1
|
Hayden MR. Cerebral Microbleeds Associate with Brain Endothelial Cell Activation-Dysfunction and Blood-Brain Barrier Dysfunction/Disruption with Increased Risk of Hemorrhagic and Ischemic Stroke. Biomedicines 2024; 12:1463. [PMID: 39062035 PMCID: PMC11274519 DOI: 10.3390/biomedicines12071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Globally, cerebral microbleeds (CMBs) are increasingly being viewed not only as a marker for cerebral small vessel disease (SVD) but also as having an increased risk for the development of stroke (hemorrhagic/ischemic) and aging-related dementia. Recently, brain endothelial cell activation and dysfunction and blood-brain barrier dysfunction and/or disruption have been shown to be associated with SVD, enlarged perivascular spaces, and the development and evolution of CMBs. CMBs are a known disorder of cerebral microvessels that are visualized as 3-5 mm, smooth, round, or oval, and hypointense (black) lesions seen only on T2*-weighted gradient recall echo or susceptibility-weighted sequences MRI images. CMBs are known to occur with high prevalence in community-dwelling older individuals. Since our current global population is the oldest recorded in history and is only expected to continue to grow, we can expect the healthcare burdens associated with CMBs to also grow. Increased numbers (≥10) of CMBs should raise a red flag regarding the increased risk of large symptomatic neurologic intracerebral hemorrhages. Importantly, CMBs are also currently regarded as markers of diffuse vascular and neurodegenerative brain damage. Herein author highlights that it is essential to learn as much as we can about CMB development, evolution, and their relation to impaired cognition, dementia, and the exacerbation of neurodegeneration.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Zhou Q, Xiong Z, Yang D, Xiong C, Li X. The association between bullous pemphigoid and cognitive outcomes in middle-aged and older adults: A systematic review and meta-analysis. PLoS One 2023; 18:e0295135. [PMID: 38033098 PMCID: PMC10688758 DOI: 10.1371/journal.pone.0295135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Bullous pemphigoid (BP) is a rare autoimmune skin condition that causes large fluid-filled blisters on the skin, especially in older adults. BP has been linked to various diseases and medications, but its association with cognitive outcomes is unclear. METHODS We conducted a systematic review and meta-analysis of studies investigating the association between BP and cognitive outcomes, such as all-cause dementia, Alzheimer's disease, and vascular dementia in middle-aged and older adults. We searched PubMed, Embase, and Web of Science databases for relevant studies published up to March 2023. We included studies that reported odds ratios (ORs) or hazard ratios (HRs) with 95% confidence intervals (CIs) for the association between BP and cognitive outcomes. We pooled the ORs, or HRs using random-effects models and performed subgroup and sensitivity analyses to explore potential sources of heterogeneity. RESULTS The study selection process identified 13 studies for inclusion in the analysis, 11 studied arms of which used a case-control design and 7 studied arms of which used a cohort design. The studies were conducted primarily in Europe, with a few from Asia and the United States. The meta-analysis found that BP was associated with higher odds of all-cause dementia in middle-aged and older participants in both cohort studies(HR = 1.41,95% CI: 1.20-1.66, P = 0.000) and case-control (OR = 4.25, 95% CI, 2.73-6.61; P = 0.000). The study found no significant publication bias in the included studies. The meta-regression analyses identified some subgroups associated with significantly reported odds ratios in case-control association analysis, including Europe, BP diagnosed based on clinical, histology, immunofluorescence, and both adjustment status of NO and YES. CONCLUSIONS Our meta-analysis suggests that BP is associated with an increased risk of all-cause dementia in middle-aged and older adults. Further studies are needed to elucidate the underlying mechanisms and causal relationship between BP and cognitive outcomes.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Neurology, The First People’s Hospital of Fuzhou, Fuzhou, Jiangxi, China
| | - Zhenrong Xiong
- Public Relations Department, The First People’s Hospital of Fuzhou, Fuzhou, Jiangxi, China
| | - Dejiang Yang
- Department of Neurology, First Hospital of Nanchang, Nanchang, Jiangxi, China
| | - Chongyu Xiong
- Department of Neurology, The First People’s Hospital of Fuzhou, Fuzhou, Jiangxi, China
| | - Xinming Li
- Department of Neurology, First Hospital of Nanchang, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Reekes TH, Ledbetter CR, Alexander JS, Stokes KY, Pardue S, Bhuiyan MAN, Patterson JC, Lofton KT, Kevil CG, Disbrow EA. Elevated plasma sulfides are associated with cognitive dysfunction and brain atrophy in human Alzheimer's disease and related dementias. Redox Biol 2023; 62:102633. [PMID: 36924684 PMCID: PMC10026043 DOI: 10.1016/j.redox.2023.102633] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Emerging evidence indicates that vascular stress is an important contributor to the pathophysiology of Alzheimer's disease and related dementias (ADRD). Hydrogen sulfide (H2S) and its metabolites (acid-labile (e.g., iron-sulfur clusters) and bound (e.g., per-, poly-) sulfides) have been shown to modulate both vascular and neuronal homeostasis. We recently reported that elevated plasma sulfides were associated with cognitive dysfunction and measures of microvascular disease in ADRD. Here we extend our previous work to show associations between elevated sulfides and magnetic resonance-based metrics of brain atrophy and white matter integrity. Elevated bound sulfides were associated with decreased grey matter volume, while increased acid labile sulfides were associated with decreased white matter integrity and greater ventricular volume. These findings are consistent with alterations in sulfide metabolism in ADRD which may represent maladaptive responses to oxidative stress.
Collapse
Affiliation(s)
- Tyler H Reekes
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Shreveport, United States; Center for Brain Health, LSU Health Shreveport, United States
| | - Christina R Ledbetter
- Center for Brain Health, LSU Health Shreveport, United States; Department of Neurosurgery, LSU Health Shreveport, United States
| | - J Steven Alexander
- Center for Brain Health, LSU Health Shreveport, United States; Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Neurology, LSU Health Shreveport, United States; Department of Molecular and Cellular Physiology, LSU Health Shreveport, United States
| | - Karen Y Stokes
- Center for Brain Health, LSU Health Shreveport, United States; Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Molecular and Cellular Physiology, LSU Health Shreveport, United States
| | - Sibile Pardue
- Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Pathology and Translational Pathobiology, LSU Health Shreveport, United States
| | | | - James C Patterson
- Center for Brain Health, LSU Health Shreveport, United States; Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, United States
| | - Katelyn T Lofton
- Center for Brain Health, LSU Health Shreveport, United States; Department of Neurology, LSU Health Shreveport, United States; Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, United States
| | - Christopher G Kevil
- Center for Brain Health, LSU Health Shreveport, United States; Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Pathology and Translational Pathobiology, LSU Health Shreveport, United States.
| | - Elizabeth A Disbrow
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Shreveport, United States; Center for Brain Health, LSU Health Shreveport, United States; Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Neurology, LSU Health Shreveport, United States.
| |
Collapse
|
4
|
Shu Y, Chen L, Li K, Li H, Kong L, Liu X, Li P, Xie W, Zeng Y, Peng D. Abnormal cerebellar-prefrontal cortical pathways in obstructive sleep apnea with/without mild cognitive impairment. Front Neurosci 2022; 16:1002184. [PMID: 36340771 PMCID: PMC9630600 DOI: 10.3389/fnins.2022.1002184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
Obstructive sleep apnea (OSA), a common respiratory sleep disorder, is often associated with mild cognitive impairment (MCI), which is a precursor stage to Alzheimer’s disease (AD). However, the neuroimaging changes in patients with OSA with/without MCI are still under discussion. This study aimed to investigate the temporal variability of spontaneous brain activity in OSA. Fifty-two OSA patients (26 with OSA with MCI (OSA-MCI), 26 OSA without MCI (OSA-nMCI), and 26 healthy controls (HCs) underwent MRI scans and scale questionnaires. A dynamic amplitude of low-frequency fluctuation (dALFF) evaluation was performed to examine the time-varying nature of OSA-MCI and OSA-nMCI. Compared with OSA-MCI, OSA-nMCI had increased dALFF in the posterior cerebellar and right superior frontal gyrus; compared with HCs, OSA-nMCI patients showed increased dALFF in the right posterior cerebellum. A positive correlation between the bilateral posterior cerebellar lobes and right superior frontal gyrus was observed in OSA-MCI patients; however, in OSA-nMCI patients, a positive correlation was observed only between the bilateral posterior cerebellar lobes. The dALFF value of the left posterior cerebellar lobe was positively correlated with the apnea-hypopnea index (AHI), epworth sleepiness scale (ESS) score, and arousal index in OSA-nMCIs, while the dALFF value of the right posterior cerebellum was positively correlated with the AHI and negatively correlated with the lowest oxygen saturation (SaO2). This study argues that OSA-nMCIs and OSA-MCIs exhibit different temporal variabilities in dynamic brain functions, OSA-nMCIs may have variable intermediate states. We concluded that the functional abnormalities of the cerebellar-prefrontal cortex pathway in OSA-MCIs may cause cognitive impairment with OSA.
Collapse
Affiliation(s)
- Yongqiang Shu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Liting Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Kunyao Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Haijun Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Linghong Kong
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiang Liu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Panmei Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Xie
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yaping Zeng
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dechang Peng
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- *Correspondence: Dechang Peng,
| |
Collapse
|
5
|
Wang Q, Yu Q, Wu M. Antioxidant and neuroprotective actions of resveratrol in cerebrovascular diseases. Front Pharmacol 2022; 13:948889. [PMID: 36133823 PMCID: PMC9483202 DOI: 10.3389/fphar.2022.948889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
Cerebralvascular diseases are the most common high-mortality diseases worldwide. Despite its global prevalence, effective treatments and therapies need to be explored. Given that oxidative stress is an important risk factor involved with cerebral vascular diseases, natural antioxidants and its derivatives can be served as a promising therapeutic strategy. Resveratrol (3, 5, 4′-trihydroxystilbene) is a natural polyphenolic antioxidant found in grape skins, red wine, and berries. As a phytoalexin to protect against oxidative stress, resveratrol has therapeutic value in cerebrovascular diseases mainly by inhibiting excessive reactive oxygen species production, elevating antioxidant enzyme activity, and other antioxidant molecular mechanisms. This review aims to collect novel kinds of literature regarding the protective activities of resveratrol on cerebrovascular diseases, addressing the potential mechanisms underlying the antioxidative activities and mitochondrial protection of resveratrol. We also provide new insights into the chemistry, sources, and bioavailability of resveratrol.
