1
|
Song Y, Ren S, Chen X, Li X, Chen L, Zhao S, Zhang Y, Shen X, Chen Y. Inhibition of MFN1 restores tamoxifen-induced apoptosis in resistant cells by disrupting aberrant mitochondrial fusion dynamics. Cancer Lett 2024; 590:216847. [PMID: 38583647 DOI: 10.1016/j.canlet.2024.216847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Tamoxifen (TAM) resistance presents a major clinical obstacle in the management of estrogen-sensitive breast cancer, highlighting the need to understand the underlying mechanisms and potential therapeutic approaches. We showed that dysregulated mitochondrial dynamics were involved in TAM resistance by protecting against mitochondrial apoptosis. The dysregulated mitochondrial dynamics were associated with increased mitochondrial fusion and decreased fission, thus preventing the release of mitochondrial cytochrome c to the cytoplasm following TAM treatment. Dynamin-related GTPase protein mitofusin 1 (MFN1), which promotes fusion, was upregulated in TAM-resistant cells, and high MFN1 expression indicated a poor prognosis in TAM-treated patients. Mitochondrial translocation of MFN1 and interaction between MFN1 and mitofusin 2 (MFN2) were enhanced to promote mitochondrial outer membrane fusion. The interaction of MFN1 and cristae-shaping protein optic atrophy 1 (OPA1) and OPA1 oligomerization were reduced due to augmented OPA1 proteolytic cleavage, and their apoptosis-promoting function was reduced due to cristae remodeling. Furthermore, the interaction of MFN1 and BAK were increased, which restrained BAK activation following TAM treatment. Knockdown or pharmacological inhibition of MFN1 blocked mitochondrial fusion, restored BAK oligomerization and cytochrome c release, and amplified activation of caspase-3/9, thus sensitizing resistant cells to apoptosis and facilitating the therapeutic effects of TAM both in vivo and in vitro. Conversely, overexpression of MFN1 alleviated TAM-induced mitochondrial apoptosis and promoted TAM resistance in sensitive cells. These results revealed that dysregulated mitochondrial dynamics contributes to the development of TAM resistance, suggesting that targeting MFN1-mediated mitochondrial fusion is a promising strategy to circumvent TAM resistance.
Collapse
Affiliation(s)
- Yuxuan Song
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Shuang Ren
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Xingmei Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Xuhong Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Lin Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Shijie Zhao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China
| | - Yue Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China.
| | - Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China; Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou 561113, China.
| |
Collapse
|
2
|
Lozon L, Ramadan WS, Kawaf RR, Al-Shihabi AM, El-Awady R. Decoding cell death signalling: Impact on the response of breast cancer cells to approved therapies. Life Sci 2024; 342:122525. [PMID: 38423171 DOI: 10.1016/j.lfs.2024.122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Breast cancer is a principal cause of cancer-related mortality in female worldwide. While many approved therapies have shown promising outcomes in treating breast cancer, understanding the intricate signalling pathways controlling cell death is crucial for optimizing the treatment outcome. A growing body of evidence has unveiled the aberrations in multiple cell death pathways across diverse cancer types, highlighting these pathways as appealing targets for therapeutic interventions. In this review, we provide a comprehensive overview of the current state of knowledge on the cell death signalling mechanisms with a particular focus on their impact on the response of breast cancer cells to approved therapies. Additionally, we discuss the potentials of combination therapies that exploit the synergy between approved drugs and therapeutic agents targeting modulators of cell death pathways.
Collapse
Affiliation(s)
- Lama Lozon
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Rawan R Kawaf
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Aya M Al-Shihabi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
3
|
Chen F, Wang L, Feng Y, Ma W, Liu J, Bi Q, Song Y, Gao R, Jia Y. F-box and leucine-rich repeat protein 16 controls tamoxifen sensitivity via regulation of mitochondrial respiration in estrogen receptor-positive breast cancer cells. Hum Cell 2023; 36:2087-2098. [PMID: 37537406 DOI: 10.1007/s13577-023-00961-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Tamoxifen is one of the most effective therapeutic tools for estrogen receptor-positive (ER +) breast cancer. However, the intrinsic insensitivity and resistance to tamoxifen remains a significant hurdle for achieving optimal responses and curative therapy. In this study, we report that F-box and leucine-rich repeat protein 16 (FBXL16) is located in the mitochondria of ER + breast cancer cells. The mitochondrial FBXL16 plays an essential role in sustaining mitochondrial respiration and thereby regulates the sensitivity of ER + breast cancer cells to tamoxifen treatment. Importantly, high FBXL16 expression is significantly correlated with poor overall survival of ER + breast cancer patients. Moreover, mitochondrial inhibition phenocopies FBXL16 depletion in terms of sensitizing the ER + breast cancer cells to tamoxifen treatment. Together, our study demonstrates that FBXL16 acts as a novel regulator of tamoxifen sensitivity. Thus, targeting FBXL16 may serve as a promising approach for improving the therapeutic efficacy of tamoxifen in ER + breast cancer cells.
Collapse
Affiliation(s)
- Feng Chen
- Department of Medical Oncology, Ordos Central Hospital, Ordos, China
| | - Lu Wang
- Department of Radiation Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanrong Feng
- Ordos School of Clinical Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Wenxin Ma
- Ordos School of Clinical Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Junqin Liu
- Ordos School of Clinical Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Qianyao Bi
- Ordos School of Clinical Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Yao Song
- Department of Radiation Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Gao
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China.
| | - Yanhan Jia
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
4
|
Hwang S, Park S, Kim JH, Bang SB, Kim HJ, Ka NL, Ko Y, Kim SS, Lim GY, Lee S, Shin YK, Park SY, Kim S, Lee MO. Targeting HMG-CoA synthase 2 suppresses tamoxifen-resistant breast cancer growth by augmenting mitochondrial oxidative stress-mediated cell death. Life Sci 2023:121827. [PMID: 37276910 DOI: 10.1016/j.lfs.2023.121827] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
AIMS In this study, we aimed to investigate previously unrecognized lipid metabolic perturbations in tamoxifen-resistant breast cancer (BC) by conducting comprehensive metabolomics and transcriptomics analysis. We identified the role of 3-hydroxy-3-methylglutary-coenzyme-A-synthase 2 (HMGCS2), a key enzyme responsible for ketogenesis, in tamoxifen-resistant BC growth. MAIN METHODS Comprehensive metabolomics (CE-TOFMS, LC-TOFMS) and transcriptiomics analysis were performed to characterize metabolic pathways in tamoxifen-resistant BC cells. The upregulation of HMGCS2 were verified thorugh immunohistochemistry (IHC) in clinical samples obtained from patients with recurrent BC. HMGCS2 inhibitor was discovered through surface plasmon resonance analysis, enzyme assay, and additional molecular docking studies. The effect of HMGCS2 suppression on tumor growth was studied thorugh BC xenograft model, and intratumoral lipid metabolites were analyzed via MALDI-TOFMS imaging. KEY FINDINGS We revealed that the level of HMGCS2 was highly elevated in both tamoxifen-resistant T47D sublines (T47D/TR) and clinical refractory tumor specimens from patients with ER+ breast cancer, who had been treated with adjuvant tamoxifen. Suppression of HMGCS2 in T47D/TR resulted in the accumulation of mitochondrial reactive oxygen species (mtROS) and apoptotic cell death. Further, we identified alphitolic acid, a triterpenoid natural product, as a novel HMGCS2-specific inhibitor that elevated mtROS levels and drastically retarded the growth of T47D/TR in in vitro and in vivo experiments. SIGNIFICANCE Enhanced ketogenesis with upregulation of HMGCS2 is a potential metabolic vulnerability of tamoxifen-resistant BC that offers a new therapeutic opportunity for treating patients with ER+ BC that are refractory to tamoxifen treatment.
Collapse
Affiliation(s)
- Sewon Hwang
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Soojun Park
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jee Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Sang-Beom Bang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeon-Ji Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Na-Lee Ka
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoonae Ko
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung-Su Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ga Young Lim
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seunghee Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Kee Shin
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea.
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Novel pyrrolidine-aminophenyl-1,4-naphthoquinones: structure-related mechanisms of leukemia cell death. Mol Cell Biochem 2023; 478:393-406. [PMID: 35836027 DOI: 10.1007/s11010-022-04514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 06/24/2022] [Indexed: 02/02/2023]
Abstract
Novel derivatives of aminophenyl-1,4-naphthoquinones, in which a pyrrolidine group was added to the naphthoquinone ring, were synthesized and investigated for the mechanisms of leukemic cell killing. The novel compounds, TW-85 and TW-96, differ in the functional (methyl or hydroxyl) group at the para-position of the aminophenyl moiety. TW-85 and TW-96 were found to induce concentration- and time-dependent apoptotic and/or necrotic cell death in human U937 promonocytic leukemia cells but only TW-96 could also kill K562 chronic myeloid leukemia cells and CCRF-CEM lymphoblastic leukemia cells. Normal peripheral blood mononuclear cells were noticeably less responsive to both compounds than leukemia cells. At low micromolar concentrations used, TW-85 killed U937 cells mainly by inducing apoptosis. TW-96 was a weaker apoptotic agent in U937 cells but proved to be cytotoxic and a stronger inducer of necrosis in all three leukemic cell lines tested. Both compounds induced mitochondrial permeability transition pore opening, cytochrome c release, and caspase activation in U937 cells. Cytotoxicity induced by TW-96, but not by TW-85, was associated with the elevation of the cytosolic levels of reactive oxygen species (ROS). The latter was attenuated by diphenyleneiodonium, indicating that NADPH oxidase was likely to be the source of ROS generation. Activation of p38 MAPK by the two agents appeared to prevent necrosis but differentially affected apoptotic cell death in U937 cells. These results further expand our understanding of the structure-activity relationship of aminophenyl-1,4-naphthoquinones as potential anti-leukemic agents with distinct modes of action.
Collapse
|
6
|
Chemotherapy Resistance: Role of Mitochondrial and Autophagic Components. Cancers (Basel) 2022; 14:cancers14061462. [PMID: 35326612 PMCID: PMC8945922 DOI: 10.3390/cancers14061462] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chemotherapy resistance is a common occurrence during cancer treatment that cancer researchers are attempting to understand and overcome. Mitochondria are a crucial intracellular signaling core that are becoming important determinants of numerous aspects of cancer genesis and progression, such as metabolic reprogramming, metastatic capability, and chemotherapeutic resistance. Mitophagy, or selective autophagy of mitochondria, can influence both the efficacy of tumor chemotherapy and the degree of drug resistance. Regardless of the fact that mitochondria are well-known for coordinating ATP synthesis from cellular respiration in cellular bioenergetics, little is known its mitophagy regulation in chemoresistance. Recent advancements in mitochondrial research, mitophagy regulatory mechanisms, and their implications for our understanding of chemotherapy resistance are discussed in this review. Abstract Cancer chemotherapy resistance is one of the most critical obstacles in cancer therapy. One of the well-known mechanisms of chemotherapy resistance is the change in the mitochondrial death pathways which occur when cells are under stressful situations, such as chemotherapy. Mitophagy, or mitochondrial selective autophagy, is critical for cell quality control because it can efficiently break down, remove, and recycle defective or damaged mitochondria. As cancer cells use mitophagy to rapidly sweep away damaged mitochondria in order to mediate their own drug resistance, it influences the efficacy of tumor chemotherapy as well as the degree of drug resistance. Yet despite the importance of mitochondria and mitophagy in chemotherapy resistance, little is known about the precise mechanisms involved. As a consequence, identifying potential therapeutic targets by analyzing the signal pathways that govern mitophagy has become a vital research goal. In this paper, we review recent advances in mitochondrial research, mitophagy control mechanisms, and their implications for our understanding of chemotherapy resistance.
