1
|
Eid S, Lee S, Verkuyl CE, Almanza D, Hanna J, Shenouda S, Belotserkovsky A, Zhao W, Watts JC. The importance of prion research. Biochem Cell Biol 2024; 102:448-471. [PMID: 38996387 DOI: 10.1139/bcb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the "prion-like" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important "unsolved mysteries" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Claire E Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dustin Almanza
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph Hanna
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Davis AJ, Hesting S, Jaster L, Mosley JE, Raghavan A, Raghavan RK. Spatiotemporal occupancy patterns of chronic wasting disease. Front Vet Sci 2024; 11:1492743. [PMID: 39634764 PMCID: PMC11615082 DOI: 10.3389/fvets.2024.1492743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Chronic wasting disease (CWD) among cervids in Kansas has seen a consistent rise over the years, both in terms of the number of infections and its geographical spread. In this study, we assessed the occupancy patterns of CWD among white-tailed deer and mule deer across the state. Methods Using surveillance data collected since 2005, we applied a dynamic patch occupancy model within a Bayesian framework, incorporating various environmental covariates. Using principal components analysis, 13 fully orthogonal components representing cervid habitat, soil, and elevation were derived. Competing models with different temporal patterns were fit, and the best model selected based on Watanabe-AIC values and AUC value of 0.89. Results The occupancy pattern produced by this model revealed a steady progression of the disease toward the east and southeast of the state. A random forest analysis of covariates at annual intervals indicated that geographic location, elevation, areas occupied by mixed forests, and several soil attributes (pH, clay content, depth to restrictive layer, available water content, and bulk density) explained most of the variability in the surveillance data (R 2 = 0.96). Discussion The findings reported in this study are the first for the state of Kansas but are consistent with previous findings from other geographic jurisdictions in the US and Canada. This consistency underscores their value in designing surveillance and management programs.
Collapse
Affiliation(s)
- Amy J. Davis
- National Wildlife Research Center, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Shane Hesting
- Kansas Department of Wildlife and Parks, Emporia, KS, United States
| | - Levi Jaster
- Kansas Department of Wildlife and Parks, Emporia, KS, United States
| | - Joseph E. Mosley
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Akila Raghavan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Ram K. Raghavan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
- Department of Public Health, College of Health Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
3
|
Do K, Benavente R, Catumbela CSG, Khan U, Kramm C, Soto C, Morales R. Adaptation of the protein misfolding cyclic amplification (PMCA) technique for the screening of anti-prion compounds. FASEB J 2024; 38:e23843. [PMID: 39072789 PMCID: PMC11453167 DOI: 10.1096/fj.202400614r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Prion diseases result from the misfolding of the physiological prion protein (PrPC) to a pathogenic conformation (PrPSc). Compelling evidence indicates that prevention and/or reduction of PrPSc replication are promising therapeutic strategies against prion diseases. However, the existence of different PrPSc conformations (or strains) associated with disease represents a major problem when identifying anti-prion compounds. Efforts to identify strain-specific anti-prion molecules are limited by the lack of biologically relevant high-throughput screening platforms to interrogate compound libraries. Here, we describe adaptations to the protein misfolding cyclic amplification (PMCA) technology (able to faithfully replicate PrPSc strains) that increase its throughput to facilitate the screening of anti-prion molecules. The optimized PMCA platform includes a reduction in sample and reagents, as well as incubation/sonication cycles required to efficiently replicate and detect rodent-adapted and cervid PrPSc strains. The visualization of PMCA products was performed via dot blots, a method that contributed to reduced processing times. These technical changes allowed us to evaluate small molecules with previously reported anti-prion activity. This proof-of-principle screening was evaluated for six rodent-adapted prion strains. Our data show that these compounds targeted either none, all or some PrPSc strains at variable concentrations, demonstrating that this PMCA system is suitable to test compound libraries for putative anti-prion molecules targeting specific PrPSc strains. Further analyses of a small compound library against deer prions demonstrate the potential of this new PMCA format to identify strain-specific anti-prion molecules. The data presented here demonstrate the use of the PMCA technique in the selection of prion strain-specific anti-prion compounds.
Collapse
Affiliation(s)
- Katherine Do
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Celso S. G. Catumbela
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Uffaf Khan
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Carlos Kramm
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| |
Collapse
|
4
|
Harpaz E, Cazzaniga FA, Tran L, Vuong TT, Bufano G, Salvesen Ø, Gravdal M, Aldaz D, Sun J, Kim S, Celauro L, Legname G, Telling GC, Tranulis MA, Benestad SL, Espenes A, Moda F, Ersdal C. Transmission of Norwegian reindeer CWD to sheep by intracerebral inoculation results in an unusual phenotype and prion distribution. Vet Res 2024; 55:94. [PMID: 39075607 PMCID: PMC11285437 DOI: 10.1186/s13567-024-01350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Chronic wasting disease (CWD), a prion disease affecting cervids, has been known in North America (NA) since the 1960s and emerged in Norway in 2016. Surveillance and studies have revealed that there are different forms of CWD in Fennoscandia: contagious CWD in Norwegian reindeer and sporadic CWD in moose and red deer. Experimental studies have demonstrated that NA CWD prions can infect various species, but thus far, there have been no reports of natural transmission to non-cervid species. In vitro and laboratory animal studies of the Norwegian CWD strains suggest that these strains are different from the NA strains. In this work, we describe the intracerebral transmission of reindeer CWD to six scrapie-susceptible sheep. Detection methods included immunohistochemistry (IHC), western blot (WB), enzyme-linked immunosorbent assay (ELISA), real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA). In the brain, grey matter vacuolation was limited, while all sheep exhibited vacuolation of the white matter. IHC and WB conventional detection techniques failed to detect prions; however, positive seeding activity with the RT-QuIC and PMCA amplification techniques was observed in the central nervous system of all but one sheep. Prions were robustly amplified in the lymph nodes of all animals, mainly by RT-QuIC. Additionally, two lymph nodes were positive by WB, and one was positive by ELISA. These findings suggest that sheep can propagate reindeer CWD prions after intracerebral inoculation, resulting in an unusual disease phenotype and prion distribution with a low amount of detectable prions.
Collapse
Affiliation(s)
- Erez Harpaz
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| | - Federico Angelo Cazzaniga
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Linh Tran
- Section for Biohazard and Pathology, Norwegian Veterinary Institute, Ås, Norway
| | - Tram T Vuong
- Section for Biohazard and Pathology, Norwegian Veterinary Institute, Ås, Norway
| | - Giuseppe Bufano
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Øyvind Salvesen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
- Åkerblå AS, Haugesund, Norway
| | - Maiken Gravdal
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| | - Devin Aldaz
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Julianna Sun
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sehun Kim
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Luigi Celauro
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Glenn C Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Michael A Tranulis
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Sylvie L Benestad
- Section for Biohazard and Pathology, Norwegian Veterinary Institute, Ås, Norway
| | - Arild Espenes
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Fabio Moda
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cecilie Ersdal
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway.
| |
Collapse
|
5
|
Prion agents (1st section). Transfusion 2024; 64 Suppl 1:S4-S18. [PMID: 38394039 DOI: 10.1111/trf.17627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 02/25/2024]
|
6
|
Pereira JC, Gonçalves-Anjo N, Orge L, Pires MA, Rocha S, Figueira L, Matos AC, Silva J, Mendonça P, Carvalho P, Tavares P, Lima C, Alves A, Esteves A, Pinto ML, Pires I, Gama A, Sargo R, Silva F, Seixas F, Vieira-Pinto M, Bastos E. Estimating sequence diversity of prion protein gene ( PRNP) in Portuguese populations of two cervid species: red deer and fallow deer. Prion 2023; 17:75-81. [PMID: 36945178 PMCID: PMC10038017 DOI: 10.1080/19336896.2023.2191540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Among the transmissible spongiform encephalopathies (TSEs), chronic wasting disease (CWD) in cervids is now a rising concern in wildlife within Europe, after the detection of the first case in Norway in 2016, in a wild reindeer and until June 2022 a total of 34 cases were described in Norway, Sweden and Finland. The definite diagnosis is post-mortem, performed in target areas of the brain and lymph nodes. Samples are first screened using a rapid test and, if positive, confirmed by immunohistochemistry and Western immunoblotting. The study of the genetics of the prion protein gene, PRNP, has been proved to be a valuable tool for determining the relative susceptibility to TSEs. In the present study, the exon 3 of PRNP gene of 143 samples from red deer (Cervus elaphus) and fallow deer (Dama dama) of Portugal was analysed. Three single nucleotide polymorphisms (SNPs) were found in red deer - codon A136A, codon T98A, codon Q226E - and no sequence variation was detected in fallow deer. The low genetic diversity found in our samples is compatible with previous studies in Europe. The comparison with results from North America suggests that the free-ranging deer from our study may present susceptibility to CWD, although lack of experimental data and the necessity of continuous survey are necessary to evaluate these populations.
Collapse
Affiliation(s)
- Jorge C Pereira
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Nuno Gonçalves-Anjo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Leonor Orge
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Maria A Pires
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Sara Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Luís Figueira
- Polytechnic Institute of Castelo Branco (IPCB), Castelo Branco, Portugal
| | - Ana C Matos
- Polytechnic Institute of Castelo Branco (IPCB), Castelo Branco, Portugal
| | - João Silva
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Paula Mendonça
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Paulo Carvalho
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Paula Tavares
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Carla Lima
- Pathology Laboratory, UEISPSA, National Institute for Agricultural and Veterinary Research (INIAV), I.P, Oeiras, Portugal
| | - Anabela Alves
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | | | - Maria L Pinto
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Isabel Pires
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Roberto Sargo
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Filipe Silva
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | | | - Estela Bastos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
7
|
Benavente R, Reed JH, Lockwood M, Morales R. PMCA screening of retropharyngeal lymph nodes in white-tailed deer and comparisons with ELISA and IHC. Sci Rep 2023; 13:20171. [PMID: 37978312 PMCID: PMC10656533 DOI: 10.1038/s41598-023-47105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting cervids. CWD diagnosis is conducted through enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) in retropharyngeal lymph nodes. Unfortunately, these techniques have limited sensitivity against the biomarker (CWD-prions). Two in vitro prion amplification techniques, real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA), have shown promise in detecting CWD-prions in tissues and bodily fluids. Recent studies have demonstrated that RT-QuIC yields similar results compared to ELISA and IHC. Here, we analyzed 1003 retropharyngeal lymph nodes (RPLNs) from Texas white-tailed deer. PMCA detected CWD at a higher rate compared to ELISA/IHC, identified different prion strains, and revealed the presence of CWD-prions in places with no previous history. These findings suggest that PMCA exhibits greater sensitivity than current standard techniques and could be valuable for rapid and strain-specific CWD detection.
