex secondary metabolites. This has been driven in large part by advances in NMR spectroscopic capabilities, including access to high-field magnets equipped with cryogenic probes. Experimental NMR spectroscopy may now be complemented by remarkably accurate carbon-13 NMR calculations using state-of-the-art DFT software packages. Additionally, microED analysis stands to have a profound effect on structure elucidation by providing X-ray-like images of microcrystalline samples of analytes. Nonetheless, lingering pitfalls in structure elucidation remain, particularly for isolates that are unstable or highly oxidized. In this Account, we discuss three projects from our laboratory that highlight nonoverlapping challenges to the field, with implications for chemical, synthetic, and mechanism of action studies. We first discuss the lomaiviticins, complex unsaturated polyketide natural products disclosed in 2001. The original structures were derived from NMR, HRMS, UV-vis, and IR analysis. Owing to the synthetic challenges presented by their structures and the absence of X-ray crystallographic data, the structure assignments remained untested for nearly two decades. In 2021, the Nelson group at Caltech carried out microED analysis of (-)-lomaiviticin C, leading to the startling discovery that the original structure assignment of the lomaiviticins was incorrect. Acquisition of higher-field (800 MHz 1H, cold probe) NMR data as well as DFT calculations provided insights into the basis for the original misassignment and lent further support to the new structure identified by microED. Reanalysis of the 2001 data set reveals that the two structure assignments are nearly indistinguishable, underscoring the limitations of NMR-based characterization. We then discuss the structure elucidation of colibactin, a complex, nonisolable microbiome metabolite implicated in colorectal cancer. The colibactin biosynthetic gene cluster was detected in 2006, but owing to colibactin's instability and low levels of production, it could not be isolated or characterized. We used a combination of chemical synthesis, mechanism of action studies, and biosynthetic analysis to identify the substructures in colibactin. These studies, coupled with isotope labeling and tandem MS analysis of colibactin-derived DNA interstrand cross-links, ultimately led to a structure assignment for the metabolite. We then discuss the ocimicides, plant secondary metabolites that were studied as agents against drug-resistant P. falciparum. We synthesized the core structure of the ocimicides and found significant discrepancies between our experimental NMR spectroscopic data and that reported for the natural products. We determined the theoretical carbon-13 NMR shifts for 32 diastereomers of the ocimicides. These studies indicated that a revision of the connectivity of the metabolites is likely needed. We end with some thoughts on the frontiers of secondary metabolite structure determination. As modern NMR computational methods are straightforward to execute, we advocate for their systematic use in validating the assignments of novel secondary metabolites.
Collapse
Affiliation(s)
- Mikaela DiBello
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Alan R Healy
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Herman Nikolayevskiy
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Zhi Xu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Departments of Pharmacology and Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
25
|
Klar PB, Krysiak Y, Xu H, Steciuk G, Cho J, Zou X, Palatinus L. Accurate structure models and absolute configuration determination using dynamical effects in continuous-rotation 3D electron diffraction data. Nat Chem 2023; 15:848-855. [PMID: 37081207 PMCID: PMC10239730 DOI: 10.1038/s41557-023-01186-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/16/2023] [Indexed: 04/22/2023]
Abstract
Continuous-rotation 3D electron diffraction methods are increasingly popular for the structure analysis of very small organic molecular crystals and crystalline inorganic materials. Dynamical diffraction effects cause non-linear deviations from kinematical intensities that present issues in structure analysis. Here, a method for structure analysis of continuous-rotation 3D electron diffraction data is presented that takes multiple scattering effects into account. Dynamical and kinematical refinements of 12 compounds-ranging from small organic compounds to metal-organic frameworks to inorganic materials-are compared, for which the new approach yields significantly improved models in terms of accuracy and reliability with up to fourfold reduction of the noise level in difference Fourier maps. The intrinsic sensitivity of dynamical diffraction to the absolute structure is also used to assign the handedness of 58 crystals of 9 different chiral compounds, showing that 3D electron diffraction is a reliable tool for the routine determination of absolute structures.
Collapse
Affiliation(s)
- Paul B Klar
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
- Department of Geosciences, University of Bremen, Bremen, Germany
| | - Yaşar Krysiak
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Inorganic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Hongyi Xu
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Gwladys Steciuk
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jung Cho
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Lukas Palatinus
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
26
|
Al Rahal O, Kariuki BM, Hughes CE, Williams PA, Xu X, Gaisford S, Iuga D, Harris KDM. Unraveling the Complex Solid-State Phase Transition Behavior of 1-Iodoadamantane, a Material for Which Ostensibly Identical Crystals Undergo Different Transformation Pathways. CRYSTAL GROWTH & DESIGN 2023; 23:3820-3833. [PMID: 37159655 PMCID: PMC10161194 DOI: 10.1021/acs.cgd.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/20/2023] [Indexed: 05/11/2023]
Abstract
Phase transitions in crystalline molecular solids have important implications in the fundamental understanding of materials properties and in the development of materials applications. Herein, we report the solid-state phase transition behavior of 1-iodoadamantane (1-IA) investigated using a multi-technique strategy [synchrotron powder X-ray diffraction (XRD), single-crystal XRD, solid-state NMR, and differential scanning calorimetry (DSC)], which reveals complex phase transition behavior on cooling from ambient temperature to ca. 123 K and on subsequent heating to the melting temperature (348 K). Starting from the known phase of 1-IA at ambient temperature (phase A), three low-temperature phases are identified (phases B, C, and D); the crystal structures of phases B and C are reported, together with a re-determination of the structure of phase A. Remarkably, single-crystal XRD shows that some individual crystals of phase A transform to phase B, while other crystals of phase A transform instead to phase C. Results (from powder XRD and DSC) on cooling a powder sample of phase A are fully consistent with this behavior while also revealing an additional transformation pathway from phase A to phase D. Thus, on cooling, a powder sample of phase A transforms partially to phase C (at 229 K), partially to phase D (at 226 K) and partially to phase B (at 211 K). During the cooling process, each of the phases B, C, and D is formed directly from phase A, and no transformations are observed between phases B, C, and D. On heating the resulting triphasic powder sample of phases B, C, and D from 123 K, phase B transforms to phase D (at 211 K), followed by the transformation of phase D to phase C (at 255 K), and finally, phase C transforms to phase A (at 284 K). From these observations, it is apparent that different crystals of phase A, which are ostensibly identical at the level of information revealed by XRD, must actually differ in other aspects that significantly influence their low-temperature phase transition pathways. This unusual behavior will stimulate future studies to gain deeper insights into the specific properties that control the phase transition pathways in individual crystals of this material.