Collapse
|
7
|
Unten Y, Murai M, Koshitaka T, Kitao K, Shirai O, Masuya T, Miyoshi H. Comprehensive understanding of multiple actions of anticancer drug tamoxifen in isolated mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148520. [PMID: 34896079 DOI: 10.1016/j.bbabio.2021.148520] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/11/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022]
Abstract
Tamoxifen has been widely used in the treatment of estrogen receptor (ER)-positive breast cancer, whereas it also exhibits ER-independent anticancer effects in various cancer cell types. As one of the convincing mechanisms underlying the ER-independent effects, induction of apoptosis through mitochondrial dysfunction has been advocated. However, the mechanism of action of tamoxifen even at the isolated mitochondrial level is not fully understood and remains controversial. Here, we attempted to comprehensively understand tamoxifen's multiple actions in isolated rat liver mitochondria through not only revisiting the actions hitherto reported but also conducting originally designed experiments. Using submitochondrial particles, we found that tamoxifen has potential as an inhibitor of both respiratory complex I and ATP synthase. However, these inhibitory effects were not elicited in intact mitochondria, likely because penetration of tamoxifen across the inner mitochondrial membrane is highly restricted owing to its localized positive charge (-N+H(CH3)2). This restricted penetration may also explain why tamoxifen is unable to function as a protonophore-type uncoupler in mitochondria. Moreover, tamoxifen suppressed opening of the mitochondrial permeability transition pore induced by Ca2+ overload through enhancing phosphate uptake into the matrix. The photoaffinity labeling experiments using a photolabile tamoxifen derivative (pTAM1) indicated that pTAM1 specifically binds to voltage-dependent anion channels (VDACs) 1 and 3, which regulate transport of various substances into mitochondria. The binding of tamoxifen to VDAC1 and/or VDAC3 could be responsible for the enhancement of phosphate uptake. Taking all the results together, we consider the principal impairment of mitochondrial functions caused by tamoxifen.
Collapse
Affiliation(s)
- Yufu Unten
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoki Koshitaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kotaro Kitao
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Osamu Shirai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
8
|
Fialova JL, Raudenska M, Jakubek M, Kejik Z, Martasek P, Babula P, Matkowski A, Filipensky P, Masarik M. Novel Mitochondria-targeted Drugs for Cancer Therapy. Mini Rev Med Chem 2021; 21:816-832. [PMID: 33213355 DOI: 10.2174/1389557520666201118153242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
The search for mitochondria-targeted drugs has dramatically risen over the last decade. Mitochondria are essential organelles serving not only as a powerhouse of the cell but also as a key player in cell proliferation and cell death. Their central role in the energetic metabolism, calcium homeostasis and apoptosis makes them an intriguing field of interest for cancer pharmacology. In cancer cells, many mitochondrial signaling and metabolic pathways are altered. These changes contribute to cancer development and progression. Due to changes in mitochondrial metabolism and changes in membrane potential, cancer cells are more susceptible to mitochondria-targeted therapy. The loss of functional mitochondria leads to the arrest of cancer progression and/or a cancer cell death. Identification of mitochondrial changes specific for tumor growth and progression, rational development of new mitochondria-targeted drugs and research on delivery agents led to the advance of this promising area. This review will highlight the current findings in mitochondrial biology, which are important for cancer initiation, progression and resistance, and discuss approaches of cancer pharmacology with a special focus on the anti-cancer drugs referred to as 'mitocans'.
Collapse
Affiliation(s)
- Jindriska Leischner Fialova
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Milan Jakubek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, CZ-121 08 Prague, Czech Republic
| | - Zdenek Kejik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, CZ-121 08 Prague, Czech Republic
| | - Pavel Martasek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, CZ-121 08 Prague, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50556 Borowska 211, Poland
| | - Petr Filipensky
- Department of Urology, St. Anne's Faculty Hospital, CZ-65691 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
9
|
Kim MS, Gernapudi R, Cedeño YC, Polster BM, Martinez R, Shapiro P, Kesari S, Nurmemmedov E, Passaniti A. Targeting breast cancer metabolism with a novel inhibitor of mitochondrial ATP synthesis. Oncotarget 2020; 11:3863-3885. [PMID: 33196708 PMCID: PMC7597410 DOI: 10.18632/oncotarget.27743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 01/17/2023] Open
Abstract
Inhibitors of mitochondrial respiration and ATP synthesis may promote the selective killing of respiration-competent cancer cells that are critical for tumor progression. We previously reported that CADD522, a small molecule inhibitor of the RUNX2 transcription factor, has potential for breast cancer treatment. In the current study, we show that CADD522 inhibits mitochondrial oxidative phosphorylation by decreasing the mitochondrial oxygen consumption rate (OCR) and ATP production in human breast cancer cells in a RUNX2-independent manner. The enzyme activity of mitochondrial ATP synthase was inhibited by CADD522 treatment. Importantly, results from cellular thermal shift assays that detect drug-induced protein stabilization revealed that CADD522 interacts with both α and β subunits of the F1-ATP synthase complex. Differential scanning fluorimetry also demonstrated interaction of α subunits of the F1-ATP synthase to CADD522. These results suggest that CADD522 might target the enzymatic F1 subunits in the ATP synthase complex. CADD522 increased the levels of intracellular reactive oxygen species (ROS), which was prevented by MitoQ, a mitochondria-targeted antioxidant, suggesting that cancer cells exposed to CADD522 may elevate ROS from mitochondria. CADD522-increased mitochondrial ROS levels were enhanced by exogenously added pro-oxidants such as hydrogen peroxide or tert-butyl hydroperoxide. Conversely, CADD522-mediated cell growth inhibition was blocked by N-acetyl-l-cysteine, a general ROS scavenger. Therefore, CADD522 may exert its antitumor activity by increasing mitochondrial driven cellular ROS levels. Collectively, our data suggest in vitro proof-of-concept that supports inhibition of mitochondrial ATP synthase and ROS generation as contributors to the effectiveness of CADD522 in suppression of tumor growth.
Collapse
Affiliation(s)
- Myoung Sook Kim
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Ramkishore Gernapudi
- Department of Biochemistry & Molecular Biology and Program in Molecular Medicine, Baltimore, MD, USA
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | | | - Brian M. Polster
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Research Health Scientist, The Veteran's Health Administration Research & Development Service (VAMHCS), Baltimore, MD, USA
| | - Ramon Martinez
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Santosh Kesari
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Elmar Nurmemmedov
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John’s Health Center, Santa Monica, CA, USA
| | - Antonino Passaniti
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biochemistry & Molecular Biology and Program in Molecular Medicine, Baltimore, MD, USA
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Research Health Scientist, The Veteran's Health Administration Research & Development Service (VAMHCS), Baltimore, MD, USA
| |
Collapse
|
10
|
Altharawi A, Rahman KM, Chan KLA. Identifying the Responses from the Estrogen Receptor-Expressed MCF7 Cells Treated in Anticancer Drugs of Different Modes of Action Using Live-Cell FTIR Spectroscopy. ACS OMEGA 2020; 5:12698-12706. [PMID: 32548453 PMCID: PMC7288356 DOI: 10.1021/acsomega.9b04369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/26/2020] [Indexed: 05/04/2023]
Abstract
Recently, we have shown that changes in Fourier transform infrared (FTIR) spectra of living MDA-MB-231 cells (a triple negative cell line) upon exposure to anticancer drugs reflect the changes in the cellular compositions which are correlated to the modes of action of drugs. In the present study, MCF7 cells (an estrogen receptor expressing breast cancer cell line) were exposed to three anticancer drugs belonging to two well-characterized anticancer classes: selective estrogen receptor modulators (SERMs) and DNA-intercalating agent. First, we evaluated if the changes in the spectrum of cells are according to the modes of action of drugs and the characteristics of the MCF7 cell line in the same way as the MDA-MB-231 cell. Living MCF7 cells were treated in the three drugs at half maximal inhibitory concentration (IC50), and the difference spectra were analyzed using principal component analysis (PCA). The results demonstrated clear separation between tamoxifen/toremifene (SERM)-treated cells from the doxorubicin (DNA-intercalator)-treated and untreated cells (control). Tamoxifen and toremifene induced similar spectral changes in the cellular compositions of MCF7 cells and lead to the clustering of these two drugs in the same quadrant of the principal component 1 (PC1) versus PC2 score plots. The separation is mostly attributed to their similar modes of actions. However, doxorubicin-treated MCF7 cells highlighted spectral changes that mainly occur in bands at 1085 and 1200-1240 cm-1, which could be associated with the DNA-intercalation effects of the drug. Second, the pairwise PCA at various individual time points was employed to investigate whether the spectral changes of MCF7 and MDA-MB-231 cells in response to the IC50 of tamoxifen/toremifene and doxorubicin are dependent on the characteristics of the cell lines. The estrogen-expressing MCF7 cells demonstrated significant differences in response to the SERMs in comparison to the triple negative MDA-MB-231 cells, suggesting that different modes of action have taken place in the two tested cell lines. In contrast, the doxorubicin-treated MDA-MB-231 and MCF7 cells show similar changes in 1150-950 cm-1, which indicates that the DNA intercalation effect of doxorubicin is found in both cell lines. The results have demonstrated that live-cell FTIR analysis is sensitive to the different modes of action from the same drugs on cells with different characteristics.
Collapse
Affiliation(s)
- Ali Altharawi
- Institute
of Pharmaceutical Science, School of Cancer Studies and Pharmaceutical
Sciences, King’s College London, London SE1 9NH, U.K.
- College
of Pharmacy, Prince Sattam Bin Abdulaziz
University, Al-Kharj 16278, Kingdom of Saudi Arabia
| | - Khondaker Miraz Rahman
- Institute
of Pharmaceutical Science, School of Cancer Studies and Pharmaceutical
Sciences, King’s College London, London SE1 9NH, U.K.
| | - Ka Lung Andrew Chan
- Institute
of Pharmaceutical Science, School of Cancer Studies and Pharmaceutical
Sciences, King’s College London, London SE1 9NH, U.K.
| |
Collapse
|
11
|
Aminzadeh-Gohari S, Weber DD, Vidali S, Catalano L, Kofler B, Feichtinger RG. From old to new - Repurposing drugs to target mitochondrial energy metabolism in cancer. Semin Cell Dev Biol 2020; 98:211-223. [PMID: 31145995 PMCID: PMC7613924 DOI: 10.1016/j.semcdb.2019.05.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022]
Abstract
Although we have entered the era of personalized medicine and tailored therapies, drugs that target a large variety of cancers regardless of individual patient differences would be a major advance nonetheless. This review article summarizes current concepts and therapeutic opportunities in the area of targeting aerobic mitochondrial energy metabolism in cancer. Old drugs previously used for diseases other than cancer, such as antibiotics and antidiabetics, have the potential to inhibit the growth of various tumor entities. Many drugs are reported to influence mitochondrial metabolism. However, here we consider only those drugs which predominantly inhibit oxidative phosphorylation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Daniela D. Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Silvia Vidali
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria,Institute of Human Genetics, Helmholtz Zentrum München, Technical University of Munich, Munich, Germany
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria,Corresponding author at: Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Muellner-Hauptstrasse 48, 5020 Salzburg, Austria. (B. Kofler)
| | - René G. Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
12
|
Poly-ADP-Ribosylation of Estrogen Receptor-Alpha by PARP1 Mediates Antiestrogen Resistance in Human Breast Cancer Cells. Cancers (Basel) 2019; 11:cancers11010043. [PMID: 30621214 PMCID: PMC6357000 DOI: 10.3390/cancers11010043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Therapeutic targeting of estrogen receptor-α (ERα) by the anti-estrogen tamoxifen is standard of care for premenopausal breast cancer patients and remains a key component of treatment strategies for postmenopausal patients. While tamoxifen significantly increases overall survival, tamoxifen resistance remains a major limitation despite continued expression of ERα in resistant tumors. Previous reports have described increased oxidative stress in tamoxifen resistant versus sensitive breast cancer and a role for PARP1 in mediating oxidative damage repair. We hypothesized that PARP1 activity mediated tamoxifen resistance in ERα-positive breast cancer and that combining the antiestrogen tamoxifen with a PARP1 inhibitor (PARPi) would sensitize tamoxifen resistant cells to tamoxifen therapy. In tamoxifen-resistant vs. -sensitive breast cancer cells, oxidative stress and PARP1 overexpression were increased. Furthermore, differential PARylation of ERα was observed in tamoxifen-resistant versus -sensitive cells, and ERα PARylation was increased by tamoxifen treatment. Loss of ERα PARylation following treatment with a PARP inhibitor (talazoparib) augmented tamoxifen sensitivity and decreased localization of both ERα and PARP1 to ERα-target genes. Co-administration of talazoparib plus tamoxifen increased DNA damage accumulation and decreased cell survival in a dose-dependent manner. The ability of PARPi to overcome tamoxifen resistance was dependent on ERα, as lack of ERα-mediated estrogen signaling expression and showed no response to tamoxifen-PARPi treatment. These results correlate ERα PARylation with tamoxifen resistance and indicate a novel mechanism-based approach to overcome tamoxifen resistance in ER+ breast cancer.