Collapse
Affiliation(s)
- Rebeca Benavente
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - J Hunter Reed
- Texas Parks and Wildlife Department, Kerrville, TX, USA
| | | | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
8
|
Islam MR, Bulut U, Feria-Arroyo TP, Tyshenko MG, Oraby T. Modeling the Impact of Climate Change on Cervid Chronic Wasting Disease in Semi-Arid South Texas. FRONTIERS IN EPIDEMIOLOGY 2022; 2:889280. [PMID: 38455276 PMCID: PMC10910938 DOI: 10.3389/fepid.2022.889280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/01/2022] [Indexed: 03/09/2024]
Abstract
Chronic wasting disease (CWD) is a spongiform encephalopathy disease caused by the transmission of infectious prion agents. CWD is a fatal disease that affects wild and farmed cervids in North America with few cases reported overseas. Social interaction of cervids, feeding practices by wildlife keepers and climate effects on the environmental carrying capacity all can affect CWD transmission in deer. Wildlife deer game hunting is economically important to the semi-arid South Texas region and is affected by climate change. In this paper, we model and investigate the effect of climate change on the spread of CWD using typical climate scenarios. We use a system of impulsive differential equations to depict the transmission of CWD between different age groups and gender of cervids. The carrying capacity and contact rates are assumed to depend on climate. Due to the polygamy of bucks, we use mating rates that depend on the number of bucks and does. We analyze the stability of the model and use simulations to study the effect of harvesting (culling) on eradicating the disease, given the climate of South Texas. We use typical climate change scenarios based on published data and our assumptions. For the climate indicator, we calculated and utilized the Standard Precipitation Evapotranspiration Index (SPEI). We found that climate change might hinder the efforts to reduce and effectively manage CWD as it becomes endemic to South Texas. The model shows the extinction of the deer population from this region is a likely outcome.
Collapse
Affiliation(s)
- Md Rafiul Islam
- Department of Mathematics, Iowa State University, Ames, IA, United States
| | - Ummugul Bulut
- Department of Mathematical, Physical, and Engineering Sciences, Texas A&M University-San Antonio, San Antonio, TX, United States
| | | | | | - Tamer Oraby
- School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|
9
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
10
|
DICTYOCAULUS CERVI-LIKE LUNGWORM INFECTION IN A ROCKY MOUNTAIN ELK (CERVUS CANADENSIS NELSONI) FROM WYOMING, USA. J Wildl Dis 2021; 57:71-81. [PMID: 33635975 DOI: 10.7589/jwd-d-20-00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/08/2020] [Indexed: 11/20/2022]
Abstract
Dictyocaulus spp. infections are common in North American cervids, with Dictyocaulus viviparus described as most common. A Rocky Mountain elk (Cervus canadensis nelsoni) was found dead in Wyoming, US with significant bronchitis and pneumonia. In the bronchi and trachea, numerous large nematodes were found and grossly identified as Dictyocaulus spp. lungworms. Macroscopic alterations, such as distended interlobular septa and edema with foam and mucus observed on cut surface and in trachea and bronchi, were consistent with those commonly described in D. viviparus infections. Female lungworms were identified to Dictyocaulus spp. level via morphologic examination and molecular analyses based on mitochondrial cyclooxygenase 1 and 18S ribosomal RNA genes. A phylogenetic analysis was conducted employing the maximum likelihood method. Based on both morphologic and genetic assays, the isolated lungworms were most likely a strain of Dictyocaulus cervi. Within the female adult worms, free first stage larvae were observed besides worm eggs, which had not been described for Dictyocaulus spp. Phylogenetic analysis revealed that our parasites clustered closely with D. cervi, forming a subclade with that species within a larger clade that includes Dictyocaulus eckerti. While the elk tested positive for chronic wasting disease, it is assumed that significant pathology in the present case was caused directly by infection with the D. cervi-like lungworm, not previously described in North America.
Collapse
|
11
|
Tewari D, Steward D, Fasnacht M, Livengood J. Detection by real-time quaking-induced conversion (RT-QuIC), ELISA, and IHC of chronic wasting disease prion in lymph nodes from Pennsylvania white-tailed deer with specific PRNP genotypes. J Vet Diagn Invest 2021; 33:943-948. [PMID: 34078193 DOI: 10.1177/10406387211021411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion-mediated, transmissible disease of cervids, including deer (Odocoileus spp.), which is characterized by spongiform encephalopathy and death of the prion-infected animals. Official surveillance in the United States using immunohistochemistry (IHC) and ELISA entails the laborious collection of lymphoid and/or brainstem tissue after death. New, highly sensitive prion detection methods, such as real-time quaking-induced conversion (RT-QuIC), have shown promise in detecting abnormal prions from both antemortem and postmortem specimens. We compared RT-QuIC with ELISA and IHC for CWD detection utilizing deer retropharyngeal lymph node (RLN) tissues in a diagnostic laboratory setting. The RLNs were collected postmortem from hunter-harvested animals. RT-QuIC showed 100% sensitivity and specificity for 50 deer RLN (35 positive by both IHC and ELISA, 15 negative) included in our study. All deer were also genotyped for PRNP polymorphism. Most deer were homozygous at codons 95, 96, 116, and 226 (QQ/GG/AA/QQ genotype, with frequency 0.86), which are the codons implicated in disease susceptibility. Heterozygosity was noticed in Pennsylvania deer, albeit at a very low frequency, for codons 95GS (0.06) and 96QH (0.08), but deer with these genotypes were still found to be CWD prion-infected.
Collapse
Affiliation(s)
- Deepanker Tewari
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture-Bureau of Animal Health and Diagnostics, Harrisburg, PA, USA
| | - David Steward
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture-Bureau of Animal Health and Diagnostics, Harrisburg, PA, USA
| | - Melinda Fasnacht
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture-Bureau of Animal Health and Diagnostics, Harrisburg, PA, USA
| | - Julia Livengood
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture-Bureau of Animal Health and Diagnostics, Harrisburg, PA, USA
| |
Collapse
|
12
|
Arifin MI, Hannaoui S, Chang SC, Thapa S, Schatzl HM, Gilch S. Cervid Prion Protein Polymorphisms: Role in Chronic Wasting Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22052271. [PMID: 33668798 PMCID: PMC7956812 DOI: 10.3390/ijms22052271] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease found in both free-ranging and farmed cervids. Susceptibility of these animals to CWD is governed by various exogenous and endogenous factors. Past studies have demonstrated that polymorphisms within the prion protein (PrP) sequence itself affect an animal's susceptibility to CWD. PrP polymorphisms can modulate CWD pathogenesis in two ways: the ability of the endogenous prion protein (PrPC) to convert into infectious prions (PrPSc) or it can give rise to novel prion strains. In vivo studies in susceptible cervids, complemented by studies in transgenic mice expressing the corresponding cervid PrP sequence, show that each polymorphism has distinct effects on both PrPC and PrPSc. It is not entirely clear how these polymorphisms are responsible for these effects, but in vitro studies suggest they play a role in modifying PrP epitopes crucial for PrPC to PrPSc conversion and determining PrPC stability. PrP polymorphisms are unique to one or two cervid species and most confer a certain degree of reduced susceptibility to CWD. However, to date, there are no reports of polymorphic cervid PrP alleles providing absolute resistance to CWD. Studies on polymorphisms have focused on those found in CWD-endemic areas, with the hope that understanding the role of an animal's genetics in CWD can help to predict, contain, or prevent transmission of CWD.
Collapse
Affiliation(s)
- Maria Immaculata Arifin
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Samia Hannaoui
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sheng Chun Chang
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Simrika Thapa
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hermann M. Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.I.A.); (S.H.); (S.C.C.); (S.T.); (H.M.S.)
- Calgary Prion Research Unit, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
13
|
Nemani SK, Myskiw JL, Lamoureux L, Booth SA, Sim VL. Exposure Risk of Chronic Wasting Disease in Humans. Viruses 2020; 12:v12121454. [PMID: 33348562 PMCID: PMC7766630 DOI: 10.3390/v12121454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/02/2023] Open
Abstract
The majority of human prion diseases are sporadic, but acquired disease can occur, as seen with variant Creutzfeldt–Jakob disease (vCJD) following consumption of bovine spongiform encephalopathy (BSE). With increasing rates of cervid chronic wasting disease (CWD), there is concern that a new form of human prion disease may arise. Currently, there is no evidence of transmission of CWD to humans, suggesting the presence of a strong species barrier; however, in vitro and in vivo studies on the zoonotic potential of CWD have yielded mixed results. The emergence of different CWD strains is also concerning, as different strains can have different abilities to cross species barriers. Given that venison consumption is common in areas where CWD rates are on the rise, increased rates of human exposure are inevitable. If CWD was to infect humans, it is unclear how it would present clinically; in vCJD, it was strain-typing of vCJD prions that proved the causal link to BSE. Therefore, the best way to screen for CWD in humans is to have thorough strain-typing of harvested cervids and human CJD cases so that we will be in a position to detect atypical strains or strain shifts within the human CJD population.
Collapse
Affiliation(s)
- Satish K. Nemani
- Centre for Prions and Protein Folding Diseases, Edmonton, AB T6G 2R3, Canada;
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jennifer L. Myskiw
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (J.L.M.); (L.L.); (S.A.B.)
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3R2, Canada
| | - Lise Lamoureux
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (J.L.M.); (L.L.); (S.A.B.)
| | - Stephanie A. Booth
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (J.L.M.); (L.L.); (S.A.B.)
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3R2, Canada
| | - Valerie L. Sim
- Centre for Prions and Protein Folding Diseases, Edmonton, AB T6G 2R3, Canada;
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence:
| |
Collapse
|
14
|
Arifin MI, Staskevicius A, Shim SY, Huang YH, Fenton H, McLoughlin PD, Mitchell G, Cullingham CI, Gilch S. Large-scale prion protein genotyping in Canadian caribou populations and potential impact on chronic wasting disease susceptibility. Mol Ecol 2020; 29:3830-3840. [PMID: 32810895 PMCID: PMC7590118 DOI: 10.1111/mec.15602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
Polymorphisms within the prion protein gene (Prnp) are an intrinsic factor that can modulate chronic wasting disease (CWD) pathogenesis in cervids. Although wild European reindeer (Rangifer tarandus tarandus) were infected with CWD, as yet there have been no reports of the disease in North American caribou (R. tarandus spp.). Previous Prnp genotyping studies on approximately 200 caribou revealed single nucleotide polymorphisms (SNPs) at codons 2 (V/M), 129 (G/S), 138 (S/N), 146 (N/n) and 169 (V/M). The impact of these polymorphisms on CWD transmission is mostly unknown, except for codon 138. Reindeer carrying at least one allele encoding for asparagine (138NN or 138SN) are less susceptible to clinical CWD upon infection by natural routes, with the majority of prions limited to extraneural tissues. We sequenced the Prnp coding region of two caribou subspecies (n = 986) from British Columbia, Saskatchewan, Yukon, Nunavut and the Northwest Territories, to identify SNPs and their frequencies. Genotype frequencies at codon 138 differed significantly between barren-ground (R. t. groenlandicus) and woodland (R. t. caribou) caribou when we excluded the Chinchaga herd (p < .05). We also found new variants at codons 153 (Y/F) and 242 (P/L). Our findings show that the 138N allele is rare among caribou in areas with higher risk of contact with CWD-infected species. As both subspecies are classified as Threatened and play significant roles in North American Indigenous culture, history, food security and the economy, determining frequencies of Prnp genotypes associated with susceptibility to CWD is important for future wildlife management measures.