Collapse
Affiliation(s)
- Okba Al Rahal
- School
of Chemistry, Cardiff University, Park Place, Cardiff, Wales CF10 3AT, U.K.
| | - Benson M. Kariuki
- School
of Chemistry, Cardiff University, Park Place, Cardiff, Wales CF10 3AT, U.K.
| | - Colan E. Hughes
- School
of Chemistry, Cardiff University, Park Place, Cardiff, Wales CF10 3AT, U.K.
| | - P. Andrew Williams
- School
of Chemistry, Cardiff University, Park Place, Cardiff, Wales CF10 3AT, U.K.
| | - Xiaoyan Xu
- Department
of Pharmaceutics, School of Pharmacy, University
College London, 29-39 Brunswick Square, London, England WC1N 1AX, U.K.
| | - Simon Gaisford
- Department
of Pharmaceutics, School of Pharmacy, University
College London, 29-39 Brunswick Square, London, England WC1N 1AX, U.K.
| | - Dinu Iuga
- Department
of Physics, University of Warwick, Coventry CV4 7AL, England, U.K.
| | - Kenneth D. M. Harris
- School
of Chemistry, Cardiff University, Park Place, Cardiff, Wales CF10 3AT, U.K.
| |
Collapse
|
27
|
Danelius E, Patel K, Gonzalez B, Gonen T. MicroED in drug discovery. Curr Opin Struct Biol 2023; 79:102549. [PMID: 36821888 PMCID: PMC10023408 DOI: 10.1016/j.sbi.2023.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
The cryo-electron microscopy (cryo-EM) method microcrystal electron diffraction (MicroED) was initially described in 2013 and has recently gained attention as an emerging technique for research in drug discovery. As compared to other methods in structural biology, MicroED provides many advantages deriving from the use of nanocrystalline material for the investigations. Here, we review the recent advancements in the field of MicroED and show important examples of small molecule, peptide and protein structures that has contributed to the current development of this method as an important tool for drug discovery.
Collapse
Affiliation(s)
- Emma Danelius
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E.Young Drive South, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Khushboo Patel
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E.Young Drive South, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Brenda Gonzalez
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E.Young Drive South, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tamir Gonen
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E.Young Drive South, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Physiology, University of California Los Angeles, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
Luo Y, Wang B, Smeets S, Sun J, Yang W, Zou X. High-throughput phase elucidation of polycrystalline materials using serial rotation electron diffraction. Nat Chem 2023; 15:483-490. [PMID: 36717616 PMCID: PMC10070184 DOI: 10.1038/s41557-022-01131-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/16/2022] [Indexed: 02/01/2023]
Abstract
Rapid phase elucidation of polycrystalline materials is essential for developing new materials of chemical, pharmaceutical and industrial interest. Yet, the size and quantity of many crystalline phases are too small for routine X-ray diffraction analysis. This has become a workflow bottleneck in materials development, especially in high-throughput synthesis screening. Here we demonstrate the application of serial rotation electron diffraction (SerialRED) for high-throughput phase identification of complex polycrystalline zeolite products. The products were prepared from a combination of multiple framework T atoms ([Si,Ge,Al] or [Si,Ge,B]) and a simple organic structure-directing agent. We show that using SerialRED, five zeolite phases can be identified from a highly complex mixture. This includes phases with ultra-low contents undetectable using X-ray diffraction and phases with identical crystal morphology and similar unit cell parameters. By automatically and rapidly examining hundreds of crystals, SerialRED enables high-throughput phase analysis and allows the exploration of complex synthesis systems. It provides new opportunities for rapid development of polycrystalline materials.
Collapse
Affiliation(s)
- Yi Luo
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai, China
| | - Bin Wang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Stef Smeets
- Netherlands eScience Center, Amsterdam, Netherlands
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Weimin Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai, China.