Collapse
|
13
|
Polari L, Wiklund A, Sousa S, Kangas L, Linnanen T, Härkönen P, Määttä J. SERMs Promote Anti-Inflammatory Signaling and Phenotype of CD14+ Cells. Inflammation 2018; 41:1157-1171. [PMID: 29574654 PMCID: PMC6061028 DOI: 10.1007/s10753-018-0763-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Signaling via estrogen receptors (ER) is recognized as an essential part of the immune regulation, and ER-mediated signaling is involved in autoimmune reactions. Especially ERα activation in immune cells has been suggested to skew cytokine production toward Th2/M2-type mediators, which can have protective effect on inflammatory diseases and reduce Th1 and Th17 responses. These effects are caused by increased alternative activation of macrophages and changes in the activation of different T cell populations. In humans, hormonal status has been shown to have a major impact on several inflammatory diseases. Selective estrogen receptor modulators (SERMs) are ER ligands that regulate ER actions in a tissue-specific manner mostly lacking the adverse effects of steroid hormones. The impact of SERMs on the immune system is less studied, but it is suggested that certain SERMs may also produce immunoprotective effects. Here, we show that two novel SERMs and raloxifene affect immune cells by promoting M2 macrophage phenotype, alleviating NFκB activity, inhibiting T cell proliferation, and stimulating the production of anti-inflammatory compounds such as IL10 and IL1 receptor antagonist. Thus, these compounds have high potency as drug candidates against autoimmune diseases.
Collapse
Affiliation(s)
- Lauri Polari
- Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Anu Wiklund
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sofia Sousa
- Institute of Biomedicine, University of Turku, Turku, Finland
- Faculté de Médecine, Université Lyon-1, Lyon, France
| | | | | | - Pirkko Härkönen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Määttä
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
14
|
Insights on the transport of tamoxifen by gold nanoparticles for MCF-7 breast cancer cells based on SERS spectroscopy. Colloids Surf B Biointerfaces 2018; 170:712-717. [PMID: 29990878 DOI: 10.1016/j.colsurfb.2018.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 01/03/2023]
Abstract
Gold nanoparticles (AuNP) were synthesized and modified with anti-folate receptor antibody (AB), folic acid (FA), crystal violet (CV), poly (ethyleneglycol) methyl ether thiol and the antineoplastic drug tamoxifen (TAM). Such a preparation was incubated in vitro with MCF-7 human breast cancer cells, showing a decrease in the TAM dosage for the reduction of cell viability. The adsorption of TAM on gold surface was investigated by surface-enhanced Raman scattering (SERS) spectroscopy and the assignment based on Density Functional Theory calculations showed that the ether moiety was involved in the interactions with the metal. Such a chemical affinity was correlated with the carrying of TAM in the biological media. CV was included in the preparation as a molecular probe for SERS spectroscopy, whose signal was monitored to analyse the efficiency of the modified AuNP in the target of neoplastic cells. The results showed AB, FA and TAM components had complementary roles in the cell recognition and, therefore, in the efficiency of the drug carrier nanosystem.
Collapse
|
15
|
Su CM, Chen CY, Lu T, Sun Y, Li W, Huang YL, Tsai CH, Chang CS, Tang CH. A novel benzofuran derivative, ACDB, induces apoptosis of human chondrosarcoma cells through mitochondrial dysfunction and endoplasmic reticulum stress. Oncotarget 2018; 7:83530-83543. [PMID: 27835579 PMCID: PMC5347786 DOI: 10.18632/oncotarget.13171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022] Open
Abstract
Chondrosarcoma is one of the bone tumor with high mortality in respond to poor radiation and chemotherapy treatment. Here, we analyze the antitumor activity of a novel benzofuran derivative, 2-amino-3-(2-chlorophenyl)-6-(4-dimethylaminophenyl)benzofuran-4-yl acetate (ACDB), in human chondrosarcoma cells. ACDB increased the cell apoptosis of human chondrosarcomas without harm in chondrocytes. ACDB also enhanced endoplasmic reticulum (ER) stress, which was characterized by varieties in the cytosolic calcium levels and induced the expression of glucose-regulated protein (GRP) and calpain. Furthermore, the ACDB-induced chondrosarcoma apoptosis was associated with the upregulation of the B cell lymphoma-2 (Bcl-2) family members including pro- and anti-apoptotic proteins, downregulation of dysfunctional mitochondria that released cytochrome C, and subsequent activation of caspases-3. In addition, the ACDB-mediated cellular apoptosis was suppressed by transfecting cells with glucose-regulated protein (GRP) and calpain siRNA or treating cells with ER stress chelators and caspase inhibitors. Interestingly, animal experiments illustrated a reduction in the tumor volume following ACDB treatment. Together, these results suggest that ACDB may be a novel tumor suppressor of chondrosarcoma, and this study demonstrates that the novel antitumor agent, ACDB, induced apoptosis by mitochondrial dysfunction and ER stress in human chondrosarcoma cells in vitro and in vivo.
Collapse
Affiliation(s)
- Chen-Ming Su
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China.,Graduate Institute of Basic Medical Science, China Medical University, Taichung Taiwan
| | - Chien-Yu Chen
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan
| | - Tingting Lu
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yi Sun
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Weimin Li
- Department of Cardiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chun-Hao Tsai
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Shiang Chang
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
16
|
Rawling T, Choucair H, Koolaji N, Bourget K, Allison SE, Chen YJ, Dunstan CR, Murray M. A Novel Arylurea Fatty Acid That Targets the Mitochondrion and Depletes Cardiolipin To Promote Killing of Breast Cancer Cells. J Med Chem 2017; 60:8661-8666. [DOI: 10.1021/acs.jmedchem.7b00701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tristan Rawling
- School
of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Hassan Choucair
- Discipline
of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nooshin Koolaji
- Discipline
of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kirsi Bourget
- Discipline
of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sarah E. Allison
- Discipline
of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yong-Juan Chen
- School
of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Colin R. Dunstan
- School
of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael Murray
- Discipline
of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
17
|
Ji F, Guo B, Wang N, Zhong C, Huang L, Huang Y, Wei L, Su M, Jiang Y, Jin Q, Liu Y, Zhang Z, Yang J, Chen T. Pyruvate kinase M2 interacts with mammalian sterile 20-like kinase 1 and inhibits tamoxifen-induced apoptosis in human breast cancer cells. Tumour Biol 2017; 39:1010428317692251. [DOI: 10.1177/1010428317692251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tamoxifen has been reported to be associated with antagonism of estrogen-mediated cell growth signaling and activation of estrogen receptor–independent apoptosis events. It has been demonstrated that mammalian sterile 20-like kinase 1 is a direct target of Caspases to amplify the apoptotic signaling pathway. Here, we presented that breast cancer MCF-7 and SKBR3 cells under treatment with 4-hydroxytamoxifen displayed decreased level of pyruvate kinase M2. Western blot results also showed that 4-hydroxytamoxifen induced the activity of pro-apoptotic protein Caspase-3 in MCF-7 and SKBR3 cells, as evidenced by the cleavage of mammalian sterile 20-like kinase 1 substrate in a dose-dependent manner. Co-immunoprecipitation and immunofluorescence experiments were performed to clarify the relationship between pyruvate kinase M2 and mammalian sterile 20-like kinase 1. The results indicated that mammalian sterile 20-like kinase 1 was associated with pyruvate kinase M2 in cultured mammalian cells, and the interaction between mammalian sterile 20-like kinase 1 and pyruvate kinase M2 was decreased in response to 4-hydroxytamoxifen treatment. In addition, knockdown of pyruvate kinase M2 upregulated the level of cleaved Caspase-3 and subsequently facilitated the nuclear translocation of mammalian sterile 20-like kinase 1. Our data further supplemented the extensive functions of pyruvate kinase M2 in mediating breast cancer cell viability by substantially abating the mammalian sterile 20-like kinase 1–mediated apoptosis. In summary, our results identified that mammalian sterile 20-like kinase 1 is a novel downstream target of pyruvate kinase M2, and knockdown of pyruvate kinase M2 contributes apoptosis via promoting nuclear translocation of mammalian sterile 20-like kinase 1 by enhancing Caspase-3-dependent cleavage.
Collapse
Affiliation(s)
- Feihu Ji
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Bianqin Guo
- Department of Clinical Laboratory, Chongqing Cancer Institute, Chongqing, China
| | - Nian Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Changli Zhong
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Liyuan Huang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yunxiu Huang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lan Wei
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Min Su
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yulin Jiang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Qianni Jin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yifeng Liu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zhiqian Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Junhong Yang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Tingmei Chen
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Liu H, Liu X, Zhang C, Zhu H, Xu Q, Bu Y, Lei Y. Redox Imbalance in the Development of Colorectal Cancer. J Cancer 2017; 8:1586-1597. [PMID: 28775778 PMCID: PMC5535714 DOI: 10.7150/jca.18735] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/27/2017] [Indexed: 01/10/2023] Open
Abstract
Redox imbalance is resulted from the destruction of balance between oxidants and antioxidants. The dominant oxidants are reactive oxygen species (ROS), which are involved in multiple cellular processes by physiologically transporting signal as a second messenger or pathologically oxidizing DNA, lipids, and proteins. Generally speaking, low concentration of ROS is indispensable for cell survival and proliferation. However, high concentration of ROS is cytotoxic. Additionally, ROS are now known to induce the oxidative modification of macromolecules especially proteins. The redox modification of proteins is involved in numerous biological processes related to diseases including CRC. Herein, we attempt to afford an overview that highlights the crosstalk between redox imbalance and CRC.
Collapse
Affiliation(s)
- Hao Liu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xin Liu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Huifang Zhu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Qian Xu
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
19
|
Milosavljevic MZ, Jovanovic IP, Pejnovic NN, Mitrovic SLJ, Arsenijevic NN, Simovic Markovic BJ, Lukic ML. Deletion of IL-33R attenuates VEGF expression and enhances necrosis in mammary carcinoma. Oncotarget 2017; 7:18106-15. [PMID: 26919112 PMCID: PMC4951275 DOI: 10.18632/oncotarget.7635] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/11/2016] [Indexed: 12/20/2022] Open
Abstract
Interleukin-33 (IL-33)/IL-33 receptor (IL-33R, ST2) signaling pathway promotes mammary cancer growth and metastasis by inhibiting anti-tumor immunity. However, the role of IL-33/IL-33R axis in neoangiogenesis and tumor necrosis is not elucidated. Therefore, the aim of this study was to investigate the role of IL-33/IL-33R axis in mammary tumor necrosis. Deletion of IL-33R (ST2) gene in BALB/c mice enhanced tumor necrosis and attenuated tumor growth in 4T1 breast cancer model, which was associated with markedly decreased expression of vascular endothelial growth factor (VEGF) and IL-33 in mammary tumor cells. We next analyzed IL-33, IL-33R and VEGF expression and microvascular density (MVD) in breast tumors from 40 female patients with absent or present tumor necrosis. We found significantly higher expression of IL-33, IL-33R and VEGF in breast cancer tissues with absent tumor necrosis. Both, IL-33 and IL-33R expression correlated with VEGF expression in tumor cells. Further, VEGF expression positively correlated with MVD in perinecrotic zone. Taking together, our data indicate that IL-33/IL-33R pathway is critically involved in mammary tumor growth by facilitating expression of pro-angiogenic VEGF in tumor cells and attenuating tumor necrosis. These data add an unidentified mechanism by which IL-33/IL-33R axis facilitates tumor growth.