Collapse
Affiliation(s)
- Maria Immaculata Arifin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Antanas Staskevicius
- National and OIE Reference Laboratory for Scrapie and CWD, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Su Yeon Shim
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Yuan-Hung Huang
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Heather Fenton
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts
| | | | - Gordon Mitchell
- National and OIE Reference Laboratory for Scrapie and CWD, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | | | - Sabine Gilch
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Abdulrahman BA, Tahir W, Doh-Ura K, Gilch S, Schatzl HM. Combining autophagy stimulators and cellulose ethers for therapy against prion disease. Prion 2020; 13:185-196. [PMID: 31578923 PMCID: PMC6779372 DOI: 10.1080/19336896.2019.1670928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders that affect animals and humans. Prions are proteinaceous infectious particles consisting of a misfolded isoform of the cellular prion protein PrPC, termed PrPSc. PrPSc accumulates in infected neurons due to partial resistance to proteolytic digestion. Using compounds that interfere with the production of PrPSc or enhance its degradation cure prion infection in vitro, but most drugs failed when used to treat prion-infected rodents. In order to synergize the effect of anti-prion drugs, we combined drugs interfering with the generation of PrPSc with compounds inducing PrPSc degradation. Here, we tested autophagy stimulators (rapamycin or AR12) and cellulose ether compounds (TC-5RW or 60SH-50) either as single or combination treatment of mice infected with RML prions. Single drug treatments significantly extended the survival compared to the untreated group. As anticipated, also all the combination therapy groups showed extended survival compared to the untreated group, but no combination treatment showed superior effects to 60SH-50 or TC-5RW treatment alone. Unexpectedly, we later found that combining autophagy stimulator and cellulose ether treatment in cultured neuronal cells mitigated the pro-autophagic activity of AR12 and rapamycin, which can in part explain the in vivo results. Overall, we show that it is critical to exclude antagonizing drug effects when attempting combination therapy. In addition, we identified AR-12 as a pro-autophagic drug that significantly extends survival of prion-infected mice, has no adverse side effects on the animals used in this study, and can be useful in future studies.
Collapse
Affiliation(s)
- Basant A Abdulrahman
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University , Cairo , Egypt
| | - Waqas Tahir
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada
| | - Hermann M Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
16
|
Bistaffa E, Vuong TT, Cazzaniga FA, Tran L, Salzano G, Legname G, Giaccone G, Benestad SL, Moda F. Use of different RT-QuIC substrates for detecting CWD prions in the brain of Norwegian cervids. Sci Rep 2019; 9:18595. [PMID: 31819115 PMCID: PMC6901582 DOI: 10.1038/s41598-019-55078-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic wasting disease (CWD) is a highly contagious prion disease affecting captive and free-ranging cervid populations. CWD has been detected in United States, Canada, South Korea and, most recently, in Europe (Norway, Finland and Sweden). Animals with CWD release infectious prions in the environment through saliva, urine and feces sustaining disease spreading between cervids but also potentially to other non-cervids ruminants (e.g. sheep, goats and cattle). In the light of these considerations and due to CWD unknown zoonotic potential, it is of utmost importance to follow specific surveillance programs useful to minimize disease spreading and transmission. The European community has already in place specific surveillance measures, but the traditional diagnostic tests performed on nervous or lymphoid tissues lack sensitivity. We have optimized a Real-Time Quaking-Induced Conversion (RT-QuIC) assay for detecting CWD prions with high sensitivity and specificity to try to overcome this problem. In this work, we show that bank vole prion protein (PrP) is an excellent substrate for RT-QuIC reactions, enabling the detection of trace-amounts of CWD prions, regardless of prion strain and cervid species. Beside supporting the traditional diagnostic tests, this technology could be exploited for detecting prions in peripheral tissues from live animals, possibly even at preclinical stages of the disease.
Collapse
Affiliation(s)
- Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | | | - Federico Angelo Cazzaniga
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | - Linh Tran
- Norwegian Veterinary Institute, Oslo, Norway
| | - Giulia Salzano
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Department of Neuroscience, Trieste, Italy
| | - Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Department of Neuroscience, Trieste, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | | | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy.
| |
Collapse
|
17
|
Trone‐Launer EK, Wang J, Lu G, Mateus‐Pinilla NE, Zick PR, Lamer JT, Shelton PA, Jacques CN. Differential gene expression in chronic wasting disease-positive white-tailed deer ( Odocoileus virginianus). Ecol Evol 2019; 9:12600-12612. [PMID: 31788200 PMCID: PMC6875659 DOI: 10.1002/ece3.5724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022] Open
Abstract
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) that affects cervid species throughout North America. We evaluated gene expression in white-tailed deer collected by Illinois Department of Natural Resource wildlife managers during annual population reduction (e.g., sharpshooting) and disease monitoring efforts throughout the CWD-endemic area of northcentral Illinois. We conducted comparative transcriptomic analysis of liver and retropharyngeal lymph node tissue samples between CWD-positive (n = 5) and CWD-not detected (n = 5) deer. A total of 74,479 transcripts were assembled, and 51,661 (69.36%) transcripts were found to have matched proteins in NCBI-NR and UniProt. Our analysis of functional categories showed 40,308 transcripts were assigned to at least one Gene Ontology term and 37,853 transcripts were involved in at least one pathway. We identified a total of 59 differentially expressed genes (DEGs) in CWD-positive deer, of which 36 and 23 were associated with liver and retropharyngeal lymph node tissues, respectively. Functions of DEGs lend support to previous relationships between misfolded PrP and cellular membranes (e.g., STXBP5), and internal cellular components. We identified several genes that suggest a link between CWD and retroviruses and identified the gene ADIPOQ that acts as a tumor necrosis factor (TNF) antagonist. This gene may lead to reduced production of TNF and impact disease progression and clinical symptoms associated with CWD (i.e., wasting syndrome). Use of candidate genes identified in this study suggests the activation of endogenous processes in CWD-positive deer, which in turn may enable earlier detection of the disease.
Collapse
Affiliation(s)
- Emma K. Trone‐Launer
- Department of Biological SciencesWestern Illinois UniversityMacombILUSA
- Present address:
Illinois Department of Natural ResourcesCoffeenILUSA
| | - Jun Wang
- Key Laboratory of Freshwater Fisheries Germplasm ResourcesMinistry of AgricultureShanghai Ocean UniversityShanghaiChina
| | - Guoqing Lu
- Department of Biology and School of Interdisciplinary InformaticsUniversity of Nebraska OmahaOmahaNEUSA
| | - Nohra E. Mateus‐Pinilla
- Illinois Natural History Survey—Prairie Research InstituteUniversity of Illinois Urbana‐ChampaignChampaignILUSA
| | - Paige R. Zick
- Department of Biological SciencesWestern Illinois UniversityMacombILUSA
| | - James T. Lamer
- Illinois River Biological StationIllinois Natural History SurveyHavanaILUSA
| | | | | |
Collapse
|
18
|
Hannaoui S, Arifin MI, Chang SC, Yu J, Gopalakrishnan P, Doh-Ura K, Schatzl HM, Gilch S. Cellulose ether treatment in vivo generates chronic wasting disease prions with reduced protease resistance and delayed disease progression. J Neurochem 2019; 152:727-740. [PMID: 31553058 PMCID: PMC7078990 DOI: 10.1111/jnc.14877] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
Abstract
Chronic wasting disease (CWD) is a prion disease of free-ranging and farmed cervids that is highly contagious because of extensive prion shedding and prion persistence in the environment. Previously, cellulose ether compounds (CEs) have been shown to significantly extend the survival of mice inoculated with mouse-adapted prion strains. In this study, we used CEs, TC-5RW, and 60SH-50, in vitro and in vivo to assess their efficacy to interfere with CWD prion propagation. In vitro, CEs inhibited CWD prion amplification in a dose-dependent manner. Transgenic mice over-expressing elk PrPC (tgElk) were injected subcutaneously with a single dose of either of the CEs, followed by intracerebral inoculation with different CWD isolates from white tailed deer, mule deer, or elk. All treated groups showed a prolonged survival of up to more than 30 % when compared to the control group regardless of the CWD isolate used for infection. The extended survival in the treated groups correlated with reduced proteinase K resistance of prions. Remarkably, passage of brain homogenates from treated or untreated animals in tgElk mice resulted in a prolonged life span of mice inoculated with homogenates from CE-treated mice (of + 17%) even in the absence of further treatment. Besides the delayed disease onset upon passage in TgElk mice, the reduced proteinase K resistance was maintained but less pronounced. Therefore, these compounds can be very useful in limiting the spread of CWD in captive and wild-ranging cervids.
Collapse
Affiliation(s)
- Samia Hannaoui
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Maria Immaculata Arifin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sheng Chun Chang
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Jie Yu
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Preetha Gopalakrishnan
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hermann M Schatzl
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sabine Gilch
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
19
|
Rivera NA, Brandt AL, Novakofski JE, Mateus-Pinilla NE. Chronic Wasting Disease In Cervids: Prevalence, Impact And Management Strategies. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2019; 10:123-139. [PMID: 31632898 PMCID: PMC6778748 DOI: 10.2147/vmrr.s197404] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022]
Abstract
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) that affects members of the cervidae family. The infectious agent is a misfolded isoform (PrPSC) of the host prion protein (PrPC). The replication of PrPSC initiates a cascade of developmental changes that spread from cell to cell, individual to individual, and that for some TSEs, has crossed the species barrier. CWD can be transmitted horizontally and vertically, and it is the only TSE that affects free-ranging wildlife. While other TSEs are under control and even declining, infection rates of CWD continue to grow and the disease distribution continues to expand in North America and around the world. Since the first reported case in 1967, CWD has spread infecting captive and free-ranging cervids in 26 states in the US, 3 Canadian provinces, 3 European countries and has been found in captive cervids in South Korea. CWD causes considerable ecologic, economic and sociologic impact, as this is a 100% fatal highly contagious infectious disease, with no treatment or cure available. Because some TSEs have crossed the species barrier, the zoonotic potential of CWD is a concern for human health and continues to be investigated. Here we review the characteristics of the CWD prion protein, mechanisms of transmission and the role of genetics. We discuss the characteristics that contribute to prevalence and distribution. We also discuss the impact of CWD and review the management strategies that have been used to prevent and control the spread of CWD.