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
29
|
Gillman C, Nicolas WJ, Martynowycz MW, Gonen T. Design and implementation of suspended drop crystallization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534639. [PMID: 37034794 PMCID: PMC10081258 DOI: 10.1101/2023.03.28.534639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have developed a novel crystal growth method known as suspended drop crystallization. Unlike traditional methods, this technique involves mixing protein and precipitant directly on an electron microscopy grid without any additional support layers. The grid is then suspended within a crystallization chamber which we designed, allowing for vapor diffusion to occur from both sides of the drop. A UV transparent window above and below the grid enables the monitoring of crystal growth via light, UV, or fluorescence microscopy. Once crystals have formed, the grid can be removed and utilized for x-ray crystallography or microcrystal electron diffraction (MicroED) directly without having to manipulate the crystals. To demonstrate the efficacy of this method, we grew crystals of the enzyme proteinase K and determined its structure by MicroED following FIB/SEM milling to render the sample thin enough for cryoEM. Suspended drop crystallization overcomes many of the challenges associated with sample preparation, providing an alternative workflow for crystals embedded in viscous media, sensitive to mechanical stress, and/or suffering from preferred orientation on EM grids.
Collapse
Affiliation(s)
- Cody Gillman
- Departments of Biological Chemistry and Physiology, University of California, Los Angeles CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - William J. Nicolas
- Departments of Biological Chemistry and Physiology, University of California, Los Angeles CA, USA
- Howard Hughes Medical Institute, University of California, Los Angeles CA, USA
| | - Michael W. Martynowycz
- Departments of Biological Chemistry and Physiology, University of California, Los Angeles CA, USA
| | - Tamir Gonen
- Departments of Biological Chemistry and Physiology, University of California, Los Angeles CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles CA, USA
| |
Collapse
|
30
|
Zhao JX, Yue JM. Frontier studies on natural products: moving toward paradigm shifts. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Chiang CY, Ohashi M, Tang Y. Deciphering chemical logic of fungal natural product biosynthesis through heterologous expression and genome mining. Nat Prod Rep 2023; 40:89-127. [PMID: 36125308 PMCID: PMC9906657 DOI: 10.1039/d2np00050d] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 2010 to 2022Heterologous expression of natural product biosynthetic gene clusters (BGCs) has become a widely used tool for genome mining of cryptic pathways, bottom-up investigation of biosynthetic enzymes, and engineered biosynthesis of new natural product variants. In the field of fungal natural products, heterologous expression of a complete pathway was first demonstrated in the biosynthesis of tenellin in Aspergillus oryzae in 2010. Since then, advances in genome sequencing, DNA synthesis, synthetic biology, etc. have led to mining, assignment, and characterization of many fungal BGCs using various heterologous hosts. In this review, we will highlight key examples in the last decade in integrating heterologous expression into genome mining and biosynthetic investigations. The review will cover the choice of heterologous hosts, prioritization of BGCs for structural novelty, and how shunt products from heterologous expression can reveal important insights into the chemical logic of biosynthesis. The review is not meant to be exhaustive but is rather a collection of examples from researchers in the field, including ours, that demonstrates the usefulness and pitfalls of heterologous biosynthesis in fungal natural product discovery.
Collapse
Affiliation(s)
- Chen-Yu Chiang
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Masao Ohashi
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Yi Tang
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
- Dept. of Chemistry and Biochemistry, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
32
|
Li S, Lightowler M, Ou X, Huang S, Jiang Y, Li X, Zou X, Xu H, Lu M. Direct structure determination of vemurafenib polymorphism from compact spherulites using 3D electron diffraction. Commun Chem 2023; 6:18. [PMID: 36697943 PMCID: PMC9871043 DOI: 10.1038/s42004-022-00804-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/22/2022] [Indexed: 01/25/2023] Open
Abstract
The spherulitic morphology is considered to be the most common morphology of crystalline materials and is particularly apparent in melt-crystallized products. Yet, historically, the polycrystalline nature of spherulites has hindered successful crystal structure determination. Here, we report the direct structure determination of a clinical drug, vemurafenib (VMN), in compact spherulite form using 3D electron diffraction (3D ED). VMN has four known polymorphs. We first solved the crystal structures of α-, β-, and γ-VMN from compact spherulites using 3D ED, and the resulting structures were highly consistent with those obtained by single-crystal X-ray diffraction. We then determined the crystal structure of δ-VMN-the least stable polymorph which cannot be cultivated as a single crystal-directly from the compact spherulite sample. We unexpectedly discovered a new polymorph during our studies, denoted as ε-VMN. Single crystals of ε-VMN are extremely thin and not suitable for study by X-ray diffraction. Again, we determined the structure of ε-VMN in a compact spherulite form. This successful structure elucidation of all five VMN polymorphs demonstrates the possibility of directly determining structures from melt-grown compact spherulite samples. Thereby, this discovery will improve the efficiency and broaden the scope of polymorphism research, especially within the field of melt crystallization.
Collapse
Affiliation(s)
- Shuting Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Molly Lightowler
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Xiao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Siyong Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yifan Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xizhen Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Hongyi Xu
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| | - Ming Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
33
|
Cleverley A, Beanland R. Modelling fine-sliced three dimensional electron diffraction data with dynamical Bloch-wave simulations. IUCRJ 2023; 10:118-130. [PMID: 36598507 PMCID: PMC9812222 DOI: 10.1107/s2052252522011290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Recent interest in structure solution and refinement using electron diffraction (ED) has been fuelled by its inherent advantages when applied to crystals of sub-micrometre size, as well as its better sensitivity to light elements. Currently, data are often processed with software written for X-ray diffraction, using the kinematic theory of diffraction to generate model intensities - despite the inherent differences in diffraction processes in ED. Here, dynamical Bloch-wave simulations are used to model continuous-rotation electron diffraction data, collected with a fine angular resolution (crystal orientations of ∼0.1°). This fine-sliced data allows a re-examination of the corrections applied to ED data. A new method is proposed for optimizing crystal orientation, and the angular range of the incident beam and the varying slew rate are taken into account. Observed integrated intensities are extracted and accurate comparisons are performed with simulations using rocking curves for a (110) lamella of silicon 185 nm thick. R1 is reduced from 26% with the kinematic model to 6.8% using dynamical simulations.