Collapse
Affiliation(s)
- Qing Wang
- Shaanxi Prov Peoples Hospital, Shaanxi Prov Key Lab Infect and Immune Dis, Xian, China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Department of Histology and Embryology, Xi’an Medical University, Xi’an, China
- Department of Pharmacology, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Min Wu
- Shaanxi Prov Peoples Hospital, Shaanxi Prov Key Lab Infect and Immune Dis, Xian, China
- *Correspondence: Min Wu,
| |
Collapse
|
6
|
Londoño DP, Arumaithurai K, Constantopoulos E, Basso MR, Reichard RR, Flanagan EP, Keegan BM. Diagnosis of coexistent neurodegenerative dementias in multiple sclerosis. Brain Commun 2022; 4:fcac167. [PMID: 35822102 PMCID: PMC9272064 DOI: 10.1093/braincomms/fcac167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/21/2022] [Accepted: 06/20/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Among people with multiple sclerosis, cognitive impairment occurs commonly and is a potent predictor of disability. Some multiple sclerosis patients present with severe cognitive impairment, and distinguishing multiple sclerosis-related cognitive impairment from co-existent progressive neurodegenerative diseases such as Alzheimer disease poses a diagnostic challenge. The use of biomarkers such as PET and CSF proteins may facilitate this distinction. The study was a retrospective, descriptive study on convenience samples of separate cohorts, one of cognitively impaired multiple sclerosis patients evaluated on autopsy to demonstrate coincidence of both multiple sclerosis and neurodegenerative cognitive diseases. The second cohort were cognitively impaired multiple sclerosis patients evaluated by biomarker to investigate possible additional neurodegenerative cognitive disorders contributing to the cognitive impairment. We investigated selected biomarkers among 31 severely impaired patients (biomarker cohort) and 12 severely impaired patients assessed at autopsy and selected 24 (23 biomarker cohort, 1 autopsy cohort) had comprehensive neurocognitive testing. Biomarker cohort investigations included 18F-Fluorodeoxyglucose PET and/or CSF amyloid Aβ1-42, phospho-tau and total tau levels. The autopsy cohort was evaluated with comprehensive neuropathological assessment for aetiology of cognitive impairment. The cohorts shared similar sex, age at multiple sclerosis onset and multiple sclerosis clinical course. The autopsy-cohort patients were older at diagnosis (69.5 versus 57 years, P = 0.006), had longer disease duration [median (range) 20 years (3–59) versus 9 (1–32), P = 0.001] and had more impaired bedside mental status scores at last follow-up [Kokmen median (range) 23 (1–38) versus 31 (9–34) P = 0.01]. Autopsy-cohort patients confirmed, or excluded, coexistent neurogenerative disease by neuropathology gold standard. Most biomarker-cohort patients had informative results evaluating coexistent neurogenerative disease. Biomarkers may be useful in indicating a coexistent neurodegenerative disease earlier, and in life, in patients with multiple sclerosis and significant cognitive impairment.
Collapse
Affiliation(s)
- Diana P Londoño
- Department of Neurology, Mayo Clinic , Rochester, MN 55905 , USA
- Department of Neurology, OSF St. Paul Medical Center , Peoria, IL 61603 , USA
| | | | - Eleni Constantopoulos
- Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester, MN 55905 , USA
| | - Michael R Basso
- Division of Neurocognitive Disorders, Department of Psychiatry and Psychology, Mayo Clinic , Rochester, MN 55905 , USA
| | - R Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester, MN 55905 , USA
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic , Rochester, MN 55905 , USA
| | - B Mark Keegan
- Department of Neurology, Mayo Clinic , Rochester, MN 55905 , USA
| |
Collapse
|
7
|
Cerebral small vessel disease alters neurovascular unit regulation of microcirculation integrity involved in vascular cognitive impairment. Neurobiol Dis 2022; 170:105750. [DOI: 10.1016/j.nbd.2022.105750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/09/2022] [Accepted: 05/08/2022] [Indexed: 12/25/2022] Open
|
8
|
Di Salvo A. The role of association between the cholinergic precursor choline alphoscerate and sulodexide in vascular dementia. GERIATRIC CARE 2022. [DOI: 10.4081/gc.2021.9891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dementia is a syndrome of acquired intellectual deficit resulting in significant impairment of social or occupational functioning. Vascular dementia (VaD) is the second most common causes of dementia after Alzheimer’s disease, causing around 15% of cases. However, unlike Alzheimer’s disease an involvement of the cerebral cholinergic system in the pathophysiology of VaD has been hypothesized and there is no standard treatment. In the Vascular Dementia Italian Sulodexide Study (VA.D.I.S.S.) the positive results obtained with the sulodexide are worthy of note. In this study 40 elderly subjects with recent onset (less than 9 month) slight to moderate mental deterioration due to vascular origin were observed for nine months during oral treatment with sulodexide and choline alphoscerate with the aim of analyzing whether therapeutic effects can be enhanced. These preliminary results suggest that the additional therapy of choline alphoscerate with sulodexide represents a way to increase the beneficial effects of cholinergic therapies in the VaD and improve all the different examinate score: mini mental state evaluation (MMSE), basic activities of daily living (ADL), instrumental activities of daily living (IADL).
Collapse
|
9
|
Kaur D, Behl T, Chigurupati S, Sehgal A, Singh S, Sharma N, Badavath VN, Vargas-De-La-Cruz C, Bhatia S, Al-Harrasi A, Dey A, Aleya L, Bungau S. Deciphering the focal role of endostatin in Alzheimer's disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61998-62011. [PMID: 34561808 DOI: 10.1007/s11356-021-16567-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a paramount chronic neurodegenerative condition that has been affecting elderly people since the 1900s. It causes memory loss, disorientation, and poor mental function. AD is considered to be one of the most serious problems that dementia sufferers face. Despite extensive investigation, the pathological origin of Alzheimer's disease remains a mystery. The amyloid cascade theory and the vascular hypothesis, which stresses the buildup of Aβ plaques, have dominated research into dementia and aging throughout history. However, research into this task failed to yield the long-awaited therapeutic miracle lead for Alzheimer's disease. Perhaps a hypothetical fragility in the context of Alzheimer's disease was regarded as a state distinct from aging in general, as suggested by the angiogenesis hypothesis, which suggests that old age is one state associated with upregulation of angiogenic growth factors, resulting in decreased microcirculation throughout the body. There has also been evidence that by controlling or inhibiting the components involved in the sequence of events that cause angiogenesis, there is a visible progression in AD patients. In Alzheimer's disease, one such antiangiogenic drug is being used.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | | | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Ensenanza e Investigacion en Bacteriologia Alimentaria, Universidad Nacinol Mayor de San Marcos, Lima, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima, Peru
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
10
|
Yang YS, Choi JH, Rah JC. Hypoxia with inflammation and reperfusion alters membrane resistance by dynamically regulating voltage-gated potassium channels in hippocampal CA1 neurons. Mol Brain 2021; 14:147. [PMID: 34556177 PMCID: PMC8461870 DOI: 10.1186/s13041-021-00857-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 02/01/2023] Open
Abstract
Hypoxia typically accompanies acute inflammatory responses in patients and animal models. However, a limited number of studies have examined the effect of hypoxia in combination with inflammation (Hypo-Inf) on neural function. We previously reported that neuronal excitability in hippocampal CA1 neurons decreased during hypoxia and greatly rebounded upon reoxygenation. We attributed this altered excitability mainly to the dynamic regulation of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels and input resistance. However, the molecular mechanisms underlying input resistance changes by Hypo-Inf and reperfusion remained unclear. In the present study, we found that a change in the density of the delayed rectifier potassium current (IDR) can explain the input resistance variability. Furthermore, voltage-dependent inactivation of A-type potassium (IA) channels shifted in the depolarizing direction during Hypo-Inf and reverted to normal upon reperfusion without a significant alteration in the maximum current density. Our results indicate that changes in the input resistance, and consequently excitability, caused by Hypo-Inf and reperfusion are at least partially regulated by the availability and voltage dependence of KV channels. Moreover, these results suggest that selective KV channel modulators can be used as potential neuroprotective drugs to minimize hypoxia- and reperfusion-induced neuronal damage.
Collapse
Affiliation(s)
- Yoon-Sil Yang
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
| | - Joon Ho Choi
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, 333 Techno Jungang-daero, Dalseong-gun, Daegu, 42988 South Korea
| |
Collapse
|
11
|
Singh CSB, Choi KB, Munro L, Wang HY, Pfeifer CG, Jefferies WA. Reversing pathology in a preclinical model of Alzheimer's disease by hacking cerebrovascular neoangiogenesis with advanced cancer therapeutics. EBioMedicine 2021; 71:103503. [PMID: 34534764 PMCID: PMC8449085 DOI: 10.1016/j.ebiom.2021.103503] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Cognitive decline leading to dementia, accompanied by the accumulation of amyloid-beta (Aβ) in neuritic plaques together with the appearance of neurofibrillary tangles (NFT) composed of hyperphosphorylated tau protein (tau), are previously noted hallmarks of Alzheimer's disease (AD). We previously discovered hypervascularity in brain specimens from AD patients and consistent with this observation, we demonstrated that overexpression of Aβ drives cerebrovascular neoangiogenesis leading to hypervascularity and coincident tight-junction disruption and blood-brain barrier (BBB) leakiness in animal models of AD. We subsequently demonstrated that amyloid plaque burden and cerebrovascular pathogenesis subside when pro-angiogenic Aβ levels are reduced. Based on these data, we propose a paradigm of AD etiology where, as a compensatory response to impaired cerebral blood flow (CBF), Aβ triggers pathogenic cerebrovascular neoangiogenesis that underlies the conventional hallmarks of AD. Consequently, here we present evidence that repurposing anti-cancer drugs to modulate cerebrovascular neoangiogenesis, rather than directly targeting the amyloid cascade, may provide an effective treatment for AD and related vascular diseases of the brain. METHODS We explored whether the anti-cancer drug, Axitinib, a small molecule tyrosine kinase inhibitor that targets vascular endothelial growth factor receptors (VEGFR) can inhibit aberrant cerebrovascular neoangiogenic changes, reduce Aβ deposits and reverse cognitive decline in an animal model of AD. One month post-treatment with Axitinib, we employed a battery of tests to assess cognition and memory in aged Tg2576 AD mice and used molecular analysis to demonstrate reduction of amyloid plaques, BBB leakage, hypervascularity and associated disease pathology. FINDINGS Targeting the pro-angiogenic pathway in AD using the cancer drug, Axitinib, dramatically reduced cerebrovascular neoangiogenesis, restored BBB integrity, resolved tight-junction pathogenesis, diminishes Aβ depositions in plaques and effectively restores memory and cognitive performance in a preclinical mouse model of AD. INTERPRETATION Modulation of neoangiogenesis, in an analogous approach to those used to treat aberrant vascularization in cancer and also in the wet form of age-related macular degeneration (AMD), provides an alternative therapeutic strategy for intervention in AD that warrants clinical investigation. FUNDING None.
Collapse
Affiliation(s)
- Chaahat S B Singh
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada
| | - Kyung Bok Choi
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada
| | - Lonna Munro
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada
| | - Hong Yue Wang
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Cheryl G Pfeifer
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada
| | - Wilfred A Jefferies
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Gordon & Leslie Diamond Health Care Centre, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada.
| |
Collapse
|
12
|
Vijayan M, Reddy PH. Non-Coding RNAs Based Molecular Links in Type 2 Diabetes, Ischemic Stroke, and Vascular Dementia. J Alzheimers Dis 2021; 75:353-383. [PMID: 32310177 DOI: 10.3233/jad-200070] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article reviews recent advances in the study of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and their functions in type 2 diabetes mellitus (T2DM), ischemic stroke (IS), and vascular dementia (VaD). miRNAs and lncRNAs are gene regulation markers that both regulate translational aspects of a wide range of proteins and biological processes in healthy and disease states. Recent studies from our laboratory and others have revealed that miRNAs and lncRNAs expressed differently are potential therapeutic targets for neurological diseases, especially T2DM, IS, VaD, and Alzheimer's disease (AD). Currently, the effect of aging in T2DM, IS, and VaD and the cellular and molecular pathways are largely unknown. In this article, we highlight results from the works on the molecular connections between T2DM and IS, and IS and VaD. In each disease, we also summarize the pathophysiology and the differential expressions of miRNAs and lncRNAs. Based on current research findings, we hypothesize that 1) T2DM bi-directionally and age-dependently induces IS and VaD, and 2) these changes are precursors to the onset of dementia in elderly people. Research into these hypotheses is required to examine further whether research efforts on reducing T2DM, IS, and VaD may affect dementia and/or delay the AD disease process in the aged population.