Collapse
Affiliation(s)
- Nelda A Rivera
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Adam L Brandt
- Division of Natural Sciences, St. Norbert College, De Pere, WI, USA
| | - Jan E Novakofski
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Nohra E Mateus-Pinilla
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
20
|
Walia R, Ho CC, Lee C, Gilch S, Schatzl HM. Gene-edited murine cell lines for propagation of chronic wasting disease prions. Sci Rep 2019; 9:11151. [PMID: 31371793 PMCID: PMC6673760 DOI: 10.1038/s41598-019-47629-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/18/2019] [Indexed: 01/28/2023] Open
Abstract
Prions cause fatal infectious neurodegenerative diseases in humans and animals. Cell culture models are essential for studying the molecular biology of prion propagation. Defining such culture models is mostly a random process, includes extensive subcloning, and for many prion diseases few or no models exist. One example is chronic wasting disease (CWD), a highly contagious prion disease of cervids. To extend the range of cell models propagating CWD prions, we gene-edited mouse cell lines known to efficiently propagate murine prions. Endogenous prion protein (PrP) was ablated in CAD5 and MEF cells, using CRISPR-Cas9 editing. PrP knock-out cells were reconstituted with mouse, bank vole and cervid PrP genes by lentiviral transduction. Reconstituted cells expressing mouse PrP provided proof-of-concept for re-established prion infection. Bank voles are considered universal receptors for prions from a variety of species. Bank vole PrP reconstituted cells propagated mouse prions and cervid prions, even without subcloning for highly susceptible cells. Cells reconstituted with cervid PrP and infected with CWD prions tested positive in prion conversion assay, whereas non-reconstituted cells were negative. This novel cell culture platform which is easily adjustable and allows testing of polymorphic alleles will provide important new insights into the biology of CWD prions.
Collapse
Affiliation(s)
- Rupali Walia
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Cheng Ching Ho
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Chi Lee
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Hermann M Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada. .,Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.
| |
Collapse
|
21
|
Martin AM, Richards SA, Fraser TA, Polkinghorne A, Burridge CP, Carver S. Population‐scale treatment informs solutions for control of environmentally transmitted wildlife disease. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13467] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Alynn M. Martin
- School of Natural Sciences University of Tasmania Hobart Australia
| | | | - Tamieka A. Fraser
- School of Natural Sciences University of Tasmania Hobart Australia
- Animal Research Centre University of the Sunshine Coast Sippy Downs Australia
| | - Adam Polkinghorne
- Animal Research Centre University of the Sunshine Coast Sippy Downs Australia
| | | | - Scott Carver
- School of Natural Sciences University of Tasmania Hobart Australia
| |
Collapse
|
22
|
Abdelaziz DH, Thapa S, Brandon J, Maybee J, Vankuppeveld L, McCorkell R, Schätzl HM. Recombinant prion protein vaccination of transgenic elk PrP mice and reindeer overcomes self-tolerance and protects mice against chronic wasting disease. J Biol Chem 2018; 293:19812-19822. [PMID: 30397182 PMCID: PMC6314114 DOI: 10.1074/jbc.ra118.004810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Chronic wasting disease (CWD) is a fatal neurodegenerative disease that affects cervids in North America and now Europe. No effective measures are available to control CWD. We hypothesized that active vaccination with homologous and aggregation-prone recombinant prion protein (PrP) could overcome self-tolerance and induce autoantibody production against the cellular isoform of PrP (PrPC), which would be protective against CWD infection from peripheral routes. Five groups of transgenic mice expressing elk PrP (TgElk) were vaccinated with either the adjuvant CpG alone or one of four recombinant PrP immunogens: deer dimer (Ddi); deer monomer (Dmo); mouse dimer (Mdi); and mouse monomer (Mmo). Mice were then challenged intraperitoneally with elk CWD prions. All vaccinated mice developed ELISA-detectable antibody titers against PrP. Importantly, all four vaccinated groups survived longer than the control group, with the Mmo-immunized group exhibiting 60% prolongation of mean survival time compared with the control group (183 versus 114 days post-inoculation). We tested for prion infection in brain and spleen of all clinically sick mice. Notably, the attack rate was 100% as revealed by positive CWD signals in all tested tissues when assessed with Western blotting, real-time quaking-induced conversion, and immunohistochemistry. Our pilot study in reindeer indicated appreciable humoral immune responses to Mdi and Ddi immunogens, and the post-immune sera from the Ddi-vaccinated reindeer mitigated CWD propagation in a cell culture model (CWD-RK13). Taken together, our study provides very promising vaccine candidates against CWD, but further studies in cervids are required to investigate vaccine efficacy in the natural CWD hosts.
Collapse
Affiliation(s)
- Dalia H Abdelaziz
- From the Department of Comparative Biology and Experimental Medicine and.,the Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt.,the Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada and
| | - Simrika Thapa
- From the Department of Comparative Biology and Experimental Medicine and.,the Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada and
| | - Jenna Brandon
- From the Department of Comparative Biology and Experimental Medicine and
| | - Justine Maybee
- From the Department of Comparative Biology and Experimental Medicine and
| | | | - Robert McCorkell
- From the Department of Comparative Biology and Experimental Medicine and
| | - Hermann M Schätzl
- From the Department of Comparative Biology and Experimental Medicine and .,the Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada and
| |
Collapse
|
23
|
Abstract
Prions diseases are uniformly fatal neurodegenerative diseases that occur in sporadic, genetic, and acquired forms. Acquired prion diseases, caused by infectious transmission, are least common. Most prion diseases are not infectious, but occur spontaneously through misfolding of normal prion proteins or genetic mutations in the prion protein gene. Although most prion diseases are not caused by infection, they can be transmitted accidentally. Certain infection control protocols should be applied when handling central nervous system and other high-risk tissues. New diagnostic methods are improving premortem and earlier diagnosis. Treatment trials have not shown improved survival, but therapies may be available soon.
Collapse
Affiliation(s)
- Boon Lead Tee
- Global Brain Health Institute, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94518, USA; Department of Neurology, Buddhist Tzu Chi General Hospital, No. 707, Section 3, Zhong Yang Road, Hualien City, Hualien County 97002, Taiwan
| | - Erika Mariana Longoria Ibarrola
- Global Brain Health Institute, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94518, USA; Dementia Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suarez, Av. Insurgentes Sur 3877, Col. La Fama, Del. Tlalpan, Ciudad de México. C.P. 14269, Mexico
| | - Michael D Geschwind
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94158, USA.
| |
Collapse
|
24
|
Abdulrahman BA, Abdelaziz DH, Schatzl HM. Autophagy regulates exosomal release of prions in neuronal cells. J Biol Chem 2018; 293:8956-8968. [PMID: 29700113 PMCID: PMC5995502 DOI: 10.1074/jbc.ra117.000713] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/19/2018] [Indexed: 12/29/2022] Open
Abstract
Prions are protein-based infectious agents that autocatalytically convert the cellular prion protein PrPC to its pathological isoform PrPSc. Subsequent aggregation and accumulation of PrPSc in nervous tissues causes several invariably fatal neurodegenerative diseases in humans and animals. Prions can infect recipient cells when packaged into endosome-derived nanoparticles called exosomes, which are present in biological fluids such as blood, urine, and saliva. Autophagy is a basic cellular degradation and recycling machinery that also affects exosomal processing, but whether autophagy controls release of prions in exosomes is unclear. Our work investigated the effect of autophagy modulation on exosomal release of prions and how this interplay affects cellular prion infection. Exosomes isolated from cultured murine central neuronal cells (CAD5) and peripheral neuronal cells (N2a) contained prions as shown by immunoblotting for PrPSc, prion-conversion activity, and cell culture infection. We observed that autophagy stimulation with the mTOR inhibitor rapamycin strongly inhibited exosomal prion release. In contrast, inhibition of autophagy by wortmannin or CRISPR/Cas9-mediated knockout of the autophagy protein Atg5 (autophagy-related 5) greatly increased the release of exosomes and exosome-associated prions. We also show that a difference in exosomal prion release between CAD5 and N2a cells is related to differences at the level of basal autophagy. Taken together, our results indicate that autophagy modulation can control lateral transfer of prions by interfering with their exosomal release. We describe a novel role of autophagy in the prion life cycle, an understanding that may provide useful targets for containing prion diseases.
Collapse
Affiliation(s)
- Basant A Abdulrahman
- From the Department of Comparative Biology & Experimental Medicine and.,the Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.,the Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt, and
| | - Dalia H Abdelaziz
- From the Department of Comparative Biology & Experimental Medicine and.,the Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.,the Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, 11795 Cairo, Egypt, and
| | - Hermann M Schatzl
- From the Department of Comparative Biology & Experimental Medicine and .,the Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.,the Departments of Veterinary Sciences and of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
25
|
Maji C, Mukherjee D, Kesh D. Deterministic and stochastic analysis of an eco-epidemiological model. J Biol Phys 2018; 44:17-36. [PMID: 28988403 PMCID: PMC5834997 DOI: 10.1007/s10867-017-9472-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 09/20/2017] [Indexed: 10/18/2022] Open
Abstract
Chronic wasting disease (CWD) is a contagious prion disease among the deer family that has the potential to disrupt the ecosystems where deer occur in abundance. To understand the dynamics of this emerging infectious disease, we consider a simple eco-epidemic model where the host population is infected by CWD. Boundedness of the system is established. The structure of equilibria and their linearized stability are investigated. The persistence condition is discussed. By constructing a suitable Lyapunov function, we discuss the global stability of the endemic equilibrium. Local bifurcation (transcritical) around the boundary equilibria is developed. Sufficient conditions for the existence of Hopf-bifurcation are derived. Further, we have also introduced white type of noise into the system to investigate stochastic stability. This suggests that the deterministic model is robust with respect to stochastic perturbation. Some numerical simulations are performed to validate our results.