Collapse
Affiliation(s)
| | - Ivan P Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nada N Pejnovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | - Nebojsa N Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Bojana J Simovic Markovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
20
|
Theodossiou TA, Wälchli S, Olsen CE, Skarpen E, Berg K. Deciphering the Nongenomic, Mitochondrial Toxicity of Tamoxifens As Determined by Cell Metabolism and Redox Activity. ACS Chem Biol 2016; 11:251-62. [PMID: 26569462 DOI: 10.1021/acschembio.5b00734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tamoxifen is not only considered a very potent chemotherapeutic adjuvant for estrogen receptor positive breast cancers but also a very good chemo-preventive drug. Recently, there has been a rising amount of evidence for a nongenomic cytotoxicity of tamoxifen, even in estrogen receptor negative cells, which has greatly confounded researchers. Clinically, the side effects of tamoxifen can be very serious, ranging from liver steatosis to cirrhosis, tumorigenesis, or onset of porphyrias. Herein, we deciphered the nongenomic, mitochondrial cytotoxicity of tamoxifen in estrogen receptor positive MCF7 versus triple-negative MDA-MB-231 cells, employing the mitochondrial complex III quinoloxidizing-center inhibitor myxothiazol. We showed a role for hydroxyl-radical-mediated lipid peroxidation, catalyzed by iron, stemming from the redox interactions of tamoxifen quinoid metabolites with complex III, resulting in Fenton-capable reduced quinones. The role of tamoxifen semiquinone species in mitochondrial toxicity was also shown together with evidence of mitochondrial DNA damage. Tamoxifen caused an overall metabolic (respiratory and glycolytic) rate decrease in the Pasteur type MCF cells, while in the Warburg type MDA-MB-231 cells the respiratory rate was not significantly affected and the glycolytiv rate was significantly boosted. The nongenomic cytotoxicity of tamoxifens was hence associated with the metabolic phenotype and redox activity of the cells, as in the present paradigm of Pasteur MCF7s versus Warburg MDA-MB-231 cells. Our present findings call for caution in the use of the drugs, especially as a chemopreventive and/or in cases of iron overload diseases.
Collapse
Affiliation(s)
- Theodossis Athanassios Theodossiou
- Department
of Radiation Biology, Institute for Cancer Research, The Radium Hospital, Oslo University Hospital, Montebello, Oslo 0379, Norway
| | - Sébastien Wälchli
- Department
of Cancer Immunology, Institute for Cancer Research, and Department
for Cellular Therapy, The Radium Hospital, Oslo University Hospital, Montebello, Oslo 0379, Norway
| | - Cathrine Elisabeth Olsen
- Department
of Radiation Biology, Institute for Cancer Research, The Radium Hospital, Oslo University Hospital, Montebello, Oslo 0379, Norway
| | - Ellen Skarpen
- Department
of Molecular Cell Biology, Institute for Cancer Research, The Radium
Hospital, Oslo University Hospital, Montebello, Oslo 0379, Norway
| | - Kristian Berg
- Department
of Radiation Biology, Institute for Cancer Research, The Radium Hospital, Oslo University Hospital, Montebello, Oslo 0379, Norway
| |
Collapse
|
21
|
Matai I, Gopinath P. Hydrophobic myristic acid modified PAMAM dendrimers augment the delivery of tamoxifen to breast cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra02391f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the present study, cationic generation 5 polyamido amine (G5 PAMAM) dendrimers were hydrophobically modified by grafting the surface with lipid-like myristic acid (My) tails to augment their potential as a drug delivery vector in vitro.
Collapse
Affiliation(s)
- Ishita Matai
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - P. Gopinath
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| |
Collapse
|
22
|
Okoh VO, Garba NA, Penney RB, Das J, Deoraj A, Singh KP, Sarkar S, Felty Q, Yoo C, Jackson RM, Roy D. Redox signalling to nuclear regulatory proteins by reactive oxygen species contributes to oestrogen-induced growth of breast cancer cells. Br J Cancer 2015; 112:1687-702. [PMID: 25965299 PMCID: PMC4430710 DOI: 10.1038/bjc.2014.586] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/10/2014] [Accepted: 10/22/2014] [Indexed: 12/31/2022] Open
Abstract
Background: 17β-Oestradiol (E2)-induced reactive oxygen species (ROS) have been implicated in regulating the growth of breast cancer cells. However, the underlying mechanism of this is not clear. Here we show how ROS through a novel redox signalling pathway involving nuclear respiratory factor-1 (NRF-1) and p27 contribute to E2-induced growth of MCF-7 breast cancer cells. Methods: Chromatin immunoprecipitation, qPCR, mass spectrometry, redox western blot, colony formation, cell proliferation, ROS assay, and immunofluorescence microscopy were used to study the role of NRF-1. Results: The major novel finding of this study is the demonstration of oxidative modification of phosphatases PTEN and CDC25A by E2-generated ROS along with the subsequent activation of AKT and ERK pathways that culminated in the activation of NRF-1 leading to the upregulation of cell cycle genes. 17β-Oestradiol-induced ROS by influencing nuclear proteins p27 and Jab1 also contributed to the growth of MCF-7 cells. Conclusions: Taken together, our results present evidence in the support of E2-induced ROS-mediated AKT signalling leading to the activation of NRF-1-regulated cell cycle genes as well as the impairment of p27 activity, which is presumably necessary for the growth of MCF-7 cells. These observations are important because they provide a new paradigm by which oestrogen may contribute to the growth of breast cancer.
Collapse
Affiliation(s)
- V O Okoh
- Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199-0001, USA
| | - N A Garba
- Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199-0001, USA
| | - R B Penney
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA
| | - J Das
- Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199-0001, USA
| | - A Deoraj
- Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199-0001, USA
| | - K P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX 79409, USA
| | - S Sarkar
- Department of Neuroscience and Cell Biology, UTMB, Galveston, TX 77555, USA
| | - Q Felty
- Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199-0001, USA
| | - C Yoo
- Department of Biostatistics, Florida International University, Miami, FL 33199, USA
| | - R M Jackson
- Research Service, VA Medical Center, 1201 NW 16th Street, Miami, FL 33125, USA
| | - D Roy
- 1] Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199-0001, USA [2] Research Service, VA Medical Center, 1201 NW 16th Street, Miami, FL 33125, USA
| |
Collapse
|
23
|
Abstract
There are many approaches used to control breast cancer, although the most efficient strategy is the reactivation of apoptosis. Since mitochondria play an important role in cellular metabolism and homeostasis, as well as in the regulation of cell death pathways, we focus here on metabolic remodeling and mitochondrial alterations present in breast tumor cells. We review strategies including classes of compounds and delivery systems that target metabolic and specific mitochondrial alterations to kill tumor cells without affecting their normal counterparts. We present here the arguments for the improvement of already existent molecules and the design of novel promising anticancer drug candidates that target breast cancer mitochondria.
Collapse
|
24
|
Sensitization of estrogen receptor-positive breast cancer cell lines to 4-hydroxytamoxifen by isothiocyanates present in cruciferous plants. Eur J Nutr 2015; 55:1165-80. [PMID: 26014809 PMCID: PMC4819954 DOI: 10.1007/s00394-015-0930-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/14/2015] [Indexed: 01/15/2023]
Abstract
Purpose
Tamoxifen has been used for the treatment of estrogen receptor (ER)-positive breast cancers and in women who are at an increased risk of breast cancer. Acquired resistance to this drug and its toxicity still pose a clinically significant problem, especially in the prevention setting. Isothiocyanates present in cruciferous plants, such as sulforaphane or erucin, have been shown to reduce growth of breast cancer cells in vivo and in vitro. In this study, we explored their ability to sensitize cancer cells to 4-hydroxytamoxifen. Methods
We used three ER-positive breast cancer cell lines, T47D, MCF-7 and BT-474, as well as the drug-resistant T47D and MCF-7 derivatives. We examined the effect of 4-hydroxytamoxifen, isothiocyanates and their combinations on cell viability by MTT and clonogenic assays. Impact of treatments on the levels of proteins engaged in apoptosis and autophagy was determined by Western blotting. Results Isothiocyanates act in a synergistic way with 4-hydroxytamoxifen, and co-treatment reduces breast cancer cell viability and clonogenic potential more effectively than treatment with any single agent. This is connected with a drop in the Bcl-2/Bax ratio and the level of survivin as well as increased PARP cleavage, and elevation in ADRP, the mitochondrial stress marker. Moreover, isothiocyanates sensitize 4-hydroxytamoxifen-resistant T47D and MCF-7 cells to the drug. Conclusion Isothiocyanates enhance response to 4-hydroxytamoxifen, which allows for reduction of the effective drug concentration. Combinatorial strategy may hold promise in development of therapies and chemoprevention strategies against ER-positive breast tumors, even those with acquired resistance to the drug.
Collapse
|
25
|
Mitochondrial biology, targets, and drug delivery. J Control Release 2015; 207:40-58. [PMID: 25841699 DOI: 10.1016/j.jconrel.2015.03.036] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023]
Abstract
In recent years, mitochondrial medicine has emerged as a new discipline resting at the intersection of mitochondrial biology, pathology, and pharmaceutics. The central role of mitochondria in critical cellular processes such as metabolism and apoptosis has placed mitochondria at the forefront of cell science. Advances in mitochondrial biology have revealed that these organelles continually undergo fusion and fission while functioning independently and in complex cellular networks, establishing direct membrane contacts with each other and with other organelles. Understanding the diverse cellular functions of mitochondria has contributed to understanding mitochondrial dysfunction in disease states. Polyplasmy and heteroplasmy contribute to mitochondrial phenotypes and associated dysfunction. Residing at the center of cell biology, cellular functions, and disease pathology and being laden with receptors and targets, mitochondria are beacons for pharmaceutical modification. This review presents the current state of mitochondrial medicine with a focus on mitochondrial function, dysfunction, and common disease; mitochondrial receptors, targets, and substrates; and mitochondrial drug design and drug delivery with a focus on the application of nanotechnology to mitochondrial medicine. Mitochondrial medicine is at the precipice of clinical translation; the objective of this review is to aid in the advancement of mitochondrial medicine from infancy to application.
Collapse
|
26
|
Guan FY, Yang SJ, Liu J, Yang SR. Effect of astragaloside IV against rat myocardial cell apoptosis induced by oxidative stress via mitochondrial ATP-sensitive potassium channels. Mol Med Rep 2015; 12:371-6. [PMID: 25739067 DOI: 10.3892/mmr.2015.3400] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 02/13/2015] [Indexed: 11/05/2022] Open
Abstract
Astragaloside is one of the most common traditional Chinese medicines and is derived from Astragalus membranaceus. Astragaloside IV (AsIV) is a monomer located in an extract of astragaloside. The current study investigated the protective effects of AsIV against hydrogen peroxide (H2O2)-induced injury in cardiocytes and elucidated the mechanisms responsible for this protective effect. Cultured neonatal rat cardiocytes were divided into five experimental groups as follows: i) Dimethyl sulfoxide; ii) H2O2; iii) AsIV+H2O2; iv) AsIV+H2O2+5-hydroxydecanoate (5-HD); and v) nicorandil+H2O2. Cardiocyte survival was analyzed using an MTT assay. Lactate dehydrogenase (LDH) release was also assessed to evaluate the viability of the cells. Intracellular reactive oxygen species (ROS) were measured by 2,7-dichlorodihydrofluorescein diacetate staining. The apoptotic rate was measured by flow cytometry. Mitochondrial membrane potential (ΔΨm) and intracellular calcium were observed using a laser confocal microscopy system. The results indicated that AsIV promoted the survival of cardiocytes (P<0.05), attenuated LDH release (P<0.05), ROS production (P<0.01) and apoptosis (P<0.01), stabilized the ΔΨm and reduced intracellular calcium overload (P<0.01) compared with the H2O2 group. The mitochondrial adenosine triphosphate-sensitive potassium channel (mitoKATP) inhibitor 5-HD was observed to partially reverse the protective effect of AsIV. Following treatment with 5-HD, the survival of cardiocytes was reduced (P<0.05), LDH release (P<0.01) and ROS production (P<0.05) were stimulated, ΔΨm and intracellular calcium change were increased (P<0.01) and apoptosis was increased (P<0.01) compared with the AsIV+H2O2 group. Thus, AsIV has potential for use in the suppression of apoptosis resulting from H2O2 exposure, and mitoKATP activation may underlie this protective mechanism.