Collapse
Affiliation(s)
- Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
13
|
Association between Previous Statin Use and Alzheimer's Disease: A Nested Case-Control Study Using a National Health Screening Cohort. Brain Sci 2021; 11:brainsci11030396. [PMID: 33804752 PMCID: PMC8003839 DOI: 10.3390/brainsci11030396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/03/2021] [Accepted: 03/18/2021] [Indexed: 01/15/2023] Open
Abstract
A number of studies report the incidence of Alzheimer’s disease (AD) in patients taking statins, but the results are inconsistent. (1) Background: The present study investigated the cross-sectional association between previous statin use and the risk of AD development in Korean residents. (2) Methods: We used the Korean National Health Insurance Service-National Sample Cohort; 17,172 AD patients were matched by age, gender, income, and region of residence with 68,688 control participants at a ratio of 1:4. We used a multiple conditional logistic regression model to analyse the association between the number of days of statin use and AD occurrence. Further analyses were performed to identify whether this association is maintained for different ages, genders, socioeconomic status groups, and covariates. (3) Results: The odds ratio, which was adjusted for potential confounders, for the days of statin use per year in the AD group compared to the control group was 0.95 (95% confidence interval = 0.92–0.98; p = 0.003). The number of days of statin use in the AD group was significantly smaller in the subgroups of non-smokers and individuals with normal weight, alcohol consumption less than once a week, total cholesterol level below 200 mg/dL, systolic blood pressure below 140, diastolic blood pressure below 90, and fasting blood glucose below 100 mg/dL. (4) Conclusions: Our results suggest that statin use prevents the occurrence of AD. The effects of statin use in preventing AD may be greater in individuals at relatively low risk.
Collapse
|
14
|
Drake JD, Chambers AB, Ott BR, Daiello LA. Peripheral Markers of Vascular Endothelial Dysfunction Show Independent but Additive Relationships with Brain-Based Biomarkers in Association with Functional Impairment in Alzheimer's Disease. J Alzheimers Dis 2021; 80:1553-1565. [PMID: 33720880 PMCID: PMC8150492 DOI: 10.3233/jad-200759] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cerebrovascular dysfunction confers risk for functional decline in Alzheimer's disease (AD), yet the clinical interplay of these two pathogenic processes is not well understood. OBJECTIVE We utilized Alzheimer's Disease Neuroimaging Initiative (ADNI) data to examine associations between peripherally derived soluble cell adhesion molecules (CAMs) and clinical diagnostic indicators of AD. METHODS Using generalized linear regression models, we examined cross-sectional relationships of soluble plasma vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-Selectin to baseline diagnosis and functional impairment (clinical dementia rating sum-of-boxes, CDR-SB) in the ADNI cohort (n = 112 AD, n = 396 mild cognitive impairment (MCI), n = 58 cognitively normal). We further analyzed associations of these biomarkers with brain-based AD biomarkers in a subset with available cerebrospinal fluid (CSF) data (n = 351). p-values derived from main effects and interaction terms from the linear regressions were used to assess the relationship between independent and dependent variables for significance (significance level was set at 0.05 a priori for all analysis). RESULTS Higher mean VCAM-1 (p = 0.0026) and ICAM-1 (p = 0.0189) levels were found in AD versus MCI groups; however, not in MCI versus cognitively normal groups. Only VCAM-1 was linked with CDR-SB scores (p = 0.0157), and APOE ɛ4 genotype modified this effect. We observed independent, additive associations when VCAM-1 and CSF amyloid-β (Aβ42), total tau, phosphorylated tau (P-tau), or P-tau/Aβ42 (all < p = 0.01) were combined in a CDR-SB model; ICAM-1 showed a similar pattern, but to a lesser extent. CONCLUSION Our findings indicate independent associations of plasma-based vascular biomarkers and CSF biomarkers with AD-related clinical impairment.
Collapse
Affiliation(s)
- Jonathan D Drake
- Alzheimer's Disease and Memory Disorders Center, Rhode Island Hospital, Providence, RI, USA.,Department of Neurology, Brown University Warren Alpert Medical School, Providence RI, USA
| | - Alison B Chambers
- Department of Medicine, Brown University Warren Alpert Medical School, Providence RI, USA
| | - Brian R Ott
- Alzheimer's Disease and Memory Disorders Center, Rhode Island Hospital, Providence, RI, USA.,Department of Neurology, Brown University Warren Alpert Medical School, Providence RI, USA
| | - Lori A Daiello
- Alzheimer's Disease and Memory Disorders Center, Rhode Island Hospital, Providence, RI, USA.,Department of Neurology, Brown University Warren Alpert Medical School, Providence RI, USA
| | | |
Collapse
|
15
|
Herrera-Ruiz M, Jiménez-Ferrer E, Tortoriello J, Zamilpa A, Alegría-Herrera E, Jiménez-Aparicio AR, Arenas-Ocampo ML, Martínez-Duncker I, Monterrosas-Brisson N. Anti-neuroinflammatory effect of agaves and cantalasaponin-1 in a model of LPS-induced damage. Nat Prod Res 2021; 35:884-887. [PMID: 31084220 DOI: 10.1080/14786419.2019.1608537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/26/2019] [Accepted: 04/06/2019] [Indexed: 12/28/2022]
Abstract
Chronic neuroinflammation is a key component of many neurodegenerative disorders. Chronic activation of this process produces pro-inflammatory cytokines, prostaglandins and reactive oxygen species that induce brain injury and neuronal dysfunction. Agave species contain saponins, compounds with anti-inflammatory activity. Extracts from A. tequilana (At), A. angustifolia (Aan), A. Americana (Aam) (125 mg/kg) and cantalasaponin-1 (5 and 10 mg/kg, isolated from Aam) were administered to male ICR mice with lipopolysaccharide (LPS)-induced neuroinflammation, after which inflammatory cytokines were measured in brain homogenates by using an enzyme-linked immunoassay (ELISA) test. All agave extracts and cantalasaponin-1, reduced brain concentration of LPS-induced pro-inflammatory cytokines IL-6 and TNF-α. Moreover, Cantalasaponin-1 increased the brain concentration of the anti-inflammatory cytokine IL-10. Agave extracts and derived compounds show promising results in the development of novel drugs for neuroinflammatory disease therapy.
Collapse
Affiliation(s)
- Maribel Herrera-Ruiz
- Instituto Mexicano del Seguro Social (IMSS), Centro de Investigación Biomédica del Sur, Xochitepec, Morelos, Mexico
| | - Enrique Jiménez-Ferrer
- Instituto Mexicano del Seguro Social (IMSS), Centro de Investigación Biomédica del Sur, Xochitepec, Morelos, Mexico
| | - Jaime Tortoriello
- Instituto Mexicano del Seguro Social (IMSS), Centro de Investigación Biomédica del Sur, Xochitepec, Morelos, Mexico
| | - Alejandro Zamilpa
- Instituto Mexicano del Seguro Social (IMSS), Centro de Investigación Biomédica del Sur, Xochitepec, Morelos, Mexico
| | - Elian Alegría-Herrera
- Instituto Mexicano del Seguro Social (IMSS), Centro de Investigación Biomédica del Sur, Xochitepec, Morelos, Mexico
| | | | - Martha L Arenas-Ocampo
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Yautepec, Morelos, Mexico
| | - Iván Martínez-Duncker
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico
| | - Nayeli Monterrosas-Brisson
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico
| |
Collapse
|
16
|
Dao E, Hsiung GYR, Sossi V, Tam R, Shahinfard E, Nicklin E, Al Keridy W, Liu-Ambrose T. Cerebral Amyloid-β Deposition Is Associated with Impaired Gait Speed and Lower Extremity Function. J Alzheimers Dis 2020; 71:S41-S49. [PMID: 30741682 DOI: 10.3233/jad-180848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Impaired physical function (i.e., slowing of gait, muscle weakness, and poor mobility) is common in older adults with cognitive impairment and dementia. Evidence suggests that cerebral small vessel disease, specifically white matter lesions (WMLs), is associated with impaired physical function, but little research has been conducted to understand the specific role of Alzheimer's disease pathology in physical outcomes. OBJECTIVE The objective of this study was to examine the association between cerebral amyloid-β (Aβ) deposition and physical function in people with cognitive impairment. METHODS Thirty participants completed an 11C Pittsburgh compound B (PIB) position emission tomography (PET) scan to quantify global Aβ deposition using standardized uptake value ratio (SUVR). We assessed usual gait speed, muscle strength of the lower extremities, balance, and functional mobility using the Short Physical Performance Battery (SPPB) and the Timed Up and Go Test (TUGT). Multiple linear regression analyses examined the association between Aβ and each measure of physical function, adjusting for age, body mass index, and WML load. RESULTS Global PIB SUVR was significantly associated with usual gait speed (β= -0.52, p = 0.01) and SPPB performance (β= -0.47, p = 0.02), such that increased Aβ deposition was associated with reduced performance on both measures. Global PIB SUVR was not significantly associated with TUGT performance (β= 0.32, p = 0.08). CONCLUSIONS Cerebral Aβ deposition is associated with reduced gait speed, muscle strength, and balance in older adults with cognitive impairment independent of WML load. However, Aβ deposition was not associated with functional mobility.
Collapse
Affiliation(s)
- Elizabeth Dao
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Ging-Yuek Robin Hsiung
- Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, Vancouver, Canada.,Division of Neurology, UBC, Vancouver, Canada
| | - Vesna Sossi
- Department of Physics and Astronomy, UBC, Vancouver, Canada
| | - Roger Tam
- Department of Radiology, UBC, Vancouver, Canada.,School of Biomedical Engineering, UBC, Vancouver, Canada
| | | | - Eloise Nicklin
- Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Walid Al Keridy
- Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, Vancouver, Canada.,Division of Neurology, UBC, Vancouver, Canada
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, University of British Columbia (UBC), Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, Vancouver, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| |
Collapse
|
17
|
Ferrer I, Andrés-Benito P. White matter alterations in Alzheimer's disease without concomitant pathologies. Neuropathol Appl Neurobiol 2020; 46:654-672. [PMID: 32255227 PMCID: PMC7754505 DOI: 10.1111/nan.12618] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/23/2020] [Indexed: 12/14/2022]
Abstract
Aims Most individuals with AD neuropathological changes have co‐morbidities which have an impact on the integrity of the WM. This study analyses oligodendrocyte and myelin markers in the frontal WM in a series of AD cases without clinical or pathological co‐morbidities. Methods From a consecutive autopsy series, 206 cases had neuropathological changes of AD; among them, only 33 were AD without co‐morbidities. WM alterations were first evaluated in coronal sections of the frontal lobe in every case. Then, RT‐qPCR and immunohistochemistry were carried out in the frontal WM of AD cases without co‐morbidities to analyse the expression of selected oligodendrocyte and myelin markers. Results WM demyelination was more marked in AD with co‐morbidities when compared with AD cases without co‐morbidities. Regarding the later, mRNA expression levels of MBP, PLP1, CNP, MAG, MAL, MOG and MOBP were preserved at stages I–II/0–A when compared with middle‐aged (MA) individuals, but significantly decreased at stages III–IV/0–C. This was accompanied by reduced expression of NG2 and PDGFRA mRNA, reduced numbers of NG2‐, Olig2‐ and HDAC2‐immunoreactive cells and reduced glucose transporter immunoreactivity. Partial recovery of some of these markers occurred at stages V–VI/B–C. Conclusions The present observations demonstrate that co‐morbidities have an impact on WM integrity in the elderly and in AD, and that early alterations in oligodendrocytes and transcription of genes linked to myelin proteins in WM occur in AD cases without co‐morbidities. These are followed by partial recovery attempts at advanced stages. These observations suggest that oligodendrocytopathy is part of AD.
