1
|
Leiva LE, Zegarra V, Bange G, Ibba M. At the Crossroad of Nucleotide Dynamics and Protein Synthesis in Bacteria. Microbiol Mol Biol Rev 2023; 87:e0004422. [PMID: 36853029 PMCID: PMC10029340 DOI: 10.1128/mmbr.00044-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Nucleotides are at the heart of the most essential biological processes in the cell, be it as key protagonists in the dogma of molecular biology or by regulating multiple metabolic pathways. The dynamic nature of nucleotides, the cross talk between them, and their constant feedback to and from the cell's metabolic state position them as a hallmark of adaption toward environmental and growth challenges. It has become increasingly clear how the activity of RNA polymerase, the synthesis and maintenance of tRNAs, mRNA translation at all stages, and the biogenesis and assembly of ribosomes are fine-tuned by the pools of intracellular nucleotides. With all aspects composing protein synthesis involved, the ribosome emerges as the molecular hub in which many of these nucleotides encounter each other and regulate the state of the cell. In this review, we aim to highlight intracellular nucleotides in bacteria as dynamic characters permanently cross talking with each other and ultimately regulating protein synthesis at various stages in which the ribosome is mainly the principal character.
Collapse
Affiliation(s)
- Lorenzo Eugenio Leiva
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Victor Zegarra
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Michael Ibba
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| |
Collapse
|
2
|
Abstract
As rapidly growing bacteria begin to exhaust essential nutrients, they enter a state of reduced growth, ultimately leading to stasis or quiescence. Investigation of the response to nutrient limitation has focused largely on the consequences of amino acid starvation, known as the "stringent response." Here, an uncharged tRNA in the A-site of the ribosome stimulates the ribosome-associated protein RelA to synthesize the hyperphosphorylated guanosine nucleotides (p)ppGpp that mediate a global slowdown of growth and biosynthesis. Investigations of the stringent response typically employ experimental methodologies that rapidly stimulate (p)ppGpp synthesis by abruptly increasing the fraction of uncharged tRNAs, either by explicit amino starvation or by inhibition of tRNA charging. Consequently, these methodologies inhibit protein translation, thereby interfering with the cellular pathways that respond to nutrient limitation. Thus, complete and/or rapid starvation is a problematic experimental paradigm for investigating bacterial responses to physiologically relevant nutrient-limited states.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
3
|
Abstract
Since Jacques Monod's foundational work in the 1940s, investigators studying bacterial physiology have largely (but not exclusively) focused on the exponential phase of bacterial cultures, which is characterized by rapid growth and high biosynthesis activity in the presence of excess nutrients. However, this is not the predominant state of bacterial life. In nature, most bacteria experience nutrient limitation most of the time. In fact, investigators even prior to Monod had identified other aspects of bacterial growth, including what is now known as the stationary phase, when nutrients become limiting. This review will discuss how bacteria transition to growth arrest in response to nutrient limitation through changes in transcription, translation, and metabolism. We will then examine how these changes facilitate survival during potentially extended periods of nutrient limitation, with particular attention to the metabolic strategies that underpin bacterial longevity in this state.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA;
| | - Caroline S Harwood
- Department of Microbiology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
4
|
Pulschen AA, Fernandes AZN, Cunha AF, Sastre DE, Matsuguma BE, Gueiros-Filho FJ. Many birds with one stone: targeting the (p)ppGpp signaling pathway of bacteria to improve antimicrobial therapy. Biophys Rev 2021; 13:1039-1051. [DOI: 10.1007/s12551-021-00895-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
|
5
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
6
|
The alarmones (p)ppGpp directly regulate translation initiation during entry into quiescence. Proc Natl Acad Sci U S A 2020; 117:15565-15572. [PMID: 32576694 DOI: 10.1073/pnas.1920013117] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many bacteria exist in a state of metabolic quiescence where energy consumption must be minimized so as to maximize available resources over a potentially extended period of time. As protein synthesis is the most energy intensive metabolic process in a bacterial cell, it would be an appropriate target for down-regulation during the transition from growth to quiescence. We observe that when Bacillus subtilis exits rapid growth, a subpopulation of cells emerges with very low protein synthetic activity. This phenotypic heterogeneity requires the production of the nucleotides (p)ppGpp, which we show are sufficient to inhibit protein synthesis in vivo. We then show that one of these molecules, ppGpp, inhibits protein synthesis by preventing the allosteric activation of the essential GTPase Initiation Factor 2 (IF2) during translation initiation. Finally, we demonstrate that the observed attenuation of protein synthesis during the entry into quiescence is a consequence of the direct interaction of (p)ppGpp and IF2.