Collapse
Affiliation(s)
- Anton Cleverley
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Richard Beanland
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
34
|
Hassanzadeh P, Atyabi F, Dinarvand R. Technical and engineering considerations for designing therapeutics and delivery systems. J Control Release 2023; 353:411-422. [PMID: 36470331 DOI: 10.1016/j.jconrel.2022.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The newly-emerged pathological conditions and increased rates of drug resistance necessitate application of the state-of-the-art technologies for accelerated discovery of the therapeutic candidates and obtaining comprehensive knowledge about their targets, action mechanisms, and interactions within the body including those between the receptors and drugs. Using the physics- and chemistry-based modern techniques for theranostic purposes, preparing smart carriers, local delivery of genes or drugs, and enhancing pharmaceutical bioavailability could be of great value against the hard-to-treat diseases and growing drug resistance. Besides the artificial intelligence- and quantum-based techniques, crystal engineering capable of designing new molecules with appropriate characteristics, improving the stability and bioavailability of poorly soluble drugs, and efficient carrier development could play a crucial role in manufacturing efficient pharmaceuticals and reducing the adverse events. In this context, identifying the structures and behaviors of crystals and predicting their characteristics are of great value. Electron diffraction by accelerated analysis of the chemicals and sensitivity to charge alterations, electromechanical tools for controlled delivery of therapeutics, mechatronics via fabrication of multi-functional smart products including the organ-on-chip devices for healthcare applications, and optomechatronics by overcoming the limitations of conventional biomedical techniques could address the unmet biomedical requirements and facilitate development of more effective theranostics with improved outcomes.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran; Sasan Hospital, Tehran 14159-83391, Iran.
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| |
Collapse
|
35
|
Marchetti D, Portone F, Mezzadri F, Dalcanale E, Gemmi M, Pedrini A, Massera C. Selective and Reversible Solvent Uptake in Tetra-4-(4-pyridyl)phenylmethane-based Supramolecular Organic Frameworks. Chemistry 2022; 28:e202202977. [PMID: 36161363 PMCID: PMC10092063 DOI: 10.1002/chem.202202977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 12/29/2022]
Abstract
The dynamic behavior of supramolecular organic frameworks (SOFs) based on the rigid tetra-4-(4-pyridyl)phenylmethane (TPPM) organic tecton has been elucidated through 3D electron diffraction, X-ray powder diffraction and differential scanning calorimetry (DSC) analysis. The SOF undergoes a reversible single-crystal-to-single-crystal transformation when exposed to vapours of selected organic solvents, moving from a closed structure with isolated small voids to an expanded structure with solvated channels along the b axis. The observed selectivity is dictated by the fitting of the guest in the expanded SOF, following the degree of packing coefficient. The effect of solvent uptake on TPPM solid-state fluorescence was investigated, evidencing a significant variation in the emission profile only in the presence of chloroform.
Collapse
Affiliation(s)
- Danilo Marchetti
- Department of Chemistry, Life Sciences and Environmental Sustainability INSTM UdR ParmaUniversity of ParmaParco Area delle Scienze 17/A43124ParmaItaly
- Center for Materials Interfaces Electron CrystallographyIstituto Italiano di TecnologiaViale Rinaldo Piaggio 3456025PontederaItaly
| | - Francesca Portone
- Department of Chemistry, Life Sciences and Environmental Sustainability INSTM UdR ParmaUniversity of ParmaParco Area delle Scienze 17/A43124ParmaItaly
| | - Francesco Mezzadri
- Department of Chemistry, Life Sciences and Environmental Sustainability INSTM UdR ParmaUniversity of ParmaParco Area delle Scienze 17/A43124ParmaItaly
| | - Enrico Dalcanale
- Department of Chemistry, Life Sciences and Environmental Sustainability INSTM UdR ParmaUniversity of ParmaParco Area delle Scienze 17/A43124ParmaItaly
| | - Mauro Gemmi
- Center for Materials Interfaces Electron CrystallographyIstituto Italiano di TecnologiaViale Rinaldo Piaggio 3456025PontederaItaly
| | - Alessandro Pedrini
- Department of Chemistry, Life Sciences and Environmental Sustainability INSTM UdR ParmaUniversity of ParmaParco Area delle Scienze 17/A43124ParmaItaly
| | - Chiara Massera
- Department of Chemistry, Life Sciences and Environmental Sustainability INSTM UdR ParmaUniversity of ParmaParco Area delle Scienze 17/A43124ParmaItaly
| |
Collapse
|
36
|
Yang T, Xu H, Zou X. Improving data quality for three-dimensional electron diffraction by a post-column energy filter and a new crystal tracking method. J Appl Crystallogr 2022; 55:1583-1591. [PMID: 36570655 PMCID: PMC9721325 DOI: 10.1107/s1600576722009633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Three-dimensional electron diffraction (3D ED) has become an effective technique to determine the structures of submicrometre- (nanometre-)sized crystals. In this work, energy-filtered 3D ED was implemented using a post-column energy filter in both STEM mode and TEM mode [(S)TEM denoting (scanning) transmission electron microscope]. The setups for performing energy-filtered 3D ED on a Gatan imaging filter are described. The technique and protocol improve the accessibility of energy-filtered 3D ED post-column energy filters, which are available in many TEM laboratories. In addition, a crystal tracking method in STEM mode using high-angle annular dark-field imaging is proposed. This method enables the user to monitor the crystal position while collecting 3D ED data at the same time, allowing a larger tilt range without foregoing any diffraction frames or imposing extra electron dose. In order to compare the differences between energy-filtered and unfiltered 3D ED data sets, three well known crystallized inorganic samples have been studied in detail. For these samples, the final R 1 values improved by 10-30% for the energy-filtered data sets compared with the unfiltered data sets, and the structures became more chemically reasonable. Possible reasons for improvement are also discussed.