Collapse
Affiliation(s)
- I Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Barcelona, Spain.,Ministry of Economy and Competitiveness, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - P Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Ministry of Economy and Competitiveness, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
18
|
Ding G, Zhao X, Wang Y, Song D, Chen D, Deng Y, Xing W, Dong H, Zhou Y, Li D, Hou H. Evaluation of the relationship between cognitive impairment and suboptimal health status in a northern Chinese population: a cross-sectional study. J Glob Health 2020; 10:010804. [PMID: 32257168 PMCID: PMC7101211 DOI: 10.7189/jogh.10.010804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Suboptimal health status (SHS) is an intermediate health status between ideal health and illness. As a determinant of cardiovascular disease and stroke, SHS is hypothesized to be associated with the development of cognitive impairment and dementia. This study aimed to investigate whether individuals with SHS have poor cognitive ability based on a community-based cohort in northern Chinese population. Methods 3524 participants who were enrolled in Jidong cohort 2015 in Tangshan City were investigated in this study. Cognitive function was measured with the Mini-Mental State Examination (MMSE). SHS level was evaluated using a self-reporting Suboptimal Health Status Questionnaire-25 (SHSQ-25). The relationship between SHS and cognitive function was analyzed with logistic regression analysis, by which odds ratio (OR) and 95% confidence interval (CI) were calculated. Results The prevalence of cognitive impairment was 3.4% (121/3524) in our study, with the prevalence rates of 1.9% (34/1750) among men and 4.9% (87/1774) in women. The medians of total score of MMSE were 28 (interquartile range (IQR) = 27-29) in the SHS group, and 29 (IQR = 27-30) in the ideal health group. Logistic regression analysis showed that SHS was significantly correlated with cognitive impairment (adjusted OR = 2.936, 95% CI = 1.428-6.033). With regard to gender, the OR was 5.067 (95% CI = 1.346-19.068) in men, which was higher than that in women (OR = 2.324, 95% CI = 1.130-4.779). Conclusions SHS might be a risk factor for cognitive function in northern Chinese population. Early screening of SHS individuals, as well as urgent treatment of SHS might contribute to the prevention of cognitive impairment.
Collapse
Affiliation(s)
- Guoyong Ding
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China.,Equal authorship
| | - Xuan Zhao
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China.,Equal authorship
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China.,Equal authorship
| | - Daiyu Song
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Dongzhen Chen
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Yang Deng
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Weijia Xing
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Hualei Dong
- Taishan Hospital of Shandong Province, Taian, Shandong Province, China
| | - Yong Zhou
- Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Dong Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Haifeng Hou
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| |
Collapse
|
19
|
Bioactive Polyphenols and Neuromodulation: Molecular Mechanisms in Neurodegeneration. Int J Mol Sci 2020; 21:ijms21072564. [PMID: 32272735 PMCID: PMC7178158 DOI: 10.3390/ijms21072564] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
The interest in dietary polyphenols in recent years has greatly increased due to their antioxidant bioactivity with preventive properties against chronic diseases. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and are able to neutralize the effects of oxidative stress, inflammation, and apoptosis. Interestingly, all these mechanisms are involved in neurodegeneration. Although polyphenols display differences in their effectiveness due to interindividual variability, recent studies indicated that bioactive polyphenols in food and beverages promote health and prevent age-related cognitive decline. Polyphenols have a poor bioavailability and their digestion by gut microbiota produces active metabolites. In fact, dietary bioactive polyphenols need to be modified by microbiota present in the intestine before being absorbed, and to exert health preventive effects by interacting with cellular signalling pathways. This literature review includes an evaluation of the literature in English up to December 2019 in PubMed and Web of Science databases. A total of 307 studies, consisting of research reports, review articles and articles were examined and 146 were included. The review highlights the role of bioactive polyphenols in neurodegeneration, with a particular emphasis on the cellular and molecular mechanisms that are modulated by polyphenols involved in protection from oxidative stress and apoptosis prevention.
Collapse
|
20
|
|
21
|
Li H, Liang W, Zhou L. The experimental research on neuroplasticity in rats' hippocampus subjected to chronic cerebral hypoperfusion and interfered by Modified Dioscorea Pills. Heliyon 2019; 6:e02897. [PMID: 31909235 PMCID: PMC6938820 DOI: 10.1016/j.heliyon.2019.e02897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/17/2019] [Accepted: 11/18/2019] [Indexed: 01/08/2023] Open
Abstract
Background Chronic Cerebral Hypoperfusion (CCH) is a common, crucial and tough problem for old people. It easily leads to Lacunar Infarction and even Vascular Dementia (VD). Western medicine has the advantage to relieve some VD symptoms but fails to cure it. Some classic Chinese medicines have good efficacies to treat and delay the cerebral functional decline resulted from CCH. Among them Modified Dioscorea Pills (MDP) has been proven to have a convincing effect in curing VD. So far the knowledge about neuroplasticity in CCH is little known and the underlying interfered mechanism by MDP on neuroplasticity has not yet been explored. This study explores the changes of neuroplasticity involving neurogenesis, angiogenesis and synaptogenesis in CCH and interfered by MDP. Methods 40 male SD rats were divided into the Sham operated Group, the Model Group and the MDP Group according to a Random Number Table. Bilateral Common Carotid Arteries Occlusion (BCCAO) was adopted to prepare CCH models. MDP condense decoction had been administered by gavage to rats in the MDP Group (10g·Kg-1·d-1) for 45 days; Rats in the other two groups were accepted normal salts as substitution with same dosage and course. Through Morris Water Maze (MWM) test, pathological observation of hippocampus, ultrastructural study on synapse, Real Time Polymerase Chain Reaction (RT-PCR) and immunohistochemistry detection, the capacities of intelligence of rats, the morphological character of hippocampus CA1 zone and the synapse associated protein and gene such as Growth Associated Protein (GAP-43) mRNA, Vascular Endothelial Growth Factor (VEGF) mRNA, Microtubule-associated Protein (MAP)-2, Synaptophysin (SYP), Postsynaptic Density protein (PSD)-95 and Micro Vessel Density (MVD) were determined. Through one-way ANOVA the data was analyzed and when P<0.05 the result was considered significant. Results Compared to the Model Group, rats in the MDP Group achieved much better behavioral performance (P<0.05); more neurons and more synapses regenerated; the expression of SYP, PSD-95and MAP-2 up-regulated (P<0.05); The expressions of GAP-43 mRNA and VEGF mRNA in the Model Group were higher than those in the Sham operated Group (P<0.05), but they reached the highest in the MDP Group (P<0.05); The count of MVD in the Sham operated Group is the lowest, it is higher in the MDP Group and it reaches highest in the Model Group (P<0.05). Conclusions Some key genes promoting neuroplasticity such as GAP-43 mRNA and VEGF mRNA remarkably up-regulated in CCH, they only boost angiogenesis but fail to facilitate neurogenesis and synaptogenesis in CCH. However, accompanied by furtherly up-regulation of these two key genes, MDP obviously improves neurogenesis, synaptogenesis and temperate angiogenesis in CCH which may be underlying its good efficacy.
Collapse
Affiliation(s)
- H.B. Li
- Emergency Department of the First People's Hospital of Guiyang, Guiyang, Guizhou Province, People's Republic of China
| | - W.B. Liang
- Surgery Department of Wudong Hospital of Wuhan City. Wuhan, Hubei Province, People's Republic of China
- Corresponding author.
| | - L. Zhou
- Emergency Department of the First People's Hospital of Guiyang, Guiyang, Guizhou Province, People's Republic of China
| |
Collapse
|
22
|
Nam Y, Jang J, Lee HY, Choi Y, Shin NY, Ryu KH, Kim DH, Jung SL, Ahn KJ, Kim BS. Estimating age-related changes in in vivo cerebral magnetic resonance angiography using convolutional neural network. Neurobiol Aging 2019; 87:125-131. [PMID: 31918953 DOI: 10.1016/j.neurobiolaging.2019.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/10/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023]
Abstract
Although age-related changes of cerebral arteries were observed in in vivo magnetic resonance angiography (MRA), standard tools or methods measuring those changes were limited. In this study, we developed and evaluated a model to measure age-related changes in the cerebral arteries from 3D MRA using a 3D deep convolutional neural network. From participants without any medical abnormality, training (n = 800) and validation sets (n = 88) of 3D MRA were built. After preprocessing and data augmentation, a 3D convolutional neural network was trained to estimate each subject's chronological age from in vivo MRA data. There was good correlation between chronological age and predicted age (r = 0.83) in an independent test set (n = 354). The predicted age difference (PAD) of the test set was 2.41 ± 6.22. Interaction term between age and sex was significant for PAD (p = 0.008). After correcting for age and interaction term, men showed higher PAD (p < 0.001). Hypertension was associated with higher PAD with marginal significance (p = 0.073). We suggested that PAD might be a potential measurement of cerebral vascular aging.
Collapse
Affiliation(s)
- Yoonho Nam
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jinhee Jang
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Hea Yon Lee
- Department of Health Promotion Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Geriatric Medicine, Department of Internal Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yangsean Choi
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Na Young Shin
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kang-Hyun Ryu
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Dong Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - So-Lyung Jung
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kook-Jin Ahn
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bum-Soo Kim
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
23
|
Rajani RM, Ratelade J, Domenga-Denier V, Hase Y, Kalimo H, Kalaria RN, Joutel A. Blood brain barrier leakage is not a consistent feature of white matter lesions in CADASIL. Acta Neuropathol Commun 2019; 7:187. [PMID: 31753008 PMCID: PMC6873485 DOI: 10.1186/s40478-019-0844-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 01/08/2023] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a genetic paradigm of small vessel disease (SVD) caused by NOTCH3 mutations that stereotypically lead to the vascular accumulation of NOTCH3 around smooth muscle cells and pericytes. White matter (WM) lesions (WMLs) are the earliest and most frequent abnormalities, and can be associated with lacunar infarcts and enlarged perivascular spaces (ePVS). The prevailing view is that blood brain barrier (BBB) leakage, possibly mediated by pericyte deficiency, plays a pivotal role in the formation of WMLs. Herein, we investigated the involvement of BBB leakage and pericyte loss in CADASIL WMLs. Using post-mortem brain tissue from 12 CADASIL patients and 10 age-matched controls, we found that WMLs are heterogeneous, and that BBB leakage reflects the heterogeneity. Specifically, while fibrinogen extravasation was significantly increased in WMLs surrounding ePVS and lacunes, levels of fibrinogen leakage were comparable in WMLs without other pathology ("pure" WMLs) to those seen in the normal appearing WM of patients and controls. In a mouse model of CADASIL, which develops WMLs but no lacunes or ePVS, we detected no extravasation of endogenous fibrinogen, nor of injected small or large tracers in WMLs. Moreover, there was no evidence of pericyte coverage modification in any type of WML in either CADASIL patients or mice. These data together indicate that WMLs in CADASIL encompass distinct classes of WM changes and argue against the prevailing hypothesis that pericyte coverage loss and BBB leakage are the primary drivers of WMLs. Our results also have important implications for the interpretation of studies on the BBB in living patients, which may misinterpret evidence of BBB leakage within WM hyperintensities as suggesting a BBB related mechanism for all WMLs, when in fact this may only apply to a subset of these lesions.
