1
|
Joshi H, Sathyamoorthi S. Intramolecular Silanoxy-Michael Reactions with Pendant Nitroalkenes: Racemic and Enantioselective. J Org Chem 2024; 89:14197-14203. [PMID: 39305247 PMCID: PMC11452265 DOI: 10.1021/acs.joc.4c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
We present the first racemic and scalemic examples of di-tert-butyl silanoxy-Michael additions. Our operationally simple protocol is selective for nitro-olefins and simply involves stirring the substrate with an appropriate hydrogen-bond donor catalyst without any special precautions to exclude air or moisture. For each substrate examined, we have developed complementary protocols that optimize yield and enantioselectivity. Our reactions scale well, and the products are valuable intermediates for further transformations, including for the preparation of enantioenriched vicinal amino alcohols.
Collapse
Affiliation(s)
- Harshit Joshi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
2
|
Reyes E, Uria U, Prieto L, Carrillo L, Vicario JL. Organocatalysis as an enabling tool for enantioselective ring-opening reactions of cyclopropanes. Chem Commun (Camb) 2024; 60:7288-7298. [PMID: 38938176 DOI: 10.1039/d4cc01933d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The rich reactivity profile of cyclopropanes has been extensively explored to trigger new organic transformations that enable unusual disconnective approaches to synthesize molecular motifs that are not easily reached through conventional reactions. In particular, the chemistry of cyclopropanes has received special attention in the last decade, with multiple new approaches that capitalize on the use of organocatalysis for the activation of the cyclopropane scaffold. This situation has also opened the possibility of developing enantioselective variants of many reactions that until now were only carried out in an enantiospecific or diastereoselective manner. Our group has been particularly active in this field, focusing more specifically on the use of aminocatalysis and Brønsted acid catalysis as major organocatalytic activation manifolds to trigger new unprecedented transformations involving cyclopropanes that add to the current toolbox of general methodologies available to organic chemists for the enantioselective synthesis of chiral compounds.
Collapse
Affiliation(s)
- Efraim Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Uxue Uria
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Liher Prieto
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Luisa Carrillo
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Jose L Vicario
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
3
|
Navazeni M, Zolfigol MA, Ahmadi H, Sepehrmansourie H, Khazaei A, Hosseinifard M. Design, synthesis and application of a magnetic H-bond catalyst in the preparation of new nicotinonitriles via cooperative vinylogous anomeric-based oxidation. RSC Adv 2024; 14:16607-16616. [PMID: 38779389 PMCID: PMC11110150 DOI: 10.1039/d4ra01163e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Herein, we designed and synthesized a new H-bond magnetic catalyst with 2-tosyl-N-(3-(triethoxysilyl)propyl)hydrazine-1-carboxamide as a sensitive H-bond donor/acceptor. We created an organic structure with a urea moiety on the magnetic nanoparticles, which can function as a hydrogen bond catalyst. Hydrogen bond catalysts serve as multi-donor/-acceptor sites. Additionally, we utilized magnetic nanoparticles in the production of the target catalyst, giving it the ability to be recycled and easily separated from the reaction medium with an external magnet. We evaluated the catalytic application of Fe3O4@SiO2@tosyl-carboxamide as a new magnetic H-bond catalyst in the synthesis of new nicotinonitrile compounds through a multicomponent reaction under solvent-free and green conditions with high yields (50-73%). We confirmed the structure of Fe3O4@SiO2@tosyl-carboxamide using various techniques. In addition, the structures of the desired nicotinonitriles were confirmed using melting point, 1H-NMR, 13C-NMR and HR-mass spectrometry analysis. The final step of the reaction mechanism was preceded via cooperative vinylogous anomeric-based oxidation (CVABO).
Collapse
Affiliation(s)
- Mahdiyeh Navazeni
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Hossein Ahmadi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Mojtaba Hosseinifard
- Department of Energy, Materials and Energy Research Center P. O. Box 31787-316 Karaj 401602 Iran
| |
Collapse
|
4
|
Kalinin AV, Zuev VV. An Improvement of Mechanical Properties of Two Kinds of Silicone Resins Containing Ladder Segments by Chemical Modification with Trimethylborate. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3072. [PMID: 37109907 PMCID: PMC10144118 DOI: 10.3390/ma16083072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
We suggest a new method for postsynthesis modification of silicones containing silanol groups. It was found that trimethylborate is an effective catalyst for dehydrative condensation of silanol groups with the formation of ladder-like blocks. The utility of this approach was demonstrated on postsynthesis modification of poly-(block poly(dimethylsiloxane)-block ladder-like poly(phenylsiloxane)) and poly-(block poly((3,3',3″-trifluoropropyl-methyl)siloxane)-block ladder-like poly(phenylsiloxane) with a combination of linear and ladder-like blocks having silanol groups. The postsynthesis modification leads to a 75% increase in tensile strength and 116% elongation on break in comparison with the starting polymer.
Collapse
Affiliation(s)
- Alexei V. Kalinin
- S.V. Lebedev State Institute of Synthetic Rubber, 1, Gapsalskaya St. 1, 198035 Saint Petersburg, Russia
| | - Vjacheslav V. Zuev
- Chemical Engineering Centrum, ITMO University, Kronverkskiy Pr. 49, 197101 Saint Petersburg, Russia
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi Pr. 31, 199004 Saint Petersburg, Russia
| |
Collapse
|
5
|
Lin L, Wang M, Zhou J, Li F, Liu H. Highly diastereo- and enantioselective C2 addition of 5 H-oxazol-4-ones to γ-keto-α,β-unsaturated esters. Chem Commun (Camb) 2023; 59:3606-3609. [PMID: 36891781 DOI: 10.1039/d3cc00554b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The direct C2-addition of 5H-oxazol-4-ones to γ-keto-α,β-unsaturated esters catalyzed by a chiral squaramide has been achieved. Diverse highly functionalized γ-keto esters bearing a C2-oxazolone at the α-position were afforded in high yields with excellent stereoselectivities (d.r. > 20 : 1 and up to 98% ee).