Collapse
Affiliation(s)
- Taimin Yang
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden
| | - Hongyi Xu
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden
| |
Collapse
|
37
|
Clabbers MT, Martynowycz MW, Hattne J, Gonen T. Hydrogens and hydrogen-bond networks in macromolecular MicroED data. J Struct Biol X 2022; 6:100078. [PMID: 36507068 PMCID: PMC9731847 DOI: 10.1016/j.yjsbx.2022.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Microcrystal electron diffraction (MicroED) is a powerful technique utilizing electron cryo-microscopy (cryo-EM) for protein structure determination of crystalline samples too small for X-ray crystallography. Electrons interact with the electrostatic potential of the sample, which means that the scattered electrons carry information about the charged state of atoms and provide relatively stronger contrast for visualizing hydrogen atoms. Accurately identifying the positions of hydrogen atoms, and by extension the hydrogen bonding networks, is of importance for understanding protein structure and function, in particular for drug discovery. However, identification of individual hydrogen atom positions typically requires atomic resolution data, and has thus far remained elusive for macromolecular MicroED. Recently, we presented the ab initio structure of triclinic hen egg-white lysozyme at 0.87 Å resolution. The corresponding data were recorded under low exposure conditions using an electron-counting detector from thin crystalline lamellae. Here, using these subatomic resolution MicroED data, we identified over a third of all hydrogen atom positions based on strong difference peaks, and directly visualize hydrogen bonding interactions and the charged states of residues. Furthermore, we find that the hydrogen bond lengths are more accurately described by the inter-nuclei distances than the centers of mass of the corresponding electron clouds. We anticipate that MicroED, coupled with ongoing advances in data collection and refinement, can open further avenues for structural biology by uncovering the hydrogen atoms and hydrogen bonding interactions underlying protein structure and function.
Collapse
Affiliation(s)
- Max T.B. Clabbers
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, United States,Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, United States
| | - Michael W. Martynowycz
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, United States,Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, United States
| | - Johan Hattne
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, United States,Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, United States
| | - Tamir Gonen
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095, United States,Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, United States,Department of Physiology, University of California, Los Angeles, CA 90095, United States,Corresponding author at: Department of Biological Chemistry, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
38
|
Wei J, Wang H, Zheng Q, Zhang J, Chen Z, Wang J, Ouyang L, Wang Y. Recent research and development of inhibitors targeting sentrin-specific protease 1 for the treatment of cancers. Eur J Med Chem 2022; 241:114650. [PMID: 35939992 DOI: 10.1016/j.ejmech.2022.114650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/13/2022]
Abstract
Small ubiquitin-like modifier (SUMO)/sentrin-specific protease 1 (SENP1), is a cysteine protease that promotes SUMO maturation and deSUMOylation of target proteins and regulates transcription factors or co-regulatory factors to mediate gene transcription. Many studies have shown that SENP1 is the driving factor for a multitude of cancers including prostate cancer, liver cancer, and breast cancer. Inhibition of SENP1 activity has been proved to inhibit the survival, proliferation, invasion, and migration of cancer cells, and increase their chemical and radiation sensitivity. Therefore, SENP1 is a promising anti-tumor target. At present, peptide inhibitors of SENP1 have entered clinical trials. Recently, many small molecule compounds and natural products were synthesized and identified as SENP1 inhibitors, and showed good tumor inhibitory activity in vitro and in vivo. This review summarizes the structure, physiological function, and role of SENP1 in tumorigenesis and development, focusing on the design and discovery of small molecule inhibitors of SENP1 from the perspective of medicinal chemistry, providing ideas for the development and research of small molecule inhibitors of SENP1 in the future.
Collapse
Affiliation(s)
- Junxia Wei
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China
| | - Huijing Wang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qinwen Zheng
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China
| | - Zhichao Chen
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Liang Ouyang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
39
|
Ling Y, Sun T, Guo L, Si X, Jiang Y, Zhang Q, Chen Z, Terasaki O, Ma Y. Atomic-level structural responsiveness to environmental conditions from 3D electron diffraction. Nat Commun 2022; 13:6625. [PMID: 36333303 PMCID: PMC9636419 DOI: 10.1038/s41467-022-34237-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Electron microscopy has been widely used in the structural analysis of proteins, pharmaceutical products, and various functional materials in the past decades. However, one fact is often overlooked that the crystal structure might be sensitive to external environments and response manners, which will bring uncertainty to the structure determination and structure-property correlation. Here, we report the atomic-level ab initio structure determinations of microcrystals by combining 3D electron diffraction (3D ED) and environmental transmission electron microscope (TEM). Environmental conditions, including cryo, heating, gas and liquid, have been successfully achieved using in situ holders to reveal the simuli-responsive structures of crystals. Remarkable structural changes have been directly resolved by 3D ED in one flexible metal-organic framework, MIL-53, owing to the response of framework to pressures, temperatures, guest molecules, etc.