Collapse
|
24
|
van Rooden S, van den Berg-Huysmans AA, Croll PH, Labadie G, Hayes JM, Viviano R, van der Grond J, Rombouts SARB, Damoiseaux JS. Subjective Cognitive Decline Is Associated with Greater White Matter Hyperintensity Volume. J Alzheimers Dis 2019; 66:1283-1294. [PMID: 30412485 PMCID: PMC6294575 DOI: 10.3233/jad-180285] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Research in older adults with subjective cognitive decline (SCD) has mainly focused on Alzheimer's disease (AD)-related MRI markers, such as hippocampal volume. However, small vessel disease (SVD) is currently established as serious comorbidity in dementia and its preliminary stages. It is therefore important to examine SVD markers in addition to AD markers in older adults presenting with SCD. OBJECTIVE The aim of our study was to elucidate the role of SVD markers in late middle-aged to older adults with and without SCD in addition to the commonly found role of AD markers (hippocampal volume). METHODS 67 healthy late middle-aged to older adults participated in this study (mean age 68 years); 25 participants with SCD and 42 participants without SCD. We evaluated quantitative as well as qualitative AD markers (i.e., hippocampal volume and medial temporal lobe atrophy (MTA) scale) and SVD markers (i.e., white matter hyperintensities (WMH) volume, Fazekas scale, microbleeds, and lacunar infarcts), and neuropsychological function and amount of memory complaints. RESULTS We found a significant effect of SCD on hippocampal atrophy, as assessed using the MTA scale, but not on hippocampal volume. In addition, we found a significant effect of SCD, and amount of memory complaints, on WMH volume and Fazekas score, suggesting larger WMH volumes in participants with SCD. CONCLUSION SVD MRI markers are related to amount of memory complaints, in addition to the commonly observed AD MRI markers, as demonstrated by the greater WMHs in healthy late middle-aged to older adults with SCD.
Collapse
Affiliation(s)
- Sanneke van Rooden
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Institute of Psychology, Leiden University, Leiden, The Netherlands
| | | | - Pauline H Croll
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerda Labadie
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica M Hayes
- Institute of Gerontology and Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Raymond Viviano
- Institute of Gerontology and Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Jessica S Damoiseaux
- Institute of Gerontology and Department of Psychology, Wayne State University, Detroit, MI, USA.,Institute of Psychology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
25
|
Zheng Y, Guo H, Zhang L, Wu J, Li Q, Lv F. Machine Learning-Based Framework for Differential Diagnosis Between Vascular Dementia and Alzheimer's Disease Using Structural MRI Features. Front Neurol 2019; 10:1097. [PMID: 31708854 PMCID: PMC6823227 DOI: 10.3389/fneur.2019.01097] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
Background and Objective: Vascular dementia (VaD) and Alzheimer's disease (AD) could be characterized by the same syndrome of dementia. This study aims to assess whether multi-parameter features derived from structural MRI can serve as the informative biomarker for differential diagnosis between VaD and AD using machine learning. Methods: A total of 93 patients imaged with brain MRI including 58 AD and 35 VaD confirmed by two chief physicians were recruited in this study from June 2013 to July 2019. Automated brain tissue segmentation was performed by the AccuBrain tool to extract multi-parameter volumetric measurements from different brain regions. Firstly, a total of 62 structural MRI biomarkers were addressed to select significantly different features between VaD and AD for dimensionality reduction. Then, the least absolute shrinkage and selection operator (LASSO) was further used to construct a feature set that is fed into a support vector machine (SVM) classifier. To ensure the unbiased evaluation of model performance, a comparative study of classification models was implemented by using different machine learning algorithms in order to determine which performs best in the application of differential diagnosis between VaD and AD. The diagnostic performance of the classification models was evaluated by the quantitative metrics derived from the receiver operating characteristic curve (ROC). Results: The experimental results demonstrate that the SVM with RBF achieved an encouraging performance with sensitivity (SEN), specificity (SPE), and accuracy (ACC) values of 82.65%, 87.17%, and 84.35%, respectively (AUC = 0.861, 95% CI = 0.820–0.902), for the differential diagnosis between VaD and AD. Conclusions: The proposed computer-aided diagnosis method highlights the potential of combining structural MRI and machine learning to support clinical decision making in distinction of VaD vs. AD.
Collapse
Affiliation(s)
- Yineng Zheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haoming Guo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lijuan Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiahui Wu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Pluta R, Ułamek-Kozioł M, Januszewski S, Czuczwar SJ. Tau Protein Dysfunction after Brain Ischemia. J Alzheimers Dis 2019; 66:429-437. [PMID: 30282370 PMCID: PMC6218135 DOI: 10.3233/jad-180772] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Brain ischemia comprises blood-brain barrier, glial, and neuronal cells. The blood–brain barrier controls permeability of different substances and the composition of the neuronal cells ‘milieu’, which is required for their physiological functioning. Recent evidence indicates that brain ischemia itself and ischemic blood-brain barrier dysfunction is associated with the accumulation of neurotoxic molecules within brain tissue, e.g., different parts of amyloid-β protein precursor and changed pathologically tau protein. All these changes due to ischemia can initiate and progress neurodegeneration of the Alzheimer’s disease-type. This review presents brain ischemia and ischemic blood-brain barrier as a trigger for tau protein alterations. Thus, we hypothesize that the changes in pattern of phosphorylation of tau protein are critical to microtubule function especially in neurons, and contribute to the neurodegeneration following brain ischemia-reperfusion episodes with Alzheimer’s disease phenotype.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,First Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
27
|
Clouston SAP, Zhang Y, Smith DM. Pattern Recognition to Identify Stroke in the Cognitive Profile: Secondary Analyses of a Prospective Cohort Study. Cerebrovasc Dis Extra 2019; 9:114-122. [PMID: 31593944 PMCID: PMC6873083 DOI: 10.1159/000503002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/28/2019] [Indexed: 11/26/2022] Open
Abstract
Background Stroke can produce subtle changes in the brain that may produce symptoms that are too small to lead to a diagnosis. Noting that a lack of diagnosis may bias research estimates, the current study sought to examine the utility of pattern recognition relying on serial assessments of cognition to objectively identify stroke-like patterns of cognitive decline (pattern-detected stroke, p-stroke). Methods Secondary data analysis was conducted using participants with no reported history of stroke in the Health and Retirement Study, a large (n = 16,113) epidemiological study of cognitive aging among respondents aged 50 years and older that measured episodic memory consistently biennially between 1996 and 2014. Analyses were limited to participants with at least 4 serial measures of episodic memory. Occurrence and date of p-stroke events were identified utilizing pattern recognition to identify stepwise declines in cognition consistent with stroke. Descriptive statistics included the percentage of the population with p-stroke, the mean change in episodic memory resulting in stroke-positive testing, and the mean time between p-stroke and first major diagnosed stroke. Statistical analyses comparing cases of p-stroke with reported major stroke relied on the area under the receiver-operating curve (AUC). Longitudinal modeling was utilized to examine rates of change in those with/without major stroke after adjusting for demographics. Results The pattern recognition protocol identified 7,499 p-strokes that went unreported. On average, individuals with p-stroke declined in episodic memory by 1.986 (SD = 0.023) words at the inferred time of stroke. The resulting pattern recognition protocol was able to identify self-reported major stroke (AUC = 0.58, 95% CI = 0.57-0.59, p < 0.001). In those with a reported major stroke, p-stroke events were detectable on average 4.963 (4.650–5.275) years (p < 0.001) before diagnosis was first reported. The incidence of p-stroke was 40.23/1,000 (95% CI = 39.40–41.08) person-years. After adjusting for sex, age was associated with the incidence of p-stroke and major stroke at similar rates. Conclusions This is the first study to propose utilizing pattern recognition to identify the incidence and timing of p-stroke. Further work is warranted examining the clinical utility of pattern recognition in identifying p-stroke in longitudinal cognitive profiles.
Collapse
Affiliation(s)
- Sean A P Clouston
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, New York, USA,
| | - Yun Zhang
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Dylan M Smith
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
28
|
Zhang Y, Li Y, Wang Y, Wang G, Mao L, Zhang D, Wang J. Effects of resveratrol on learning and memory in rats with vascular dementia. Mol Med Rep 2019; 20:4587-4593. [PMID: 31702039 PMCID: PMC6797959 DOI: 10.3892/mmr.2019.10723] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 07/19/2019] [Indexed: 01/19/2023] Open
Abstract
The purpose of the present study was to study the effects of resveratrol on cognitive function in rats with vascular dementia and to investigate the molecular mechanisms of its neuroprotective effects. Forty-five SD rats were randomly divided into 3 groups: The control group (Con group, n=15), the model group (VD group, n=15) and the resveratrol-treated VD group (Res group, n=15). The VD rats (the VD group and the Res group) were generated by bilateral common carotid artery occlusion. The rats in the Res group received daily resveratrol treatment intraperitoneally for 4 weeks. Cognitive function was tested using the Morris water maze test. The levels of SOD and MDA (oxidative stress indicators) were detected by ELISA kits. The protein expression of Bax, Bcl-2 and caspase-3 was detected by western blotting. Compared with the rats in the Con group, the rats in the VD group exhibited decreased cognitive function, significantly increased hippocampal content of MDA, Bax and caspase-3 (P<0.05), and significantly reduced hippocampal expression of SOD and Bcl-2 (P<0.05). Compared with the rats in the VD group, the rats in the Res group exhibited increased cognitive ability, reduced hippocampal content of MDA, Bax and caspase-3 (P<0.05), and increased hippocampal expression of SOD and Bcl-2 (P<0.05). Resveratrol treatment significantly improved the spatial learning and memory of the VD rats. The mechanism associated with the neuroprotective effects of resveratrol may be closely related to the inhibition of the apoptosis pathway and oxidative stress injury.
Collapse
Affiliation(s)
- Yeqing Zhang
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| | - Yuwang Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300060, P.R. China
| | - Yinxiao Wang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Gengyin Wang
- School of Basic Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Lingqun Mao
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| | - Danhong Zhang
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| | - Jinhua Wang
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
29
|
Maksimovich IV. Intracerebral Transcatheter Laser Photobiomodulation Therapy in the Treatment of Binswanger's Disease and Vascular Parkinsonism: Research and Clinical Experience. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:606-614. [PMID: 31390288 DOI: 10.1089/photob.2019.4649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Objective: This research is devoted to intracerebral transcatheter laser photobiomodulation therapy (PBMT) in the treatment of ischemic and neurodegenerative lesions of cerebral white matter in patients with Binswanger's disease (BD) and vascular parkinsonism (VP) in comparison with conservative treatment methods. Background: Recent studies have shown PBMT high potential in the treatment of various cerebral lesions. Materials and methods: Twenty-seven patients with BD, 58-81 years of age (mean age 78), 17 (62.96%) men, and 10 (27.04%) women. Of these, test group 1-14 (51.85%) patients-underwent intracerebral transcatheter laser PBMT, and control group 1-13 (48.15%) patients-had conservative treatment. Besides, 62 patients with VP, 52-80 years of age (mean age 77), 48 (77.42%) men, and 14 (22.58%) women. Of these, test group 2-37 (59.68%) patients-underwent intracerebral transcatheter laser PBMT, and control group 2-25 (40.32%) patients-had conservative treatment. Results: Good and satisfactory clinical results were obtained in Test group 1 and Test group 2 patients in 49 (92.45%) cases, with a persistent decrease of dementia and motor impairment, and recovery of cognitive functions and daily life activity. Control group 1 and Control group 2 patients showed a satisfactory clinical result in 6 (15.79%) cases. Persistent positive dynamics was not observed. Conclusions: Intracerebral transcatheter laser PBMT is a pathogenetically justified, effective treatment for BD and VP; it restores cerebral collateral and capillary blood supply, improves microcirculation, restores cellular and tissue metabolism, stimulates neurogenesis, and causes regenerative processes in the brain.