Collapse
Affiliation(s)
- Feng-Ying Guan
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shi-Jie Yang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jinxiang Liu
- Department of Pediatric Cardiology, Institute of Pediatrics, The First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Si-Rui Yang
- Department of Pediatric Cardiology, Institute of Pediatrics, The First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
27
|
Liu W, Ning R, Chen RN, Huang XF, Dai QS, Hu JH, Wang YW, Wu LL, Xiong J, Hu G, Guo QL, Yang J, Wang H. Aspafilioside B induces G2/M cell cycle arrest and apoptosis by up-regulating H-Ras and N-Ras via ERK and p38 MAPK signaling pathways in human hepatoma HepG2 cells. Mol Carcinog 2015; 55:440-57. [PMID: 25683703 DOI: 10.1002/mc.22293] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/22/2014] [Accepted: 12/30/2014] [Indexed: 01/28/2023]
Abstract
We recently establish that aspafilioside B, a steroidal saponin extracted from Asparagus filicinus, is an active cytotoxic component. However, its antitumor activity is till unknown. In this study, the anticancer effect of aspafilioside B against HCC cells and the underlying mechanisms were investigated. Our results showed that aspafilioside B inhibited the growth and proliferation of HCC cell lines. Further study revealed that aspafilioside B could significantly induce G2 phase cell cycle arrest and apoptosis, accompanying the accumulation of reactive oxygen species (ROS), but blocking ROS generation with N-acetyl-l-cysteine (NAC) could not prevent G2/M arrest and apoptosis. Additionally, treatment with aspafilioside B induced phosphorylation of extracellular signal-regulated kinase (ERK) and p38 MAP kinase. Moreover, both ERK inhibitor PD98059 and p38 inhibitor SB203580 almost abolished the G2/M phase arrest and apoptosis induced by aspafilioside B, and reversed the expression of cell cycle- and apoptosis-related proteins. We also found that aspafilioside B treatment increased both Ras and Raf activation, and transfection of cells with H-Ras and N-Ras shRNA almost attenuated aspafilioside B-induced G2 phase arrest and apoptosis as well as the ERK and p38 activation. Finally, in vivo, aspafilioside B suppressed tumor growth in mouse xenograft models, and the mechanism was the same as in vitro study. Collectively, these findings indicated that aspafilioside B may up-regulate H-Ras and N-Ras, causing c-Raf phosphorylation, and lead to ERK and p38 activation, which consequently induced the G2 phase arrest and apoptosis. This study provides the evidence that aspafilioside B is a promising therapeutic agent against HCC.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Rui Ning
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Rui-Ni Chen
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Xue-Feng Huang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Qin-Sheng Dai
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Jin-Hua Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yu-Wen Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Li-Li Wu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jing Xiong
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Gang Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Qing-Long Guo
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Hao Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
28
|
Noble M, Mayer-Pröschel M, Li Z, Dong T, Cui W, Pröschel C, Ambeskovic I, Dietrich J, Han R, Yang YM, Folts C, Stripay J, Chen HY, Stevens BM. Redox biology in normal cells and cancer: restoring function of the redox/Fyn/c-Cbl pathway in cancer cells offers new approaches to cancer treatment. Free Radic Biol Med 2015; 79:300-23. [PMID: 25481740 PMCID: PMC10173888 DOI: 10.1016/j.freeradbiomed.2014.10.860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
Abstract
This review discusses a unique discovery path starting with novel findings on redox regulation of precursor cell and signaling pathway function and identification of a new mechanism by which relatively small changes in redox status can control entire signaling networks that regulate self-renewal, differentiation, and survival. The pathway central to this work, the redox/Fyn/c-Cbl (RFC) pathway, converts small increases in oxidative status to pan-activation of the c-Cbl ubiquitin ligase, which controls multiple receptors and other proteins of central importance in precursor cell and cancer cell function. Integration of work on the RFC pathway with attempts to understand how treatment with systemic chemotherapy causes neurological problems led to the discovery that glioblastomas (GBMs) and basal-like breast cancers (BLBCs) inhibit c-Cbl function through altered utilization of the cytoskeletal regulators Cool-1/βpix and Cdc42, respectively. Inhibition of these proteins to restore normal c-Cbl function suppresses cancer cell division, increases sensitivity to chemotherapy, disrupts tumor-initiating cell (TIC) activity in GBMs and BLBCs, controls multiple critical TIC regulators, and also allows targeting of non-TICs. Moreover, these manipulations do not increase chemosensitivity or suppress division of nontransformed cells. Restoration of normal c-Cbl function also allows more effective harnessing of estrogen receptor-α (ERα)-independent activities of tamoxifen to activate the RFC pathway and target ERα-negative cancer cells. Our work thus provides a discovery strategy that reveals mechanisms and therapeutic targets that cannot be deduced by standard genetics analyses, which fail to reveal the metabolic information, isoform shifts, protein activation, protein complexes, and protein degradation critical to our discoveries.
Collapse
Affiliation(s)
- Mark Noble
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Zaibo Li
- Department of Pathology, Ohio State University Wexner Medical Center, 410W 10th Avenue, E403 Doan Hall, Columbus, OH 43210-1240, USA.
| | - Tiefei Dong
- University of Michigan Tech Transfer, 1600 Huron Pkwy, 2nd Floor, Building 520, Ann Arbor, MI 48109-2590, USA.
| | - Wanchang Cui
- Department of Radiation Oncology, University of Maryland School of Medicine,10 South Pine Street, MSTF Room 600, Baltimore, MD 21201, USA.
| | - Christoph Pröschel
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Ibro Ambeskovic
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Joerg Dietrich
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Yawkey 9E, Boston, MA 02114, USA.
| | - Ruolan Han
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Yin Miranda Yang
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Christopher Folts
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Jennifer Stripay
- Department of Biomedical Genetics and University of Rochester Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Hsing-Yu Chen
- Harvard Medical School, Department of Cell Biology 240 Longwood Avenue Building C1, Room 513B Boston, MA 02115, USA.
| | - Brett M Stevens
- University of Colorado School of Medicine, Division of Hematology, 12700 E. 19th Avenue, Campus Box F754-AMCA, Aurora, CO 80045, USA.
| |
Collapse
|
29
|
Tamoxifen reduces fat mass by boosting reactive oxygen species. Cell Death Dis 2015; 6:e1586. [PMID: 25569103 PMCID: PMC4669751 DOI: 10.1038/cddis.2014.553] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/10/2014] [Accepted: 11/17/2014] [Indexed: 01/04/2023]
Abstract
As the pandemic of obesity is growing, a variety of animal models have been generated to study the mechanisms underlying the increased adiposity and development of metabolic disorders. Tamoxifen (Tam) is widely used to activate Cre recombinase that spatiotemporally controls target gene expression and regulates adiposity in laboratory animals. However, a critical question remains as to whether Tam itself affects adiposity and possibly confounds the functional study of target genes in adipose tissue. Here we administered Tam to Cre-absent forkhead box O1 (FoxO1) floxed mice (f-FoxO1) and insulin receptor substrate Irs1/Irs2 double floxed mice (df-Irs) and found that Tam induced approximately 30% reduction (P<0.05) in fat mass with insignificant change in body weight. Mechanistically, Tam promoted reactive oxygen species (ROS) production, apoptosis and autophagy, which was associated with downregulation of adipogenic regulator peroxisome proliferator-activated receptor gamma and dedifferentiation of mature adipocytes. However, normalization of ROS potently suppressed Tam-induced apoptosis, autophagy and adipocyte dedifferentiation, suggesting that ROS may account, at least in part, for the changes. Importantly, Tam-induced ROS production and fat mass reduction lasted for 4–5 weeks in the f-FoxO1 and df-Irs mice. Our data suggest that Tam reduces fat mass via boosting ROS, thus making a recovery period crucial for posttreatment study.
Collapse
|
30
|
Yadav K, Bhargava P, Bansal S, Singh M, Gupta S, Sandhu G, Kumar S, Sreekanth V, Bajaj A. Nature of the charged head group dictates the anticancer potential of lithocholic acid-tamoxifen conjugates for breast cancer therapy. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00289j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anticancer drug Tamoxifen is modified to charged lithocholic acid derived amphiphile for enhanced cytotoxicity against breast cancer cells.
Collapse
Affiliation(s)
- Kavita Yadav
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
- Research Scholar
| | - Priyanshu Bhargava
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
| | - Sandhya Bansal
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
| | - Manish Singh
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
| | - Siddhi Gupta
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhopal
- India
| | - Geeta Sandhu
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
| | - Vedagopuram Sreekanth
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
- Research Scholar
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
| |
Collapse
|
31
|
Duan L, Danzer B, Levenson VV, Maki CG. Critical roles for nitric oxide and ERK in the completion of prosurvival autophagy in 4OHTAM-treated estrogen receptor-positive breast cancer cells. Cancer Lett 2014; 353:290-300. [PMID: 25069039 PMCID: PMC4827626 DOI: 10.1016/j.canlet.2014.07.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/16/2014] [Accepted: 07/19/2014] [Indexed: 02/07/2023]
Abstract
Autophagy is a mechanism of tamoxifen (TAM) resistance in ER-positive (ER+) breast cancer cells. In this study, we showed in ER+ MCF7 cells that 4-hydroxytamoxifen (4OHTAM) induced cellular nitric oxide (NO) that negatively regulates cellular superoxide (O2-) and cytotoxicity. 4OHTAM stimulated LC3 lipidation and formation of monodansylcadaverine (MDC)-labeled autophagic vesicles dependent on O2-. Depletion of NO increased O2- and LC3 lipidation, yet reduced formation of MDC-labeled autophagic vesicles. Instead, NO-depleted cells formed remarkably large vacuoles with rims decorated by LC3. The vacuoles were not labeled by MDC or the acidic lysosome-specific fluorescence dye acridine orange (AO). The vacuoles were increased by the late stage autophagy inhibitor chloroquine, which also increased LC3 lipidation. These results suggest NO is required for proper autophagic vesicle formation or maturation at a step after LC3 lipidation. In addition, 4OHTAM induced O2--dependent activation of ERK, inhibition of which destabilized lysosomes/autolysosomes upon 4OHTAM treatment and together with depletion of NO led to necrotic cell death. These results suggest an essential role for endogenous NO and ERK activation in the completion of pro-survival autophagy.