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Mei Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Jiawei Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Fei Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Huiyun Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, P. R. China.
| |
Collapse
|
6
|
Elías-Rodríguez P, Matador E, Benítez M, Tejero T, Díez E, Fernández R, Merino P, Monge D, Lassaletta JM. Silver-Free Gold-Catalyzed Heterocyclizations through Intermolecular H-Bonding Activation. J Org Chem 2023; 88:2487-2492. [PMID: 36704838 PMCID: PMC9942198 DOI: 10.1021/acs.joc.2c02932] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Modulable monosulfonyl squaramides have been shown to exert activation of gold(I) chloride complexes through H-bonding in an intermolecular way. Combinations of (PPh3)AuCl or IPrAuCl complexes and an optimal sulfonyl squaramide cocatalyst bearing two 3,5-bis(trifluoromethyl)phenyl groups efficiently catalyzed diverse heterocyclizations and a cyclopropanation reaction, avoiding in all cases undesired side reactions. Computational studies indicate that the Au-Cl bond breaks by transligation to the triple bond in a ternary complex formed by the actual AuCl···HBD catalyst and the substrate.
Collapse
Affiliation(s)
- Pilar Elías-Rodríguez
- Facultad
de Química. Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), C/Prof. García González,
1, 41012 Sevilla, Spain
| | - Esteban Matador
- Facultad
de Química. Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), C/Prof. García González,
1, 41012 Sevilla, Spain
| | - Manuel Benítez
- Facultad
de Química. Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), C/Prof. García González,
1, 41012 Sevilla, Spain
| | - Tomás Tejero
- Instituto
de Síntesis Química y Catálisis Homogénea
(ISQCH), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Elena Díez
- Facultad
de Química. Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), C/Prof. García González,
1, 41012 Sevilla, Spain
| | - Rosario Fernández
- Facultad
de Química. Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), C/Prof. García González,
1, 41012 Sevilla, Spain,E-mail:
| | - Pedro Merino
- Instituto
de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain,E-mail:
| | - David Monge
- Facultad
de Química. Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), C/Prof. García González,
1, 41012 Sevilla, Spain,E-mail:
| | - José M. Lassaletta
- Instituto
de Investigaciones Químicas (CSIC-US) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain,E-mail:
| |
Collapse
|
7
|
Smajlagic I, Johnston JN, Dudding T. Secondary Orbital Effect Involving Fluorine is Responsible for Substrate-Controlled Diastereodivergence in the Catalyzed syn-aza-Henry Reaction of α-Fluoronitroalkanes. Chemistry 2023; 29:e202204066. [PMID: 36607705 DOI: 10.1002/chem.202204066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/07/2023]
Abstract
The fluorine atom is a powerful, yet enigmatic influence on chemical reactions. True to form, fluorine was recently discovered to effect diastereodivergence in an enantioselective aza-Henry reaction, resulting in a very rare case of syn-β-amino nitroalkane products. More bewildering was the observation of an apparent hierarchy of substituents within this substrate-controlled behavior: Ph>F>alkyl. These cases have now been examined comprehensively by computational methods, including both non-fluorinated and α-fluoro nitronate additions to aldimines catalyzed by a chiral bis(amidine) [BAM] proton complex. This study revealed the network of non-covalent interactions that dictate anti- (α-aryl) versus syn-selectivity (α-alkyl) using α-fluoronitronate nucleophiles, and an underlying secondary orbital interaction between fluorine and the activated azomethine.
Collapse
Affiliation(s)
- Ivor Smajlagic
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St., Catharines, ON L2S 3A1, Canada
| | - Jeffrey N Johnston
- Department of Chemistry and Institute of Chemical Biology, Vanderbilt University Nashville, Tennessee, 37235, USA
| | - Travis Dudding
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St., Catharines, ON L2S 3A1, Canada
| |
Collapse
|
8
|
Kolin G, Schwartz R, Shuster D, Major DT, Hoz S. Cooperative Intrinsic Basicity and Hydrogen Bonding Render SmI 2 More Azaphilic than Oxophilic. ACS OMEGA 2022; 7:40021-40024. [PMID: 36385862 PMCID: PMC9647864 DOI: 10.1021/acsomega.2c04680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
It has been recently shown that SmI2 is more azaphilic than oxophilic. Density functional theory calculations reveal that coordination of 1-3 molecules of ethylenediamine is more exothermic by up to 10 kcal/mol than coordination of the corresponding number of ethylene glycol molecules. Taking into account also hydrogen bonds between ligands and tetrahydrofuran doubles this preference. The intrinsic affinity parallels the order of basicity. The cooperativity with the hydrogen bonding makes SmI2 more azaphilic than oxophilic.
Collapse
|
9
|
Ballav T, Chakrabortty R, Das A, Ghosh S, Ganesh V. Palladium‐Catalyzed Dual Catalytic Synthesis of Heterocycles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tamal Ballav
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry INDIA
| | | | - Aniruddha Das
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry INDIA
| | - Suman Ghosh
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry INDIA
| | - Venkataraman Ganesh
- IIT Kharagpur: Indian Institute of Technology Kharagpur Chemistry Department of Chemistry,Indian Institute Technology Kharagpur 721302 Kharagpur INDIA
| |
Collapse
|
10
|
Riegel GF, Payne C, Kass SR. Effects of Brønsted acid cocatalysts on the activities and selectivities of charge‐enhanced thiourea organocatalysts in Friedel–Crafts and oxa‐Pictet–Spengler reactions. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- George F. Riegel
- Department of Chemistry University of Minnesota Minneapolis Minnesota USA
| | - Curtis Payne
- Department of Chemistry University of Minnesota Minneapolis Minnesota USA
| | - Steven R. Kass
- Department of Chemistry University of Minnesota Minneapolis Minnesota USA
| |
Collapse
|
11
|
Smajlagic I, White B, Azeez O, Pilkington M, Dudding T. Organocatalysis Linked to Charge-Enhanced Acidity with Superelectrophilic Traits. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ivor Smajlagic
- Department of Chemistry, Brock University, St. Catharines L2S 3A1, Canada
| | - Brandon White
- Department of Chemistry, Brock University, St. Catharines L2S 3A1, Canada
| | - Oyindamola Azeez
- Department of Chemistry, Brock University, St. Catharines L2S 3A1, Canada
| | - Melanie Pilkington
- Department of Chemistry, Brock University, St. Catharines L2S 3A1, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, St. Catharines L2S 3A1, Canada
| |
Collapse
|
12
|
Gallarati S, Laplaza R, Corminboeuf C. Harvesting the fragment-based nature of bifunctional organocatalysts to enhance their activity. Org Chem Front 2022. [DOI: 10.1039/d2qo00550f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhancing the activity of bifunctional organocatalysts: a fragment-based approach coupled with activity maps helps identifying better-performing catalytic motifs.