Collapse
Affiliation(s)
- Ivan V Maksimovich
- Clinic of Cardiovascular Diseases named after Most Holy John Tobolsky, Moscow, Russia
| |
Collapse
|
30
|
Caruso P, Signori R, Moretti R. Small vessel disease to subcortical dementia: a dynamic model, which interfaces aging, cholinergic dysregulation and the neurovascular unit. Vasc Health Risk Manag 2019; 15:259-281. [PMID: 31496716 PMCID: PMC6689673 DOI: 10.2147/vhrm.s190470] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/14/2019] [Indexed: 12/14/2022] Open
Abstract
Background Small vessels have the pivotal role for the brain’s autoregulation. The arteriosclerosis-dependent alteration of the brain perfusion is one of the major determinants in small vessel disease. Endothelium distress can potentiate the flow dysregulation and lead to subcortical vascular dementia (sVAD). sVAD increases morbidity and disability. Epidemiological studies have shown that sVAD shares with cerebrovascular disease most of the common risk factors. The molecular basis of this pathology remains controversial. Purpose To detect the possible mechanisms between small vessel disease and sVAD, giving a broad vision on the topic, including pathological aspects, clinical and laboratory findings, metabolic process and cholinergic dysfunction. Methods We searched MEDLINE using different search terms (“vascular dementia”, “subcortical vascular dementia”, “small vessel disease”, “cholinergic afferents”, etc). Publications were selected from the past 20 years. Searches were extended to Embase, Cochrane Library, and LILIACS databases. All searches were done from January 1, 1998 up to January 31, 2018. Results A total of 560 studies showed up, and appropriate studies were included. Associations between traditional vascular risk factors have been isolated. We remarked that SVD and white matter abnormalities are seen frequently with aging and also that vascular and endothelium changes are related with age; the changes can be accelerated by different vascular risk factors. Vascular function changes can be heavily influenced by genetic and epigenetic factors. Conclusion Small vessel disease and the related dementia are two pathologies that deserve attention for their relevance and impact in clinical practice. Hypertension might be a historical problem for SVD and SVAD, but low pressure might be even more dangerous; CBF regional selective decrease seems to be a critical factor for small vessel disease-related dementia. In those patients, endothelium damage is a super-imposed condition. Several issues are still debatable, and more research is needed.
Collapse
Affiliation(s)
- Paola Caruso
- Department of Medical, Surgical and Health Sciences, Neurology Clinic, University of Trieste, Trieste, Italy
| | - Riccardo Signori
- Department of Medical, Surgical and Health Sciences, Neurology Clinic, University of Trieste, Trieste, Italy
| | - Rita Moretti
- Department of Medical, Surgical and Health Sciences, Neurology Clinic, University of Trieste, Trieste, Italy
| |
Collapse
|
31
|
Abstract
This chapter describes the main neuropathological features of the most common age associated neurodegenerative diseases including Alzheimer's disease, Lewy body diseases, vascular dementia and the various types of frontotemporal lobar degeneration. In addition, the more recent concepts of primary age-related tauopathy and ageing-related tau astrogliopathy as well as chronic traumatic encephalopathy are briefly described. One section is dedicated to cerebral multi-morbidity as it is becoming increasingly clear that the old brain is characterised by the presence of multiple pathologies (to varying extent) rather than by one single, disease specific pathology alone. The main aim of this chapter is to inform the reader about the neuropathological basics of age associated neurodegenerative diseases as we feel this is crucial to meaningfully interpret the vast literature that is published in the broad field of dementia research.
Collapse
Affiliation(s)
- Lauren Walker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Kirsty E McAleese
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Erskine
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Johannes Attems
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
32
|
Andrade AG, Bubu OM, Varga AW, Osorio RS. The Relationship between Obstructive Sleep Apnea and Alzheimer's Disease. J Alzheimers Dis 2019; 64:S255-S270. [PMID: 29782319 DOI: 10.3233/jad-179936] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Obstructive sleep apnea (OSA) and Alzheimer's disease (AD) are highly prevalent conditions with growing impact on our aging society. While the causes of OSA are now better characterized, the mechanisms underlying AD are still largely unknown, challenging the development of effective treatments. Cognitive impairment, especially affecting attention and executive functions, is a recognized clinical consequence of OSA. A deeper contribution of OSA to AD pathogenesis is now gaining support from several lines of research. OSA is intrinsically associated with disruptions of sleep architecture, intermittent hypoxia and oxidative stress, intrathoracic and hemodynamic changes as well as cardiovascular comorbidities. All of these could increase the risk for AD, rendering OSA as a potential modifiable target for AD prevention. Evidence supporting the relevance of each of these mechanisms for AD risk, as well as a possible effect of AD in OSA expression, will be explored in this review.
Collapse
Affiliation(s)
- Andreia G Andrade
- Department of Neurology, Alzheimer's Disease Center, NYU Langone Medical Center, New York, NY, USA.,Department of Psychiatry, Center for Brain Health, NYU Langone Medical Center, New York, NY, USA
| | - Omonigho M Bubu
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Andrew W Varga
- Division of Pulmonary, Critical Care and Sleep Medicine at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo S Osorio
- Department of Psychiatry, Center for Brain Health, NYU Langone Medical Center, New York, NY, USA.,Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, NY, USA
| |
Collapse
|
33
|
Knifton C. A 'history of problematizations' for dementia education: a Foucauldian approach to understanding the framing of dementia. J Res Nurs 2019; 24:212-230. [PMID: 34394528 PMCID: PMC7932274 DOI: 10.1177/1744987119831737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Debates relevant to both undergraduate and postgraduate nurse education regarding the conceptualisation and disciplinary ownership of dementia, including its framing as a neuro-psychiatric condition, a terminal illness or a consequence of ageing, are important in supporting an understanding of the lived experience of dementia for individuals and their family carers and how, as a condition, it has come to be problematised in Western society. The work of Michel Foucault is useful in setting this debate within a critical historical context. AIMS Using Foucault's 'history of problematizations' we present such debates around dementia's conceptualisation in Western society and consider how a Foucauldian critical historical project influences nursing education by re-examining the problematisation of dementia within society, what it is to be a person with dementia, and how alternative conceptualisations shape how we see the condition - as well as how we provide learning opportunities for dementia-care professionals. RESULTS Six differing ways of conceptualising or problematising dementia were found (as a natural consequence of ageing, a mental disorder, a bio-medical disease, a neuro-cognitive disorder, a disability and a terminal illness), each offering alternative ways we might present it in an educational context. CONCLUSIONS We argue for both undergraduate and postgraduate student nurses to engage in learning that locates what it is to be a person with dementia within particular conceptual frameworks that would allow understanding of how these ideas or constructs are reliant on historically contingent assumptions. Here, taken-for-granted assumptions are unsettled, and a more critically reflective position is adopted. This will have an impact on the type of nurse to emerge from educational institutions, thus also affecting service delivery and the dementia care provided, as well as the knock-on effects for dementia education in other medical, health and social care courses and for institutions whose role it is to approve professional practice curricula content.
Collapse
|
34
|
Azarpazhooh MR, Hachinski V. Vascular cognitive impairment: A preventable component of dementia. HANDBOOK OF CLINICAL NEUROLOGY 2019; 167:377-391. [PMID: 31753144 DOI: 10.1016/b978-0-12-804766-8.00020-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
For many decades during the 20th century, the common belief was that the slow strangulation of the brains' blood supply from hardening of the brain arteries led to chronic brain ischemia and neuronal death. Not surprisingly, to counter this, vasodilators rapidly became one of the most commonly used and profitable medications worldwide; however, no clinical benefits were ever proven. In the 1970s and early 1980s cerebral blood flow studies strongly disproved the idea of brain failure due to chronic ischemia. It was also shown that infarcts and not chronic ischemia caused dementia, leading to the concept of multiinfarct dementia. In addition to infarcts, it was then realized that other vascular lesions can also cause cognitive decline. Gradually, as "atherosclerotic dementia" lost ground, Alzheimer's disease (AD) that once had been considered a presenile dementia and rare, became almost synonymous with dementia. Subsequent memory-based definitions and evaluations of dementia led to a bias in favor of diagnosing AD, overshadowing vascular contributions. The widespread use of brain imaging in the 1980s and 1990s contributed to the resurgence of evidence of cerebrovascular diseases. Moreover, it was shown that most cognitive impairment of the elderly results from mixed pathologies, emphasizing the need for a change in the traditional categorical diagnosis of dementia, e.g., AD vs vascular dementia. The alternative diagnostic method was named the vascular cognitive impairment approach, meaning identifying any impairment caused by or associated with vascular factors. The importance of this approach is that vascular lesions are currently the most important treatable and preventable components of dementia, even before any symptoms manifest, i.e., at the brain at risk stage. This chapter provides a summary of the vascular cognitive impairment approach to diagnosis, treatment, and prevention of cognitive decline.
Collapse
Affiliation(s)
- Mahmoud Reza Azarpazhooh
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Neurology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vladimir Hachinski
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada.
| |
Collapse
|
35
|
Pluta R, Ułamek-Kozioł M, Czuczwar SJ. Neuroprotective and Neurological/Cognitive Enhancement Effects of Curcumin after Brain Ischemia Injury with Alzheimer's Disease Phenotype. Int J Mol Sci 2018; 19:E4002. [PMID: 30545070 PMCID: PMC6320958 DOI: 10.3390/ijms19124002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
In recent years, ongoing interest in ischemic brain injury research has provided data showing that ischemic episodes are involved in the development of Alzheimer's disease-like neuropathology. Brain ischemia is the second naturally occurring neuropathology, such as Alzheimer's disease, which causes the death of neurons in the CA1 region of the hippocampus. In addition, brain ischemia was considered the most effective predictor of the development of full-blown dementia of Alzheimer's disease phenotype with a debilitating effect on the patient. Recent knowledge on the activation of Alzheimer's disease-related genes and proteins-e.g., amyloid protein precursor and tau protein-as well as brain ischemia and Alzheimer's disease neuropathology indicate that similar processes contribute to neuronal death and disintegration of brain tissue in both disorders. Although brain ischemia is one of the main causes of death in the world, there is no effective therapy to improve the structural and functional outcomes of this disorder. In this review, we consider the promising role of the protective action of curcumin after ischemic brain injury. Studies of the pharmacological properties of curcumin after brain ischemia have shown that curcumin has several therapeutic properties that include anti-excitotoxic, anti-oxidant, anti-apoptotic, anti-hyperhomocysteinemia and anti-inflammatory effects, mitochondrial protection, as well as increasing neuronal lifespan and promoting neurogenesis. In addition, curcumin also exerts anti-amyloidogenic effects and affects the brain's tau protein. These results suggest that curcumin may be able to serve as a potential preventive and therapeutic agent in neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
- First Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland.
