1
|
Liu W, Nestorovich EM. Probing Protein Nanopores with Poly(ethylene glycol)s. Proteomics 2022; 22:e2100055. [PMID: 35030301 DOI: 10.1002/pmic.202100055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/16/2021] [Accepted: 01/10/2022] [Indexed: 11/08/2022]
Abstract
Neutral water-soluble poly(ethylene glycol)s (PEGs) have been extensively explored in protein nanopore research for the past several decades. The principal use of PEGs is to investigate the membrane protein ion channel physical characteristics and transport properties. In addition, protein nanopores are used to study polymer-protein interactions and polymer physicochemical properties. In this review, we focus on the biophysical studies on probing protein ion channels with PEGs, specifically on nanopore sizing by PEG partitioning. We discuss the fluctuation analysis of ion channel currents in response to the PEGs moving within their confined geometries. The advantages, limitations, and recent developments of the approach are also addressed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wenxing Liu
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC, 20064, USA
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC, 20064, USA
| |
Collapse
|
2
|
Robertson JW, Ghimire M, Reiner JE. Nanopore sensing: A physical-chemical approach. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183644. [PMID: 33989531 PMCID: PMC9793329 DOI: 10.1016/j.bbamem.2021.183644] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
Protein nanopores have emerged as an important class of sensors for the understanding of biophysical processes, such as molecular transport across membranes, and for the detection and characterization of biopolymers. Here, we trace the development of these sensors from the Coulter counter and squid axon studies to the modern applications including exquisite detection of small volume changes and molecular reactions at the single molecule (or reactant) scale. This review focuses on the chemistry of biological pores, and how that influences the physical chemistry of molecular detection.
Collapse
Affiliation(s)
- Joseph W.F. Robertson
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg MD. 20899, correspondence to:
| | - Madhav Ghimire
- Department of Physics, Virginia Commonwealth University, Richmond, VA
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
3
|
Shatursky OY, Manoilov KY, Gorbatiuk OB, Usenko MO, Zhukova DA, Vovk AI, Kobzar OL, Trikash IO, Borisova TA, Kolibo DV, Komisarenko SV. The geometry of diphtheria toxoid CRM197 channel assessed by thiazolium salts and nonelectrolytes. Biophys J 2021; 120:2577-2591. [PMID: 33940022 DOI: 10.1016/j.bpj.2021.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/01/2021] [Accepted: 04/27/2021] [Indexed: 11/18/2022] Open
Abstract
The geometry of the channel formed by nontoxic derivative of diphtheria toxin CRM197 in lipid bilayer was determined using the dependence of single-channel conductance upon the hydrodynamic radii of different nonelectrolytes. It was found that the cis entrance of CRM197 channel on the side of membrane to which the toxoid was added at pH 4.8 and the trans entrance on the opposite side at pH 6.0 had effective radii of 3.90 and 3.48 Å, respectively. The 3-alkyloxycarbonylmethyl-5-(2-hydroxyethyl)-4-methyl-1,3-thiazolium salts reversibly reduced current via CRM197 channels. The potency of the blockers increased with increasing length of alkyl chain at symmetric pH 6.0 and remained high and stable at pH 4.8 on the cis side. Comparative analysis of CRM197 and amphotericin B pore size with the inhibitory action of thiazolium salts revealed a significant increase in CRM197 pore dimension at pH 6.0. Addition of thiazolium salt with nine carbons alkyl tail increased by ∼30% the viability of human carcinoma cells A431 treated with diphtheria toxin.
Collapse
Affiliation(s)
- Oleg Ya Shatursky
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, Leontovich Str. 9, Kyiv 01054, Ukraine.
| | - Kyrylo Yu Manoilov
- Department of Molecular Immunology, Palladin Institute of Biochemistry, NAS of Ukraine, Leontovich Str. 9, Kyiv 01054, Ukraine
| | - Oksana B Gorbatiuk
- Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics NAS of Ukraine, Zabolotnogo Str. 150, Kyiv 03143, Ukraine; State Institute of Genetic and Regenerative Medicine, NAMS of Ukraine, Andriivsky ds. 28 A, Kyiv, Ukraine
| | - Mariya O Usenko
- Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics NAS of Ukraine, Zabolotnogo Str. 150, Kyiv 03143, Ukraine; State Institute of Genetic and Regenerative Medicine, NAMS of Ukraine, Andriivsky ds. 28 A, Kyiv, Ukraine
| | - Dariia A Zhukova
- Department of Molecular Immunology, Palladin Institute of Biochemistry, NAS of Ukraine, Leontovich Str. 9, Kyiv 01054, Ukraine
| | - Andriy I Vovk
- Department of Bioorganic Mechanisms, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Murmanska Str. 1, Kyiv 02094, Ukraine
| | - Oleksandr L Kobzar
- Department of Bioorganic Mechanisms, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Murmanska Str. 1, Kyiv 02094, Ukraine
| | - Irene O Trikash
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, Leontovich Str. 9, Kyiv 01054, Ukraine
| | - Tatiana A Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, Leontovich Str. 9, Kyiv 01054, Ukraine
| | - Denys V Kolibo
- Department of Molecular Immunology, Palladin Institute of Biochemistry, NAS of Ukraine, Leontovich Str. 9, Kyiv 01054, Ukraine
| | - Serhiy V Komisarenko
- Department of Molecular Immunology, Palladin Institute of Biochemistry, NAS of Ukraine, Leontovich Str. 9, Kyiv 01054, Ukraine
| |
Collapse
|
4
|
Pipercevic J, Jakob RP, Righetto RD, Goldie KN, Stahlberg H, Maier T, Hiller S. Identification of a Dps contamination in Mitomycin-C-induced expression of Colicin Ia. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183607. [PMID: 33775657 DOI: 10.1016/j.bbamem.2021.183607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 11/29/2022]
Abstract
Colicins are bacterial toxins targeting Gram-negative bacteria, including E. coli and related Enterobacteriaceae strains. Some colicins form ion-gated pores in the inner membrane of attacked bacteria that are lethal to their target. Colicin Ia was the first pore-forming E. coli toxin, for which a high-resolution structure of the monomeric full-length protein was determined. It is so far also the only colicin, for which a low-resolution structure of its membrane-inserted pore was reported by negative-stain electron microscopy. Resolving this structure at the atomic level would allow an understanding of the mechanism of toxin pore formation. Here, we report an observation that we made during an attempt to determine the Colicin Ia pore structure at atomic resolution. Colicin Ia was natively expressed by mitomycin-C induction under a native SOS promotor and purified following published protocols. The visual appearance in the electron microscope of negatively stained preparations and the lattice parameters of 2D crystals obtained from the material were highly similar to those reported earlier resulting from the same purification protocol. However, a higher-resolution structural analysis revealed that the protein is Dps (DNA-binding protein from starved cells), a dodecameric E. coli protein. This finding suggests that the previously reported low-resolution structure of a "Colicin Ia oligomeric pore" actually shows Dps.
Collapse
Affiliation(s)
| | - Roman P Jakob
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Ricardo D Righetto
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Kenneth N Goldie
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | |
Collapse
|
5
|
Characteristics of the Protein Complexes and Pores Formed by Bacillus cereus Hemolysin BL. Toxins (Basel) 2020; 12:toxins12110672. [PMID: 33114414 PMCID: PMC7694065 DOI: 10.3390/toxins12110672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 11/25/2022] Open
Abstract
Bacillus cereus Hemolysin BL is a tripartite toxin responsible for a diarrheal type of food poisoning. Open questions remain regarding its mode of action, including the extent to which complex formation prior to cell binding contributes to pore-forming activity, how these complexes are composed, and the properties of the pores formed in the target cell membrane. Distinct complexes of up to 600 kDa were found on native gels, whose structure and size were primarily defined by Hbl B. Hbl L1 and L2 were also identified in these complexes using Western blotting and an LC-MS approach. LC-MS also revealed that many other proteins secreted by B. cereus exist in complexes. Further, a decrease of toxic activity at temperatures ≥60 °C was shown, which was unexpectedly restored at higher temperatures. This could be attributed to a release of Hbl B monomers from tight complexation, resulting in enhanced cell binding. In contrast, Hbl L1 was rather susceptible to heat, while heat treatment of Hbl L2 seemed not to be crucial. Furthermore, Hbl-induced pores had a rather small single-channel conductance of around 200 pS and a probable channel diameter of at least 1 nm on planar lipid bilayers. These were highly instable and had a limited lifetime, and were also slightly cation-selective. Altogether, this study provides astonishing new insights into the complex mechanism of Hbl pore formation, as well as the properties of the pores.