Collapse
Affiliation(s)
- Chandan Maji
- Department of Mathematics, Vivekananda College, Thakurpukur, 269 D.H. Road, Kolkata, 700063 India
| | - Debasis Mukherjee
- Department of Mathematics, Vivekananda College, Thakurpukur, 269 D.H. Road, Kolkata, 700063 India
| | - Dipak Kesh
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata, 700032 India
| |
Collapse
|
26
|
Abstract
Currently all prion diseases are without effective treatment and are universally fatal. It is increasingly being recognized that the pathogenesis of many neurodegenerative diseases, such as Alzheimer disease (AD), includes "prion-like" properties. Hence, any effective therapeutic intervention for prion disease could have significant implications for other neurodegenerative diseases. Conversely, therapies that are effective in AD might also be therapeutically beneficial for prion disease. AD-like prion disease has no effective therapy. However, various vaccine and immunomodulatory approaches have shown great success in animal models of AD, with numerous ongoing clinical trials of these potential immunotherapies. More limited evidence suggests that immunotherapies may be effective in prion models and in naturally occurring prion disease. In particular, experimental data suggest that mucosal vaccination against prions can be effective for protection against orally acquired prion infection. Many prion diseases, including natural sheep scrapie, bovine spongiform encephalopathy, chronic wasting disease, and variant Creutzfeldt-Jakob disease, are thought to be acquired peripherally, mainly by oral exposure. Mucosal vaccination would be most applicable to this form of transmission. In this chapter we review various immunologically based strategies which are under development for prion infection.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Center for Cognitive Neurology, New York University School of Medicine, New York, NY, United States; Department of Neurology, New York University School of Medicine, New York, NY, United States; Department of Pathology, New York University School of Medicine, New York, NY, United States; Department of Psychiatry, New York University School of Medicine, New York, NY, United States.
| | - Fernando Goñi
- Center for Cognitive Neurology, New York University School of Medicine, New York, NY, United States; Department of Neurology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
27
|
Abdulrahman BA, Abdelaziz D, Thapa S, Lu L, Jain S, Gilch S, Proniuk S, Zukiwski A, Schatzl HM. The celecoxib derivatives AR-12 and AR-14 induce autophagy and clear prion-infected cells from prions. Sci Rep 2017; 7:17565. [PMID: 29242534 PMCID: PMC5730578 DOI: 10.1038/s41598-017-17770-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/30/2017] [Indexed: 01/05/2023] Open
Abstract
Prion diseases are fatal infectious neurodegenerative disorders that affect both humans and animals. The autocatalytic conversion of the cellular prion protein (PrPC) into the pathologic isoform PrPSc is a key feature in prion pathogenesis. AR-12 is an IND-approved derivative of celecoxib that demonstrated preclinical activity against several microbial diseases. Recently, AR-12 has been shown to facilitate clearance of misfolded proteins. The latter proposes AR-12 to be a potential therapeutic agent for neurodegenerative disorders. In this study, we investigated the role of AR-12 and its derivatives in controlling prion infection. We tested AR-12 in prion infected neuronal and non-neuronal cell lines. Immunoblotting and confocal microscopy results showed that AR-12 and its analogue AR-14 reduced PrPSc levels after only 72 hours of treatment. Furthermore, infected cells were cured of PrPSc after exposure of AR-12 or AR-14 for only two weeks. We partially attribute the influence of the AR compounds on prion propagation to autophagy stimulation, in line with our previous findings that drug-induced stimulation of autophagy has anti-prion effects in vitro and in vivo. Taken together, this study demonstrates that AR-12 and the AR-14 analogue are potential new therapeutic agents for prion diseases and possibly protein misfolding disorders involving prion-like mechanisms.
Collapse
Affiliation(s)
- Basant A Abdulrahman
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Helwan University, 11795, Cairo, Egypt
| | - Dalia Abdelaziz
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Helwan University, 11795, Cairo, Egypt
| | - Simrika Thapa
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Li Lu
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Shubha Jain
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | | | | | - Hermann M Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.
- Departments of Veterinary Sciences and of Molecular Biology, University of Wyoming, Laramie, Wyoming, 82071, USA.
| |
Collapse
|
28
|
Affiliation(s)
- Samia Hannaoui
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Canada
| | - Hermann M. Schatzl
- Calgary Prion Research Unit, University of Calgary, Calgary, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Sabine Gilch
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
29
|
Cheng YC, Hannaoui S, John TR, Dudas S, Czub S, Gilch S. Real-time Quaking-induced Conversion Assay for Detection of CWD Prions in Fecal Material. J Vis Exp 2017. [PMID: 28994814 DOI: 10.3791/56373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The RT-QuIC technique is a sensitive in vitro cell-free prion amplification assay based mainly on the seeded misfolding and aggregation of recombinant prion protein (PrP) substrate using prion seeds as a template for the conversion. RT-QuIC is a novel high-throughput technique which is analogous to real-time polymerase chain reaction (PCR). Detection of amyloid fibril growth is based on the dye Thioflavin T, which fluoresces upon specific interaction with ᵦ-sheet rich proteins. Thus, amyloid formation can be detected in real time. We attempted to develop a reliable non-invasive screening test to detect chronic wasting disease (CWD) prions in fecal extract. Here, we have specifically adapted the RT-QuIC technique to reveal PrPSc seeding activity in feces of CWD infected cervids. Initially, the seeding activity of the fecal extracts we prepared was relatively low in RT-QuIC, possibly due to potential assay inhibitors in the fecal material. To improve seeding activity of feces extracts and remove potential assay inhibitors, we homogenized the fecal samples in a buffer containing detergents and protease inhibitors. We also submitted the samples to different methodologies to concentrate PrPSc on the basis of protein precipitation using sodium phosphotungstic acid, and centrifugal force. Finally, the feces extracts were tested by optimized RT-QuIC which included substrate replacement in the protocol to improve the sensitivity of detection. Thus, we established a protocol for sensitive detection of CWD prion seeding activity in feces of pre-clinical and clinical cervids by RT-QuIC, which can be a practical tool for non-invasive CWD diagnosis.
Collapse
Affiliation(s)
- Yo Ching Cheng
- Dept. of Ecosystem and Public Health, Calgary Prion Research Units, Faculty of Veterinary Medicine, University of Calgary
| | - Samia Hannaoui
- Dept. of Ecosystem and Public Health, Calgary Prion Research Units, Faculty of Veterinary Medicine, University of Calgary
| | | | - Sandor Dudas
- Canadian Food Inspection Agency, Lethbridge Laboratories
| | - Stefanie Czub
- Canadian Food Inspection Agency, Lethbridge Laboratories
| | - Sabine Gilch
- Dept. of Ecosystem and Public Health, Calgary Prion Research Units, Faculty of Veterinary Medicine, University of Calgary;
| |
Collapse
|
30
|
Immunization of cervidized transgenic mice with multimeric deer prion protein induces self-antibodies that antagonize chronic wasting disease infectivity in vitro. Sci Rep 2017; 7:10538. [PMID: 28874781 PMCID: PMC5585258 DOI: 10.1038/s41598-017-11235-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic wasting disease (CWD) is the most contagious prion disease. It is expanding rapidly in North America, was found recently in Europe, and the potential for transmission to humans cannot be excluded yet. We hypothesized that it is possible to prevent peripheral CWD infection and CWD prion shedding by inducing auto-antibodies against the cellular prion protein (PrPC) by active vaccination. Our objective is to overcome self-tolerance against PrP by using a multimeric recombinant PrP (recPrP) as an immunogen. We expressed in E. coli, purified and refolded four immunogens: cervid and murine recPrP in monomeric and dimeric form. Testing immunogenicity in sera of the vaccinated transgenic mice expressing cervid PrP revealed that all four immunogens effectively overcame self-tolerance against the prion protein as shown by high antibody titers. Confocal microscopy analysis revealed effective binding of post-immune sera to surface-located PrPC in both murine and cervid PrP expressing cultured cells. Remarkably, the post-immune auto-antibodies effectively inhibited CWD-induced prion conversion in RT-QuIC assay when incubated with either PrP substrate or CWD seed. Furthermore, they mitigated prion propagation in CWD-infected cervid-PrP expressing RK13 cells. Together, multimeric recombinant cervid PrP effectively overcomes self-tolerance to PrP and induces auto-antibodies that interfere with CWD conversion in vitro.
Collapse
|
31
|
Hannaoui S, Amidian S, Cheng YC, Duque Velásquez C, Dorosh L, Law S, Telling G, Stepanova M, McKenzie D, Wille H, Gilch S. Destabilizing polymorphism in cervid prion protein hydrophobic core determines prion conformation and conversion efficiency. PLoS Pathog 2017; 13:e1006553. [PMID: 28800624 PMCID: PMC5568445 DOI: 10.1371/journal.ppat.1006553] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/23/2017] [Accepted: 07/26/2017] [Indexed: 11/27/2022] Open
Abstract
Prion diseases are infectious neurodegenerative disorders of humans and animals caused by misfolded forms of the cellular prion protein PrPC. Prions cause disease by converting PrPC into aggregation-prone PrPSc. Chronic wasting disease (CWD) is the most contagious prion disease with substantial lateral transmission, affecting free-ranging and farmed cervids. Although the PrP primary structure is highly conserved among cervids, the disease phenotype can be modulated by species-specific polymorphisms in the prion protein gene. How the resulting amino-acid substitutions impact PrPC and PrPSc structure and propagation is poorly understood. We investigated the effects of the cervid 116A>G substitution, located in the most conserved PrP domain, on PrPC structure and conversion and on 116AG-prion conformation and infectivity. Molecular dynamics simulations revealed structural de-stabilization of 116G-PrP, which enhanced its in vitro conversion efficiency when used as recombinant PrP substrate in real-time quaking-induced conversion (RT-QuIC). We demonstrate that 116AG-prions are conformationally less stable, show lower activity as a seed in RT-QuIC and exhibit reduced infectivity in vitro and in vivo. Infectivity of 116AG-prions was significantly enhanced upon secondary passage in mice, yet conformational features were retained. These findings indicate that structurally de-stabilized PrPC is readily convertible by cervid prions of different genetic background and results in a prion conformation adaptable to cervid wild-type PrP. Conformation is an important criterion when assessing transmission barrier, and conformational variants can target a different host range. Therefore, a thorough analysis of CWD isolates and re-assessment of species-barriers is important in order to fully exclude a zoonotic potential of CWD. Chronic wasting disease (CWD) is a prion disease which affects wild and captive cervids. Prion diseases are infectious neurodegenerative disorders, and the causative agent consists of abnormally folded prion protein termed PrPSc. Prions replicate without genetic information, and their three-dimensional structure is thought to encode heritable information necessary to propagate using the cellular prion protein PrPC as a substrate for conversion. In this study, we use in vitro and in vivo techniques to analyze the effect of a polymorphism at codon 116 (A>G) of the white-tailed deer prion protein on CWD prion conformation, propagation and pathogenesis. We observed differences in conformation, infectivity and seeding activity in vitro between CWD prions isolated from white-tailed deer encoding wild-type (116AA) PrPC or 116AG-PrPC. In mouse bioassays conformational differences are retained, however, 116AG CWD prions resulted in significantly shortened incubation times upon passages. Molecular dynamics simulations suggest that the structure of 116G-PrPC is more flexible, which is supported by an improved convertibility in an in vitro conversion assay. Altogether these data indicate the importance of a variation in the most conserved PrP domain, and highlight the relationship between PrPC structural flexibility, prion conformation and conversion, and pathogenesis of prion disease in vivo.