Collapse
Affiliation(s)
- Lei Duan
- Department of Anatomy and Cell Biology, Rush University Medical Center, 1750 W Harrison Street, Chicago, IL 60612, USA.
| | - Brian Danzer
- Department of Radiation Oncology, Rush University Medical Center, 1750 W Harrison Street, Chicago, IL 60612, USA
| | - Victor V Levenson
- Department of Radiation Oncology, Rush University Medical Center, 1750 W Harrison Street, Chicago, IL 60612, USA
| | - Carl G Maki
- Department of Anatomy and Cell Biology, Rush University Medical Center, 1750 W Harrison Street, Chicago, IL 60612, USA.
| |
Collapse
|
32
|
CUEVAS MARIAE, LINDEMAN TRACEYE. In vitro cytotoxicity of 4′-OH-tamoxifen and estradiol in human endometrial adenocarcinoma cells HEC-1A and HEC-1B. Oncol Rep 2014; 33:464-70. [DOI: 10.3892/or.2014.3565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/29/2014] [Indexed: 11/06/2022] Open
|
33
|
Synergistic anticancer effects of a bioactive subfraction of Strobilanthes crispus and tamoxifen on MCF-7 and MDA-MB-231 human breast cancer cell lines. Altern Ther Health Med 2014; 14:252. [PMID: 25034326 PMCID: PMC4223515 DOI: 10.1186/1472-6882-14-252] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/11/2014] [Indexed: 12/21/2022]
Abstract
Background Development of tumour resistance to chemotherapeutic drugs and concerns over their toxic effects has led to the increased use of medicinal herbs or natural products by cancer patients. Strobilanthes crispus is a traditional remedy for many ailments including cancer. Its purported anticancer effects have led to the commercialization of the plant leaves as medicinal herbal tea, although the scientific basis for its use has not been established. We previously reported that a bioactive subfraction of Strobilanthes crispus leaves (SCS) exhibit potent cytotoxic activity against human breast cancer cell lines. The current study investigates the effect of this subfraction on cell death activities induced by the antiestrogen drug, tamoxifen, in estrogen receptor-responsive and nonresponsive breast cancer cells. Methods Cytotoxic activity of SCS and tamoxifen in MCF-7 and MDA-MB-231 human breast cancer cells was determined using lactate dehydrogenase release assay and synergism was evaluated using the CalcuSyn software. Apoptosis was quantified by flow cytometry following Annexin V and propidium iodide staining. Cells were also stained with JC-1 dye to determine changes in the mitochondrial membrane potential. Fluorescence imaging using FAM-FLICA assay detects caspase-8 and caspase-9 activities. DNA damage in the non-malignant breast epithelial cell line, MCF-10A, was evaluated using Comet assay. Results The combined SCS and tamoxifen treatment displayed strong synergistic inhibition of MCF-7 and MDA-MB-231 cell growth at low doses of the antiestrogen. SCS further promoted the tamoxifen-induced apoptosis that was associated with modulation of mitochondrial membrane potential and activation of caspase-8 and caspase-9, suggesting the involvement of intrinsic and extrinsic signaling pathways. Interestingly, the non-malignant MCF-10A cells displayed no cytotoxicity or DNA damage when treated with either SCS or SCS-tamoxifen combination. Conclusions The combined use of SCS and lower tamoxifen dose could potentially reduce the side effects/toxicity of the drug. However, further studies are needed to determine the effectiveness and safety of the combination treatment in vivo.
Collapse
|
34
|
Bismuth nitrate-induced novel nitration of estradiol: an entry to new anticancer agents. Eur J Med Chem 2014; 82:574-83. [PMID: 24946145 DOI: 10.1016/j.ejmech.2014.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/01/2014] [Accepted: 06/07/2014] [Indexed: 01/16/2023]
Abstract
Direct nitration of estradiol was carried out using metal nitrates on solid surfaces under mild condition, and a combination of bismuth nitrate pentahydrate impregnated KSF clay was found to be the best reagent to synthesize 2- and 4-nitroestradiol effectively. Furthermore, various basic side chains were introduced, through O-linker at C-3, to these nitroestradiols. The ability of these derivatives to cause cytotoxicity in Estrogen Receptor (ER)-positive and ER-negative breast cancer cell lines, as well as cancer cell lines of other origins, was examined. Qualitative structure activity relationship (SAR) has also been studied. We found that a basic side chain containing either a piperidine or morpholine ring, when conjugated to 2-nitroestradiol, was particularly effective at causing cytotoxicity in each of the cancer cell lines examined. Surprisingly, this effective cytotoxicity was even seen in ER-negative breast cancer cells.
Collapse
|
35
|
Tengström M, Mannermaa A, Kosma VM, Soini Y, Hirvonen A, Kataja V. MnSOD rs4880 and XPD rs13181 polymorphisms predict the survival of breast cancer patients treated with adjuvant tamoxifen. Acta Oncol 2014; 53:769-75. [PMID: 24716840 DOI: 10.3109/0284186x.2014.892210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED The enzyme manganese superoxide dismutase (MnSOD) defends against oxidative stress caused by reactive oxygen species (ROS), whereas Xeroderma pigmentosum group D (XPD) protein is involved in DNA repair. Polymorphisms in these genes have previously been associated with the outcome of breast cancer. MATERIAL AND METHODS Two gene polymorphisms, the MnSOD Val16Ala (rs4880A>G) and the XPD Lys751Gln (rs13181A>C), were analyzed in a cohort of 396 Finnish breast cancer patients by using PCR-RFLP-based methods in a prospective case-control study. The overall survival (OS), breast cancer-specific survival (BCSS), and relapse-free survival (RFS), assessed by using Kaplan-Meier survival analysis and multivariate Cox regression analysis, were evaluated according to the adjuvant treatments and the rs4880 and rs13181 genotypes. RESULTS In the combined analysis of rs4880 and rs13181 genotypes for patients treated with adjuvant tamoxifen (TAM) an increasing number of low-risk genotypes (rs4880 AA, rs4880 AG, or rs13181 AA) was significantly associated with better RFS, BCSS, and OS (n=64). In addition, there was improved BCSS and RFS among TAM-treated patients carrying the wild-type rs4880 A allele as compared with the other genotypes (n=64). The wild-type rs13181 AA genotype was similarly associated with better RFS and BCSS in the TAM-treated population (n=65). CONCLUSION This is the first study to show that the MnSOD rs4880 and XPD rs13181 polymorphisms may influence the outcome of breast cancer patients receiving adjuvant TAM monotherapy. Patients carrying the rs4880 A allele or rs13181 AA genotype may have a reduced ability to scavenge ROS and repair the DNA damage generated by TAM treatment.
Collapse
Affiliation(s)
- Maria Tengström
- Cancer Center, Kuopio University Hospital , Kuopio , Finland
| | | | | | | | | | | |
Collapse
|
36
|
Sirisha VL, Sinha M, D'Souza JS. Menadione-induced caspase-dependent programmed cell death in the green chlorophyte Chlamydomonas reinhardtii. JOURNAL OF PHYCOLOGY 2014; 50:587-601. [PMID: 26988330 DOI: 10.1111/jpy.12188] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 02/17/2014] [Indexed: 05/19/2023]
Abstract
Menadione, a quinone that undergoes redox cycles leading to the formation of superoxide radicals, induces programmed cell death (PCD) in animals and plants. In this study, we investigated whether the unicellular green alga Chlamydomonas reinhardtii P.A.Dangeard is capable of executing PCD upon exposure to menadione stress. We report here, the morphological, molecular, and biochemical changes after menadione exposure of C. reinhardtii cells. The effect of menadione on cell death has been shown to be dose-dependent; 5-100 μM menadione causes 20%-46% cell death, respectively. It appears that growth is inhibited with the concomitant degradation of the photosynthetic pigments and by a decrease in the photosynthetic capacity. Being an oxidative stress, we found an H2 O2 burst within 15 min of menadione exposure, followed by an increase in antioxidant enzyme (superoxide dismutase [SOD], catalase [CAT], and ascorbate peroxidase [APX]) activities. In parallel, RT-PCR was performed for transcript analyses of Mn-SOD, CAT, and APX. Our results clearly revealed that expression of these genes were up-regulated upon menadione exposure. Furthermore, classical hallmarks of PCD such as alteration of mitochondrial membrane potential, significant increase in caspase-3-like DEVDase activity, cleavage of poly (ADP) ribose polymerase (PARP)-1-like enzyme, and DNA fragmentation as detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and oligosomal DNA fragmentation were observed. Moreover, antibodies against a mammalian active caspase-3 shared epitopes with a caspase-3-like protein of ~17 kDa; its pattern of expression and activity correlated with the onset of cell death. To the best of our knowledge, this is the first report on menadione-induced PCD through a mitochondrian-caspase protease pathway in an algal species.
Collapse
Affiliation(s)
- V L Sirisha
- Department of Biology, UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400 098, India
| | - Mahuya Sinha
- Department of Biology, UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400 098, India
| | - Jacinta S D'Souza
- Department of Biology, UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400 098, India
| |
Collapse
|
37
|
Lu C, Heldt JM, Guille-Collignon M, Lemaître F, Jaouen G, Vessières A, Amatore C. Quantitative analyses of ROS and RNS production in breast cancer cell lines incubated with ferrocifens. ChemMedChem 2014; 9:1286-93. [PMID: 24803138 DOI: 10.1002/cmdc.201402016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Indexed: 11/10/2022]
Abstract
Ferrocifens are an original class of ferrocifen-type breast cancer drugs. They possess anti-proliferative effects due to the association of the ferrocene moiety and the tamoxifen skeleton. In this work, fluorescence measurements indicated the production of reactive oxygen species (ROS) if hormone-dependent or -independent breast cancer cells were incubated with three hit ferrocifen compounds. Additionally, amperometry at ultramicroelectrodes was carried out to identify and quantify ROS and reactive nitrogen species (RNS) under stress conditions. Videomicroscopy was used to optimize the conditions employed for electrochemical investigations. Amperometry was then performed on two cell lines pre-incubated with each of the three ferrocifens. Interestingly, these results demonstrate that the presence of an aminoalkyl chain in the ferrocifen structure may confer a unique behavior toward both cell lines, in comparison with the two other compounds that lack this feature.
Collapse
Affiliation(s)
- Cong Lu
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, 24 rue Lhomond, 75005 Paris (France), Fax: (+33) 1-4432-3863; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, 75005, Paris (France); CNRS, UMR 8640 PASTEUR, 75005, Paris (France)
| | | | | | | | | | | | | |
Collapse
|
38
|
Jagtap JC, Dawood P, Shah RD, Chandrika G, Natesh K, Shiras A, Hegde AS, Ranade D, Shastry P. Expression and regulation of prostate apoptosis response-4 (Par-4) in human glioma stem cells in drug-induced apoptosis. PLoS One 2014; 9:e88505. [PMID: 24523904 PMCID: PMC3921173 DOI: 10.1371/journal.pone.0088505] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 01/13/2014] [Indexed: 12/25/2022] Open
Abstract
Gliomas are the most common and aggressive of brain tumors in adults. Cancer stem cells (CSC) contribute to chemoresistance in many solid tumors including gliomas. The function of prostate apoptosis response-4 (Par-4) as a pro-apoptotic protein is well documented in many cancers; however, its role in CSC remains obscure. In this study, we aimed to explore the role of Par-4 in drug-induced cytotoxicity using human glioma stem cell line--HNGC-2 and primary culture (G1) derived from high grade glioma. We show that among the panel of drugs- lomustine, carmustine, UCN-01, oxaliplatin, temozolomide and tamoxifen (TAM) screened, only TAM induced cell death and up-regulated Par-4 levels significantly. TAM-induced apoptosis was confirmed by PARP cleavage, Annexin V and propidium iodide staining and caspase-3 activity. Knock down of Par-4 by siRNA inhibited cell death by TAM, suggesting the role of Par-4 in induction of apoptosis. We also demonstrate that the mechanism involves break down of mitochondrial membrane potential, down regulation of Bcl-2 and reduced activation of Akt and ERK 42/44. Secretory Par-4 and GRP-78 were significantly expressed in HNGC-2 cells on exposure to TAM and specific antibodies to these molecules inhibited cell death suggesting that extrinsic Par-4 is important in TAM-induced apoptosis. Interestingly, TAM decreased the expression of neural stem cell markers--Nestin, Bmi1, Vimentin, Sox2, and Musashi in HNGC-2 cell line and G1 cells implicating its potential as a stemness inhibiting drug. Based on these data and our findings that enhanced levels of Par-4 sensitize the resistant glioma stem cells to drug-induced apoptosis, we propose that Par-4 may be explored for evaluating anti-tumor agents in CSC.