Collapse
|
6
|
Colicin U from Shigella boydii Forms Voltage-Dependent Pores. J Bacteriol 2019; 201:JB.00493-19. [PMID: 31548276 DOI: 10.1128/jb.00493-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022] Open
Abstract
Colicin U is a protein produced by the bacterium Shigella boydii (serovars 1 and 8). It exerts antibacterial activity against strains of the enterobacterial genera Shigella and Escherichia Here, we report that colicin U forms voltage-dependent pores in planar lipid membranes; its single-pore conductance was found to be about 22 pS in 1 M KCl at pH 6 under 80 mV in asolectin bilayers. In agreement with the high degree of homology between their C-terminal domains, colicin U shares some pore characteristics with the related colicins A and B. Colicin U pores are strongly pH dependent, and as we deduced from the activity of colicin U in planar membranes at different protein concentrations, they have a monomeric pore structure. However, in contrast to related colicins, we observed a very low cationic selectivity of colicin U pores (1.5/1 of K+/Cl- at pH 6) along with their atypical voltage gating. Finally, using nonelectrolytes, we determined the inner diameter of the pores to be in the range of 0.7 to 1 nm, which is similar to colicin Ia, but with a considerably different inner profile.IMPORTANCE Currently, a dramatic increase in antibiotic resistance is driving researchers to find new antimicrobial agents. The large group of toxins called bacteriocins appears to be very promising from this point of view, especially because their narrow killing spectrum allows specific targeting against selected bacterial strains. Colicins are a subgroup of bacteriocins that act on Gram-negative bacteria. To date, some colicins are commercially used for the treatment of animals (1) and tested as a component of engineered species-specific antimicrobial peptides, which are studied for the potential treatment of humans (2). Here, we present a thorough single-molecule study of colicin U which leads to a better understanding of its mode of action. It extends the range of characterized colicins available for possible future medical applications.
Collapse
|
7
|
Omersa N, Podobnik M, Anderluh G. Inhibition of Pore-Forming Proteins. Toxins (Basel) 2019; 11:E545. [PMID: 31546810 PMCID: PMC6784129 DOI: 10.3390/toxins11090545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/27/2019] [Accepted: 09/10/2019] [Indexed: 12/16/2022] Open
Abstract
Perforation of cellular membranes by pore-forming proteins can affect cell physiology, tissue integrity, or immune response. Since many pore-forming proteins are toxins or highly potent virulence factors, they represent an attractive target for the development of molecules that neutralize their actions with high efficacy. There has been an assortment of inhibitors developed to specifically obstruct the activity of pore-forming proteins, in addition to vaccination and antibiotics that serve as a plausible treatment for the majority of diseases caused by bacterial infections. Here we review a wide range of potential inhibitors that can specifically and effectively block the activity of pore-forming proteins, from small molecules to more specific macromolecular systems, such as synthetic nanoparticles, antibodies, antibody mimetics, polyvalent inhibitors, and dominant negative mutants. We discuss their mechanism of inhibition, as well as advantages and disadvantages.
Collapse
Affiliation(s)
- Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| |
Collapse
|
8
|
Liu Z, Ghai I, Winterhalter M, Schwaneberg U. Engineering Enhanced Pore Sizes Using FhuA Δ1-160 from E. coli Outer Membrane as Template. ACS Sens 2017; 2:1619-1626. [PMID: 29052976 DOI: 10.1021/acssensors.7b00481] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biological membranes are the perfect example of a molecular filter using membrane channels to control the permeability of small water-soluble molecules. To allow filtering of larger hydrophilic molecules we started from the known mutant channel FhuA Δ1-160 in which the cork domain closing the channel had been removed. Here we further expand the pore diameter by copying the amino acid sequence of two β-strands in a stepwise manner increasing the total number of β-strands from 22 to 34. The pore size of the respective expanded channel protein was characterized by single-channel conductance. Insertion of additional β-strands increased the pore conductance but also induced more ion current flickering on the millisecond scale. Further, polymer exclusion measurements were performed by analyzing single-channel conductance in the presence of differently sized polyethylene glycol of known polymer random coil radii. The conclusion from channel conductance of small channel penetrating polymers versus larger excluded ones suggested an increase in pore radii from 1.6 nm for FhuA Δ1-160 up to a maximum of about 2.7 nm for +8 β insertion. Integration of more β-strand caused instability of the channel and exclusion of smaller sized polymer. FhuA Δ1-160 + 10 β and FhuA Δ1-160 + 12 β effective radius decreased to 1.4 and 1.3 nm, respectively, showing the limitations of this approach.
Collapse
Affiliation(s)
- Zhanzhi Liu
- Institute
of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Ishan Ghai
- Department
of Life Sciences and Chemistry, Jacobs University Bremen, 28719, Bremen, Germany
| | - Mathias Winterhalter
- Department
of Life Sciences and Chemistry, Jacobs University Bremen, 28719, Bremen, Germany
| | - Ulrich Schwaneberg
- Institute
of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, D-52074 Aachen, Germany
| |
Collapse
|
9
|
Alcaraz A, López ML, Queralt-Martín M, Aguilella VM. Ion Transport in Confined Geometries below the Nanoscale: Access Resistance Dominates Protein Channel Conductance in Diluted Solutions. ACS NANO 2017; 11:10392-10400. [PMID: 28930428 DOI: 10.1021/acsnano.7b05529] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Synthetic nanopores and mesoscopic protein channels have common traits like the importance of electrostatic interactions between the permeating ions and the nanochannel. Ion transport at the nanoscale occurs under confinement conditions so that the usual assumptions made in microfluidics are challenged, among others, by interfacial effects such as access resistance (AR). Here, we show that a sound interpretation of electrophysiological measurements in terms of channel ion selective properties requires the consideration of interfacial effects, up to the point that they dominate protein channel conductance in diluted solutions. We measure AR in a large ion channel, the bacterial porin OmpF, by means of single-channel conductance measurements in electrolyte solutions containing varying concentrations of high molecular weight PEG, sterically excluded from the pore. Comparison of experiments performed in charged and neutral planar membranes shows that lipid surface charges modify the ion distribution and determine the value of AR, indicating that lipid molecules are more than passive scaffolds even in the case of large transmembrane proteins. We also found that AR may reach up to 80% of the total channel conductance in diluted solutions, where electrophysiological recordings register essentially the AR of the system and depend marginally on the pore characteristics. These findings may have implications for several low aspect ratio biological channels that perform their physiological function in a low ionic strength and macromolecule crowded environment, just the two conditions enhancing the AR contribution.
Collapse
Affiliation(s)
- Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I , Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain
| | - M Lidón López
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I , Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain
| | - María Queralt-Martín
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I , Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain
| | - Vicente M Aguilella
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I , Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain
| |
Collapse
|
10
|
Abstract
One of the main fundamental mechanisms of antibiotic resistance in Gram-negative bacteria comprises an effective change in the membrane permeability to antibiotics. The Gram-negative bacterial complex cell envelope comprises an outer membrane that delimits the periplasm from the exterior environment. The outer membrane contains numerous protein channels, termed as porins or nanopores, which are mainly involved in the influx of hydrophilic compounds, including antibiotics. Bacterial adaptation to reduce influx through these outer membrane proteins (Omps) is one of the crucial mechanisms behind antibiotic resistance. Thus to interpret the molecular basis of the outer membrane permeability is the current challenge. This review attempts to develop a state of knowledge pertinent to Omps and their effective role in antibiotic influx. Further, it aims to study the bacterial response to antibiotic membrane permeability and hopefully provoke a discussion toward understanding and further exploration of prospects to improve our knowledge on physicochemical parameters that direct the translocation of antibiotics through the bacterial membrane protein channels.
Collapse
Affiliation(s)
- Ishan Ghai
- School of Engineering and Life Sciences, Jacobs University, Bremen
| | | |
Collapse
|
11
|
Jing P, Burris B, Zhang R. Forces from the Portal Govern the Late-Stage DNA Transport in a Viral DNA Packaging Nanomotor. Biophys J 2017; 111:162-77. [PMID: 27410744 DOI: 10.1016/j.bpj.2016.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 01/09/2023] Open
Abstract
In the Phi29 bacteriophage, the DNA packaging nanomotor packs its double-stranded DNA genome into the virus capsid. At the late stage of DNA packaging, the negatively charged genome is increasingly compacted at a higher density in the capsid with a higher internal pressure. During the process, two Donnan effects, osmotic pressure and Donnan equilibrium potentials, are significantly amplified, which, in turn, affect the channel activity of the portal protein, GP10, embedded in the semipermeable capsid shell. In the research, planar lipid bilayer experiments were used to study the channel activities of the viral protein. The Donnan effect on the conformational changes of the viral protein was discovered, indicating GP10 may not be a static channel at the late stage of DNA packaging. Due to the conformational changes, GP10 may generate electrostatic forces that govern the DNA transport. For the section of the genome DNA that remains outside of the connector channel, a strong repulsive force from the viral protein would be generated against the DNA entry; however, for the section of the genome DNA within the channel, the portal protein would become a Brownian motor, which adopts the flash Brownian ratchet mechanism to pump the DNA against the increasingly built-up internal pressure (up to 20 atm) in the capsid. Therefore, the DNA transport in the nanoscale viral channel at the late stage of DNA packaging could be a consequence of Brownian movement of the genomic DNA, which would be rectified and harnessed by the forces from the interior wall of the viral channel under the influence of the Donnan effect.