Collapse
Affiliation(s)
- Simone Gallarati
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ruben Laplaza
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National Center for Competence in Research – Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Clemence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National Center for Competence in Research – Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- National Center for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Zimmermann BM, Ngoc TT, Tzaras DI, Kaicharla T, Teichert JF. A Bifunctional Copper Catalyst Enables Ester Reduction with H 2: Expanding the Reactivity Space of Nucleophilic Copper Hydrides. J Am Chem Soc 2021; 143:16865-16873. [PMID: 34605649 DOI: 10.1021/jacs.1c09626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Employing a bifunctional catalyst based on a copper(I)/NHC complex and a guanidine organocatalyst, catalytic ester reductions to alcohols with H2 as terminal reducing agent are facilitated. The approach taken here enables the simultaneous activation of esters through hydrogen bonding and formation of nucleophilic copper(I) hydrides from H2, resulting in a catalytic hydride transfer to esters. The reduction step is further facilitated by a proton shuttle mediated by the guanidinium subunit. This bifunctional approach to ester reductions for the first time shifts the reactivity of generally considered "soft" copper(I) hydrides to previously unreactive "hard" ester electrophiles and paves the way for a replacement of stoichiometric reducing agents by a catalyst and H2.
Collapse
Affiliation(s)
- Birte M Zimmermann
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Trung Tran Ngoc
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany.,Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Dimitrios-Ioannis Tzaras
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany.,Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Trinadh Kaicharla
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Johannes F Teichert
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany.,Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| |
Collapse
|
14
|
Larionov VA, Feringa BL, Belokon YN. Enantioselective "organocatalysis in disguise" by the ligand sphere of chiral metal-templated complexes. Chem Soc Rev 2021; 50:9715-9740. [PMID: 34259242 DOI: 10.1039/d0cs00806k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Asymmetric catalysis holds a prominent position among the important developments in chemistry during the 20th century. This was acknowledged by the 2001 Nobel Prize in chemistry awarded to Knowles, Noyori, and Sharpless for their development of chiral metal catalysts for organic transformations. The key feature of the catalysts was the crucial role of the chiral ligand and the nature of the metal ions, which promoted the catalytic conversions of the substrates via direct coordination. Subsequently the development of asymmetric organic catalysis opened new avenues to the synthesis of enantiopure compounds, avoiding any use of metal ions. Recently, an alternative approach to asymmetric catalysis emerged that relied on the catalytic functions of the ligands themselves boosted by coordination to metal ions. In other words, in these hybrid chiral catalysts the substrates are activated not by the metal ions but by the ligands. The activation and enantioselective control occurred via well-orchestrated and custom-tailored non-covalent interactions of the substrates with the ligand sphere of chiral metal complexes. In these metal-templated catalysts, the metal served either as a template (a purely structural role), or it constituted the exclusive source of chirality (metal-centred chirality due to the spatial arrangement of achiral or chiral bi-/tridentate ligands around an octahedral metal centre), and/or it increased the Brønsted acidity of the ligands. Although the field is still in its infancy, it represents an inspiring combination of both metal and organic catalysis and holds major unexplored potential to push the frontiers of asymmetric catalysis. Here we present an overview of this emerging field discussing the principles, applications and perspectives on the catalytic use of chiral metal complexes that operate as "organocatalysts in disguise". It has been demonstrated that these chiral metal complexes are efficient and provide high stereoselective control in asymmetric hydrogen bonding catalysis, phase-transfer catalysis, Brønsted acid/base catalysis, enamine catalysis, nucleophilic catalysis, and photocatalysis as well as bifunctional catalysis. Also, many of the catalysts have been identified as highly effective catalysts at remarkably low catalyst loadings. These hybrid systems offer many opportunities in the synthesis of chiral compounds and represent promising alternatives to metal-based and organocatalytic asymmetric transformations.
Collapse
Affiliation(s)
- Vladimir A Larionov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russian Federation.
| | | | | |
Collapse
|
15
|
Antenucci A, Dughera S, Renzi P. Green Chemistry Meets Asymmetric Organocatalysis: A Critical Overview on Catalysts Synthesis. CHEMSUSCHEM 2021; 14:2785-2853. [PMID: 33984187 PMCID: PMC8362219 DOI: 10.1002/cssc.202100573] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Indexed: 05/30/2023]
Abstract
Can green chemistry be the right reading key to let organocatalyst design take a step forward towards sustainable catalysis? What if the intriguing chemistry promoted by more engineered organocatalysts was carried on by using renewable and naturally occurring molecular scaffolds, or at least synthetic catalysts more respectful towards the principles of green chemistry? Within the frame of these questions, this Review will tackle the most commonly occurring organic chiral catalysts from the perspective of their synthesis rather than their employment in chemical methodologies or processes. A classification of the catalyst scaffolds based on their E factor will be provided, and the global E factor (EG factor) will be proposed as a new green chemistry metric to consider, also, the synthetic route to the catalyst within a given organocatalytic process.
Collapse
Affiliation(s)
- Achille Antenucci
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
- NIS Interdeprtmental CentreINSTM Reference CentreUniversity of TurinVia Gioacchino Quarello 15/A10135TurinItaly
| | - Stefano Dughera
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
| | - Polyssena Renzi
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
| |
Collapse
|
16
|
Fang G, Wang H, Zheng C, Pan L, Zhao G. Enantioselectivity switch in asymmetric Michael addition reactions using phosphonium salts. Org Biomol Chem 2021; 19:6334-6340. [PMID: 34231639 DOI: 10.1039/d1ob01027a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Efficient access to two enantiomers of one chiral compound is critical for the discovery of drugs. However, it is still a challenging problem owing to the difficulty in obtaining two enantiomers of one chiral catalyst. Here, we report a general method to obtain both enantiomeric products via fine tuning the hydrogen-bonding interactions of phosphonium salts. Amino acid derived phosphonium salts and dipeptide derived phosphonium salts exhibited different properties for controlling the transition state, which could efficiently promote the Michael addition reaction to give opposite configurations of products with high yields and enantioselectivities. Preliminary investigations on the mechanism of the reaction and applications of the products were also performed.