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland.
| |
Collapse
|
36
|
Ebrahimian Dehaghani S, Yadegari F, Asgari A, Bagheri Z. The mediator effect of cognition on the relationship between brain lesion location and dysphagia in patients with stroke: Applying a structural equation model. J Oral Rehabil 2018; 46:33-39. [DOI: 10.1111/joor.12722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Shiva Ebrahimian Dehaghani
- Department of Speech TherapySchool of Rehabilitation Sciences, Shiraz University of Medical Sciences Shiraz Iran
- Rehabilitation Sciences Research CenterShiraz University of Medical Sciences Shiraz Iran
- University of Social Welfare and Rehabilitation Sciences Tehran Iran
| | - Fariba Yadegari
- Department of Speech TherapyUniversity of Social Welfare and Rehabilitation Sciences Tehran Iran
| | - Ali Asgari
- Department of PsychologyKharazmi University Karaj Iran
| | - Zahra Bagheri
- Department of BiostatisticsShiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
37
|
Kiđemet‐Piskač S, Babić Leko M, Blažeković A, Langer Horvat L, Klepac N, Sonicki Z, Kolenc D, Hof PR, Boban M, Mimica N, Borovečki F, Šimić G. Evaluation of cerebrospinal fluid phosphorylated tau 231 as a biomarker in the differential diagnosis of Alzheimer's disease and vascular dementia. CNS Neurosci Ther 2018; 24:734-740. [PMID: 29453935 PMCID: PMC6047904 DOI: 10.1111/cns.12814] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The diagnosis of either Alzheimer's disease (AD) or vascular dementia (VaD) is still largely based on clinical guidelines and exclusion of other diseases that may lead to dementia. AIMS In this study, we assessed whether the use of sensitive and specific biomarkers such as phosphorylated tau proteins could contribute to an earlier and more accurate diagnosis of AD and VaD, as well as to their differentiation. MATERIAL AND METHODS A total of 198 patients, of which 152 had AD, 28 VaD, and 18 were healthy controls (HC), were included in the analyses. We analyzed cerebrospinal fluid (CSF) levels of total tau protein (t-tau), tau protein phosphorylated at threonine 231 (p-tau231), and factor score (FS) determined by combination of p-tau231 and Mini-Mental State Examination (MMSE) in patients with AD and VaD, as well as in HC. We tested the diagnostic accuracy of these biomarkers in the CSF and FS (p-tau231, MMSE) in differentiating AD from VaD and HC. RESULTS Total tau levels were significantly elevated in subjects with AD compared to HC, as well as in VaD subjects compared to HC. DISCUSSION p-tau231 levels were significantly higher in patients with ADvsHC as well in patients with VaD vsHC. p-tau231 levels did not distinguish AD from VaD patients. Importantly, FS(p-tau231 and MMSE) showed statistically significant differences in the distribution of subjects with AD and VaD. CONCLUSION These results indicate that FS (p-tau231 and MMSE) has a strong potential to provide an early distinction between AD and VaD.
Collapse
Affiliation(s)
| | - Mirjana Babić Leko
- Department of NeuroscienceCroatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | | | - Lea Langer Horvat
- Department of NeuroscienceCroatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Nataša Klepac
- Department of NeurologyUniversity Hospital Centre “Zagreb”University of Zagreb School of MedicineZagrebCroatia
| | - Zdenko Sonicki
- Department of Medical Statistics, Epidemiology and Medical InformaticsSchool of Public Health “Andrija Štampar”University of Zagreb School of MedicineZagrebCroatia
| | - Danijela Kolenc
- Department of PathologyUniversity of Zagreb School of MedicineZagrebCroatia
| | - Patrick R. Hof
- Fishberg Department of NeuroscienceRonald M. Loeb Center for Alzheimer's Disease, and Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Marina Boban
- Department of NeurologyUniversity Hospital Centre “Zagreb”University of Zagreb School of MedicineZagrebCroatia
| | - Ninoslav Mimica
- University Psychiatric Hospital VrapčeUniversity of Zagreb School of MedicineZagrebCroatia
| | - Fran Borovečki
- Department of NeurologyUniversity Hospital Centre “Zagreb”University of Zagreb School of MedicineZagrebCroatia
| | - Goran Šimić
- Department of NeuroscienceCroatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| |
Collapse
|
38
|
Parfenov VA, Zhivolupov SA, Nikulina KV, Poverennova IE, Lapatuhin VG, Zhestikova MG, Zhukova NG, Glazunov AB. [Diagnosis and treatment of cognitive impairment in patients with chronic cerebral ischemia: the results of observational Russian program DIAMANT]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:15-23. [PMID: 30040796 DOI: 10.17116/jnevro20181186115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM To investigate the efficacy of divaza in outpatients with cognitive disorders and chronic brain ischemia (CBI). MATERIAL AND METHODS The non-interventional observational program included the data of 2583 outpatients with CBI from 30 cities (8 federal okrugs of the Russian Federation) who were on outpatient neurological treatment and received divaza in a dose of 2 tablets three times a day from Oct 2016 to Jan 2017. Cognitive functions were evaluated using the MoCA scale before and after 3 months of treatment. RESULTS AND CONCLUSION Cognitive disorders were identified in 90.7% of patients (<26 MoCA scores). After treatment, the mean MoCA score increased from 19.58±5.13 to 23.99±4.21 (p<0.0001), the number of patients with normal cognitive functions rate (≥26 scores) increased from 9.3 to 41.3%, the number of patients with marked cognitive impairment decreased. The drug was well-tolerated by old and very old patients, adverse events were observed rarely (0.6% of cases). The majority of doctors (88.4%) noticed the effect of divaza as significant improvement or improvement, and 89.6% of patients valued the effect to be excellent or good. The use of divaza, the drug with endothelioprotective and nootropic effects, is pathogenetically justified and promising in patients with cognitive disorders of vascular etiology.
Collapse
Affiliation(s)
- V A Parfenov
- Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | | | - K V Nikulina
- OOO 'NPF "Materia Medica Holding"', Moscow, Russia
| | | | - V G Lapatuhin
- Penza Institute of Improvement of Doctors, Penza, Russia
| | - M G Zhestikova
- Novokuznetsk State Institute of Postgraduate Medicine, Novokuznetsk, Russia
| | - N G Zhukova
- Siberian State Medical University, Tomsk, Russia
| | - A B Glazunov
- Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
39
|
Chen JJ. Functional MRI of brain physiology in aging and neurodegenerative diseases. Neuroimage 2018; 187:209-225. [PMID: 29793062 DOI: 10.1016/j.neuroimage.2018.05.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 05/16/2018] [Accepted: 05/20/2018] [Indexed: 12/14/2022] Open
Abstract
Brain aging and associated neurodegeneration constitute a major societal challenge as well as one for the neuroimaging community. A full understanding of the physiological mechanisms underlying neurodegeneration still eludes medical researchers, fuelling the development of in vivo neuroimaging markers. Hence it is increasingly recognized that our understanding of neurodegenerative processes likely will depend upon the available information provided by imaging techniques. At the same time, the imaging techniques are often developed in response to the desire to observe certain physiological processes. In this context, functional MRI (fMRI), which has for decades provided information on neuronal activity, has evolved into a large family of techniques well suited for in vivo observations of brain physiology. Given the rapid technical advances in fMRI in recent years, this review aims to summarize the physiological basis of fMRI observations in healthy aging as well as in age-related neurodegeneration. This review focuses on in-vivo human brain imaging studies in this review and on disease features that can be imaged using fMRI methods. In addition to providing detailed literature summaries, this review also discusses future directions in the study of brain physiology using fMRI in the clinical setting.
Collapse
Affiliation(s)
- J Jean Chen
- Rotman Research Institute at Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada.
| |
Collapse
|
40
|
Assuncao N, Sudo FK, Drummond C, de Felice FG, Mattos P. Metabolic Syndrome and cognitive decline in the elderly: A systematic review. PLoS One 2018; 13:e0194990. [PMID: 29579115 PMCID: PMC5868841 DOI: 10.1371/journal.pone.0194990] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/14/2018] [Indexed: 12/30/2022] Open
Abstract
Background Metabolic Syndrome (MetS) refers to a cluster of metabolic disturbances which is associated with increased risk for vascular and degenerative conditions in general population. Although the relationship between vascular risk factors and dementia is undisputable, additional hazard for cognitive decline in older population with concurrent metabolic disorders still waits to be demonstrated. The present review aims to analyze data on MetS and risk for cognitive decline in elderly persons. Methods Database searches were performed in Medline, ISI and PsycINFO for articles assessing cognitive performances of older subjects with MetS. Results Of a total of 505 studies, 25 were selected for the review. Risk of selection biases was identified in all the studies. Although all articles followed recognized diagnostic recommendations for MetS, minor criteria modifications were detected in most of them. Hyperglycemia was consistently associated with impaired cognitive performances in older individuals, but the role of MetS for cognitive decline and for the onset of dementia showed heterogeneous results. Discussion Current available data in the literature concerning the impact of MetS on the cognition of older population is inconclusive and based on inconsistent evidence. Differential effects of individual MetS components and factors associated with the age of the sample may have accounted for divergent findings among articles, but larger and higher quality studies in this field are still needed.
Collapse
Affiliation(s)
- Naima Assuncao
- Memory Clinic, D’Or Institute for Research and Education, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences–Morphological Sciences Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Kenji Sudo
- Memory Clinic, D’Or Institute for Research and Education, Rio de Janeiro, Brazil
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - Claudia Drummond
- Memory Clinic, D’Or Institute for Research and Education, Rio de Janeiro, Brazil
- Department of Speech and Hearing Pathology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Guarino de Felice
- Institute of Biomedical Sciences–Morphological Sciences Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Mattos
- Memory Clinic, D’Or Institute for Research and Education, Rio de Janeiro, Brazil
- Institute of Biomedical Sciences–Morphological Sciences Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Psychiatry and Forensic Medicine, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Vinters HV, Zarow C, Borys E, Whitman JD, Tung S, Ellis WG, Zheng L, Chui HC. Review: Vascular dementia: clinicopathologic and genetic considerations. Neuropathol Appl Neurobiol 2018; 44:247-266. [DOI: 10.1111/nan.12472] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/13/2018] [Indexed: 12/21/2022]
Affiliation(s)
- H. V. Vinters
- Departments of Pathology & Laboratory Medicine (Neuropathology) and Neurology; David Geffen School of Medicine at UCLA; Los Angeles CA USA
| | - C. Zarow
- Department of Neurology; Keck School of Medicine at University of Southern California; Los Angeles CA USA
| | - E. Borys
- Department of Pathology; University of California Davis School of Medicine; Sacramento CA USA
- Department of Pathology; Loyola University Medical Center; Maywood IL USA
| | - J. D. Whitman
- Departments of Pathology & Laboratory Medicine (Neuropathology) and Neurology; David Geffen School of Medicine at UCLA; Los Angeles CA USA
- Departments of Pathology & Laboratory Medicine; UC San Francisco Medical Center; San Francisco CA USA
| | - S. Tung
- Departments of Pathology & Laboratory Medicine (Neuropathology) and Neurology; David Geffen School of Medicine at UCLA; Los Angeles CA USA
| | - W. G. Ellis
- Department of Pathology; University of California Davis School of Medicine; Sacramento CA USA
| | - L. Zheng
- Department of Neurology; Keck School of Medicine at University of Southern California; Los Angeles CA USA
| | - H. C. Chui
- Department of Neurology; Keck School of Medicine at University of Southern California; Los Angeles CA USA
| |
Collapse
|
42
|
Lang B, Kindy MS, Kozel FA, Schultz SK, Taheri S. Multi-Parametric Classification of Vascular Cognitive Impairment and Dementia: The Impact of Diverse Cerebrovascular Injury Biomarkers. J Alzheimers Dis 2018; 62:39-60. [DOI: 10.3233/jad-170733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Brittany Lang
- Clinical Psychology Program, University of South Florida, Tampa, FL, USA
| | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Tampa, FL, USA
- James A. Haley VA Medical Center, Tampa, FL, USA
| | - F. Andrew Kozel
- James A. Haley VA Medical Center, Tampa, FL, USA
- Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA
| | - Susan K. Schultz
- James A. Haley VA Medical Center, Tampa, FL, USA
- Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Tampa, FL, USA
- Byrd Alzheimer’s Institute, Tampa, FL, USA
| |
Collapse
|
43
|
Pauls MMH, Moynihan B, Barrick TR, Kruuse C, Madigan JB, Hainsworth AH, Isaacs JD. The effect of phosphodiesterase-5 inhibitors on cerebral blood flow in humans: A systematic review. J Cereb Blood Flow Metab 2018; 38:189-203. [PMID: 29256324 PMCID: PMC5951021 DOI: 10.1177/0271678x17747177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 11/29/2022]
Abstract
Agents that augment cerebral blood flow (CBF) could be potential treatments for vascular cognitive impairment. Phosphodiesterase-5 inhibitors are vasodilating drugs established in the treatment of erectile dysfunction (ED) and pulmonary hypertension. We reviewed published data on the effects of phosphodiesterase-5 inhibitors on CBF in adult humans. A systematic review according to PRISMA guidelines was performed. Embase, Medline and Cochrane Library Trials databases were searched. Sixteen studies with 353 participants in total were retrieved. Studies included healthy volunteers and patients with migraine, ED, type 2 diabetes, stroke, pulmonary hypertension, Becker muscular dystrophy and subarachnoid haemorrhage. Most studies used middle cerebral artery flow velocity to estimate CBF. Few studies employed direct measurements of tissue perfusion. Resting CBF velocity was unaffected by phosphodiesterase-5 inhibitors, but cerebrovascular regulation was improved in ED, pulmonary hypertension, diabetes, Becker's and a group of healthy volunteers. This evidence suggests that phosphodiesterase-5 inhibitors improve responsiveness of the cerebral vasculature, particularly in disease states associated with an impaired endothelial dilatory response. This supports the potential therapeutic use of phosphodiesterase-5 inhibitors in vascular cognitive impairment where CBF is reduced. Further studies with better resolution of deep CBF are warranted. The review is registered on the PROSPERO database (registration number CRD42016029668).