Collapse
Affiliation(s)
- Peng Jing
- Department of Chemistry, College of Arts and Sciences, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana.
| | - Benjamin Burris
- Department of Chemistry, College of Arts and Sciences, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana
| | - Rong Zhang
- Division of Endocrinology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Jing P, Paraiso H, Burris B. Highly efficient integration of the viral portal proteins from different types of phages into planar bilayers for the black lipid membrane analysis. MOLECULAR BIOSYSTEMS 2015; 12:480-9. [PMID: 26661052 DOI: 10.1039/c5mb00573f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The planar lipid bilayer technology is a technique that yields incredibly useful structural function information about a single channel protein. It is also currently actively utilized as a powerful platform using biological protein nanopores for the development of single-molecule nanopore sensing technology, as well as ultrafast DNA sequencing technology. The portal protein, GP10, from the bacteriophage Φ29 was the first phage portal protein shown to be successfully inserted into planar bilayer membranes, thereby it may inspire more researchers to apply the techniques to portal proteins from the other bacteriophages. However, the technology is far from perfect since the insertion of the channel proteins into planar bilayer membranes is not only technically difficult but also time-consuming. For the fusion of phage portal proteins, vesicles are typically needed to be reconstituted with the portal proteins to form proteoliposomes. However, most of the phage portal proteins have low solubility, and may self-aggregate during the preparation of the proteoliposomes. Furthermore, the fusion of the formed proteoliposomes is sporadic, unpredictable and varied from person to person. Due to the lack of experimental consistency between labs, the results from different methodologies reported for generating fusible proteoliposomes are highly variable. In this research, we propose a new method for the preparation of the fusible proteoliposomes containing portal proteins from bacteriophages, to circumvent the problems aforementioned. Compared to the conventional methods, this method was able to avoid the protein aggregation issues during the vesicle preparation by eliminating the need for detergents and the subsequent time-consuming step for detergent removal. The proteoliposomes prepared by the method were shown to be more efficiently and rapidly inserted into planar bilayer membranes bathed in different conducting buffer solutions including those with nonelectrolytes such as glycerol and PEG. In addition, the method of forming proteoliposomes has significantly extended the shelf life of the proteoliposomes. To further explore its potentials, we have successfully applied the method to the insertion of a mutant portal protein, GP20, from T4 bacteriophage, a hydrophobic portal protein that has not been explored using the planar lipid bilayer membrane technique. The results suggest that this method could be used to prepare proteoliposomes formed by hydrophobic portal proteins from other bacteriophages.
Collapse
Affiliation(s)
- Peng Jing
- Department of Chemistry, College of Arts and Sciences, Indiana-Purdue University Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, IN 46805-1499, USA.
| | - Hallel Paraiso
- Department of Biology, College of Arts and Sciences, Indiana-Purdue University Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, IN 46805-1499, USA
| | - Benjamin Burris
- Department of Chemistry, College of Arts and Sciences, Indiana-Purdue University Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, IN 46805-1499, USA.
| |
Collapse
|
13
|
Formation of small transmembrane pores: An intermediate stage on the way to Bacillus cereus non-hemolytic enterotoxin (Nhe) full pores in the absence of NheA. Biochem Biophys Res Commun 2015; 469:613-8. [PMID: 26654951 DOI: 10.1016/j.bbrc.2015.11.126] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 02/03/2023]
Abstract
The non-hemolytic enterotoxin (Nhe) of Bacillus cereus is a three-partite toxin formed of the components NheA, -B and -C. Pore formation and subsequent lysis of target cells caused by Nhe is an orchestrated process comprising three steps: (i) formation of NheB/C oligomers in solution, (ii) attachment of the oligomers to the cell membrane, (iii) binding of NheA to the oligomers. The present study aimed to characterize the properties of the NheB/C complex and the fate of the target cell upon binding. An enzyme immunoassay allowing kinetic measurements and surface plasmon resonance revealed the fast and high affinity formation of the NheB/C oligomers. The benefit of these complexes is a more stable cell binding as well as stronger and earlier cytotoxic effect. High molecular mass hetero-oligomers (620 kDa) probably consisting of one NheC and up to 15 NheB were detected by size-exclusion chromatography and on native PAGE immunoblots. Due to the NheBC application the morphology and membrane permeability of Vero cells is partly disturbed. Formation of stable transmembrane channels with a conductance of about 870 pS and a diameter of about 2 nm due to the application of NheBC could be demonstrated in lipid bilayer experiments. Thus, the NheBC complex itself has a tendency to increase the membrane permeability prior to the emergence of full pores containing also NheA.
Collapse
|
14
|
Rajapaksha SP, Pal N, Zheng D, Lu HP. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052719. [PMID: 26651735 DOI: 10.1103/physreve.92.052719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 06/05/2023]
Abstract
We have applied a combined fluorescence microscopy and single-ion-channel electric current recording approach, correlating with molecular dynamics (MD) simulations, to study the mechanism of voltage-sensor domain translocation across a lipid bilayer. We use the colicin Ia ion channel as a model system, and our experimental and simulation results show the following: (1) The open-close activity of an activated colicin Ia is not necessarily sensitive to the amplitude of the applied cross-membrane voltage when the cross-membrane voltage is around the resting potential of excitable membranes; and (2) there is a significant probability that the activation of colicin Ia occurs by forming a transient and fluctuating water pore of ∼15 Å diameter in the lipid bilayer membrane. The location of the water-pore formation is nonrandom and highly specific, right at the insertion site of colicin Ia charged residues in the lipid bilayer membrane, and the formation is intrinsically associated with the polypeptide conformational fluctuations and solvation dynamics. Our results suggest an interesting mechanistic pathway for voltage-sensitive ion channel activation, and specifically for translocation of charged polypeptide chains across the lipid membrane under a transmembrane electric field: the charged polypeptide domain facilitates the formation of hydrophilic water pore in the membrane and diffuses through the hydrophilic pathway across the membrane; i.e., the charged polypeptide chain can cross a lipid membrane without entering into the hydrophobic core of the lipid membrane but entirely through the aqueous and hydrophilic environment to achieve a cross-membrane translocation. This mechanism sheds light on the intensive and fundamental debate on how a hydrophilic and charged peptide domain diffuses across the biologically inaccessible high-energy barrier of the hydrophobic core of a lipid bilayer: The peptide domain does not need to cross the hydrophobic core to move across a lipid bilayer.
Collapse
Affiliation(s)
- Suneth P Rajapaksha
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - Nibedita Pal
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - Desheng Zheng
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - H Peter Lu
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA
| |
Collapse
|
15
|
Merlos A, Rodríguez P, Bárcena-Uribarri I, Winterhalter M, Benz R, Vinuesa T, Moya JA, Viñas M. Toxins Secreted by Bacillus Isolated from Lung Adenocarcinomas Favor the Penetration of Toxic Substances. Front Microbiol 2015; 6:1301. [PMID: 26635767 PMCID: PMC4655230 DOI: 10.3389/fmicb.2015.01301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/06/2015] [Indexed: 01/17/2023] Open
Abstract
The aim was to explore the eventual role of bacteria in the induction of lung cancer by smoking habits. Viable bacteria closely related to the genus Bacillus were detected at high frequencies in lung-cancer biopsies. Similar, if not identical, microbes were isolated from cigarettes and in smog. Bacteria present in cigarettes could be transferred to a physiological solution via a "smoker" device that mimicked their potential transfer during smoking those bacteria produce exotoxins able to open transmembrane pores. These channels can be used as a way to penetrate cells of benzopyrenes and other toxic substances present in tobacco products. We hypothesize that Bacillaceae present in tobacco play a key role in the development of lung cancer.
Collapse
Affiliation(s)
- Alexandra Merlos
- Molecular Microbiology and Antibiotics, Department of Pathology and Experimental Therapeutics, Medical School, University of Barcelona Barcelona, Spain
| | - Pau Rodríguez
- Department of Thoracic Surgery, Hospital Universitari de Bellvitge, University of Barcelona-IDIBELL-HUB Barcelona, Spain
| | | | | | | | - Teresa Vinuesa
- Molecular Microbiology and Antibiotics, Department of Pathology and Experimental Therapeutics, Medical School, University of Barcelona Barcelona, Spain
| | - Juan A Moya
- Department of Thoracic Surgery, Hospital Universitari de Bellvitge, University of Barcelona-IDIBELL-HUB Barcelona, Spain
| | - Miguel Viñas
- Molecular Microbiology and Antibiotics, Department of Pathology and Experimental Therapeutics, Medical School, University of Barcelona Barcelona, Spain ; Cooperativa de Ensino Superior Politécnico e Universitário, IINFACTS Gandra, Portugal
| |
Collapse
|
16
|
Kasianowicz JJ, Balijepalli AK, Ettedgui J, Forstater JH, Wang H, Zhang H, Robertson JWF. Analytical applications for pore-forming proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:593-606. [PMID: 26431785 DOI: 10.1016/j.bbamem.2015.09.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/28/2015] [Accepted: 09/25/2015] [Indexed: 01/13/2023]
Abstract
Proteinaceous nanometer-scale pores are ubiquitous in biology. The canonical ionic channels (e.g., those that transport Na(+), K(+), Ca(2+), and Cl(-) across cell membranes) play key roles in many cellular processes, including nerve and muscle activity. Another class of channels includes bacterial pore-forming toxins, which disrupt cell function, and can lead to cell death. We describe here the recent development of these toxins for a wide range of biological sensing applications. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- John J Kasianowicz
- NIST, Physical Measurement Laboratory, Gaithersburg, MD 20899, United States.
| | | | - Jessica Ettedgui
- NIST, Physical Measurement Laboratory, Gaithersburg, MD 20899, United States
| | - Jacob H Forstater
- NIST, Physical Measurement Laboratory, Gaithersburg, MD 20899, United States
| | - Haiyan Wang
- NIST, Physical Measurement Laboratory, Gaithersburg, MD 20899, United States
| | - Huisheng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Dept. of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | | |
Collapse
|
17
|
Bárcena-Uribarri I, Benz R, Winterhalter M, Zakharian E, Balashova N. Pore forming activity of the potent RTX-toxin produced by pediatric pathogen Kingella kingae: Characterization and comparison to other RTX-family members. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1536-44. [PMID: 25858109 DOI: 10.1016/j.bbamem.2015.03.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 12/18/2022]
Abstract
Pediatric septic arthritis in patients under age of four is frequently caused by the oral Gram-negative bacterium Kingella kingae. This organism may be responsible for a severe form of infective endocarditis in otherwise healthy children and adults. A major virulence factor of K. kingae is RtxA, a toxin that belongs to the RTX (Repeats-in-ToXin) group of secreted pore forming toxins. To understand the RtxA effects on host cell membranes, the toxin activity was studied using planar lipid bilayers. K. kingae strain PYKK081 and its isogenic RtxA-deficient strain, KKNB100, were tested for their ability to form pores in artificial membranes of asolectin/n-decane. RtxA, purified from PYKK081, was able to rapidly form pores with an apparent diameter of 1.9nm as measured by the partition of nonelectrolytes in the pores. The RtxA channels are cation-selective and showed strong voltage-dependent gating. In contrast to supernatants of PYKK081, those of KKNB100 did not show any pore forming activity. We concluded that RtxA toxin is the only secreted protein from K. kingae forming large channels in host cell membranes where it induces cation flux leading to programmed cell death. Furthermore, our findings suggested that the planar lipid bilayer technique can effectively be used to test possible inhibitors of RTX toxin activity and to investigate the mechanism of the toxin binding to the membrane.