Collapse
Affiliation(s)
- Guosheng Fang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Hongyu Wang
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Changwu Zheng
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Lu Pan
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Gang Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China. and Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| |
Collapse
|
17
|
Kikuchi J, Terada M. Enantioconvergent Substitution Reactions of Racemic Electrophiles by Organocatalysis. Chemistry 2021; 27:10215-10225. [PMID: 33783887 DOI: 10.1002/chem.202100439] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 12/17/2022]
Abstract
Over the past decades, the development of enantioselective catalysis using organocatalysts has evolved into an active research field and a number of enantioselective transformations have been established. However, despite their being a highly desirable process for the synthesis of organic molecules in an enantioenriched form, the enantioconvergent substitution reactions of racemic electrophiles using organocatalysts still present several challenges. Although intrinsic difficulties in the catalytic stereocontrol abound due to the initial chiral information of racemic electrophiles, in recent years, mechanistically diverse enantioconvergent processes have been intensively investigated in organocatalysis. This Minireview focuses on recent achievements in the development of enantioconvergent substitution reactions of racemic electrophiles using organocatalysts. The contents are classified on the basis of the mechanistic types of enantioconvergent processes.
Collapse
Affiliation(s)
- Jun Kikuchi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
18
|
Barday M, Bouillac P, Coquerel Y, Amatore M, Constantieux T, Rodriguez J. Enantioselective Organocatalytic Syntheses and Ring‐Expansions of Cyclobutane Derivatives. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Manuel Barday
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Pierre Bouillac
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Yoann Coquerel
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Muriel Amatore
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | | | - Jean Rodriguez
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| |
Collapse
|
19
|
Kottisch V, Jermaks J, Mak JY, Woltornist RA, Lambert TH, Fors BP. Hydrogen Bond Donor Catalyzed Cationic Polymerization of Vinyl Ethers. Angew Chem Int Ed Engl 2021; 60:4535-4539. [PMID: 33137229 PMCID: PMC8145790 DOI: 10.1002/anie.202013419] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/20/2022]
Abstract
The synthesis of high-molecular-weight poly(vinyl ethers) under mild conditions is a significant challenge, since cationic polymerization reactions are highly sensitive to chain-transfer and termination events. We identified a novel and highly effective hydrogen bond donor (HBD)-organic acid pair that can facilitate controlled cationic polymerization of vinyl ethers under ambient conditions with excellent monomer compatibility. Poly(vinyl ethers) of molar masses exceeding 50 kg mol-1 can be produced within 1 h without elaborate reagent purification. Modification of the HBD structure allowed tuning of the polymerization rate, while DFT calculations helped elucidate crucial intermolecular interactions between the HBD, organic acid, and polymer chain end.
Collapse
Affiliation(s)
- Veronika Kottisch
- Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853, USA
| | - Janis Jermaks
- Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853, USA
| | - Joe-Yee Mak
- Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853, USA
| | - Ryan A Woltornist
- Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853, USA
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853, USA
| | - Brett P Fors
- Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
20
|
García-Urricelqui A, de Cózar A, Mielgo A, Palomo C. Probing α-Amino Aldehydes as Weakly Acidic Pronucleophiles: Direct Access to Quaternary α-Amino Aldehydes by an Enantioselective Michael Addition Catalyzed by Brønsted Bases. Chemistry 2021; 27:2483-2492. [PMID: 33034390 DOI: 10.1002/chem.202004468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/20/2022]
Abstract
The high tendency of α-amino aldehydes to undergo 1,2-additions and their relatively low stability under basic conditions have largely prevented their use as pronucleophiles in the realm of asymmetric catalysis, particularly for the production of quaternary α-amino aldehydes. Herein, it is demonstrated that the chemistry of α-amino aldehydes may be expanded beyond these limits by documenting the first direct α-alkylation of α-branched α-amino aldehydes with nitroolefins. The reaction produces densely functionalized products bearing up to two, quaternary and tertiary, vicinal stereocenters with high diastereo- and enantioselectivity. DFT modeling leads to the proposal that intramolecular hydrogen bonding between the NH group and the carbonyl oxygen atom in the starting α-amino aldehyde is key for reaction stereocontrol.
Collapse
Affiliation(s)
- Ane García-Urricelqui
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizábal 3, 20018, San Sebastián, Spain
| | - Abel de Cózar
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Antonia Mielgo
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizábal 3, 20018, San Sebastián, Spain
| | - Claudio Palomo
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizábal 3, 20018, San Sebastián, Spain
| |
Collapse
|
21
|
Emelyanov MA, Stoletova NV, Lisov AA, Medvedev MG, Smol'yakov AF, Maleev VI, Larionov VA. An octahedral cobalt(iii) complex based on cheap 1,2-phenylenediamine as a bifunctional metal-templated hydrogen bond donor catalyst for fixation of CO2 with epoxides under ambient conditions. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00464f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An octahedral cobalt(iii) complex based on cheap 1,2-phenylenediamine operates as an efficient bifunctional hydrogen bond donor catalyst in cycloaddition of epoxides with CO2 under ambient conditions and solvent- and co-catalyst-free conditions.
Collapse
Affiliation(s)
- Mikhail A. Emelyanov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
| | - Nadezhda V. Stoletova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
| | - Alexey A. Lisov
- Department of Chemistry
- Lomonosov Moscow State University
- 119991 Moscow
- Russian Federation
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences
| | - Michael G. Medvedev
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Alexander F. Smol'yakov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
| | - Victor I. Maleev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
| | - Vladimir A. Larionov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
- Peoples’ Friendship University of Russia (RUDN University)
- 117198 Moscow
| |
Collapse
|
22
|
Kitagaki S, Shimo E, Takeda S, Fukai R, Kojima N, Yoshioka S, Takenaga N, Yoshida K. Planar Chiral [2.2]Paracyclophane-Based Bis(thiourea)-Catalyzed Highly Diastereo- and Enantioselective Michael Addition Reaction of Nitroethane to Nitrostyrenes. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Kottisch V, Jermaks J, Mak J, Woltornist RA, Lambert TH, Fors BP. Hydrogen Bond Donor Catalyzed Cationic Polymerization of Vinyl Ethers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Veronika Kottisch
- Department of Chemistry and Chemical Biology Baker Lab Cornell University Ithaca NY 14853 USA
| | - Janis Jermaks
- Department of Chemistry and Chemical Biology Baker Lab Cornell University Ithaca NY 14853 USA
| | - Joe‐Yee Mak
- Department of Chemistry and Chemical Biology Baker Lab Cornell University Ithaca NY 14853 USA
| | - Ryan A. Woltornist
- Department of Chemistry and Chemical Biology Baker Lab Cornell University Ithaca NY 14853 USA
| | - Tristan H. Lambert
- Department of Chemistry and Chemical Biology Baker Lab Cornell University Ithaca NY 14853 USA
| | - Brett P. Fors
- Department of Chemistry and Chemical Biology Baker Lab Cornell University Ithaca NY 14853 USA
| |
Collapse
|
24
|
Huelgas G, Somanathan R, Hernández Pérez JM, Rojas Cabrera H, de la Higuera Macías M, Domínguez-Huerta A, Sabala R, Anaya de Parrodi C. Homochiral bifunctional L-prolinamide- and L-bis-prolinamide-catalyzed asymmetric aldol reactions performed in wet solvent-free conditions. Chirality 2020; 33:22-36. [PMID: 33232537 DOI: 10.1002/chir.23283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 01/20/2023]
Abstract
In this study, the novel bifunctional homochiral thiourea-L-prolinamides 1-4, tertiary amino-L-prolinamide 5, and bis-L-prolinamides 6 and 7 were prepared from enantiomerically pure (11R,12R)-11,12-diamino-9,10-dihydro-9,10-ethanoanthracene 8 and (11S,12S)-11,12-diamino-9,10-dihydro-9,10-ethanoanthracene ent-8. Highly enantioselective and diastereoselective aldolic intermolecular reactions (up to 95% enantiomeric excess, 93:7 anti/syn) between aliphatic ketones (20 equiv) and a range of aromatic aldehydes (1 equiv) were successfully carried out in the presence of water (10 equiv) and monochloroacetic acid (10 mol%), solvent-free conditions, at room temperature over 24 h using organocatalysts 1-7 (5 mol%). Stereoselective induction using density functional theory-based methods was consistent with the experimental data.