Collapse
|
7
|
Sørensen MA, Fehler AO, Lo Svenningsen S. Transfer RNA instability as a stress response in Escherichia coli: Rapid dynamics of the tRNA pool as a function of demand. RNA Biol 2018; 15:586-593. [PMID: 29023189 PMCID: PMC6103710 DOI: 10.1080/15476286.2017.1391440] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Production of the translation apparatus of E. coli is carefully matched to the demand for protein synthesis posed by a given growth condition. For example, the fraction of RNA polymerases that transcribe rRNA and tRNA drops from 80% during rapid growth to 24% within minutes of a sudden amino acid starvation. We recently reported in Nucleic Acids Research that the tRNA pool is more dynamically regulated than previously thought. In addition to the regulation at the level of synthesis, we found that tRNAs are subject to demand-based regulation at the level of their degradation. In this point-of-view article we address the question of why this phenomenon has not previously been described. We also present data that expands on the mechanism of tRNA degradation, and we discuss the possible implications of tRNA instability for the ability of E. coli to cope with stresses that affect the translation process.
Collapse
|
8
|
Species-Specific Interactions of Arr with RplK Mediate Stringent Response in Bacteria. J Bacteriol 2018; 200:JB.00722-17. [PMID: 29311276 DOI: 10.1128/jb.00722-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 11/20/2022] Open
Abstract
Bacteria respond to stressful growth conditions through a conserved phenomenon of stringent response mediated by synthesis of stress alarmones ppGpp and pppGpp [referred to as (p)ppGpp]. (p)ppGpp synthesis is known to occur by ribosome-associated RelA. In addition, a dual-function protein, SpoT (with both synthetase and hydrolase activities), maintains (p)ppGpp homeostasis. The presence of (p)ppGpp is also known to contribute to antibiotic resistance in bacteria. Mycobacterium smegmatis possesses Arr, which inactivates rifampin by its ADP ribosylation. Arr has been shown to be upregulated in response to stress. However, the roles Arr might play during growth have remained unclear. We show that Arr confers growth fitness advantage to M. smegmatis even in the absence of rifampin. Arr deficiency in M. smegmatis resulted in deficiency of biofilm formation. Further, we show that while Arr does not interact with the wild-type Escherichia coli ribosomes, it interacts with them when the E. coli ribosomal protein L11 (a stringent response regulator) is replaced with its homolog from M. smegmatis The Arr interaction with E. coli ribosomes occurs even when the N-terminal 33 amino acids of its L11 protein were replaced with the corresponding sequence of M. smegmatis L11 (Msm-EcoL11 chimeric protein). Interestingly, Arr interaction with the E. coli ribosomes harboring M. smegmatis L11 or Msm-EcoL11 results in the synthesis of ppGpp in vivo Our study shows a novel role of antibiotic resistance gene arr in stress response.IMPORTANCEMycobacterium smegmatis, like many other bacteria, possesses an ADP-ribosyltransferase, Arr, which confers resistance to the first-line antituberculosis drug, rifampin, by its ADP ribosylation. In this report, we show that in addition to its known property of conferring resistance to rifampin, Arr confers growth fitness advantage to M. smegmatis even when there is no rifampin in the growth medium. We then show that Arr establishes species-specific interactions with ribosomes through the N-terminal sequence of ribosomal protein L11 (a stringent response regulator) and results in ppGpp (stress alarmone) synthesis. Deficiency of Arr in M. smegmatis results in deficiency of biofilm formation. Arr protein is physiologically important both in conferring antibiotic resistance as well as in mediating stringent response.