Collapse
Affiliation(s)
| | - Roland Benz
- Department of Life Science and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Mathias Winterhalter
- Department of Life Science and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Eleonora Zakharian
- Department of Cancer Biology & Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Nataliya Balashova
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Bárcena-Uribarri I, Thein M, Barbot M, Sans-Serramitjana E, Bonde M, Mentele R, Lottspeich F, Bergström S, Benz R. Study of the protein complex, pore diameter, and pore-forming activity of the Borrelia burgdorferi P13 porin. J Biol Chem 2014; 289:18614-24. [PMID: 24825899 DOI: 10.1074/jbc.m113.539528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P13 is one of the major outer membrane proteins of Borrelia burgdorferi. Previous studies described P13 as a porin. In the present study some structure and function aspects of P13 were studied. P13 showed according to lipid bilayer studies a channel-forming activity of 0.6 nanosiemens in 1 m KCl. Single channel and selectivity measurements demonstrated that P13 had no preference for either cations or anions and showed no voltage-gating up to ±100 mV. Blue native polyacrylamide gel electrophoresis was used to isolate and characterize the P13 protein complex in its native state. The complex had a high molecular mass of about 300 kDa and was only composed of P13 monomers. The channel size was investigated using non-electrolytes revealing an apparent diameter of about 1.4 nm with a 400-Da molecular mass cut-off. Multichannel titrations with different substrates reinforced the idea that P13 forms a general diffusion channel. The identity of P13 within the complex was confirmed by second dimension SDS-PAGE, Western blotting, mass spectrometry, and the use of a p13 deletion mutant strain. The results suggested that P13 is the protein responsible for the 0.6-nanosiemens pore-forming activity in the outer membrane of B. burgdorferi.
Collapse
Affiliation(s)
- Iván Bárcena-Uribarri
- From the Rudolf-Virchow-Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany, School of Engineering and Science, Jacobs University Bremen, Campusring 1, D-28759 Bremen, Germany,
| | - Marcus Thein
- From the Rudolf-Virchow-Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany
| | - Mariam Barbot
- From the Rudolf-Virchow-Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany
| | - Eulalia Sans-Serramitjana
- From the Rudolf-Virchow-Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany
| | - Mari Bonde
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden, and
| | - Reinhard Mentele
- Max-Planck Institute of Biochemistry, Protein Analysis Department, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Friedrich Lottspeich
- Max-Planck Institute of Biochemistry, Protein Analysis Department, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden, and
| | - Roland Benz
- From the Rudolf-Virchow-Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany, School of Engineering and Science, Jacobs University Bremen, Campusring 1, D-28759 Bremen, Germany
| |
Collapse
|
19
|
Mafakheri S, Bárcena-Uribarri I, Abdali N, Jones AL, Sutcliffe IC, Benz R. Discovery of a cell wall porin in the mycolic-acid-containing actinomycete Dietzia maris DSM 43672. FEBS J 2014; 281:2030-41. [PMID: 24707935 DOI: 10.1111/febs.12758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/14/2014] [Accepted: 02/17/2014] [Indexed: 11/30/2022]
Abstract
The cell wall of the Gram-positive mycolic-acid-containing actinomycete Dietzia maris DSM 43672 was found to contain a pore-forming protein, as observed from reconstitution experiments with artificial lipid bilayer experiments in the presence of cell wall extracts. The cell wall porin was purified to homogeneity using different biochemical methods and had an apparent molecular mass of about 120 kDa on tricine-containing SDS/PAGE. The 120 kDa protein dissociated into subunits with a molecular mass of about 35 kDa when it was heated to 100 °C in 8 m urea. The 120 kDa protein, here named PorADm , formed ion-permeable channels in lipid bilayer membranes with a high single-channel conductance of about 5.8 nS in 1 m KCl. Asymmetric addition of PorADm to lipid bilayer membranes resulted in an asymmetric voltage dependence. Zero-current membrane potential measurements with different salt solutions suggested that the porin of D. maris is cation-selective because of negative charges localized at the channel mouth. Analysis of the single-channel conductance using non-electrolytes with known hydrodynamic radii indicated that the diameter of the cell wall channel is about 2 nm. The channel characteristics of the cell wall porin of D. maris are compared with those of other members of the mycolata. They share some common features because they are composed of small molecular mass subunits and form large and water-filled channels. The porin was subjected to protein analysis by mass spectrometry but its sequence had no significant homology to any known porin sequences.
Collapse
Affiliation(s)
- Samaneh Mafakheri
- School of Engineering and Science, Jacobs University Bremen, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Shatursky OY, Romanenko OV, Himmelreich NH. Long open amphotericin channels revealed in cholesterol-containing phospholipid membranes are blocked by thiazole derivative. J Membr Biol 2014; 247:211-29. [PMID: 24402241 DOI: 10.1007/s00232-013-9626-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
The action of antifungal drug, amphotericin B (AmB), on solvent-containing planar lipid bilayers made of sterols (cholesterol, ergosterol) and synthetic C14-C18 tail phospholipids (PCs) or egg PC has been investigated in a voltage-clamp mode. Within the range of PCs tested, a similar increase was achieved in the lifetime of one-sided AmB channels in cholesterol- and ergosterol-containing membranes with the C16 tail PC, DPhPC at sterol/DPhPC molar ratio ≤1. The AmB channel lifetimes decreased only at sterol/DPhPC molar ratio >1 that occurred with sterol/PC molar ratio of target cell membranes at a pathological state. These data obtained on bilayer membranes two times thicker than one-sided AmB channel length are consistent with the accepted AmB pore-forming mechanism, which is associated with membrane thinning around AmB-sterol complex in the lipid rafts. Our results show that AmB can create cytotoxic (long open) channels in cholesterol membrane with C14-C16 tail PCs and nontoxic (short open) channels with C17-C18 tail PCs as the lifetime of one-sided AmB channel depends on ~2-5 Å difference in the thickness of sterol-containing C16 and C18 tail PC membranes. The reduction in toxic AmB channels efficacy can be required at the drug administration because C16 tails in native membrane PCs occur almost as often as C18 tails. The comparative analysis of AmB channel blocking by tetraethylammonium chloride, tetramethylammonium chloride and thiazole derivative of vitamin B1, 3-decyloxycarbonylmethyl-4-methyl-5-(2-hydroxyethyl) thiazole chloride (DMHT), has proved that DMHT is a comparable substitute for both tetraalkylammonia that exhibits a much higher affinity.
Collapse
Affiliation(s)
- Oleg Ya Shatursky
- Department of Neurochemistry, Palladin Institute of Biochemistry, Leontovich Str., 9, Kiev, 01601, Ukraine,
| | | | | |
Collapse
|
21
|
Bárcena-Uribarri I, Thein M, Maier E, Bonde M, Bergström S, Benz R. Use of nonelectrolytes reveals the channel size and oligomeric constitution of the Borrelia burgdorferi P66 porin. PLoS One 2013; 8:e78272. [PMID: 24223145 PMCID: PMC3819385 DOI: 10.1371/journal.pone.0078272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022] Open
Abstract
In the Lyme disease spirochete Borrelia burgdorferi, the outer membrane protein P66 is capable of pore formation with an atypical high single-channel conductance of 11 nS in 1 M KCl, which suggested that it could have a larger diameter than 'normal' Gram-negative bacterial porins. We studied the diameter of the P66 channel by analyzing its single-channel conductance in black lipid bilayers in the presence of different nonelectrolytes with known hydrodynamic radii. We calculated the filling of the channel with these nonelectrolytes and the results suggested that nonelectrolytes (NEs) with hydrodynamic radii of 0.34 nm or smaller pass through the pore, whereas neutral molecules with greater radii only partially filled the channel or were not able to enter it at all. The diameter of the entrance of the P66 channel was determined to be ≤1.9 nm and the channel has a central constriction of about 0.8 nm. The size of the channel appeared to be symmetrical as judged from one-sidedness of addition of NEs. Furthermore, the P66-induced membrane conductance could be blocked by 80-90% by the addition of the nonelectrolytes PEG 400, PEG 600 and maltohexaose to the aqueous phase in the low millimolar range. The analysis of the power density spectra of ion current through P66 after blockage with these NEs revealed no chemical reaction responsible for channel block. Interestingly, the blockage of the single-channel conductance of P66 by these NEs occurred in about eight subconductance states, indicating that the P66 channel could be an oligomer of about eight individual channels. The organization of P66 as a possible octamer was confirmed by Blue Native PAGE and immunoblot analysis, which both demonstrated that P66 forms a complex with a mass of approximately 460 kDa. Two dimension SDS PAGE revealed that P66 is the only polypeptide in the complex.