Collapse
Affiliation(s)
- Mathilde MH Pauls
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
| | - Barry Moynihan
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
- Department of Geriatric and Stroke
Medicine, Beaumont Hospital, Dublin, Ireland
| | - Thomas R Barrick
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
| | - Christina Kruuse
- Department of Neurology, Neurovascular
Research Unit, Herlev Gentofte Hospital and University of Copenhagen, Denmark
| | - Jeremy B Madigan
- Department of Neuroradiology, St
George's University Hospitals NHS Foundation Trust, London, UK
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
| | - Jeremy D Isaacs
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
44
|
Hase Y, Horsburgh K, Ihara M, Kalaria RN. White matter degeneration in vascular and other ageing-related dementias. J Neurochem 2018; 144:617-633. [DOI: 10.1111/jnc.14271] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/20/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Yoshiki Hase
- Neurovascular Research Group; Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
| | - Karen Horsburgh
- Centre for Neuroregeneration; University of Edinburgh; Edinburgh UK
| | - Masafumi Ihara
- Department of Neurology; National Cerebral and Cardiovascular Center; Suita Osaka Japan
| | - Raj N. Kalaria
- Neurovascular Research Group; Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
| |
Collapse
|
45
|
Wallin A, Román GC, Esiri M, Kettunen P, Svensson J, Paraskevas GP, Kapaki E. Update on Vascular Cognitive Impairment Associated with Subcortical Small-Vessel Disease. J Alzheimers Dis 2018; 62:1417-1441. [PMID: 29562536 PMCID: PMC5870030 DOI: 10.3233/jad-170803] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
Subcortical small-vessel disease (SSVD) is a disorder well characterized from the clinical, imaging, and neuropathological viewpoints. SSVD is considered the most prevalent ischemic brain disorder, increasing in frequency with age. Vascular risk factors include hypertension, diabetes, hyperlipidemia, elevated homocysteine, and obstructive sleep apnea. Ischemic white matter lesions are the hallmark of SSVD; other pathological lesions include arteriolosclerosis, dilatation of perivascular spaces, venous collagenosis, cerebral amyloid angiopathy, microbleeds, microinfarcts, lacunes, and large infarcts. The pathogenesis of SSVD is incompletely understood but includes endothelial changes and blood-brain barrier alterations involving metalloproteinases, vascular endothelial growth factors, angiotensin II, mindin/spondin, and the mammalian target of rapamycin pathway. Metabolic and genetic conditions may also play a role but hitherto there are few conclusive studies. Clinical diagnosis of SSVD includes early executive dysfunction manifested by impaired capacity to use complex information, to formulate strategies, and to exercise self-control. In comparison with Alzheimer's disease (AD), patients with SSVD show less pronounced episodic memory deficits. Brain imaging has advanced substantially the diagnostic tools for SSVD. With the exception of cortical microinfarcts, all other lesions are well visualized with MRI. Diagnostic biomarkers that separate AD from SSVD include reduction of cerebrospinal fluid amyloid-β (Aβ)42 and of the ratio Aβ42/Aβ40 often with increased total tau levels. However, better markers of small-vessel function of intracerebral blood vessels are needed. The treatment of SSVD remains unsatisfactory other than control of vascular risk factors. There is an urgent need of finding targets to slow down and potentially halt the progression of this prevalent, but often unrecognized, disorder.
Collapse
Affiliation(s)
- Anders Wallin
- Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg Sweden and Memory Clinic at Department of Neuropsychiatry, Sahlgrenska University, Hospital, Gothenburg, Sweden
| | - Gustavo C. Román
- Department of Neurology, Methodist Neurological Institute, Houston, TX, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Margaret Esiri
- Neuropathology Department, West Wing, John Radcliffe Hospital, Oxford, UK
| | - Petronella Kettunen
- Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg Sweden and Memory Clinic at Department of Neuropsychiatry, Sahlgrenska University, Hospital, Gothenburg, Sweden
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford, UK
| | - Johan Svensson
- Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - George P. Paraskevas
- 1st Department of Neurology, Neurochemistry Unit, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Kapaki
- 1st Department of Neurology, Neurochemistry Unit, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
46
|
Resveratrol loaded solid lipid nanoparticles attenuate mitochondrial oxidative stress in vascular dementia by activating Nrf2/HO-1 pathway. Neurochem Int 2018; 112:239-254. [DOI: 10.1016/j.neuint.2017.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/15/2017] [Accepted: 08/03/2017] [Indexed: 12/30/2022]
|
47
|
Abstract
Resveratrol is a natural phytoestrogen with neuroprotective properties. Polyphenolic compounds including resveratrol exert in vitro antioxidant, anti-inflammatory, and antiamyloid effects. Resveratrol and its derivative pterostilbene are able to cross the blood-brain barrier and to influence brain activity. The present short review summarizes the available evidence regarding the effects of these polyphenols on pathology and cognition in animal models and human subjects with dementia. Numerous investigations in cellular and mammalian models have associated resveratrol and pterostilbene with protection against dementia syndromes such as Alzheimer's disease (AD) and vascular dementia. The neuroprotective activity of resveratrol and pterostilbene demonstrated in in vitro and in vivo studies suggests a promising role for these compounds in the prevention and treatment of dementia. In comparison to resveratrol, pterostilbene appears to be more effective in combatting brain changes associated with aging. This may be attributed to the more lipophilic nature of pterostilbene with its two methoxyl groups compared with the two hydroxyl groups of resveratrol. The findings of available intervention trials of resveratrol in individuals with mild cognitive impairment or AD do not provide evidence of neuroprotective or therapeutic effects. Future clinical trials should be conducted with long-term exposure to preparations of resveratrol and pterostilbene with high bioavailability. © 2017 BioFactors, 44(1):83-90, 2018.
Collapse
Affiliation(s)
- Klaus W Lange
- Department of Experimental Psychology, University of Regensburg, Germany
| | - Shiming Li
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
48
|
Parfenov VА, Kamchatnov PR, Vorobyova ОV, Gustov АV, Glushkov КS, Doronina ОB. [Results of multicenter study of efficacy and safety of divaza in the treatment of the asthenic and mild to moderate cognitive disorders in elderly and senile subjects]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:43-50. [PMID: 29053120 DOI: 10.17116/jnevro20171179143-50] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To study the efficacy and safety of divasa in elderly and senile subjects with asthenic and mild to moderate cognitive disorders. MATERIAL AND METHODS The study included 126 patients with clinically significant asthenia and mild to moderate cognitive disorders. Asthenia was assessed with MFI-20, cognitive disorders with MMSE, clock drawing test and verbal association test. All patients were treated with divasa in dose 2 tablets 3 times a day. RESULTS AND CONCLUSION The efficacy and safety of divasa in asthenic and mild to moderate cognitive disorders in elderly and senile subjects were shown. There is a need for a multicenter placebo-controlled trial on the efficacy of divasa to treat cognitive and asthenic disorders in elderly patients.
Collapse
Affiliation(s)
- V А Parfenov
- Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - P R Kamchatnov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - О V Vorobyova
- Semashko Russian Railways Open Joint Stock Company, Moscow, Russia
| | - А V Gustov
- Semashko Nizhny Novgorod District Clinical Hospital, Nizhny Novgorod, Russia
| | | | - О B Doronina
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Municipal Neurological Center Sibneuromed, Novosibirsk, Russia
| |
Collapse
|
49
|
Soluble epoxide hydrolase inhibition Promotes White Matter Integrity and Long-Term Functional Recovery after chronic hypoperfusion in mice. Sci Rep 2017; 7:7758. [PMID: 28798352 PMCID: PMC5552839 DOI: 10.1038/s41598-017-08227-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/06/2017] [Indexed: 11/08/2022] Open
Abstract
Chronic cerebral hypoperfusion induced cerebrovascular white matter lesions (WMLs) are closely associated with cognitive impairment and other neurological deficits. The mechanism of demyelination in response to hypoperfusion has not yet been fully clarified. Soluble epoxide hydrolase (sEH) is an endogenous key enzyme in the metabolic conversion and degradation of P450 eicosanoids called epoxyeicosatrienoic acids. Inhibition of sEH has been suggested to represent a prototype "combination therapy" targeting multiple mechanisms of stroke injury with a single agent. However, its role in the pathological process after WMLs has not been clarified. The present study was to investigate the role of a potent sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), on multiple elements in white matter of mice brain after chronic hypoperfusion. Adult male C57BL/6 mice were subjected to bilateral carotid artery stenosis (BCAS) to induce WMLs. Administration of TPPU significantly inhibited microglia activation and inflammatory response, increased M2 polarization of microglial cells, enhanced oligodendrogenesis and differentiation of oligodendrocytes, promoted white matter integrity and remyelination following chronic hypoperfusion. Moreover, these cellular changes were translated into a remarkable functional restoration. The results suggest that sEH inhibition could exert multi-target protective effects and alleviate cognitive impairment after chronic hypoperfusion induced WMLs in mice.
Collapse
|
50
|
Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clin Sci (Lond) 2017; 131:2257-2274. [PMID: 28798076 DOI: 10.1042/cs20160381] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/09/2017] [Accepted: 07/24/2017] [Indexed: 01/12/2023]
Abstract
Cerebral small vessel diseases (SVDs) range broadly in etiology but share remarkably overlapping pathology. Features of SVD including enlarged perivascular spaces (EPVS) and formation of abluminal protein deposits cannot be completely explained by the putative pathophysiology. The recently discovered glymphatic system provides a new perspective to potentially address these gaps. This work provides a comprehensive review of the known factors that regulate glymphatic function and the disease mechanisms underlying glymphatic impairment emphasizing the role that aquaporin-4 (AQP4)-lined perivascular spaces (PVSs), cerebrovascular pulsatility, and metabolite clearance play in normal CNS physiology. This review also discusses the implications that glymphatic impairment may have on SVD inception and progression with the aim of exploring novel therapeutic targets and highlighting the key questions that remain to be answered.
Collapse
|