Collapse
Affiliation(s)
- Gabriela Huelgas
- Departamento de Ciencias Químico Biológicas, Universidad de las Americas Puebla, Cholula, Puebla, Mexico
| | - Ratnasamy Somanathan
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana, Baja California, Mexico
| | | | - Haydee Rojas Cabrera
- Departamento de Ciencias Químico Biológicas, Universidad de las Americas Puebla, Cholula, Puebla, Mexico
| | | | - Alejandra Domínguez-Huerta
- Departamento de Ciencias Químico Biológicas, Universidad de las Americas Puebla, Cholula, Puebla, Mexico
| | - Rocío Sabala
- Departamento de Ciencias Químico Biológicas, Universidad de las Americas Puebla, Cholula, Puebla, Mexico
| | - Cecilia Anaya de Parrodi
- Departamento de Ciencias Químico Biológicas, Universidad de las Americas Puebla, Cholula, Puebla, Mexico
| |
Collapse
|
25
|
Gui H, Meng Z, Xiao Z, Yang Z, Wei Y, Shi M. Stereo‐ and Regioselective Construction of Spirooxindoles Having Continuous Spiral Rings via Asymmetric [3+2] Cyclization of 3‐Isothiocyanato Oxindoles with Thioaurone Derivatives. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001146] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hou‐Ze Gui
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai China
| | - Zhe Meng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai China
| | - Zhan‐Shuai Xiao
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai China
| | - Ze‐Ren Yang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Yin Wei
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences 345 Lingling Road 200032 Shanghai China
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| |
Collapse
|
26
|
Momo PB, Leveille AN, Farrar EHE, Grayson MN, Mattson AE, Burtoloso ACB. Enantioselective S-H Insertion Reactions of α-Carbonyl Sulfoxonium Ylides. Angew Chem Int Ed Engl 2020; 59:15554-15559. [PMID: 32352184 PMCID: PMC7606806 DOI: 10.1002/anie.202005563] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 12/20/2022]
Abstract
The first example of enantioselective S-H insertion reactions of sulfoxonium ylides is reported. Under the influence of thiourea catalysis, excellent levels of enantiocontrol (up to 95 % ee) and yields (up to 97 %) are achieved for 31 examples in S-H insertion reactions of aryl thiols and α-carbonyl sulfoxonium ylides.
Collapse
Affiliation(s)
- Patrícia B. Momo
- Institute of Chemistry of São CarlosUniversity of São PauloCEP 13560-970São CarlosSPBrazil
| | - Alexandria N. Leveille
- Department Chemistry and BiochemistryWorcester Polytechnic Institute100 Institute RoadWorcesterMA01609USA
| | | | | | - Anita E. Mattson
- Department Chemistry and BiochemistryWorcester Polytechnic Institute100 Institute RoadWorcesterMA01609USA
| | | |
Collapse
|
27
|
Momo PB, Leveille AN, Farrar EHE, Grayson MN, Mattson AE, Burtoloso ACB. Enantioselective S−H Insertion Reactions of α‐Carbonyl Sulfoxonium Ylides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Patrícia B. Momo
- Institute of Chemistry of São Carlos University of São Paulo CEP 13560-970 São Carlos SP Brazil
| | - Alexandria N. Leveille
- Department Chemistry and Biochemistry Worcester Polytechnic Institute 100 Institute Road Worcester MA 01609 USA
| | | | - Matthew N. Grayson
- Department of Chemistry University of Bath Claverton Down Bath BA2 7AY UK
| | - Anita E. Mattson
- Department Chemistry and Biochemistry Worcester Polytechnic Institute 100 Institute Road Worcester MA 01609 USA
| | - Antonio C. B. Burtoloso
- Institute of Chemistry of São Carlos University of São Paulo CEP 13560-970 São Carlos SP Brazil
| |
Collapse
|
28
|
Riegel GF, Kass SR. N-Vinyl and N-Aryl Hydroxypyridinium Ions: Charge-Activated Catalysts with Electron-Withdrawing Groups. J Org Chem 2020; 85:6017-6026. [DOI: 10.1021/acs.joc.0c00498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- George F. Riegel
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, Minnesota 55455, United States
| | - Steven R. Kass
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
29
|
Lu D, Liu X, Wu J, Zhang S, Tan J, Yu X, Wang T. Asymmetric Construction of Bispiro‐Cyclopropane‐Pyrazolones via a [2+1] Cyclization Reaction by Dipeptide‐Based Phosphonium Salt Catalysis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000073] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dongming Lu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Xin Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Jia‐Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Song Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Jian‐Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| | - Xiaojun Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
- Department of Chemistry, School of Basic Medical SciencesSouthwest Medical University Luzhou 646000 People's Republic of China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of ChemistrySichuan University Chengdu 610064 People's Republic of China
| |
Collapse
|
30
|
Payne C, Kass SR. Structural considerations for charge‐enhanced Brønsted acid catalysts. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Curtis Payne
- Department of Chemistry University of Minnesota Minneapolis MN USA
| | - Steven R. Kass
- Department of Chemistry University of Minnesota Minneapolis MN USA
| |
Collapse
|
31
|
Kondoh A, Ishikawa S, Terada M. Development of Chiral Ureates as Chiral Strong Brønsted Base Catalysts. J Am Chem Soc 2020; 142:3724-3728. [DOI: 10.1021/jacs.9b13922] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Sho Ishikawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
32
|