Collapse
Affiliation(s)
- Iván Bárcena-Uribarri
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Marcus Thein
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Elke Maier
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Mari Bonde
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Roland Benz
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
22
|
Affiliation(s)
| | - Sergey M. Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
23
|
Reiner JE, Balijepalli A, Robertson JWF, Campbell J, Suehle J, Kasianowicz JJ. Disease Detection and Management via Single Nanopore-Based Sensors. Chem Rev 2012; 112:6431-51. [DOI: 10.1021/cr300381m] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joseph E. Reiner
- Department of Physics, Virginia
Commonwealth University, 701 W. Grace Street, Richmond, Virginia 23284,
United States
| | - Arvind Balijepalli
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
- Laboratory of Computational Biology,
National Heart Lung and Blood Institute, Rockville, Maryland 20852,
United States
| | - Joseph W. F. Robertson
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
| | - Jason Campbell
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
| | - John Suehle
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
| | - John J. Kasianowicz
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
| |
Collapse
|
24
|
Robertson JWF, Kasianowicz JJ, Banerjee S. Analytical Approaches for Studying Transporters, Channels and Porins. Chem Rev 2012; 112:6227-49. [DOI: 10.1021/cr300317z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Joseph W. F. Robertson
- Physical Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899, United States
| | - John J. Kasianowicz
- Physical Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899, United States
| | - Soojay Banerjee
- National
Institute of Neurological
Disorders and Stroke, Bethesda, Maryland 20824, United States
| |
Collapse
|
25
|
Mertins B, Psakis G, Grosse W, Back KC, Salisowski A, Reiss P, Koert U, Essen LO. Flexibility of the N-terminal mVDAC1 segment controls the channel's gating behavior. PLoS One 2012; 7:e47938. [PMID: 23110136 PMCID: PMC3479125 DOI: 10.1371/journal.pone.0047938] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/25/2012] [Indexed: 11/26/2022] Open
Abstract
Since the solution of the molecular structures of members of the voltage dependent anion channels (VDACs), the N-terminal α-helix has been the main focus of attention, since its strategic location, in combination with its putative conformational flexibility, could define or control the channel’s gating characteristics. Through engineering of two double-cysteine mVDAC1 variants we achieved fixing of the N-terminal segment at the bottom and midpoint of the pore. Whilst cross-linking at the midpoint resulted in the channel remaining constitutively open, cross-linking at the base resulted in an “asymmetric” gating behavior, with closure only at one electric field´s orientation depending on the channel’s orientation in the lipid bilayer. Additionally, and while the native channel adopts several well-defined closed states (S1 and S2), the cross-linked variants showed upon closure a clear preference for the S2 state. With native-channel characteristics restored following reduction of the cysteines, it is evident that the conformational flexibility of the N-terminal segment plays indeed a major part in the control of the channel’s gating behavior.
Collapse
Affiliation(s)
- Barbara Mertins
- Department of Chemistry, Philipps University Marburg, Marburg, Germany
| | - Georgios Psakis
- Department of Chemistry, Philipps University Marburg, Marburg, Germany
| | - Wolfgang Grosse
- Department of Chemistry, Philipps University Marburg, Marburg, Germany
| | | | | | - Philipp Reiss
- Department of Chemistry, Philipps University Marburg, Marburg, Germany
| | - Ulrich Koert
- Department of Chemistry, Philipps University Marburg, Marburg, Germany
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
26
|
Honigmann A, Pulagam LP, Sippach M, Bartsch P, Steinhoff HJ, Wagner R. A high resolution electro-optical approach for investigating transition of soluble proteins to integral membrane proteins probed by colicin A. Biochem Biophys Res Commun 2012; 427:385-91. [PMID: 23000162 DOI: 10.1016/j.bbrc.2012.09.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/12/2012] [Indexed: 02/02/2023]
Abstract
The transition from water soluble state to an integral membrane protein state is a crucial step in the formation of the active form of many pore-forming or receptor proteins. Albeit this, high resolution techniques which allow assay of protein membrane binding and concomitant development of the final active form in the membrane await further development. Here, we describe a horizontal artificial bilayers setup allowing for simultaneous electrical and optical measurements at a single molecule level. We use the membrane binding and subsequent channel formation of colicin A (ColA) a water soluble bacteriocin secreted by some strains of Escherichia coli to demonstrate the potential of the combined electro-optical technique. Our results expand the knowledge on ColA molecular details which show that active ColA is monomeric; membrane binding is pH but not membrane-potential (Δϕ) dependent. ColA is at Δϕ=0 permeable for molecules ≥1 nm. Although ColA exhibits low ion conductance it facilitates permeation of large molecules. Our electro-optical recordings reveal ColA monomeric state and the chimeric character of its pore.
Collapse
Affiliation(s)
- Alf Honigmann
- Universität Osnabrück, FB Biologie/Chemie, Barbara Str. 13, 49076 Osnabrück, Germany
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Krasilnikov OV, Sabirov RZ, Okada Y. ATP hydrolysis-dependent asymmetry of the conformation of CFTR channel pore. J Physiol Sci 2011; 61:267-78. [PMID: 21461971 PMCID: PMC10717511 DOI: 10.1007/s12576-011-0144-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/20/2011] [Indexed: 01/13/2023]
Abstract
Despite substantial efforts, the entire cystic fibrosis transmembrane conductance regulator (CFTR) protein proved to be difficult for structural analysis at high resolution, and little is still known about the actual dimensions of the anion-transporting pathway of CFTR channel. In the present study, we therefore gauged geometrical features of the CFTR Cl(-) channel pore by a nonelectrolyte exclusion technique. Polyethylene glycols with a hydrodynamic radius (R (h)) smaller than 0.95 nm (PEG 300-1,000) added from the intracellular side greatly suppressed the inward unitary anionic conductance, whereas only molecules with R (h) ≤ 0.62 nm (PEG 200-400) applied extracellularly were able to affect the outward unitary anionic currents. Larger molecules with R (h) = 1.16-1.84 nm (PEG 1,540-3,400) added from either side were completely excluded from the pore and had no significant effect on the single-channel conductance. The cut-off radius of the inner entrance of CFTR channel pore was assessed to be 1.19 ± 0.02 nm. The outer entrance was narrower with its cut-off radius of 0.70 ± 0.16 nm and was dilated to 0.93 ± 0.23 nm when a non-hydrolyzable ATP analog, 5'-adenylylimidodiphosphate (AMP-PNP), was added to the intracellular solution. Thus, it is concluded that the structure of CFTR channel pore is highly asymmetric with a narrower extracellular entrance and that a dilating conformational change of the extracellular entrance is associated with the channel transition to a non-hydrolytic, locked-open state.
Collapse
Affiliation(s)
- Oleg V. Krasilnikov
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Recife, PE 50670-901 Brazil
| | - Ravshan Z. Sabirov
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
- Laboratory of Molecular Physiology, Institute of Physiology and Biophysics, Academy of Science RUz, Niyazova 1, 100095 Tashkent, Uzbekistan
- Department of Biophysics, National University, Niyazova 1, 100095 Tashkent, Uzbekistan
| | - Yasunobu Okada
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585 Japan
| |
Collapse
|
29
|
Polymer partitioning and ion selectivity suggest asymmetrical shape for the membrane pore formed by epsilon toxin. Biophys J 2010; 99:782-9. [PMID: 20682255 DOI: 10.1016/j.bpj.2010.05.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/27/2010] [Accepted: 05/03/2010] [Indexed: 12/25/2022] Open
Abstract
Using poly-(ethylene glycol)s of different molecular weights, we probe the channels formed in planar lipid bilayers by epsilon toxin secreted by the anaerobic bacterium Clostridium perfringens. We find that the pore is highly asymmetric. The cutoff size of polymers entering the pore through its opening from the cis side, the side of toxin addition, is approximately 500 Da, whereas the cutoff size for the polymers entering from the trans side is approximately 2300 Da. Comparing these characteristic molecular weights with those reported earlier for OmpF porin and the alpha-Hemolysin channel, we estimate the radii of cis and trans openings as 0.4 nm and 1.0 nm, respectively. The simplest geometry corresponding to these findings is that of a truncated cone. The asymmetry of the pore is also confirmed by measurements of the reversal potential at oppositely directed salt gradients. The moderate anionic selectivity of the channel is salted-out more efficiently when the salt concentration is higher at the trans side of the pore.
Collapse
|
30
|
Majd S, Yusko EC, Billeh YN, Macrae MX, Yang J, Mayer M. Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr Opin Biotechnol 2010; 21:439-76. [PMID: 20561776 PMCID: PMC3121537 DOI: 10.1016/j.copbio.2010.05.002] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/03/2010] [Accepted: 05/06/2010] [Indexed: 12/29/2022]
Abstract
Biological protein pores and pore-forming peptides can generate a pathway for the flux of ions and other charged or polar molecules across cellular membranes. In nature, these nanopores have diverse and essential functions that range from maintaining cell homeostasis and participating in cell signaling to activating or killing cells. The combination of the nanoscale dimensions and sophisticated - often regulated - functionality of these biological pores make them particularly attractive for the growing field of nanobiotechnology. Applications range from single-molecule sensing to drug delivery and targeted killing of malignant cells. Potential future applications may include the use of nanopores for single strand DNA sequencing and for generating bio-inspired, and possibly, biocompatible visual detection systems and batteries. This article reviews the current state of applications of pore-forming peptides and proteins in nanomedicine, sensing, and nanoelectronics.