Collapse
Affiliation(s)
- Samia Hannaoui
- Department of Ecosystem and Public Health, Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sara Amidian
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yo Ching Cheng
- Department of Ecosystem and Public Health, Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Camilo Duque Velásquez
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Lyudmyla Dorosh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Sampson Law
- Department of Ecosystem and Public Health, Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Glenn Telling
- Prion Research Center, Colorado State University, Fort Collins, Colorado, United States of America
| | - Maria Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Debbie McKenzie
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Holger Wille
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sabine Gilch
- Department of Ecosystem and Public Health, Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
32
|
Cheng YC, Musiani M, Cavedon M, Gilch S. High prevalence of prion protein genotype associated with resistance to chronic wasting disease in one Alberta woodland caribou population. Prion 2017; 11:136-142. [PMID: 28350512 PMCID: PMC5399904 DOI: 10.1080/19336896.2017.1300741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease found in deer, elk and moose in North America and since recently, wild reindeer in Norway. Caribou are at-risk to encounter CWD in areas such as Alberta, Canada, where the disease spreads toward caribou habitats. CWD susceptibility is modulated by species-specific polymorphisms in the prion protein gene (Prnp). We sequenced Prnp of woodland caribou from 9 Albertan populations. In one population (Chinchaga) a significantly higher frequency of the 138N allele linked to reduced CWD susceptibility was observed. These data are relevant for developing CWD management strategies including conservation of threatened caribou populations.
Collapse
Affiliation(s)
- Yo Ching Cheng
- a Department of Ecosystem and Public Health , Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary , Calgary , Canada
| | - Marco Musiani
- b Department of Biological Sciences, Faculty of Science , University of Calgary , Calgary , Canada
| | - Maria Cavedon
- b Department of Biological Sciences, Faculty of Science , University of Calgary , Calgary , Canada
| | - Sabine Gilch
- a Department of Ecosystem and Public Health , Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary , Calgary , Canada
| |
Collapse
|
33
|
Waddell L, Greig J, Mascarenhas M, Otten A, Corrin T, Hierlihy K. Current evidence on the transmissibility of chronic wasting disease prions to humans-A systematic review. Transbound Emerg Dis 2017; 65:37-49. [PMID: 28139079 DOI: 10.1111/tbed.12612] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Indexed: 12/19/2022]
Abstract
A number of prion diseases affect humans, including Creutzfeldt-Jakob disease; most of these are due to genetic mutations in the affected individual and occur sporadically, but some result from transmission of prion proteins from external sources. Of the known animal prion diseases, only bovine spongiform encephalopathy prions have been shown to be transmissible from animals to humans under non-experimental conditions. Chronic wasting disease (CWD) is a prion disease that affects cervids (e.g., deer and elk) in North America and isolated populations in Korea and Europe. Systematic review methodology was used to identify, select, critically appraise and analyse data from relevant research. Studies were evaluated for adherence to good conduct based on their study design following the Cochrane collaboration's approach to grading the quality of evidence and the strength of recommendations (GRADE). Twenty-three studies were included after screening 800 citations from the literature search and evaluating 78 full papers. Studies examined the transmissibility of CWD prions to humans using epidemiological study design, in vitro and in vivo experiments. Five epidemiological studies, two studies on macaques and seven studies on humanized transgenic mice provided no evidence to support the possibility of transmission of CWD prions to humans. Ongoing surveillance in the United States and Canada has not documented CWD transmission to humans. However, two studies on squirrel monkeys provided evidence that transmission of CWD prions resulting in prion disease is possible in these monkeys under experimental conditions and seven in vitro experiments provided evidence that CWD prions can convert human prion protein to a misfolded state. Therefore, future discovery of CWD transmission to humans cannot be entirely ruled out on the basis of current studies, particularly in the light of possible decades-long incubation periods for CWD prions in humans. It would be prudent to continue CWD research and epidemiologic surveillance, exercise caution when handling potentially contaminated material and explore CWD management opportunities.
Collapse
Affiliation(s)
- L Waddell
- Public Health Risk Sciences Division of the National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - J Greig
- Public Health Risk Sciences Division of the National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - M Mascarenhas
- Public Health Risk Sciences Division of the National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - A Otten
- Public Health Risk Sciences Division of the National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - T Corrin
- Public Health Risk Sciences Division of the National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - K Hierlihy
- Public Health Risk Sciences Division of the National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| |
Collapse
|
34
|
Diseases of the Nervous System. Vet Med (Auckl) 2017. [PMCID: PMC7322266 DOI: 10.1016/b978-0-7020-5246-0.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Cheng YC, Hannaoui S, John TR, Dudas S, Czub S, Gilch S. Early and Non-Invasive Detection of Chronic Wasting Disease Prions in Elk Feces by Real-Time Quaking Induced Conversion. PLoS One 2016; 11:e0166187. [PMID: 27829062 PMCID: PMC5102397 DOI: 10.1371/journal.pone.0166187] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023] Open
Abstract
Chronic wasting disease (CWD) is a fatal prion disease of wild and captive cervids in North America. Prions are infectious agents composed of a misfolded version of a host-encoded protein, termed PrPSc. Infected cervids excrete and secrete prions, contributing to lateral transmission. Geographical distribution is expanding and case numbers in wild cervids are increasing. Recently, the first European cases of CWD have been reported in a wild reindeer and two moose from Norway. Therefore, methods to detect the infection early in the incubation time using easily available samples are desirable to facilitate effective disease management. We have adapted the real-time quaking induced conversion (RT-QuIC) assay, a sensitive in vitro prion amplification method, for pre-clinical detection of prion seeding activity in elk feces. Testing fecal samples from orally inoculated elk taken at various time points post infection revealed early shedding and detectable prion seeding activity throughout the disease course. Early shedding was also found in two elk encoding a PrP genotype associated with reduced susceptibility for CWD. In summary, we suggest that detection of CWD prions in feces by RT-QuIC may become a useful tool to support CWD surveillance in wild and captive cervids. The finding of early shedding independent of the elk’s prion protein genotype raises the question whether prolonged survival is beneficial, considering accumulation of environmental prions and its contribution to CWD transmission upon extended duration of shedding.
Collapse
Affiliation(s)
- Yo Ching Cheng
- Dept. of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Samia Hannaoui
- Dept. of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Theodore R. John
- Dept. of Molecular Biology, University of Wyoming, Laramie, United States of America
| | - Sandor Dudas
- Canadian Food Inspection Agency, Lethbridge Laboratories, Lethbridge, Canada
| | - Stefanie Czub
- Canadian Food Inspection Agency, Lethbridge Laboratories, Lethbridge, Canada
| | - Sabine Gilch
- Dept. of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
36
|
Modeled Impacts of Chronic Wasting Disease on White-Tailed Deer in a Semi-Arid Environment. PLoS One 2016; 11:e0163592. [PMID: 27711208 PMCID: PMC5053495 DOI: 10.1371/journal.pone.0163592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/12/2016] [Indexed: 12/21/2022] Open
Abstract
White-tailed deer are a culturally and economically important game species in North America, especially in South Texas. The recent discovery of chronic wasting disease (CWD) in captive deer facilities in Texas has increased concern about the potential emergence of CWD in free-ranging deer. The concern is exacerbated because much of the South Texas region is a semi-arid environment with variable rainfall, where precipitation is strongly correlated with fawn recruitment. Further, the marginally productive rangelands, in combination with erratic fawn recruitment, results in populations that are frequently density-independent, and thus sensitive to additive mortality. It is unknown how a deer population in semi-arid regions would respond to the presence of CWD. We used long-term empirical datasets from a lightly harvested (2% annual harvest) population in conjunction with 3 prevalence growth rates from CWD afflicted areas (0.26%, 0.83%, and 2.3% increases per year) via a multi-stage partially deterministic model to simulate a deer population for 25 years under four scenarios: 1) without CWD and without harvest, 2) with CWD and without harvest, 3) with CWD and male harvest only, and 4) with CWD and harvest of both sexes. The modeled populations without CWD and without harvest averaged a 1.43% annual increase over 25 years; incorporation of 2% annual harvest of both sexes resulted in a stable population. The model with slowest CWD prevalence rate growth (0.26% annually) without harvest resulted in stable populations but the addition of 1% harvest resulted in population declines. Further, the male age structure in CWD models became skewed to younger age classes. We incorporated fawn:doe ratios from three CWD afflicted areas in Wisconsin and Wyoming into the model with 0.26% annual increase in prevalence and populations did not begin to decline until ~10%, ~16%, and ~26% of deer were harvested annually. Deer populations in variable environments rely on high adult survivorship to buffer the low and erratic fawn recruitment rates. The increase in additive mortality rates for adults via CWD negatively impacted simulated population trends to the extent that hunter opportunity would be greatly reduced. Our results improve understanding of the potential influences of CWD on deer populations in semi-arid environments with implications for deer managers, disease ecologists, and policy makers.
Collapse
|
37
|
Benestad SL, Mitchell G, Simmons M, Ytrehus B, Vikøren T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet Res 2016; 47:88. [PMID: 27641251 PMCID: PMC5024462 DOI: 10.1186/s13567-016-0375-4] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/11/2016] [Indexed: 02/24/2024] Open
Abstract
Chronic wasting disease (CWD) is a fatal contagious prion disease in cervids that is enzootic in some areas in North America. The disease has been found in deer, elk and moose in the USA and Canada, and in South Korea following the importation of infected animals. Here we report the first case of CWD in Europe, in a Norwegian free-ranging reindeer in Southern Norway. The origin of the disease is unknown. Until now a low number of cervids, and among them a few reindeer, have been tested for CWD in Norway. Therefore the prevalence of CWD is unknown.