Zhu C, Tang H, Yang K, Wu X, Luo Y, Wang J, Li Y. A urea-containing metal-organic framework as a multifunctional heterogeneous hydrogen bond-donating catalyst. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
33
|
Nakamura T, Okuno K, Nishiyori R, Shirakawa S. Hydrogen‐Bonding Catalysis of Alkyl‐Onium Salts. Chem Asian J 2020; 15:463-472. [DOI: 10.1002/asia.201901652] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Takumi Nakamura
- Department of Environmental ScienceGraduate School of Fisheries and Environmental SciencesNagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Ken Okuno
- Department of Environmental ScienceGraduate School of Fisheries and Environmental SciencesNagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Ryuichi Nishiyori
- Department of Environmental ScienceGraduate School of Fisheries and Environmental SciencesNagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| | - Seiji Shirakawa
- Department of Environmental ScienceGraduate School of Fisheries and Environmental SciencesNagasaki University 1-14 Bunkyo-machi Nagasaki 852-8521 Japan
| |
Collapse
|
34
|
Wonner P, Steinke T, Vogel L, Huber SM. Carbonyl Activation by Selenium- and Tellurium-Based Chalcogen Bonding in a Michael Addition Reaction. Chemistry 2020; 26:1258-1262. [PMID: 31729084 PMCID: PMC7027547 DOI: 10.1002/chem.201905057] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Indexed: 11/20/2022]
Abstract
In the last years the use of chalcogen bonding—the noncovalent interaction involving electrophilic chalcogen centers—in noncovalent organocatalysis has received increased interest, particularly regarding the use of intermolecular Lewis acids. Herein, we present the first use of tellurium‐based catalysts for the activation of a carbonyl compound (and only the second such activation by chalcogen bonding in general). As benchmark reaction, the Michael‐type addition between trans‐crotonophenone and 1‐methylindole (and its derivatives) was investigated in the presence of various catalyst candidates. Whereas non‐chalcogen‐bonding reference compounds were inactive, strong rate accelerations of up to 1000 could be achieved by bidentate triazolium‐based chalcogen bond donors, with product yields of >90 % within 2 h of reaction time. Organotellurium derivatives were markedly more active than their selenium and sulphur analogues and non‐coordinating counterions like BArF4 provide the strongest dicationic catalysts.
Collapse
Affiliation(s)
- Patrick Wonner
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Tim Steinke
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Lukas Vogel
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Stefan M Huber
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
35
|
Smajlagic I, Guest M, Durán R, Herrera B, Dudding T. Mechanistic Insight toward Understanding the Role of Charge in Thiourea Organocatalysis. J Org Chem 2020; 85:585-593. [PMID: 31790584 DOI: 10.1021/acs.joc.9b02682] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyranylation and glycosylation are pivotal for accessing a myriad of natural products, pharmaceuticals, and drug candidates. Catalytic approaches for enabling these transformations are of utmost importance and integral to advancing this area of synthesis. In exploring this chemical space, a combined experimental and computational mechanistic study of pyranylation and 2-deoxygalactosylation catalyzed by a cationic thiourea organocatalyst is reported. To this end, a thiourea-cyclopropenium organocatalyst was employed as a model system in combination with an arsenal of mechanistic techniques, including 13C kinetic isotope effect experiments, deuterated labeling studies, variable-temperature 1H NMR spectroscopy, and density functional theory calculations. From these studies, two distinct reaction pathways were identified for this transformation corresponding to either dual hydrogen bond (H-bond) activation or Brønsted acid catalysis. The former involving thiourea orchestrated bifurcated hydrogen bonding proceeded in an asynchronous concerted fashion. In contrast, the latter stepwise mechanism involving Brønsted acid catalysis hinged upon the formation of an oxocarbenium intermediate accompanied by subsequent alcohol addition.
Collapse
Affiliation(s)
- Ivor Smajlagic
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| | - Matt Guest
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| | - Rocío Durán
- Laboratorio de Química Teórica Computacional (QTC), Departamento de Química-Física, Facultad de Química y de Farmacia , Pontificia Universidad Católica de Chile , Av. Vicuña Mackenna 4860 , Macul, Santiago , Chile
| | - Barbara Herrera
- Laboratorio de Química Teórica Computacional (QTC), Departamento de Química-Física, Facultad de Química y de Farmacia , Pontificia Universidad Católica de Chile , Av. Vicuña Mackenna 4860 , Macul, Santiago , Chile
| | - Travis Dudding
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| |
Collapse
|
36
|
Zheng Z, Lin J, Sun Y, Zhang S. Threonine-derived thioureas as bifunctional organocatalysts for enantioselective Michael addition. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
37
|
Mato R, Reyes E, Carrillo L, Uria U, Prieto L, Manzano R, Vicario JL. Catalytic enantioselective domino Michael/transannular aldol reaction under bifunctional catalysis. Chem Commun (Camb) 2020; 56:13149-13152. [DOI: 10.1039/d0cc05981a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral bifunctional tertiary amine/squaramides catalyze the enantioselective Michael/transannular aldol reaction on medium-sized cyclic ketoenones leading to bicycle[5.4.0]undecanes.