Collapse
Affiliation(s)
- Sheereen Majd
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2110, USA
| | | | | | | | | | | |
Collapse
|
31
|
Dejean LM, Ryu SY, Martinez-Caballero S, Teijido O, Peixoto PM, Kinnally KW. MAC and Bcl-2 family proteins conspire in a deadly plot. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1231-8. [PMID: 20083086 DOI: 10.1016/j.bbabio.2010.01.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 01/06/2010] [Accepted: 01/09/2010] [Indexed: 12/31/2022]
Abstract
Apoptosis is an elemental form of programmed cell death; it is fundamental to higher eukaryotes and essential to mechanisms controlling tissue homeostasis. Apoptosis is also involved in many pathologies including cancer, neurodegenerative diseases, aging, and infarcts. This cell death program is tightly regulated by Bcl-2 family proteins by controlling the formation of the mitochondrial apoptosis-induced channel or MAC. Assembly of MAC corresponds to permeabilization of the mitochondrial outer membrane, which is the so called commitment step of apoptosis. MAC provides the pathway through the mitochondrial outer membrane for the release of cytochrome c and other pro-apoptotic factors from the intermembrane space. While overexpression of anti-apoptotic Bcl-2 eliminates MAC activity, oligomers of the pro-apoptotic members Bax and/or Bak are essential structural component(s) of MAC. Assembly of MAC from Bax or Bak was monitored in real time by directly patch-clamping mitochondria with micropipettes containing the sentinel tBid, a direct activator of Bax and Bak. Herein, a variety of high affinity inhibitors of MAC (iMAC) that may prove to be crucial tools in mechanistic studies have recently been identified. This review focuses on characterization of MAC activity, its regulation by Bcl-2 family proteins, and a discussion of how MAC can be pharmacologically turned on or off depending on the pathology to be treated.
Collapse
Affiliation(s)
- Laurent M Dejean
- Department Basic Sci., 345 East 24th St., New York University, College of Dentistry, New York, NY 10010, USA
| | | | | | | | | | | |
Collapse
|
32
|
Can BAD pores be good? New insights from examining BAD as a target of RAF kinases. ACTA ACUST UNITED AC 2009; 50:147-59. [PMID: 19895838 DOI: 10.1016/j.advenzreg.2009.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
33
|
Soong R, Majonis D, Macdonald PM. Size of bicelle defects probed via diffusion nuclear magnetic resonance of PEG. Biophys J 2009; 97:796-805. [PMID: 19651038 DOI: 10.1016/j.bpj.2009.05.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 05/27/2009] [Accepted: 05/28/2009] [Indexed: 11/16/2022] Open
Abstract
Diffusion of various poly(ethylene glycol) (PEG) tracers of well-defined molecular weight and narrow polydispersity confined within the aqueous interstices between positively magnetically aligned bicelles was measured using pulsed-field-gradient (1)H nuclear magnetic resonance. The bicelles consisted of mixtures of dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG), and dihexanoylphosphatidylcholine (DHPC) in the molar ratios q = [100 DMPC +5 DMPG]/[DHPC] = 3.5, 4.5, and 5.5, to which Yb(3+) had been added in the ratio 1:75 Yb(3+)/phospholipid. The field gradients were applied such that diffusion was measured in the direction parallel to the normal to the bicelles' planar regions, thereby rendering the experiment sensitive to the ability of PEG to traverse lamellar defects within the bicelles. The pulsed-field-gradient nuclear magnetic resonance diffusive intensity decays were diffusion-time-independent in all cases, with diffusive displacements corresponding to many hundreds of bicellar lamellae. This permitted a description of such diffusive decays in terms of a mean behavior involving a combination of straight obstruction effects common to all PEG, with hindrance to diffusion proportional to the relative size of a given PEG with respect to the size of the lamellar defects. Across the range of PEG molecular weights (200-4600) and bicelle compositions examined, the apparent radial dimension of the lamellar defects decreased from 165 A with q = 3.5 to 125 A with q = 5.5. This is opposite to the trend predicted from static geometric models of either bicelle disks or perforated lamellae. Qualitatively, the observed trend suggests that mobility of the obstructions to diffusion will need to be considered to reconcile these differences.
Collapse
Affiliation(s)
- Ronald Soong
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
34
|
Greig SL, Radjainia M, Mitra AK. Oligomeric structure of colicin ia channel in lipid bilayer membranes. J Biol Chem 2009; 284:16126-16134. [PMID: 19357078 DOI: 10.1074/jbc.m900292200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colicin Ia is a soluble, harpoon-shaped bacteriocin which translocates across the periplasmic space of sensitive Escherichia coli cell by parasitizing an outer membrane receptor and forms voltage-gated ion channels in the inner membrane. This process leads to cell death, which has been thought to be caused by a single colicin Ia molecule. To directly visualize the three-dimensional structure of the channel, we generated two-dimensional crystals of colicin Ia inserted in lipid-bilayer membranes and determined a approximately 17 three-dimensional model by electron crystallography. Supported by velocity sedimentation, chemical cross-linking and single-particle image analysis, the three-dimensional structure is a crown-shaped oligomer enclosing a approximately 35 A-wide extrabilayer vestibule. Our study suggests that lipid insertion instigates a global conformational change in colicin Ia and that more than one molecule participates in the channel architecture with the vestibule, possibly facilitating the known large scale peptide translocation upon channel opening.
Collapse
Affiliation(s)
- Sarah L Greig
- From the School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Mazdak Radjainia
- From the School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Alok K Mitra
- From the School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
35
|
Kienker PK, Jakes KS, Finkelstein A. Identification of channel-lining amino acid residues in the hydrophobic segment of colicin Ia. ACTA ACUST UNITED AC 2009; 132:693-707. [PMID: 19029376 PMCID: PMC2585860 DOI: 10.1085/jgp.200810042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Colicin Ia is a bactericidal protein of 626 amino acid residues that kills its target cell by forming a channel in the inner membrane; it can also form voltage-dependent channels in planar lipid bilayer membranes. The channel-forming activity resides in the carboxy-terminal domain of ∼177 residues. In the crystal structure of the water-soluble conformation, this domain consists of a bundle of 10 α-helices, with eight mostly amphipathic helices surrounding a hydrophobic helical hairpin (helices H8-H9). We wish to know how this structure changes to form a channel in a lipid bilayer. Although there is evidence that the open channel has four transmembrane segments (H8, H9, and parts of H1 and H6-H7), their arrangement relative to the pore is largely unknown. Given the lack of a detailed structural model, it is imperative to better characterize the channel-lining protein segments. Here, we focus on a segment of 44 residues (573–616), which in the crystal structure comprises the H8-H9 hairpin and flanking regions. We mutated each of these residues to a unique cysteine, added the mutant colicins to the cis side of planar bilayers to form channels, and determined whether sulfhydryl-specific methanethiosulfonate reagents could alter the conduction of ions through the open channel. We found a pattern of reactivity consistent with parts of H8 and H9 lining the channel as α-helices, albeit rather short ones for spanning a lipid bilayer (12 residues). The effects of the reactions on channel conductance and selectivity tend to be greater for residues near the amino terminus of H8 and the carboxy terminus of H9, with particularly large effects for G577C, T581C, and G609C, suggesting that these residues may occupy a relatively constricted region near the cis end of the channel.
Collapse
Affiliation(s)
- Paul K Kienker
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
36
|
Chapter 3 Voltage‐Dependent Ion Channels Induced by Cyclic Lipodepsipeptides in Planar Lipid Bilayers. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1554-4516(08)00203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
Shatursky OY, Volkova TM, Himmelreich NH, Grishin EV. The geometry of the ionic chànnel lumen formed by alpha-latroinsectotoxin from black widow spider venom in the bilayer lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2757-63. [PMID: 17764656 DOI: 10.1016/j.bbamem.2007.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 06/25/2007] [Accepted: 07/10/2007] [Indexed: 11/16/2022]
Abstract
The dependence of single channel conductance formed by alpha-latroinsectotoxin (alpha-LIT) from black widow spider venom in the planar phospholipid membrane on the hydrodynamic radii of different nonelectrolytes allowed to determine the geometry of alpha-LIT water lumen. It was found that the cis- and trans-entrances of alpha-LIT channel had the same effective radii of 0.55-0.58 nm. Relatively small conductance of alpha-LIT channel (23.5+3.7 pS) in a symmetrical membrane bathing solution of 100 mM KCl (pH 7.4) may result from the constriction inside the channel with apparent radius of 0.37 nm located 32.5% of channel length away from the cis-entrance.
Collapse
Affiliation(s)
- Oleg Ya Shatursky
- Department of Neurochemistry, Palladin Institute of Biochemistry, Leontovich Str, 9, 01601, Kiev, Ukraine.
| | | | | | | |
Collapse
|
38
|
Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. Colicin biology. Microbiol Mol Biol Rev 2007; 71:158-229. [PMID: 17347522 PMCID: PMC1847374 DOI: 10.1128/mmbr.00036-06] [Citation(s) in RCA: 784] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS regulation; their release into the extracellular medium, which involves the colicin lysis protein; and their uptake mechanisms and modes of action. Colicins are organized into three domains, each one involved in a different step of the process of killing sensitive bacteria. The structures of some colicins are known at the atomic level and are discussed. Colicins exert their lethal action by first binding to specific receptors, which are outer membrane proteins used for the entry of specific nutrients. They are then translocated through the outer membrane and transit through the periplasm by either the Tol or the TonB system. The components of each system are known, and their implication in the functioning of the system is described. Colicins then reach their lethal target and act either by forming a voltage-dependent channel into the inner membrane or by using their endonuclease activity on DNA, rRNA, or tRNA. The mechanisms of inhibition by specific and cognate immunity proteins are presented. Finally, the use of colicins as laboratory or biotechnological tools and their mode of evolution are discussed.