Collapse
Affiliation(s)
- Yang Ling
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 PR China
| | - Tu Sun
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 PR China
| | - Linshuo Guo
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 PR China
| | - Xiaomeng Si
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 PR China
| | - Yilan Jiang
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 PR China ,grid.440637.20000 0004 4657 8879Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210 PR China
| | - Qing Zhang
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 PR China ,grid.440637.20000 0004 4657 8879Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210 PR China
| | - Zhaoxi Chen
- grid.440637.20000 0004 4657 8879Center for Transformative Science, ShanghaiTech University, Shanghai, 201210 PR China
| | - Osamu Terasaki
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 PR China ,grid.440637.20000 0004 4657 8879Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210 PR China
| | - Yanhang Ma
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 PR China ,grid.440637.20000 0004 4657 8879Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210 PR China
| |
Collapse
|
40
|
Synthesis and Characterization of a Calcium‐Pyrazolonato Complex. Observation of
In‐Situ
Desolvation During Micro‐Electron Diffraction. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Abstract
Electron crystallography has a storied history which rivals that of its more established X-ray-enabled counterpart. Recent advances in data collection and analysis have sparked a renaissance in the field, opening a new chapter for this venerable technique. Burgeoning interest in electron crystallography has spawned innovative methods described by various interchangeable labels (3D ED, MicroED, cRED, etc.). This Review covers concepts and findings relevant to the practicing crystallographer, with an emphasis on experiments aimed at using electron diffraction to elucidate the atomic structure of three-dimensional molecular crystals.
Collapse
Affiliation(s)
- Ambarneil Saha
- UCLA−DOE
Institute for Genomics and Proteomics, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Shervin S. Nia
- UCLA−DOE
Institute for Genomics and Proteomics, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - José A. Rodríguez
- UCLA−DOE
Institute for Genomics and Proteomics, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| |
Collapse
|
42
|
Andrusenko I, Gemmi M. 3D electron diffraction for structure determination of small-molecule nanocrystals: A possible breakthrough for the pharmaceutical industry. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1810. [PMID: 35595285 PMCID: PMC9539612 DOI: 10.1002/wnan.1810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
Nanomedicine is among the most fascinating areas of research. Most of the newly discovered pharmaceutical polymorphs, as well as many new synthesized or isolated natural products, appear only in form of nanocrystals. The development of techniques that allow investigating the atomic structure of nanocrystalline materials is therefore one of the most important frontiers of crystallography. Some unique features of electrons, like their non-neutral charge and their strong interaction with matter, make this radiation suitable for imaging and detecting individual atoms, molecules, or nanoscale objects down to sub-angstrom resolution. In the recent years the development of three-dimensional (3D) electron diffraction (3D ED) has shown that electron diffraction can be successfully used to solve the crystal structure of nanocrystals and most of its limiting factors like dynamical scattering or limited completeness can be easily overcome. This article is a review of the state of the art of this method with a specific focus on how it can be applied to beam sensitive samples like small-molecule organic nanocrystals. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Iryna Andrusenko
- Center for Materials Interfaces, Electron CrystallographyIstituto Italiano di TecnologiaPontedera
| | - Mauro Gemmi
- Center for Materials Interfaces, Electron CrystallographyIstituto Italiano di TecnologiaPontedera
| |
Collapse
|
43
|
Single-crystal structure determination of nanosized metal-organic frameworks by three-dimensional electron diffraction. Nat Protoc 2022; 17:2389-2413. [PMID: 35896741 DOI: 10.1038/s41596-022-00720-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022]
Abstract
Metal-organic frameworks (MOFs) have attracted considerable interest due to their well-defined pore architecture and structural tunability on molecular dimensions. While single-crystal X-ray diffraction (SCXRD) has been widely used to elucidate the structures of MOFs at the atomic scale, the formation of large and well-ordered crystals is still a crucial bottleneck for structure determination. To alleviate this challenge, three-dimensional electron diffraction (3D ED) has been developed for structure determination of nano- (submicron-)sized crystals. Such 3D ED data are collected from each single crystal using transmission electron microscopy. In this protocol, we introduce the entire workflow for structural analysis of MOFs by 3D ED, from sample preparation, data acquisition and data processing to structure determination. We describe methods for crystal screening and handling of crystal agglomerates, which are crucial steps in sample preparation for single-crystal 3D ED data collection. We further present how to set up a transmission electron microscope for 3D ED data acquisition and, more importantly, offer suggestions for the optimization of data acquisition conditions. For data processing, including unit cell and space group determination, and intensity integration, we provide guidelines on how to use electron and X-ray crystallography software to process 3D ED data. Finally, we present structure determination from 3D ED data and discuss the important features associated with 3D ED data that need to be considered. We believe that this protocol provides critical details for implementing and utilizing 3D ED as a structure determination platform for nano- (submicron-)sized MOFs as well as other crystalline materials.