Collapse
|
9
|
Knappenberger AJ, Reiss CW, Strobel SA. Structures of two aptamers with differing ligand specificity reveal ruggedness in the functional landscape of RNA. eLife 2018; 7:36381. [PMID: 29877798 PMCID: PMC6031431 DOI: 10.7554/elife.36381] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/05/2018] [Indexed: 01/07/2023] Open
Abstract
Two classes of riboswitches related to the ykkC guanidine-I riboswitch bind phosphoribosyl pyrophosphate (PRPP) and guanosine tetraphosphate (ppGpp). Here we report the co-crystal structure of the PRPP aptamer and its ligand. We also report the structure of the G96A point mutant that prefers ppGpp over PRPP with a dramatic 40,000-fold switch in specificity. The ends of the aptamer form a helix that is not present in the guanidine aptamer and is involved in the expression platform. In the mutant, the base of ppGpp replaces G96 in three-dimensional space. This disrupts the S-turn, which is a primary structural feature of the ykkC RNA motif. These dramatic differences in ligand specificity are achieved with minimal mutations. ykkC aptamers are therefore a prime example of an RNA fold with a rugged fitness landscape. The ease with which the ykkC aptamer acquires new specificity represents a striking case of evolvability in RNA.
Collapse
Affiliation(s)
- Andrew John Knappenberger
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States,Chemical Biology InstituteYale UniversityWest HavenUnited States
| | - Caroline Wetherington Reiss
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States,Chemical Biology InstituteYale UniversityWest HavenUnited States
| | - Scott A Strobel
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenUnited States,Chemical Biology InstituteYale UniversityWest HavenUnited States
| |
Collapse
|
10
|
Schott AS, Behr J, Geißler AJ, Kuster B, Hahne H, Vogel RF. Quantitative Proteomics for the Comprehensive Analysis of Stress Responses of Lactobacillus paracasei subsp. paracasei F19. J Proteome Res 2017; 16:3816-3829. [PMID: 28862000 DOI: 10.1021/acs.jproteome.7b00474] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lactic acid bacteria are broadly employed as starter cultures in the manufacture of foods. Upon technological preparation, they are confronted with drying stress that amalgamates numerous stress conditions resulting in losses of fitness and survival. To better understand and differentiate physiological stress responses, discover general and specific markers for the investigated stress conditions, and predict optimal preconditioning for starter cultures, we performed a comprehensive genomic and quantitative proteomic analysis of a commonly used model system, Lactobacillus paracasei subsp. paracasei TMW 1.1434 (isogenic with F19) under 11 typical stress conditions, including among others oxidative, osmotic, pH, and pressure stress. We identified and quantified >1900 proteins in triplicate analyses, representing 65% of all genes encoded in the genome. The identified genes were thoroughly annotated in terms of subcellular localization prediction and biological functions, suggesting unbiased and comprehensive proteome coverage. In total, 427 proteins were significantly differentially expressed in at least one condition. Most notably, our analysis suggests that optimal preconditioning toward drying was predicted to be alkaline and high-pressure stress preconditioning. Taken together, we believe the presented strategy may serve as a prototypic example for the analysis and utility of employing quantitative-mass-spectrometry-based proteomics to study bacterial physiology.