Collapse
Affiliation(s)
- Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires,Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, UPR 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ostroumova OS, Gurnev PA, Schagina LV, Bezrukov SM. Asymmetry of syringomycin E channel studied by polymer partitioning. FEBS Lett 2007; 581:804-8. [PMID: 17289034 PMCID: PMC1866293 DOI: 10.1016/j.febslet.2007.01.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/22/2007] [Accepted: 01/24/2007] [Indexed: 11/28/2022]
Abstract
To probe the size of the ion channel formed by Pseudomonas syringae lipodepsipeptide syringomycin E, we use the partial blockage of ion current by penetrating poly(ethylene glycol)s. Earlier experiments with symmetric application of these polymers yielded a radius estimate of approximately 1 nm. Now, motivated by the asymmetric non-ohmic current-voltage curves reported for this channel, we explore its structural asymmetry. We gauge this asymmetry by studying the channel conductance after one-sided addition of differently sized poly(ethylene glycol)s. We find that small polymers added to the cis-side of the membrane (the side of lipodepsipeptide addition) reduce channel conductance much less than do the same polymers added to the trans-side. We interpret our results to suggest that the water-filled pore of the channel is conical with cis- and trans-radii differing by a factor of 2-3 and that the smaller cis-radius is in the 0.25-0.35 nm range. In symmetric, two-sided addition, polymers entering the pore from the larger opening dominate blockage.
Collapse
Affiliation(s)
- Olga S Ostroumova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | | | | | | |
Collapse
|
40
|
Shatursky OY, Volkova TM, Romanenko OV, Himmelreich NH, Grishin EV. Vitamin B1 thiazole derivative reduces transmembrane current through ionic channels formed by toxins from black widow spider venom and sea anemone in planar phospholipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:207-17. [PMID: 17150177 DOI: 10.1016/j.bbamem.2006.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 10/21/2006] [Accepted: 10/26/2006] [Indexed: 10/24/2022]
Abstract
The vitamin B1 (thiamine) structural analogue 3-decyloxycarbonylmethyl-4-methyl-5-(beta-hydroxyethyl) thiazole chloride (DMHT) (0.1 mM) reversibly reduced transmembrane currents in CaCl2 and KCl solutions via ionic channels produced by latrotoxins (alpha-latrotoxin (alpha-LT) and alpha-latroinsectotoxin (alpha-LIT)) from black widow spider venom and sea anemone toxin (RTX) in the bilayer lipid membranes (BLMs). Introduction of DMHT from the cis-side of BLM bathed in 10 mM CaCl2 inhibited transmembrane current by 31.6+/-3% and by 61.8+/-3% from the trans-side of BLM for alpha-LT channels. Application of DMHT in the solution of 10 mM CaCl2 to the cis-side of BLM decreased the current through the alpha-LIT and RTX channels by 52+/-4% and 50+/-5%, respectively. Addition of Cd2+ (1 mM) to the cis- or trans-side of the membrane after the DMHT-induced depression of Ca2+-current across the alpha-LT channels caused its further decrease by 85+/-5% that coincides favorably with the intensity of Cd2+ blocking in control experiments without DMHT. These data suggest that DMHT inhibiting is not specific for latrotoxin channels only and DMHT may exert its action on alpha-LT channels without considerable influence on the ionogenic groups of Ca2+-selective site inside the channel cavity. The binding kinetics of DMHT with the alpha-LT channel shows no cooperativity and allows to expect that the DMHT binding site of the toxin is formed by one ionogenic group as the slopes of inhibition rate determined in log-log coordinates are 1.25 on the trans-side and 0.68 on the cis-side. Similar pK of binding (5.4 on the trans-side and 5.7 on the cis-side) also suggest that DMHT may interact with the same high affinity site of alpha-LT channel on either side of the BLM. The comparative analysis of effective radii measured for alpha-LT, alpha-LIT and RTX channels on the cis-side (0.9 nm, 0.53 nm and 0.55 nm, correspondingly) and for alpha-LT channel on the trans-side (0.28+/-0.18 nm) with the intensity of DMHT inhibitory action obtained on these channels allowed to conclude that the potency of DMHT inhibition increased on toxin pores of smaller lumen.
Collapse
Affiliation(s)
- Oleg Ya Shatursky
- Department of Neurochemistry, Palladin Institute of Biochemistry, Leontovich Str., 9, 01601, Kiev, Ukraine.
| | | | | | | | | |
Collapse
|
41
|
Sundara Baalaji N, Mathew MK, Krishnaswamy S. Functional assay of Salmonella typhi OmpC using reconstituted large unilamellar vesicles: a general method for characterization of outer membrane proteins. Biochimie 2006; 88:1419-24. [PMID: 16765505 DOI: 10.1016/j.biochi.2006.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
The immunodominant trimeric beta-barrel outer membrane protein OmpC from Salmonella typhi, the causative agent of typhoid, has been functionally characterized here. The activity in the vesicle environment was studied in vitro using OmpC reconstituted into proteoliposomes. Passage of polysaccharides and polyethyleneglycols through OmpC has been examined to determine the permeability properties. The relative rate of neutral solute flux yields a radius of 1.1 nm for the S. typhi OmpC pore. This is almost double the pore size of Escherichia coli. This provides an example of large pore size present in the porins that form trimers as in the general bacterial porin family. The method used in this study provides a good membrane model for functional studies of porins.
Collapse
Affiliation(s)
- N Sundara Baalaji
- Center of Excellence in Bioinformatics, School of Biotechnology, Madurai-Kamaraj University, Palkalainagar, Madurai 625021, India
| | | | | |
Collapse
|
42
|
Dejean LM, Martinez-Caballero S, Kinnally KW. Is MAC the knife that cuts cytochrome c from mitochondria during apoptosis? Cell Death Differ 2006; 13:1387-95. [PMID: 16676005 DOI: 10.1038/sj.cdd.4401949] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Apoptosis is a phenomenon fundamental to higher eukaryotes and essential to mechanisms controlling tissue homeostasis. Bcl-2 family proteins tightly control this cell death program by regulating the permeabilization of the mitochondrial outer membrane and, hence, the release of cytochrome c and other proapoptotic factors. Mitochondrial apoptosis-induced channel (MAC) is the mitochondrial apoptosis-induced channel and is responsible for cytochrome c release early in apoptosis. MAC activity is detected by patch clamping mitochondria at the time of cytochrome c release. The Bcl-2 family proteins regulate apoptosis by controlling the formation of MAC. Depending on cell type and apoptotic inducer, Bax and/or Bak are structural component(s) of MAC. Overexpression of the antiapoptotic protein Bcl-2 eliminates MAC activity. The focus of this review is a biophysical characterization of MAC activity and its regulation by Bcl-2 family proteins, and ends with some discussion of therapeutic targets.
Collapse
Affiliation(s)
- L M Dejean
- Department of Basic Sciences, College of Dentistry, New York University, NY 10010, USA
| | | | | |
Collapse
|
43
|
Sobko AA, Kotova EA, Antonenko YN, Zakharov SD, Cramer WA. Lipid Dependence of the Channel Properties of a Colicin E1-Lipid Toroidal Pore. J Biol Chem 2006; 281:14408-16. [PMID: 16556601 DOI: 10.1074/jbc.m513634200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colicin E1 belongs to a group of bacteriocins whose cytotoxicity toward Escherichia coli is exerted through formation of ion channels that depolarize the cytoplasmic membrane. The lipid dependence of colicin single-channel conductance demonstrated intimate involvement of lipid in the structure of this channel. The colicin formed "small" conductance 60-picosiemens (pS) channels, with properties similar to those previously characterized, in 1,2-dieicosenoyl-sn-glycero-3-phosphocholine (C20) or thinner membranes, whereas it formed a novel "large" conductance 600-pS state in thicker 1,2-dierucoyl-sn-glycero-3-phosphocholine (C22) bilayers. Both channel states were anion-selective and voltage-gated and displayed a requirement for acidic pH. Lipids having negative spontaneous curvature inhibited the formation of both channels but increased the ratio of open 600 pS to 60 pS conductance states. Different diameters of small and large channels, 12 and 16 A, were determined from the dependence of single-channel conductance on the size of nonelectrolyte solute probes. Colicin-induced lipid "flip-flop" and the decrease in anion selectivity of the channel in the presence of negatively charged lipids implied a significant contribution of lipid to the structure of the channel, most readily described as toroidal organization of lipid and protein to form the channel pore.