Collapse
Affiliation(s)
| | | | | | | | - Kumar Natesh
- National Centre for Cell Science (NCCS), Pune, India
| | - Anjali Shiras
- National Centre for Cell Science (NCCS), Pune, India
| | - Amba S. Hegde
- National Centre for Cell Science (NCCS), Pune, India
| | - Deepak Ranade
- Department of Neurosurgery, D. Y. Patil Medical College, Pune, India
| | - Padma Shastry
- National Centre for Cell Science (NCCS), Pune, India
- * E-mail:
| |
Collapse
|
39
|
Martinez-Outschoorn UE, Lisanti MP, Sotgia F. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol 2014; 25:47-60. [PMID: 24486645 DOI: 10.1016/j.semcancer.2014.01.005] [Citation(s) in RCA: 317] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/17/2014] [Accepted: 01/17/2014] [Indexed: 12/22/2022]
Abstract
Fibroblasts are the most abundant "non-cancerous" cells in tumors. However, it remains largely unknown how these cancer-associated fibroblasts (CAFs) promote tumor growth and metastasis, driving chemotherapy resistance and poor clinical outcome. This review summarizes new findings on CAF signaling pathways and their emerging metabolic phenotypes that promote tumor growth. Although it is well established that altered cancer metabolism enhances tumor growth, little is known about the role of fibroblast metabolism in tumor growth. New studies reveal that metabolic coupling occurs between catabolic fibroblasts and anabolic cancer cells, in many types of human tumors, including breast, prostate, and head & neck cancers, as well as lymphomas. These catabolic phenotypes observed in CAFs are secondary to a ROS-induced metabolic stress response. Mechanistically, this occurs via HIF1-alpha and NFκB signaling, driving oxidative stress, autophagy, glycolysis and senescence in stromal fibroblasts. These catabolic CAFs then create a nutrient-rich microenvironment, to metabolically support tumor growth, via the local stromal generation of mitochondrial fuels (lactate, ketone bodies, fatty acids, glutamine, and other amino acids). New biomarkers of this catabolic CAF phenotype (such as caveolin-1 (Cav-1) and MCT4), which are reversible upon treatment with anti-oxidants, are strong predictors of poor clinical outcome in various types of human cancers. How cancer cells metabolically reprogram fibroblasts can also help us to understand the effects of cancer cells at an organismal level, explaining para-neoplastic phenomena, such as cancer cachexia. In conclusion, cancer should be viewed more as a systemic disease, that engages the host-organism in various forms of energy-transfer and metabolic co-operation, across a whole-body "ecosystem".
Collapse
Affiliation(s)
| | - Michael P Lisanti
- Manchester Breast Centre & Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK; Manchester Centre for Cellular Metabolism (MCCM), University of Manchester, UK.
| | - Federica Sotgia
- Manchester Breast Centre & Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK; Manchester Centre for Cellular Metabolism (MCCM), University of Manchester, UK.
| |
Collapse
|
40
|
Ballazhi L, Imeri F, Dimovski A, Jashari A, Popovski E, Breznica-Selmani P, Mikhova B, Dräger G, Alili-Idrizi E, Mladenovska K. Synergy of novel coumarin derivatives and tamoxifen in blocking growth and inducing apoptosis of breast cancer cells. ACTA ACUST UNITED AC 2014. [DOI: 10.33320/maced.pharm.bull.2014.60.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Possible synergistic effect of tamoxifen (2 μM) and hydrazinyldiene-chroman-2,4-diones (10-100 μM) was examined with an aim to create more effective treatment for ER+ breast cancer. Anti-breast cancer effect has been evaluated on the proliferation of MCF-7 breast adenocarcinoma cells using MTT and alamarBlue assays. Cell viability was evaluated after 48h-treatment and the ICs50 of the coumarin derivatives were determined. The apoptotic effect was evaluated by detection of PARP cleavage and reduced activity of the survival kinase Akt. The results demonstrated dose-dependent activity, with a percent of growth inhibition after combination treatment being significantly higher (53% to 79%, 10 μM and 100 μM, respectively) than the one in the cell lines treated with tamoxifen (29% to 37%) and the synthesized coumarin derivatives alone (11% to 68%, 10 μM and 100 μM, respectively). The ICs50 of the synthesized compounds significantly decreased in synergy with tamoxifen (33% to 51%). Coumarin derivative having thiazole moiety with additional methyl groups attached
to the carbons at positions 5 and 4 in the thiazole ring showed to be the most potent, with IC50 20 µM when administered alone and 10 µM in synergy with tamoxifen. The levels of phospho-Thr308 Akt were down-regulated by the combination treatment, pointing to tyrosine kinase phosphorylation inhibition. In conclusion, the novel coumarin derivatives enhance the activity of tamoxifen and this combination may
be suitable for prevention of ER+ breast cancer or development of related compounds. Further studies are needed to elucidate precisely the type of receptor involved in the activity and the mechanism of action.
Collapse
|
41
|
Sreekanth V, Bansal S, Motiani RK, Kundu S, Muppu SK, Majumdar TD, Panjamurthy K, Sengupta S, Bajaj A. Design, synthesis, and mechanistic investigations of bile acid-tamoxifen conjugates for breast cancer therapy. Bioconjug Chem 2013; 24:1468-84. [PMID: 23909664 DOI: 10.1021/bc300664k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have synthesized two series of bile acid tamoxifen conjugates using three bile acids lithocholic acid (LCA), deoxycholic acid (DCA), and cholic acid (CA). These bile acid-tamoxifen conjugates possess 1, 2, and 3 tamoxifen molecules attached to hydroxyl groups of bile acids having free acid and amine functionalities at the tail region of bile acids. The in vitro anticancer activities of these bile acid-tamoxifen conjugates show that the free amine headgroup based cholic acid-tamoxifen conjugate (CA-Tam3-Am) is the most potent anticancer conjugate as compared to the parent drug tamoxifen and other acid and amine headgroup based bile acid-tamoxifen conjugates. The cholic acid-tamoxifen conjugate (CA-Tam3-Am) bearing three tamoxifen molecules shows enhanced anticancer activities in both estrogen receptor +ve and estrogen receptor -ve breast cancer cell lines. The enhanced anticancer activity of CA-Tam3-Am is due to more favorable irreversible electrostatic interactions followed by intercalation of these conjugates in hydrophobic core of membrane lipids causing increase in membrane fluidity. Annexin-FITC based FACS analysis showed that cells undergo apoptosis, and cell cycle analysis showed the arrest of cells in sub G0 phase. ROS assays showed a high amount of generation of ROS independent of ER status of the cell line indicating changes in mitochondrial membrane fluidity upon the uptake of the conjugate that further leads to the release of cytochrome c, a direct and indirect regulator of ROS. The mechanistic studies for apoptosis using PCR and western analysis showed apoptotsis by intrinsic and extrinsic pathways in ER +ve MCF-7 cells and by only an intrinsic pathway in ER -ve cells. In vivo studies in the 4T1 tumor model showed that CA-Tam3-Am is more potent than tamoxifen. These studies showed that bile acids provide a new scaffold for high drug loading and that their anticancer activities strongly depend on charge and hydrophobicity of lipid-drug conjugates.
Collapse
Affiliation(s)
- Vedagopuram Sreekanth
- The Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology , 180 Udyog Vihar, Phase 1, Gurgaon-122016, Haryana, India
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Su CM, Wang SW, Lee TH, Tzeng WP, Hsiao CJ, Liu SC, Tang CH. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells. Toxicol Appl Pharmacol 2013; 272:335-44. [PMID: 23806212 DOI: 10.1016/j.taap.2013.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 12/23/2022]
Abstract
Chondrosarcoma is the second most common primary bone tumor, and it responds poorly to both chemotherapy and radiation treatment. Nalanthamala psidii was described originally as Myxosporium in 1926. This is the first study to investigate the anti-tumor activity of trichodermin (trichothec-9-en-4-ol, 12,13-epoxy-, acetate), an endophytic fungal metabolite from N. psidii against human chondrosarcoma cells. We demonstrated that trichodermin induced cell apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 cells) instead of primary chondrocytes. In addition, trichodermin triggered endoplasmic reticulum (ER) stress protein levels of IRE1, p-PERK, GRP78, and GRP94, which were characterized by changes in cytosolic calcium levels. Furthermore, trichodermin induced the upregulation of Bax and Bid, the downregulation of Bcl-2, and the dysfunction of mitochondria, which released cytochrome c and activated caspase-3 in human chondrosarcoma. In addition, animal experiments illustrated reduced tumor volume, which led to an increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and an increased level of cleaved PARP protein following trichodermin treatment. Together, this study demonstrates that trichodermin is a novel anti-tumor agent against human chondrosarcoma cells both in vitro and in vivo via mitochondrial dysfunction and ER stress.
Collapse
Affiliation(s)
- Chen-Ming Su
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
43
|
Wentilactone B induces G2/M phase arrest and apoptosis via the Ras/Raf/MAPK signaling pathway in human hepatoma SMMC-7721 cells. Cell Death Dis 2013; 4:e657. [PMID: 23744357 PMCID: PMC3698549 DOI: 10.1038/cddis.2013.182] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is generally acknowledged as the most common primary malignant tumor, and it is known to be resistant to conventional chemotherapy. Wentilactone B (WB), a tetranorditerpenoid derivative extracted from the marine algae-derived endophytic fungus Aspergillus wentii EN-48, has been shown to trigger apoptosis and inhibit metastasis in HCC cell lines. However, the mechanisms of its antitumor activity remain to be elucidated. We report here that WB could significantly induce cell cycle arrest at G2 phase and mitochondrial-related apoptosis, accompanying the accumulation of reactive oxygen species (ROS). Additionally, treatment with WB induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), but not p38 MAP kinase. Among the pathway inhibitors examined, only SP600125 (JNK inhibitor) markedly reversedWB-induced apoptosis, and only U0126 (ERK inhibitor) significantly blocked WB-triggered G2 phase arrest. We also found that WB treatment increased both Ras and Raf activation, and transfection of cells with dominant-negative Ras (RasN17) abolishedWB-induced apoptosis and G2 phase arrest in SMMC-7721 cells. Furthermore, the results of inverse docking (INVDOCK) analysis suggested that WB could bind to Ras-GTP, and the direct binding affinity was also confirmed by surface plasmon resonance (SPR). Finally, in vivo, WB suppressed tumor growth in mouse xenograft models. Taken together, these results indicate that WB induced G2/M phase arrest and apoptosis in human hepatoma SMMC-7721 cells via the Ras/Raf/ERK and Ras/Raf/JNK signaling pathways, and this agent may be a potentially useful compound for developing anticancer agents for HCC.
Collapse
|
44
|
Charalambous C, Pitta CA, Constantinou AI. Equol enhances tamoxifen's anti-tumor activity by induction of caspase-mediated apoptosis in MCF-7 breast cancer cells. BMC Cancer 2013; 13:238. [PMID: 23675643 PMCID: PMC3661348 DOI: 10.1186/1471-2407-13-238] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/30/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Soy phytoestrogens, such as daidzein and its metabolite equol, have been proposed to be responsible for the low breast cancer rate in Asian women. Since the majority of estrogen receptor positive breast cancer patients are treated with tamoxifen, the basic objective of this study is to determine whether equol enhances tamoxifen's anti-tumor effect, and to identify the molecular mechanisms involved. METHODS For this purpose, we examined the individual and combined effects of equol and tamoxifen on the estrogen-dependent MCF-7 breast cancer cells using viability assays, annexin-V/PI staining, cell cycle and western blot analysis. RESULTS We found that equol (>50 μM) and 4-hydroxy-tamoxifen (4-OHT; >100 nM) significantly reduced the MCF-7 cell viability. Furthermore, the combination of equol (100 μM) and 4-OHT (10 μM) induced apoptosis more effectively than each compound alone. Subsequent treatment of MCF-7 cells with the pan-caspase inhibitor Z-VAD-FMK inhibited equol- and 4-OHT-mediated apoptosis, which was accompanied by PARP and α-fodrin cleavage, indicating that apoptosis is mainly caspase-mediated. These compounds also induced a marked reduction in the bcl-2:bax ratio, which was accompanied by caspase-9 and caspase-7 activation and cytochrome-c release to the cytosol. Taken together, these data support the notion that the combination of equol and tamoxifen activates the intrinsic apoptotic pathway more efficiently than each compound alone. CONCLUSIONS Consequently, equol may be used therapeutically in combination treatments and clinical studies to enhance tamoxifen's effect by providing additional protection against estrogen-responsive breast cancers.