Collapse
|
44
|
Fiesel PD, Parks HM, Last RL, Barry CS. Fruity, sticky, stinky, spicy, bitter, addictive, and deadly: evolutionary signatures of metabolic complexity in the Solanaceae. Nat Prod Rep 2022; 39:1438-1464. [PMID: 35332352 PMCID: PMC9308699 DOI: 10.1039/d2np00003b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2000-2022Plants collectively synthesize a huge repertoire of metabolites. General metabolites, also referred to as primary metabolites, are conserved across the plant kingdom and are required for processes essential to growth and development. These include amino acids, sugars, lipids, and organic acids. In contrast, specialized metabolites, historically termed secondary metabolites, are structurally diverse, exhibit lineage-specific distribution and provide selective advantage to host species to facilitate reproduction and environmental adaptation. Due to their potent bioactivities, plant specialized metabolites attract considerable attention for use as flavorings, fragrances, pharmaceuticals, and bio-pesticides. The Solanaceae (Nightshade family) consists of approximately 2700 species and includes crops of significant economic, cultural, and scientific importance: these include potato, tomato, pepper, eggplant, tobacco, and petunia. The Solanaceae has emerged as a model family for studying the biochemical evolution of plant specialized metabolism and multiple examples exist of lineage-specific metabolites that influence the senses and physiology of commensal and harmful organisms, including humans. These include, alcohols, phenylpropanoids, and carotenoids that contribute to fruit aroma and color in tomato (fruity), glandular trichome-derived terpenoids and acylsugars that contribute to plant defense (stinky & sticky, respectively), capsaicinoids in chilli-peppers that influence seed dispersal (spicy), and steroidal glycoalkaloids (bitter) from Solanum, nicotine (addictive) from tobacco, as well as tropane alkaloids (deadly) from Deadly Nightshade that deter herbivory. Advances in genomics and metabolomics, coupled with the adoption of comparative phylogenetic approaches, resulted in deeper knowledge of the biosynthesis and evolution of these metabolites. This review highlights recent progress in this area and outlines opportunities for - and challenges of-developing a more comprehensive understanding of Solanaceae metabolism.
Collapse
Affiliation(s)
- Paul D Fiesel
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Hannah M Parks
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert L Last
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Cornelius S Barry
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
45
|
Newman JA, Iuzzolino L, Tan M, Orth P, Bruhn J, Lee AY. From Powders to Single Crystals: A Crystallographer's Toolbox for Small-Molecule Structure Determination. Mol Pharm 2022; 19:2133-2141. [PMID: 35576503 PMCID: PMC10152450 DOI: 10.1021/acs.molpharmaceut.2c00020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the crystal structures of small-molecule compounds are often determined from single-crystal X-ray diffraction (scXRD), recent advances in three-dimensional electron diffraction (3DED) and crystal structure prediction (CSP) methods promise to expand the structure elucidation toolbox available to the crystallographer. Herein, a comparative assessment of scXRD, 3DED, and CSP in combination with powder X-ray diffraction is carried out on two former drug candidate compounds and a multicomponent crystal of a key building block in the synthesis of gefapixant citrate.
Collapse
Affiliation(s)
- Justin A. Newman
- Department
of Analytical Research and Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Luca Iuzzolino
- Department
of Computational and Structural Chemistry, Merck & Co., Inc., Rahway, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Melissa Tan
- Department
of Analytical Research and Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Peter Orth
- Department
of Computational and Structural Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jessica Bruhn
- Nanoimaging
Services, San Diego, California 92121, United States
| | - Alfred Y. Lee
- Department
of Analytical Research and Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
46
|
Luo Y, Clabbers MTB, Qiao J, Yuan Z, Yang W, Zou X. Visualizing the Entire Range of Noncovalent Interactions in Nanocrystalline Hybrid Materials Using 3D Electron Diffraction. J Am Chem Soc 2022; 144:10817-10824. [PMID: 35678508 PMCID: PMC9490833 DOI: 10.1021/jacs.2c02426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
Noncovalent interactions
are essential in the formation and properties
of a diverse range of hybrid materials. However, reliably identifying
the noncovalent interactions in nanocrystalline materials remains
challenging using conventional methods such as X-ray diffraction and
spectroscopy. Here, we demonstrate that accurate atomic positions
including hydrogen atoms can be determined using three-dimensional
electron diffraction (3D ED), from which the entire range of noncovalent
interactions in a nanocrystalline aluminophosphate hybrid material
SCM-34 are directly visualized. The protonation states of both the
inorganic and organic components in SCM-34 are determined from the
hydrogen positions. All noncovalent interactions, including hydrogen-bonding,
electrostatic, π–π stacking, and van der Waals
interactions, are unambiguously identified, which provides detailed
insights into the formation of the material. The 3D ED data also allow
us to distinguish different types of covalent bonds based on their
bond lengths and to identify an elongated terminal P=O π-bond
caused by noncovalent interactions. Our results show that 3D ED can
be a powerful tool for resolving detailed noncovalent interactions
in nanocrystalline materials. This can improve our understanding of
hybrid systems and guide the development of novel functional materials.