Collapse
Affiliation(s)
- Sylvie L Benestad
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway.
| | - Gordon Mitchell
- Canadian Food Inspection Agency, National and OIE Reference Laboratory for Scrapie and CWD, Ottawa Laboratory Fallowfield, Ottawa, ON, Canada
| | - Marion Simmons
- Department of Pathology, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| | - Bjørnar Ytrehus
- Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Sluppen, 7485, Trondheim, Norway
| | - Turid Vikøren
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway
| |
Collapse
|
38
|
Requena JR, Kristensson K, Korth C, Zurzolo C, Simmons M, Aguilar-Calvo P, Aguzzi A, Andreoletti O, Benestad SL, Böhm R, Brown K, Calgua B, del Río JA, Espinosa JC, Girones R, Godsave S, Hoelzle LE, Knittler MR, Kuhn F, Legname G, Laeven P, Mabbott N, Mitrova E, Müller-Schiffmann A, Nuvolone M, Peters PJ, Raeber A, Roth K, Schmitz M, Schroeder B, Sonati T, Stitz L, Taraboulos A, Torres JM, Yan ZX, Zerr I. The Priority position paper: Protecting Europe's food chain from prions. Prion 2016; 10:165-81. [PMID: 27220820 PMCID: PMC4981192 DOI: 10.1080/19336896.2016.1175801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 01/09/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) created a global European crisis in the 1980s and 90s, with very serious health and economic implications. Classical BSE now appears to be under control, to a great extent as a result of a global research effort that identified the sources of prions in meat and bone meal (MBM) and developed new animal-testing tools that guided policy. Priority ( www.prionpriority.eu ) was a European Union (EU) Framework Program 7 (FP7)-funded project through which 21 European research institutions and small and medium enterprises (SMEs) joined efforts between 2009 and 2014, to conduct coordinated basic and applied research on prions and prion diseases. At the end of the project, the Priority consortium drafted a position paper ( www.prionpriority.eu/Priority position paper) with its main conclusions. In the present opinion paper, we summarize these conclusions. With respect to the issue of re-introducing ruminant protein into the feed-chain, our opinion is that sustaining an absolute ban on feeding ruminant protein to ruminants is essential. In particular, the spread and impact of non-classical forms of scrapie and BSE in ruminants is not fully understood and the risks cannot be estimated. Atypical prion agents will probably continue to represent the dominant form of prion diseases in the near future in Europe. Atypical L-type BSE has clear zoonotic potential, as demonstrated in experimental models. Similarly, there are now data indicating that the atypical scrapie agent can cross various species barriers. More epidemiological data from large cohorts are necessary to reach any conclusion on the impact of its transmissibility on public health. Re-evaluations of safety precautions may become necessary depending on the outcome of these studies. Intensified searching for molecular determinants of the species barrier is recommended, since this barrier is key for important policy areas and risk assessment. Understanding the structural basis for strains and the basis for adaptation of a strain to a new host will require continued fundamental research, also needed to understand mechanisms of prion transmission, replication and how they cause nervous system dysfunction and death. Early detection of prion infection, ideally at a preclinical stage, also remains crucial for development of effective treatment strategies.
Collapse
Affiliation(s)
- Jesús R. Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sue Godsave
- Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | - Paul Laeven
- University of Maastricht, Maastricht, The Netherlands
| | | | - Eva Mitrova
- Medical University of Slovakia, Bratislava, Slovakia
| | | | | | - Peter J. Peters
- The Maastricht Multimodal Molecular Imaging Institute, University of Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | - Lothar Stitz
- Friedrich Löffler Institut, Insel Reims, Germany
| | | | | | | | - Inga Zerr
- Universitätmedizin Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
39
|
Pan SY, Gao SH, Lin RC, Zhou SF, Dong HG, Tang MK, Yu ZL, Ko KM. New perspectives on dietary-derived treatments and food safety-antinomy in a new era. Crit Rev Food Sci Nutr 2016; 55:1836-59. [PMID: 24915382 DOI: 10.1080/10408398.2011.654286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite the advances in science and technology and wide use of chemical drugs, dietary intervention (or food therapy) remains useful in preventing or treating many human diseases. A huge body of evidence shows that the dietary pattern or habit is also an important contributing factor to the development of chronic diseases such as hypertension, type 2 diabetes, hyperlipidemia, and cancers. In recent years, over-the-counter health foods, nutraceuticals, and plant-derived medicinal products have been gaining popularity all over the world, particularly in developed countries. Unfortunately, owing to the contamination with various harmful substances in foods and the presence of toxic food components, food-borne diseases have also become increasingly problematic. Incidents of food poisonings or tainted food have been increasing worldwide, particularly in China and other developing countries. Therefore, the government should put in a greater effort in enforcing food safety by improving the surveillance mechanism and exerting highest standards of quality control for foods.
Collapse
Affiliation(s)
- Si-Yuan Pan
- a Beijing University of Chinese Medicine , Beijing , China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Oraby T, Tyshenko MG, Westphal M, Darshan S, Croteau MC, Aspinall W, Elsaadany S, Cashman N, Krewski D. Using expert judgments to improve chronic wasting disease risk management in Canada. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:713-728. [PMID: 27556565 DOI: 10.1080/15287394.2016.1174005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
ABSTARCT Chronic wasting disease (CWD) is a neurodegenerative, protein misfolding disease affecting cervids in North America in epidemic proportions. While the existence of CWD has been known for more than 40 years, risk management efforts to date have not been able to curtail the spread of this condition. An expert elicitation exercise was carried out in May 2011 to obtain the views of international experts on both the etiology of CWD and possible CWD risk management strategies. This study presents the results of the following three components of the elicitation exercise: (1) expert views of the most likely scenarios for the evolution of the CWD among cervid populations in Canada, (2) ranking analyses of the importance of direct and indirect transmission routes, and (3) rating analyses of CWD control measures in farmed and wild cervids. The implications of these findings for the development of CWD risk management strategies are described in a Canadian context.
Collapse
Affiliation(s)
- Tamer Oraby
- a Department of Mathematics , University of Texas Rio Grande Valley , Edinburg , Texas , USA
| | - Michael G Tyshenko
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
| | - Margit Westphal
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
| | - Shalu Darshan
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
| | - Maxine C Croteau
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
| | - Willy Aspinall
- c Aspinall and Associates , Tisbury , United Kingdom
- h Risk Sciences International , Ottawa , Ontario , Canada
| | - Susie Elsaadany
- d School of Earth Sciences and Cabot Institute , University of Bristol , Bristol , United Kingdom
| | - Neil Cashman
- e Blood Safety Surveillance and Health Care Acquired Infections Division , Centre for Infectious Disease Prevention and Control, Public Health Agency of Canada , Ottawa , Ontario , Canada
| | - Daniel Krewski
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
- f Brain Research Centre , University of British Columbia , Vancouver , British Columbia , Canada
- g Department of Epidemiology and Community Medicine, Faculty of Medicine , University of Ottawa , Ottawa , Ontario , Canada
| |
Collapse
|
41
|
Selariu A, Powers JG, Nalls A, Brandhuber M, Mayfield A, Fullaway S, Wyckoff CA, Goldmann W, Zabel MM, Wild MA, Hoover EA, Mathiason CK. In utero transmission and tissue distribution of chronic wasting disease-associated prions in free-ranging Rocky Mountain elk. J Gen Virol 2015; 96:3444-3455. [PMID: 26358706 DOI: 10.1099/jgv.0.000281] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The presence of disease-associated prions in tissues and bodily fluids of chronic wasting disease (CWD)-infected cervids has received much investigation, yet little is known about mother-to-offspring transmission of CWD. Our previous work demonstrated that mother-to-offspring transmission is efficient in an experimental setting. To address the question of relevance in a naturally exposed free-ranging population, we assessed maternal and fetal tissues derived from 19 elk dam-calf pairs collected from free-ranging Rocky Mountain elk from north-central Colorado, a known CWD endemic region. Conventional immunohistochemistry identified three of 19 CWD-positive dams, whereas a more sensitive assay [serial protein misfolding cyclic amplification (sPMCA)] detected CWD prion seeding activity (PrPCWD) in 15 of 19 dams. PrPCWD distribution in tissues was widespread, and included the central nervous system (CNS), lymphoreticular system, and reproductive, secretory, excretory and adipose tissues. Interestingly, five of 15 sPMCA-positive dams showed no evidence of PrPCWD in either CNS or lymphoreticular system, sites typically assessed in diagnosing CWD. Analysis of fetal tissues harvested from the 15 sPMCA-positive dams revealed PrPCWD in 80 % of fetuses (12 of 15), regardless of gestational stage. These findings demonstrated that PrPCWD is more abundant in peripheral tissues of CWD-exposed elk than current diagnostic methods suggest, and that transmission of prions from mother to offspring may contribute to the efficient transmission of CWD in naturally exposed cervid populations.
Collapse
Affiliation(s)
- Anca Selariu
- Colorado State University, Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, Colorado, USA
| | - Jenny G Powers
- National Park Service, Biological Resources Division, 1201 Oakridge Drive, Suite 200, Fort Collins, Colorado, USA
| | - Amy Nalls
- Colorado State University, Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, Colorado, USA
| | - Monica Brandhuber
- Colorado State University, Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, Colorado, USA
| | - Amber Mayfield
- Colorado State University, Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, Colorado, USA
| | - Stephenie Fullaway
- Colorado State University, Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, Colorado, USA
| | - Christy A Wyckoff
- Colorado State University, Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, Colorado, USA
| | - Wilfred Goldmann
- Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Mark M Zabel
- Colorado State University, Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, Colorado, USA
| | - Margaret A Wild
- National Park Service, Biological Resources Division, 1201 Oakridge Drive, Suite 200, Fort Collins, Colorado, USA
| | - Edward A Hoover
- Colorado State University, Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, Colorado, USA
| | - Candace K Mathiason
- Colorado State University, Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, Colorado, USA
| |
Collapse
|
42
|
Pritzkow S, Morales R, Moda F, Khan U, Telling GC, Hoover E, Soto C. Grass plants bind, retain, uptake, and transport infectious prions. Cell Rep 2015; 11:1168-75. [PMID: 25981035 DOI: 10.1016/j.celrep.2015.04.036] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/04/2015] [Accepted: 04/15/2015] [Indexed: 01/07/2023] Open
Abstract
Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrP(Sc)) to plants. Small quantities of PrP(Sc) contained in diluted brain homogenate or in excretory materials (urine and feces) can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrP(Sc) for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves). These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease.
Collapse
Affiliation(s)
- Sandra Pritzkow
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Rodrigo Morales
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Fabio Moda
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Uffaf Khan
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Glenn C Telling
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Edward Hoover
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Fernández-Borges N, Eraña H, Venegas V, Elezgarai SR, Harrathi C, Castilla J. Animal models for prion-like diseases. Virus Res 2015; 207:5-24. [PMID: 25907990 DOI: 10.1016/j.virusres.2015.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 12/13/2022]
Abstract
Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are a group of fatal neurodegenerative disorders affecting several mammalian species being Creutzfeldt-Jacob Disease (CJD) the most representative in human beings, scrapie in ovine, Bovine Spongiform Encephalopathy (BSE) in bovine and Chronic Wasting Disease (CWD) in cervids. As stated by the "protein-only hypothesis", the causal agent of TSEs is a self-propagating aberrant form of the prion protein (PrP) that through a misfolding event acquires a β-sheet rich conformation known as PrP(Sc) (from scrapie). This isoform is neurotoxic, aggregation prone and induces misfolding of native cellular PrP. Compelling evidence indicates that disease-specific protein misfolding in amyloid deposits could be shared by other disorders showing aberrant protein aggregates such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Amyotrophic lateral sclerosis (ALS) and systemic Amyloid A amyloidosis (AA amyloidosis). Evidences of shared mechanisms of the proteins related to each disease with prions will be reviewed through the available in vivo models. Taking prion research as reference, typical prion-like features such as seeding and propagation ability, neurotoxic species causing disease, infectivity, transmission barrier and strain evidences will be analyzed for other protein-related diseases. Thus, prion-like features of amyloid β peptide and tau present in AD, α-synuclein in PD, SOD-1, TDP-43 and others in ALS and serum α-amyloid (SAA) in systemic AA amyloidosis will be reviewed through models available for each disease.