Collapse
Affiliation(s)
- Raquel Mato
- Department of Organic Chemistry II
- University of the Basque Country
- 48080 Bilbao
- Spain
| | - Efraim Reyes
- Department of Organic Chemistry II
- University of the Basque Country
- 48080 Bilbao
- Spain
| | - Luisa Carrillo
- Department of Organic Chemistry II
- University of the Basque Country
- 48080 Bilbao
- Spain
| | - Uxue Uria
- Department of Organic Chemistry II
- University of the Basque Country
- 48080 Bilbao
- Spain
| | - Liher Prieto
- Department of Organic Chemistry II
- University of the Basque Country
- 48080 Bilbao
- Spain
| | - Ruben Manzano
- Department of Organic Chemistry II
- University of the Basque Country
- 48080 Bilbao
- Spain
| | - Jose L. Vicario
- Department of Organic Chemistry II
- University of the Basque Country
- 48080 Bilbao
- Spain
| |
Collapse
|
38
|
Chahal MK, Payne DT, Matsushita Y, Labuta J, Ariga K, Hill JP. Molecular Engineering of β‐Substituted Oxoporphyrinogens for Hydrogen‐Bond Donor Catalysis. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mandeep K. Chahal
- International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) Namiki 1‐1, Tsukuba 305‐0044 Ibaraki Japan
| | - Daniel T. Payne
- International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) Namiki 1‐1, Tsukuba 305‐0044 Ibaraki Japan
| | - Yoshitaka Matsushita
- Research Network and Facility Services Division National Institute for Materials Science (NIMS) 1‐2–1 Sengen, Tsukuba 305‐0047 Ibaraki Japan
| | - Jan Labuta
- International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) Namiki 1‐1, Tsukuba 305‐0044 Ibaraki Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) Namiki 1‐1, Tsukuba 305‐0044 Ibaraki Japan
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5‐1–5 Kashiwanoha, Kashiwa 277‐8561 Chiba Japan
| | - Jonathan P. Hill
- International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) Namiki 1‐1, Tsukuba 305‐0044 Ibaraki Japan
| |
Collapse
|
39
|
Smajlagic I, Carlson B, Rosano N, Foy H, Dudding T. Charge-enhanced thiourea catalysts as hydrogen bond donors for Friedel‒Crafts Alkylations. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Gimeno MC, Herrera RP. Hydrogen Bonding and Internal or External Lewis or Brønsted Acid Assisted (Thio)urea Catalysts. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901344] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- M. Concepción Gimeno
- Departamento de Química Inorgánica; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza; C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Raquel P. Herrera
- Departamento de Química Orgánica. Laboratorio de Organocatálisis Asimétrica; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza; C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
41
|
Jagannathan JR, Diemoz KM, Targos K, Fettinger JC, Franz AK. Kinetic and Binding Studies Reveal Cooperativity and Off-Cycle Competition for H-Bonding Catalysis with Silsesquioxane Silanols. Chemistry 2019; 25:14953-14958. [PMID: 31448459 DOI: 10.1002/chem.201903693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 01/23/2023]
Abstract
The catalytic activity, kinetics, and quantification of H-bonding ability of incompletely condensed polyhedral oligomeric silsesquioxane (POSS) silanols are reported. POSS-triols, a homogeneous model for vicinal silica surface sites, exhibit enhanced H-bonding compared with other silanols and alcohols as quantified using a 31 P NMR probe. Evaluation of a Friedel-Crafts addition reaction shows that phenyl-POSS-triol is active as an H-bond donor catalyst whereas other POSS silanols studied are not. An in-depth kinetic study (using RPKA and VTNA) highlights the concentration-dependent H-bonding behavior of POSS-triols, which is attributed to intermolecular association forming an off-cycle dimeric species. Binding constants provide additional support for reduced H-bond ability at higher concentrations, which is attributed to competitive association. POSS-triol self-association disrupts H-bond donor abilities relevant for catalysis by reducing the concentration of active monomeric catalyst.
Collapse
Affiliation(s)
- Jake R Jagannathan
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Kayla M Diemoz
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Karina Targos
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - James C Fettinger
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Annaliese K Franz
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| |
Collapse
|
42
|
Mokeev MV, Ostanin SA, Zuev VV. Prototropic behavior of cyclohexane substituted urethane and urea compounds. Observation of H-bond mediated 4HJH1H3 coupling constants across urea fragments. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
43
|
Žabka M, Kocian A, Bilka S, Andrejčák S, Šebesta R. Transformation of Racemic Azlactones into Enantioenriched Dihydropyrroles and Lactones Enabled by Hydrogen-Bond Organocatalysis. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Matej Žabka
- Department of Organic Chemistry; Faculty of Natural Science; Comenius University in Bratislava; Mlynska dolina, Ilkovičova 6 84215 Bratislava Slovakia
| | - Adrián Kocian
- Department of Organic Chemistry; Faculty of Natural Science; Comenius University in Bratislava; Mlynska dolina, Ilkovičova 6 84215 Bratislava Slovakia
| | - Stanislav Bilka
- Department of Organic Chemistry; Faculty of Natural Science; Comenius University in Bratislava; Mlynska dolina, Ilkovičova 6 84215 Bratislava Slovakia
| | - Samuel Andrejčák
- Department of Organic Chemistry; Faculty of Natural Science; Comenius University in Bratislava; Mlynska dolina, Ilkovičova 6 84215 Bratislava Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry; Faculty of Natural Science; Comenius University in Bratislava; Mlynska dolina, Ilkovičova 6 84215 Bratislava Slovakia
| |
Collapse
|
44
|
Izquierdo J, Demurget N, Landa A, Brinck T, Mercero JM, Dinér P, Oiarbide M, Palomo C. Asymmetric Synthesis of Adjacent Tri- and Tetrasubstituted Carbon Stereocenters: Organocatalytic Aldol Reaction of an Hydantoin Surrogate with Azaarene 2-Carbaldehydes. Chemistry 2019; 25:12431-12438. [PMID: 31318987 DOI: 10.1002/chem.201902817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/15/2019] [Indexed: 12/13/2022]
Abstract
A bifunctional amine/squaramide catalyst promoted direct aldol addition of an hydantoin surrogate to pyridine 2-carbaldehyde N-oxides to afford adducts bearing two vicinal tertiary/quaternary carbons in high diastereo- and enantioselectivity (d.r. up to >20:1; ee up to 98 %) is reported. Acid hydrolysis of adducts followed by reduction of the N-oxide group yields enantiopure carbinol-tethered quaternary hydantoin-azaarene conjugates with densely functionalized skeletons. DFT studies of the potential energy surface (B3LYP/6-31+G(d)+CPCM (dichloromethane)) of the reaction correlate the activity of different catalysts and support an intramolecular hydrogen-bond-assisted activation of the squaramide moiety in the transition state of the catalytic reaction.