Collapse
Affiliation(s)
- Christiana Charalambous
- Department of Biological Sciences, University of Cyprus, 75 Kallipoleos str, PO box 20537, Lefkosia 1678, Cyprus
| | | | | |
Collapse
|
45
|
Chen HY, Yang YM, Stevens BM, Noble M. Inhibition of redox/Fyn/c-Cbl pathway function by Cdc42 controls tumour initiation capacity and tamoxifen sensitivity in basal-like breast cancer cells. EMBO Mol Med 2013; 5:723-36. [PMID: 23606532 PMCID: PMC3662315 DOI: 10.1002/emmm.201202140] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/14/2013] [Accepted: 03/05/2013] [Indexed: 12/21/2022] Open
Abstract
We found that basal-like breast cancer (BLBC) cells use Cdc42 to inhibit function of the redox/Fyn/c-Cbl (RFC) pathway, which normally functions to convert small increases in oxidative status into enhanced degradation of c-Cbl target proteins. Restoration of RFC pathway function by genetic or pharmacological Cdc42 inhibition enabled harnessing of pro-oxidant effects of low µM tamoxifen (TMX) concentrations - concentrations utilized in trials on multiple tumour types - to suppress division and induce death of BLBC cells in vitro and to confer TMX sensitivity in vivo through oestrogen receptor-α-independent mechanisms. Cdc42 knockdown also inhibited generation of mammospheres in vitro and tumours in vivo, demonstrating the additional importance of this pathway in tumour initiating cell (TIC) function. These findings provide a new regulatory pathway that is subverted in cancer cells, a novel means of attacking TIC and non-TIC aspects of BLBCs, a lead molecule (ML141) that confers sensitivity to low µM TMX in vitro and in vivo and also appear to be novel in enhancing sensitivity to a non-canonical mode of action of an established therapeutic agent.
Collapse
Affiliation(s)
- Hsing-Yu Chen
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | |
Collapse
|
46
|
Segala G, de Medina P, Iuliano L, Zerbinati C, Paillasse MR, Noguer E, Dalenc F, Payré B, Jordan VC, Record M, Silvente-Poirot S, Poirot M. 5,6-Epoxy-cholesterols contribute to the anticancer pharmacology of tamoxifen in breast cancer cells. Biochem Pharmacol 2013; 86:175-89. [PMID: 23500540 DOI: 10.1016/j.bcp.2013.02.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/21/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
Abstract
Tamoxifen (Tam) is a selective estrogen receptor modulator (SERM) that remains one of the major drugs used in the hormonotherapy of breast cancer (BC). In addition to its SERM activity, we recently showed that the oxidative metabolism of cholesterol plays a role in its anticancer pharmacology. We established that these effects were not regulated by the ER but by the microsomal antiestrogen binding site/cholesterol-5,6-epoxide hydrolase complex (AEBS/ChEH). The present study aimed to identify the oxysterols that are produced under Tam treatment and to define their mechanisms of action. Tam and PBPE (a selective AEBS/ChEH ligand) stimulated the production and the accumulation of 5,6α-epoxy-cholesterol (5,6α-EC), 5,6α-epoxy-cholesterol-3β-sulfate (5,6-ECS), 5,6β-epoxy-cholesterol (5,6β-EC) in MCF-7 cells through a ROS-dependent mechanism, by inhibiting ChEH and inducing sulfation of 5,6α-EC by SULT2B1b. We showed that only 5,6α-EC was responsible for the induction of triacylglycerol (TAG) biosynthesis by Tam and PBPE, through the modulation of the oxysterol receptor LXRβ. The cytotoxicity mediated by Tam and PBPE was triggered by 5,6β-EC through an LXRβ-independent route and by 5,6-ECS through an LXRβ-dependent mechanism. The importance of SULT2B1b was confirmed by its ectopic expression in the SULT2B1b(-) MDA-MB-231 cells, which became sensitive to 5,6α-EC, Tam or PBPE at a comparable level to MCF-7 cells. This study established that 5,6-EC metabolites contribute to the anticancer pharmacology of Tam and highlights a novel signaling pathway that points to a rationale for re-sensitizing BC cells to Tam and AEBS/ChEH ligands.
Collapse
Affiliation(s)
- Gregory Segala
- UMR 1037 INSERM-University Toulouse III, Cancer Research Center of Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Penney RB, Roy D. Thioredoxin-mediated redox regulation of resistance to endocrine therapy in breast cancer. Biochim Biophys Acta Rev Cancer 2013; 1836:60-79. [PMID: 23466753 DOI: 10.1016/j.bbcan.2013.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 12/27/2022]
Abstract
Resistance to endocrine therapy in breast carcinogenesis due to the redox regulation of the signal transduction system by reactive oxygen species (ROS) is the subject of this review article. Both antiestrogens and aromatase inhibitors are thought to prevent cancer through modulating the estrogen receptor function, but other mechanisms cannot be ruled out as these compounds also block metabolism and redox cycling of estrogen and are free radical scavengers. Endocrine therapeutic agents, such as, tamoxifen and other antiestrogens, and the aromatase inhibitor, exemestane, are capable of producing ROS. Aggressive breast cancer cells have high oxidative stress and chronic treatment with exemestane, fulvestrant or tamoxifen may add additional ROS stress. Breast cancer cells receiving long-term antiestrogen treatment appear to adapt to this increased persistent level of ROS. This, in turn, may lead to the disruption of reversible redox signaling that involves redox-sensitive phosphatases, protein kinases, such as, ERK and AKT, and transcription factors, such as, AP-1, NRF-1 and NF-κB. Thioredoxin modulates the expression of estrogen responsive genes through modulating the production of H2O2 in breast cancer cells. Overexpressing thioredoxine reductase 2 and reducing oxidized thioredoxin restores tamoxifen sensitivity to previously resistant breast cancer cells. In summary, it appears that resistance to endocrine therapy may be mediated, in part, by ROS-mediated dysregulation of both estrogen-dependent and estrogen-independent redox-sensitive signaling pathways. Further studies are needed to define the mechanism of action of thioredoxin modifiers, and their effect on the redox regulation that contributes to restoring the antiestrogen-mediated signal transduction system and growth inhibitory action.
Collapse
Affiliation(s)
- Rosalind Brigham Penney
- Department of Environmental and Occupational Health, Florida International University, Miami, FL 33199, USA
| | | |
Collapse
|
48
|
Okuda K, Hasui K, Abe M, Matsumoto K, Shindo M. Molecular Design, Synthesis, and Evaluation of Novel Potent Apoptosis Inhibitors Inspired from Bongkrekic Acid. Chem Res Toxicol 2012; 25:2253-60. [DOI: 10.1021/tx300315h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Katsuhiro Okuda
- Institute for Materials Chemistry
and Engineering, Kyushu University, 6-1
Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Keisuke Hasui
- Interdisciplinary Graduate School
of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Masato Abe
- Institute for Materials Chemistry
and Engineering, Kyushu University, 6-1
Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Kenji Matsumoto
- Institute for Materials Chemistry
and Engineering, Kyushu University, 6-1
Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Mitsuru Shindo
- Institute for Materials Chemistry
and Engineering, Kyushu University, 6-1
Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
49
|
Bogush T, Dudko E, Bogush E, Polotsky B, Tjulandin S, Davydov M. Tamoxifen non-estrogen receptor mediated molecular targets. Oncol Rev 2012; 6:e15. [PMID: 25992213 PMCID: PMC4419624 DOI: 10.4081/oncol.2012.e15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/18/2012] [Accepted: 07/05/2012] [Indexed: 01/09/2023] Open
Abstract
Recent experimental studies revealing new biological effects of tamoxifen on tumor cells both expressing and not expressing different types of estrogen receptors (ERα and ERβ) show new aspects of a seemingly well known agent. This review describes tamoxifen targets, the blocking of which leads to inhibition of tumor cell growth and angiogenesis, stimulation of programmed cell death (apoptosis, autophagia and necrosis), inhibition of multidrug resistance, invasion and metastasis. Since outcomes of tamoxifen action on cells are prognostically good from the point of view of both tumor growth/metastasis inhibition and tumor response to drug therapy, the authors believe this is an extremely important addition to tamoxifen antiestrogenic effect. Arguments are provided to consider the strategy of long-term tamoxifen treatment proposed by Professor Craig V. Jordan in the 1970s that is also applicable to the treatment of other tumors. This is, first of all, the fact that expression of estrogen receptor-beta that can also be targeted by tamoxifen therapy in solid tumors of practically all known sites and histologies. The authors believe that molecular biological screening of patients with respect to expression of tamoxifen cellular targets other than ERα and ERβ is needed to use to the full all tamoxifen biological activities other than modulation of estrogen receptors during long-term adjuvant therapy for cancers of various sites.
Collapse
Affiliation(s)
- Tatiana Bogush
- N.N. Blokhin Russian Cancer Research Center under the Russian Academy of Medical Sciences, Russian Federation, Moscow
| | - Evgeny Dudko
- N.N. Blokhin Russian Cancer Research Center under the Russian Academy of Medical Sciences, Russian Federation, Moscow
| | - Elena Bogush
- N.N. Blokhin Russian Cancer Research Center under the Russian Academy of Medical Sciences, Russian Federation, Moscow
| | - Boris Polotsky
- N.N. Blokhin Russian Cancer Research Center under the Russian Academy of Medical Sciences, Russian Federation, Moscow
| | - Sergei Tjulandin
- N.N. Blokhin Russian Cancer Research Center under the Russian Academy of Medical Sciences, Russian Federation, Moscow
| | - Mikhail Davydov
- N.N. Blokhin Russian Cancer Research Center under the Russian Academy of Medical Sciences, Russian Federation, Moscow
| |
Collapse
|
50
|
Amaral C, Borges M, Melo S, da Silva ET, Correia-da-Silva G, Teixeira N. Apoptosis and autophagy in breast cancer cells following exemestane treatment. PLoS One 2012; 7:e42398. [PMID: 22912703 PMCID: PMC3418278 DOI: 10.1371/journal.pone.0042398] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/05/2012] [Indexed: 01/11/2023] Open
Abstract
Aromatase inhibitors (AIs), which block the conversion of androgens to estrogens, are used for hormone-dependent breast cancer treatment. Exemestane, a steroidal that belongs to the third-generation of AIs, is a mechanism-based inhibitor that binds covalently and irreversibly, inactivating and destabilizing aromatase. Since the biological effects of exemestane in breast cancer cells are not totally understood, its effects on cell viability, cell proliferation and mechanisms of cell death were studied in an ER-positive aromatase-overexpressing breast cancer cell line (MCF-7aro). The effects of 3-methyladenine (3-MA), an inhibitor of autophagy and of ZVAD-FMK, an apoptotic inhibitor, in exemestane treated cells were also investigated. Our results indicate that exemestane induces a strong inhibition in MCF-7aro cell proliferation in a dose- and time-dependent manner, promoting a significant cell cycle arrest in G(0)/G1 or in G(2)/M phases after 3 and 6 days of treatment, respectively. This was accompanied by a decrease in cell viability due to activation of cell death by apoptosis, via mitochondrial pathway and the occurrence of autophagy. Inhibition of autophagy by the autophagic inhibitor, 3-MA, resulted in a reduction of cell viability and activation of caspases. All together the results obtained suggest that exemestane induced mitochondrial-mediated apoptosis and autophagy, which act as a pro-survival process regulating breast cancer cell apoptosis.
Collapse
Affiliation(s)
- Cristina Amaral
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Margarida Borges
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Soraia Melo
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Department of Zoology, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Elisiário Tavares da Silva
- Center of Pharmaceutical Studies, Pharmaceutical Chemistry Laboratory, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Georgina Correia-da-Silva
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Natércia Teixeira
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|