Collapse
Affiliation(s)
| | - Hasier Eraña
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Vanesa Venegas
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Saioa R Elezgarai
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Chafik Harrathi
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Bizkaia, Spain.
| |
Collapse
|
44
|
Goñi F, Mathiason CK, Yim L, Wong K, Hayes-Klug J, Nalls A, Peyser D, Estevez V, Denkers N, Xu J, Osborn DA, Miller KV, Warren RJ, Brown DR, Chabalgoity JA, Hoover EA, Wisniewski T. Mucosal immunization with an attenuated Salmonella vaccine partially protects white-tailed deer from chronic wasting disease. Vaccine 2014; 33:726-33. [PMID: 25539804 DOI: 10.1016/j.vaccine.2014.11.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
Abstract
Prion disease is a unique category of illness, affecting both animals and humans, in which the underlying pathogenesis is related to a conformational change of a normal, self-protein called PrP(C) (C for cellular) to a pathological and infectious conformer known as PrP(Sc) (Sc for scrapie). Bovine spongiform encephalopathy (BSE), a prion disease believed to have arisen from feeding cattle with prion contaminated meat and bone meal products, crossed the species barrier to infect humans. Chronic wasting disease (CWD) infects large numbers of deer and elk, with the potential to infect humans. Currently no prionosis has an effective treatment. Previously, we have demonstrated we could prevent transmission of prions in a proportion of susceptible mice with a mucosal vaccine. In the current study, white-tailed deer were orally inoculated with attenuated Salmonella expressing PrP, while control deer were orally inoculated with vehicle attenuated Salmonella. Once a mucosal response was established, the vaccinated animals were boosted orally and locally by application of polymerized recombinant PrP onto the tonsils and rectal mucosa. The vaccinated and control animals were then challenged orally with CWD-infected brain homogenate. Three years post CWD oral challenge all control deer developed clinical CWD (median survival 602 days), while among the vaccinated there was a significant prolongation of the incubation period (median survival 909 days; p=0.012 by Weibull regression analysis) and one deer has remained CWD free both clinically and by RAMALT and tonsil biopsies. This negative vaccinate has the highest titers of IgA in saliva and systemic IgG against PrP. Western blots showed that immunoglobulins from this vaccinate react to PrP(CWD). We document the first partially successful vaccination for a prion disease in a species naturally at risk.
Collapse
Affiliation(s)
- Fernando Goñi
- Department of Neurology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - Candace K Mathiason
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lucia Yim
- Laboratory for Vaccine Research, Department of Biotechnology, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Kinlung Wong
- Department of Neurology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - Jeanette Hayes-Klug
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Amy Nalls
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Daniel Peyser
- Department of Neurology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - Veronica Estevez
- Laboratory for Vaccine Research, Department of Biotechnology, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Nathaniel Denkers
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jinfeng Xu
- Department of Population Health, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | - David A Osborn
- Warnell School of Forestry and Natural Resources, University of Georgia, United States
| | - Karl V Miller
- Warnell School of Forestry and Natural Resources, University of Georgia, United States
| | - Robert J Warren
- Warnell School of Forestry and Natural Resources, University of Georgia, United States
| | - David R Brown
- Department of Biology and Biochemistry, University of Bath, UK
| | - Jose A Chabalgoity
- Laboratory for Vaccine Research, Department of Biotechnology, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Edward A Hoover
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Thomas Wisniewski
- Department of Neurology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States; Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States; Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
45
|
Race B, Meade-White KD, Phillips K, Striebel J, Race R, Chesebro B. Chronic wasting disease agents in nonhuman primates. Emerg Infect Dis 2014; 20:833-7. [PMID: 24751215 PMCID: PMC4012792 DOI: 10.3201/eid2005.130778] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chronic wasting disease is a prion disease of cervids. Assessment of its zoonotic potential is critical. To evaluate primate susceptibility, we tested monkeys from 2 genera. We found that 100% of intracerebrally inoculated and 92% of orally inoculated squirrel monkeys were susceptible, but cynomolgus macaques were not, suggesting possible low risk for humans.
Collapse
|
46
|
Parkinson's disease as a member of Prion-like disorders. Virus Res 2014; 207:38-46. [PMID: 25456401 DOI: 10.1016/j.virusres.2014.10.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is one of several neurodegenerative diseases associated with a misfolded, aggregated and pathological protein. In Parkinson's disease this protein is alpha-synuclein and its neuronal deposits in the form of Lewy bodies are considered a hallmark of the disease. In this review we describe the clinical and experimental data that have led to think of alpha-synuclein as a prion-like protein and we summarize data from in vitro, cellular and animal models supporting this view.
Collapse
|
47
|
Green ML, Manjerovic MB, Mateus-Pinilla N, Novakofski J. Genetic assignment tests reveal dispersal of white-tailed deer: implications for chronic wasting disease. J Mammal 2014. [DOI: 10.1644/13-mamm-a-167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
48
|
John TR, Schätzl HM, Gilch S. Early detection of chronic wasting disease prions in urine of pre-symptomatic deer by real-time quaking-induced conversion assay. Prion 2014; 7:253-8. [PMID: 23764839 PMCID: PMC3783112 DOI: 10.4161/pri.24430] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease of captive and free-ranging deer (Odocoileus spp), elk (Cervus elaphus nelsonii) and moose (Alces alces shirasi). Unlike in most other prion diseases, in CWD prions are shed in urine and feces, which most likely contributes to the horizontal transmission within and between cervid species. To date, CWD ante-mortem diagnosis is only possible by immunohistochemical detection of protease resistant prion protein (PrPSc) in tonsil or recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsies, which requires anesthesia of animals. We report on detection of CWD prions in urine collected from pre-symptomatic deer and in fecal extracts by using real time quaking-induced conversion (RT-QuIC). This assay can be useful for non-invasive pre-symptomatic diagnosis and surveillance of CWD.
Collapse
Affiliation(s)
- Theodore R John
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | | | | |
Collapse
|
49
|
Määttänen P, Taschuk R, Ross L, Marciniuk K, Bertram L, Potter A, Cashman NR, Napper S. PrP(Sc)-specific antibodies do not induce prion disease or misfolding of PrP(C) in highly susceptible Tga20 mice. Prion 2013; 7:434-9. [PMID: 24105298 DOI: 10.4161/pri.26639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders caused by misfolding of a cellular protein PrP(C) into an infectious conformation PrP(Sc). Previously our group demonstrated induction of PrP(Sc)-specific antibodies with a SN6b vaccine that targets regions of the protein that are exposed upon misfolding. There are concerns that these antibodies could function as templates to promote misfolding and cause disease. To evaluate the consequences of prolonged exposure to PrP(Sc)-specific antibodies in a prion sensitized animal, tga20 mice were vaccinated with the SN6b vaccine. No clinical signs of disease were detected up to 255 d post-vaccination, and postmortem assay of brains and spleens revealed no proteinase-K resistant PrP. These results suggest that vaccinating against TSEs with the SN6b antigen is safe from the standpoint of prion disease induction.
Collapse
Affiliation(s)
| | - Ryan Taschuk
- VIDO-InterVac; University of Saskatchewan; Saskatoon, SK CA; School of Public Health; University of Saskatchewan; SK CA
| | - Li Ross
- Brain Research Center; University of British Columbia; Vancouver, BC CA
| | - Kristen Marciniuk
- VIDO-InterVac; University of Saskatchewan; Saskatoon, SK CA; Department of Biochemistry; University of Saskatchewan; Saskatoon, SK CA
| | - Lisa Bertram
- Brain Research Center; University of British Columbia; Vancouver, BC CA
| | - Andrew Potter
- VIDO-InterVac; University of Saskatchewan; Saskatoon, SK CA
| | - Neil R Cashman
- Brain Research Center; University of British Columbia; Vancouver, BC CA
| | - Scott Napper
- VIDO-InterVac; University of Saskatchewan; Saskatoon, SK CA; School of Public Health; University of Saskatchewan; SK CA; Department of Biochemistry; University of Saskatchewan; Saskatoon, SK CA
| |
Collapse
|
50
|
Oraby T, Vasilyeva O, Krewski D, Lutscher F. Modeling seasonal behavior changes and disease transmission with application to chronic wasting disease. J Theor Biol 2013; 340:50-9. [PMID: 24035840 DOI: 10.1016/j.jtbi.2013.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/11/2013] [Accepted: 09/03/2013] [Indexed: 01/17/2023]
Abstract
Behavior and habitat of wildlife animals change seasonally according to environmental conditions. Mathematical models need to represent this seasonality to be able to make realistic predictions about the future of a population and the effectiveness of human interventions. Managing and modeling disease in wild animal populations requires particular care in that disease transmission dynamics is a critical consideration in the etiology of both human and animal diseases, with different transmission paradigms requiring different disease risk management strategies. Since transmission of infectious diseases among wildlife depends strongly on social behavior, mechanisms of disease transmission could also change seasonally. A specific consideration in this regard confronted by modellers is whether the contact rate between individuals is density-dependent or frequency-dependent. We argue that seasonal behavior changes could lead to a seasonal shift between density and frequency dependence. This hypothesis is explored in the case of chronic wasting disease (CWD), a fatal disease that affects deer, elk and moose in many areas of North America. Specifically, we introduce a strategic CWD risk model based on direct disease transmission that accounts for the seasonal change in the transmission dynamics and habitats occupied, guided by information derived from cervid ecology. The model is composed of summer and winter susceptible-infected (SI) equations, with frequency-dependent and density-dependent transmission dynamics, respectively. The model includes impulsive birth events with density-dependent birth rate. We determine the basic reproduction number as a weighted average of two seasonal reproduction numbers. We parameterize the model from data derived from the scientific literature on CWD and deer ecology, and conduct global and local sensitivity analyses of the basic reproduction number. We explore the effectiveness of different culling strategies for the management of CWD: although summer culling seems to be an effective disease eradication strategy, the total culling rate is limited by the requirement to preserve the herd.
Collapse
Affiliation(s)
- Tamer Oraby
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|