Collapse
Affiliation(s)
- June Izquierdo
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizabal 3, 20018, San Sebastián, Spain
| | - Noémie Demurget
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizabal 3, 20018, San Sebastián, Spain
| | - Aitor Landa
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizabal 3, 20018, San Sebastián, Spain
| | - Tore Brinck
- Department of Chemistry, KTH Royal Institute of, Technology, Teknikringen 30, 100 44, Stockholm, Sweden
| | - Jose M Mercero
- Kimika Fakultatea, Euskal Herriko Unibertsitatea, (UPV/EHU) & Donostia International Physics Center (DIPC), Donostia, Spain
| | - Peter Dinér
- Department of Chemistry, KTH Royal Institute of, Technology, Teknikringen 30, 100 44, Stockholm, Sweden
| | - Mikel Oiarbide
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizabal 3, 20018, San Sebastián, Spain
| | - Claudio Palomo
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizabal 3, 20018, San Sebastián, Spain
| |
Collapse
|
45
|
Wu Y, Jhong Y, Lin H, Swain SP, Tsai HG, Hou D. Organocatalyzed Enantioselective Michael Addition of 2‐Hydroxypyridines and α,β‐Unsaturated 1,4‐Dicarbonyl Compounds. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900997] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yu‐Chun Wu
- Department of ChemistryNational Central University 300 Jhong-Da Rd., Jhong-Li Taoyuan Taiwan 32001
| | - Yi Jhong
- Department of ChemistryNational Central University 300 Jhong-Da Rd., Jhong-Li Taoyuan Taiwan 32001
| | - Hui‐Jie Lin
- Department of ChemistryNational Central University 300 Jhong-Da Rd., Jhong-Li Taoyuan Taiwan 32001
| | - Sharada Prasanna Swain
- Department of ChemistryNational Central University 300 Jhong-Da Rd., Jhong-Li Taoyuan Taiwan 32001
- Assistant Professor-Selection Grade, School of Health SciencesUniversity of Petroleum and Energy Studies Bidholi, Dehradun- 248007 India
| | - Hui‐Hsu Gavin Tsai
- Department of ChemistryNational Central University 300 Jhong-Da Rd., Jhong-Li Taoyuan Taiwan 32001
- Research Center of New Generation Light Driven Photovoltaic Module InstitutionNational Central University 300 Jhong-Da Rd., Jhong-Li Taoyuan Taiwan 32001
| | - Duen‐Ren Hou
- Department of ChemistryNational Central University 300 Jhong-Da Rd., Jhong-Li Taoyuan Taiwan 32001
| |
Collapse
|
46
|
Chen XM, Lei CW, Yue DF, Zhao JQ, Wang ZH, Zhang XM, Xu XY, Yuan WC. Organocatalytic Asymmetric Dearomatization of 3-Nitroindoles and 3-Nitrobenzothiophenes via Thiol-Triggered Diastereo- and Enantioselective Double Michael Addition Reaction. Org Lett 2019; 21:5452-5456. [DOI: 10.1021/acs.orglett.9b01688] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xin-Meng Chen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan-Wen Lei
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deng-Feng Yue
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Xiao-Mei Zhang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiao-Ying Xu
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
47
|
Duong Q, Schifferer L, García Mancheño O. Nucleophile Screening in Anion‐Binding Reissert‐Type Reactions of Quinolines with Chiral Tetrakis(triazole) Catalysts. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900566] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qui‐Nhi Duong
- Organic Chemistry Institute Münster University Corrensstr. 40 48149 Münster Germany
| | - Lukas Schifferer
- Organic Chemistry Institute Münster University Corrensstr. 40 48149 Münster Germany
| | - Olga García Mancheño
- Organic Chemistry Institute Münster University Corrensstr. 40 48149 Münster Germany
| |
Collapse
|
48
|
Zhang YP, You Y, Zhao JQ, Zhang XM, Xu XY, Yuan WC. Chiral Bifunctional Amine-Squaramide-Catalyzed Highly Diastereo- and Enantioselective Michael/Aldol Cascade Reaction of 2-Mercaptobenzaldehyde and α,β-Unsaturated 7-Azaindoline Amides. J Org Chem 2019; 84:7984-7994. [DOI: 10.1021/acs.joc.9b00837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yan-Ping Zhang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Xiao-Mei Zhang
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiao-Ying Xu
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
49
|
Nakamura H, Tsukano C, Yoshida T, Yasui M, Yokouchi S, Kobayashi Y, Igarashi M, Takemoto Y. Total Synthesis of Caprazamycin A: Practical and Scalable Synthesis of syn-β-Hydroxyamino Acids and Introduction of a Fatty Acid Side Chain to 1,4-Diazepanone. J Am Chem Soc 2019; 141:8527-8540. [PMID: 31067040 DOI: 10.1021/jacs.9b02220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The first total synthesis of caprazamycin A (1), a representative liponucleoside antibiotic, is described. Diastereoselective aldol reactions of aldehydes 12 and 25-27, derived from uridine, with diethyl isocyanomalonate 13 and phenylcarbamate 21 were investigated using thiourea catalysts 14 or bases to synthesize syn-β-hydroxyamino acid derivatives. The 1,4-diazepanone core of 1 was constructed using a Mitsunobu reaction, and the fatty acid side chain was introduced using a stepwise sequence based on model studies. Notably, global deprotection was realized using palladium black and formic acid without hydrogenating the olefin in the uridine unit.
Collapse
Affiliation(s)
- Hugh Nakamura
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501 , Japan
| | - Chihiro Tsukano
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501 , Japan
| | - Takuma Yoshida
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501 , Japan
| | - Motohiro Yasui
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501 , Japan
| | - Shinsuke Yokouchi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501 , Japan
| | - Yusuke Kobayashi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501 , Japan
| | - Masayuki Igarashi
- Institute of Microbial Chemistry (BIKAKEN), Tokyo , 3-14-23 Kamiosaki , Shinagawa-ku, Tokyo 141-0021 , Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku, Kyoto 606-8501 , Japan
| |
Collapse
|
50
|
Izzo JA, Myshchuk Y, Hirschi JS, Vetticatt MJ. Transition state analysis of an enantioselective Michael addition by a bifunctional thiourea organocatalyst. Org Biomol Chem 2019; 17:3934-3939. [PMID: 30942247 PMCID: PMC6774437 DOI: 10.1039/c9ob00072k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mechanism of the enantioselective Michael addition of diethyl malonate to trans-β-nitrostyrene catalyzed by a tertiary amine thiourea organocatalyst is explored using experimental 13C kinetic isotope effects and density functional theory calculations. Large primary 13C KIEs on the bond-forming carbon atoms of both reactants suggest that carbon-carbon bond formation is the rate-determining step in the catalytic cycle. This work resolves conflicting mechanistic pictures that have emerged from prior experimental and computational studies.
Collapse
Affiliation(s)
- Joseph A Izzo
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA.
| | | | | | | |
Collapse
|