Collapse
Affiliation(s)
- Yi Luo
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Max T B Clabbers
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jian Qiao
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, 1658 Pudong Beilu, Shanghai 201208, China
| | - Zhiqing Yuan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, 1658 Pudong Beilu, Shanghai 201208, China
| | - Weimin Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, 1658 Pudong Beilu, Shanghai 201208, China
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
47
|
Chua EYD, Mendez JH, Rapp M, Ilca SL, Tan YZ, Maruthi K, Kuang H, Zimanyi CM, Cheng A, Eng ET, Noble AJ, Potter CS, Carragher B. Better, Faster, Cheaper: Recent Advances in Cryo-Electron Microscopy. Annu Rev Biochem 2022; 91:1-32. [PMID: 35320683 PMCID: PMC10393189 DOI: 10.1146/annurev-biochem-032620-110705] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cryo-electron microscopy (cryo-EM) continues its remarkable growth as a method for visualizing biological objects, which has been driven by advances across the entire pipeline. Developments in both single-particle analysis and in situ tomography have enabled more structures to be imaged and determined to better resolutions, at faster speeds, and with more scientists having improved access. This review highlights recent advances at each stageof the cryo-EM pipeline and provides examples of how these techniques have been used to investigate real-world problems, including antibody development against the SARS-CoV-2 spike during the recent COVID-19 pandemic.
Collapse
Affiliation(s)
- Eugene Y D Chua
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Joshua H Mendez
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Micah Rapp
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
| | - Serban L Ilca
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
| | - Yong Zi Tan
- Department of Biological Sciences, National University of Singapore, Singapore;
- Disease Intervention Technology Laboratory, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kashyap Maruthi
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
| | - Huihui Kuang
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
| | - Christina M Zimanyi
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Anchi Cheng
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
| | - Edward T Eng
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Alex J Noble
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
- National Center for In-Situ Tomographic Ultramicroscopy, New York, NY, USA
- Simons Machine Learning Center, New York, NY, USA
| | - Clinton S Potter
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
- National Center for In-Situ Tomographic Ultramicroscopy, New York, NY, USA
- Simons Machine Learning Center, New York, NY, USA
| | - Bridget Carragher
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
- National Center for In-Situ Tomographic Ultramicroscopy, New York, NY, USA
- Simons Machine Learning Center, New York, NY, USA
| |
Collapse
|
48
|
Bengtsson VEG, Pacoste L, de la Rosa-Trevin JM, Hofer G, Zou X, Xu H. Scipion-ED: a graphical user interface for batch processing and analysis of 3D ED/MicroED data. J Appl Crystallogr 2022; 55:638-646. [PMID: 35719296 PMCID: PMC9172039 DOI: 10.1107/s1600576722002758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
Three-dimensional electron diffraction (3D ED)/microcrystal electron diffraction (MicroED) techniques are gaining in popularity. However, the data processing often does not fit existing graphical user interface software, instead requiring the use of the terminal or scripting. Scipion-ED, described in this article, provides a graphical user interface and extendable framework for processing of 3D ED/MicroED data. An illustrative project is described, in which multiple 3D ED/MicroED data sets collected on tetragonal lysozyme were processed with DIALS through the Scipion-ED interface. The ability to resolve unmodelled features in the electrostatic potential map was compared between three strategies for merging data sets.
Collapse
Affiliation(s)
- Viktor E. G. Bengtsson
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Laura Pacoste
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - José Miguel de la Rosa-Trevin
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Gerhard Hofer
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Hongyi Xu
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| |
Collapse
|
49
|
Martynowycz M, Gonen T. Unlocking the potential of MICROCRYSTAL ELECTRON DIFFRACTION. PHYSICS TODAY 2022; 75:38-42. [PMID: 36969383 PMCID: PMC10035054 DOI: 10.1063/pt.3.5019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Atoms stick together in different ways to make the molecules that compose everything we touch and see. Our bodies are made of cells. Cells, in turn, are made of lipids, proteins, nucleic acids, metabolites, and water. Every one of those molecules is made from the same handful of atoms. But although the components are the same, the molecules differ in how many atoms they have and how those atoms are arranged in space.
Collapse
|
50
|
Gruene T, Clabbers MTB, Luebben J, Chin JM, Reithofer MR, Stowasser F, Alker AM. CELLOPT: improved unit-cell parameters for electron diffraction data of small-molecule crystals. J Appl Crystallogr 2022; 55:647-655. [PMID: 35719299 PMCID: PMC9172032 DOI: 10.1107/s160057672200276x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/10/2022] [Indexed: 11/12/2022] Open
Abstract
Electron diffraction enables structure determination of organic small molecules using crystals that are too small for conventional X-ray crystallography. However, because of uncertainties in the experimental parameters, notably the detector distance, the unit-cell parameters and the geometry of the structural models are typically less accurate and precise compared with results obtained by X-ray diffraction. Here, an iterative procedure to optimize the unit-cell parameters obtained from electron diffraction using idealized restraints is proposed. The cell optimization routine has been implemented as part of the structure refinement, and a gradual improvement in lattice parameters and data quality is demonstrated. It is shown that cell optimization, optionally combined with geometrical corrections for any apparent detector distortions, benefits refinement of electron diffraction data in small-molecule crystallography and leads to more accurate structural models.
Collapse
Affiliation(s)
- Tim Gruene
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Max T. B. Clabbers
- Department of Materials and Environmental Chemistry, Stockholm University, Sweden
| | | | - Jia Min Chin
- Institute of Inorganic Chemistry – Functional Materials, Faculty of Chemistry, University of Vienna, Austria
| | - Michael R. Reithofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Frank Stowasser
- Roche Pharma Research and Early Development, Basel, Switzerland
| | - André M. Alker
- Roche Pharma Research and Early Development, Basel, Switzerland
| |
Collapse
|