Collapse
Affiliation(s)
- Alexander A Sobko
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | | | | | | | | |
Collapse
|
44
|
Nestorovich EM, Sugawara E, Nikaido H, Bezrukov SM. Pseudomonas aeruginosa porin OprF: properties of the channel. J Biol Chem 2006; 281:16230-7. [PMID: 16617058 PMCID: PMC2846715 DOI: 10.1074/jbc.m600650200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using ion channel reconstitution in planar lipid bilayers, we examined the channel-forming activity of subfractions of Pseudomonas aeruginosa OprF, which was shown to exist in two different conformations: a minority single domain conformer and a majority two-domain conformer (Sugawara, E., Nestorovich, E. M., Bezrukov, S. M., and Nikaido, H. (2006) J. Biol. Chem. 281, 16220-16229). With the fraction depleted for the single domain conformer, we were unable to detect formation of any channels with well defined conductance levels. With the unfractionated OprF, we saw only rare channel formation. However, with the single domain-enriched fraction of OprF, we observed regular insertion of channels with highly reproducible conductances. Single OprF channels demonstrate rich kinetic behavior exhibiting spontaneous transitions between several subconformations that differ in ionic conductance and radius measured in polymer exclusion experiments. Although we showed that the effective radius of the most conductive conformation exceeds that of the general outer membrane porin of Escherichia coli, OmpF, we also found that a single OprF channel mainly exists in weakly conductive subconformations and switches to the fully open state for a short time only. Therefore, the low permeability of OprF reported earlier may be due to two factors: mainly to the paucity of the single domain conformer in the OprF population and secondly to the predominance of weakly conductive subconformations within the single domain conformer.
Collapse
Affiliation(s)
- Ekaterina M. Nestorovich
- Laboratory of Physical and Structural Biology, NICHD, National Institutes of Health, Bethesda, Maryland 20892-0924
| | - Etsuko Sugawara
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Sergey M. Bezrukov
- Laboratory of Physical and Structural Biology, NICHD, National Institutes of Health, Bethesda, Maryland 20892-0924
- To whom correspondence should be addressed: Laboratory of Physical and Structural Biology, NICHD, National Institutes of Health, Bldg. 9 Rm. 1N124, 9 Memorial Dr., Bethesda, MD 20892-0924. Tel.: 301-402-4701; Fax: 301-496-2172;
| |
Collapse
|
45
|
Martinez-Caballero S, Dejean LM, Jonas EA, Kinnally KW. The role of the mitochondrial apoptosis induced channel MAC in cytochrome c release. J Bioenerg Biomembr 2006; 37:155-64. [PMID: 16167172 DOI: 10.1007/s10863-005-6570-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Permeabilization of the mitochondrial outer membrane is a crucial event during apoptosis. It allows the release of proapoptotic factors, like cytochrome c, from the intermembrane space, and represents the commitment step in apoptosis. The mitochondrial apoptosis-induced channel, MAC, is a high-conductance channel that forms during early apoptosis and is the putative cytochrome c release channel. Unlike activation of the permeability transition pore, MAC formation occurs without loss of outer membrane integrity and depolarization. The single channel behavior and pharmacology of reconstituted MAC has been characterized with patch-clamp techniques. Furthermore, MAC's activity is compared to that detected in mitochondria inside the cells at the time cytochrome c is released. Finally, the regulation of MAC by the Bcl-2 family proteins and insights concerning its molecular composition are also discussed.
Collapse
Affiliation(s)
- Sonia Martinez-Caballero
- Department of Basic Sciences, New York University College of Dentistry, 345 East 24th Street, New York, NY 10010, USA
| | | | | | | |
Collapse
|
46
|
Ma M, Dahl G. Cosegregation of permeability and single-channel conductance in chimeric connexins. Biophys J 2006; 90:151-63. [PMID: 16214854 PMCID: PMC1367014 DOI: 10.1529/biophysj.105.066381] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 09/13/2005] [Indexed: 11/18/2022] Open
Abstract
The physiological function of gap junction channels goes well beyond their initially discovered role in electrical synchronization of excitable cells. In most tissues, gap junction cells facilitate the exchange of second messengers and metabolites between cells. To test which parts of the channels formed by connexins determine the exclusion limit for the transit of molecules in the size range of second messengers and metabolites a domain exchange approach was used in combination with an accessibility assay for nonelectrolytes and flux measurements. The experimental results suggest that two open hemichannel forming connexins, Cx46 and Cx32E(1)43, differ in accessibility and permeability. Sucrose is at the exclusion limit for Cx46 channels whereas sorbitol is at the exclusion limit for Cx32E(1)43 channels. In chimeras between these connexins, where the first transmembrane segment M1 is exchanged, the exclusion limits correlate with those of the M1 donor. The same segregation was found in a separate study for the unitary conductance of the channels. Thus, conductance and permeability/accessibility of the channels cosegregate with M1.
Collapse
Affiliation(s)
- Meiyun Ma
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | |
Collapse
|
47
|
Nestorovich EM, Rostovtseva TK, Bezrukov SM. Residue ionization and ion transport through OmpF channels. Biophys J 2004; 85:3718-29. [PMID: 14645063 PMCID: PMC1303675 DOI: 10.1016/s0006-3495(03)74788-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Single trimeric channels of the general bacterial porin, OmpF, were reconstituted into planar lipid membranes and their conductance, selectivity, and open-channel noise were studied over a wide range of proton concentrations. From pH 1 to pH 12, channel transport properties displayed three characteristic regimes. First, in acidic solutions, channel conductance is a strong function of pH; it increases by approximately threefold as the proton concentration decreases from pH 1 to pH 5. This rise in conductance is accompanied by a sharp increase in cation transport number and by pronounced open-channel low-frequency current noise with a peak at approximately pH 2.5. Random stepwise transients with amplitudes at approximately 1/5 of the monomer conductance are major contributors to this noise. Second, over the middle range (pH 5/pH 9), channel conductance and selectivity stay virtually constant; open channel noise is at its minimum. Third, over the basic range (pH 9/pH 12), channel conductance and cation selectivity start to grow again with an onset of a higher frequency open-channel noise. We attribute these effects to the reversible protonation of channel residues whose pH-dependent charge influences transport by direct interactions with ions passing through the channel.
Collapse
Affiliation(s)
- Ekaterina M Nestorovich
- Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-0924, USA
| | | | | |
Collapse
|
48
|
Marques EJ, Carneiro CM, Silva AS, Krasilnikov OV. Does VDAC insert into membranes in random orientation? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1661:68-77. [PMID: 14967476 DOI: 10.1016/j.bbamem.2003.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2002] [Revised: 11/20/2003] [Accepted: 11/25/2003] [Indexed: 11/29/2022]
Abstract
It is widely accepted that voltage-dependent anion-selective channel (VDAC) inserts into planar lipid bilayers in a random orientation. This is in contrast to the well-documented oriented insertion of various channel-forming proteins. Because of the potential importance of this issue, we have examined the orientation of VDAC inserted in membranes. The time constants of the VDAC-current relaxation in response to applied positive and negative voltage pulses were used to characterize the channel orientation. We have found that VDAC channels can be separated into two groups according to differences in the time constant ratio. The difference in time constant ratio between the two main groups of VDAC channels was quantitative, and not qualitative as would be expected for opposite topologies. This finding allows us to hypothesize that both groups of VDAC channels possess a qualitatively similar asymmetry with respect to the localization of voltage-gated domains and, consequently, with respect to its entire molecular structure. The probability of having each type of VDAC channel conformation is predetermined by the protein structure in aqueous solution. A striking resemblance between asymmetry in voltage sensitivity at the single-channel and multi-channel levels was also demonstrated. The first inserted channel seems to direct subsequent insertions of channels with a similar conformation.
Collapse
Affiliation(s)
- Edson J Marques
- Laboratory of Membrane Biophysics, Department of Biophysics and Radiobiology, Federal University of Pernambuco, 50670-901, Recife, PE, Brazil.
| | | | | | | |
Collapse
|
49
|
Stojilkovic KS, Berezhkovskii AM, Zitserman VY, Bezrukov SM. Conductivity and microviscosity of electrolyte solutions containing polyethylene glycols. J Chem Phys 2003. [DOI: 10.1063/1.1605096] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
50
|
Kienker PK, Jakes KS, Blaustein RO, Miller C, Finkelstein A. Sizing the protein translocation pathway of colicin Ia channels. J Gen Physiol 2003; 122:161-76. [PMID: 12860927 PMCID: PMC2229546 DOI: 10.1085/jgp.200308852] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial toxin colicin Ia forms voltage-gated channels in planar lipid bilayers. The toxin consists of three domains, with the carboxy-terminal domain (C-domain) responsible for channel formation. The C-domain contributes four membrane-spanning segments and a 68-residue translocated segment to the open channel, whereas the upstream domains and the amino-terminal end of the C-domain stay on the cis side of the membrane. The isolated C-domain, lacking the two upstream domains, also forms channels; however, the amino terminus and one of the normally membrane-spanning segments can move across the membrane. (This can be observed as a drop in single-channel conductance.) In longer carboxy-terminal fragments of colicin Ia that include </=169 residues upstream from the C-domain, the entire upstream region is translocated. Presumably, a portion of the C-domain creates a pathway for the polar upstream region to move through the membrane. To determine the size of this translocation pathway, we have attached "molecular stoppers," small disulfide-bonded polypeptides, to the amino terminus of the C-domain, and determined whether they could be translocated. We have found that the translocation rate is strongly voltage dependent, and that at voltages >/=90 mV, even a 26-A stopper is translocated. Upon reduction of their disulfide bonds, all of the stoppers are easily translocated, indicating that it is the folded structure, rather than some aspect of the primary sequence, that slows translocation of the stoppers. Thus, the pathway for translocation is >/=26 A in diameter, or can stretch to this value. This is large enough for an alpha-helical hairpin to fit through.
Collapse
Affiliation(s)
- Paul K Kienker
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | | | | | | | |
Collapse
|