Collapse
Affiliation(s)
- Ann-Sophie Schott
- Chair of Technical Microbiology, Technische Universität München , Freising 85354, Germany
| | - Jürgen Behr
- Chair of Technical Microbiology, Technische Universität München , Freising 85354, Germany.,Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Freising 85354, Germany
| | - Andreas J Geißler
- Chair of Technical Microbiology, Technische Universität München , Freising 85354, Germany
| | - Bernhard Kuster
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Freising 85354, Germany.,Chair of Proteomics and Bioanalytics, Technische Universität München , Freising 85354, Germany.,Center for Integrated Protein Science Munich, Freising 85354, Germany
| | | | - Rudi F Vogel
- Chair of Technical Microbiology, Technische Universität München , Freising 85354, Germany
| |
Collapse
|
11
|
The Bifunctional Enzyme SpoT Is Involved in the Clarithromycin Tolerance of Helicobacter pylori by Upregulating the Transporters HP0939, HP1017, HP0497, and HP0471. Antimicrob Agents Chemother 2017; 61:AAC.02011-16. [PMID: 28242673 PMCID: PMC5404559 DOI: 10.1128/aac.02011-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/21/2017] [Indexed: 01/30/2023] Open
Abstract
Clarithromycin (CLA) is a commonly recommended drug for Helicobacter pylori eradication. However, the prevalence of CLA-resistant H. pylori is increasing. Although point mutations in the 23S rRNA are key factors for CLA resistance, other factors, including efflux pumps and regulation genes, are also involved in the resistance of H. pylori to CLA. Guanosine 3′-diphosphate 5′-triphosphate and guanosine 3′,5′-bispyrophosphate [(p)ppGpp)], which are synthesized by the bifunctional enzyme SpoT in H. pylori, play an important role for some bacteria to adapt to antibiotic pressure. Nevertheless, no related research involving H. pylori has been reported. In addition, transporters have been found to be related to bacterial drug resistance. Therefore, this study investigated the function of SpoT in H. pylori resistance to CLA by examining the shifts in the expression of transporters and explored the role of transporters in the CLA resistance of H. pylori. A ΔspoT strain was constructed in this study, and it was shown that SpoT is involved in H. pylori tolerance of CLA by upregulating the transporters HP0939, HP1017, HP0497, and HP0471. This was assessed using a series of molecular and biochemical experiments and a cDNA microarray. Additionally, the knockout of genes hp0939, hp0471, and hp0497 in the resistant strains caused a reduction or loss (the latter in the Δhp0497 strain) of resistance to CLA. Furthermore, the average expression levels of these four transporters in clinical CLA-resistant strains were considerably higher than those in clinical CLA-sensitive strains. Taken together, our results revealed a novel molecular mechanism of H. pylori adaption to CLA stress.
Collapse
|
12
|
Svenningsen SL, Kongstad M, Stenum TS, Muñoz-Gómez AJ, Sørensen MA. Transfer RNA is highly unstable during early amino acid starvation in Escherichia coli. Nucleic Acids Res 2017; 45:793-804. [PMID: 27903898 PMCID: PMC5314770 DOI: 10.1093/nar/gkw1169] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/02/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022] Open
Abstract
Due to its long half-life compared to messenger RNA, bacterial transfer RNA is known as stable RNA. Here, we show that tRNAs become highly unstable as part of Escherichia coli's response to amino acid starvation. Degradation of the majority of cellular tRNA occurs within twenty minutes of the onset of starvation for each of several amino acids. Both the non-cognate and cognate tRNA for the amino acid that the cell is starving for are degraded, and both charged and uncharged tRNA species are affected. The alarmone ppGpp orchestrates the stringent response to amino acid starvation. However, tRNA degradation occurs in a ppGpp-independent manner, as it occurs with similar kinetics in a relaxed mutant. Further, we also observe rapid tRNA degradation in response to rifampicin treatment, which does not induce the stringent response. We propose a unifying model for these observations, in which the surplus tRNA is degraded whenever the demand for protein synthesis is reduced. Thus, the tRNA pool is a highly regulated, dynamic entity. We propose that degradation of surplus tRNA could function to reduce mistranslation in the stressed cell, because it would reduce competition between cognate and near-cognate charged tRNAs at the ribosomal A-site.
Collapse
Affiliation(s)
| | - Mette Kongstad
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | | | - Ana J Muñoz-Gómez
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Michael A Sørensen
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
13
|
Ardell DH, Hou YM. Initiator tRNA genes template the 3' CCA end at high frequencies in bacteria. BMC Genomics 2016; 17:1003. [PMID: 27927177 PMCID: PMC5143459 DOI: 10.1186/s12864-016-3314-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/18/2016] [Indexed: 01/06/2023] Open
Abstract
Background While the CCA sequence at the mature 3′ end of tRNAs is conserved and critical for translational function, a genetic template for this sequence is not always contained in tRNA genes. In eukaryotes and Archaea, the CCA ends of tRNAs are synthesized post-transcriptionally by CCA-adding enzymes. In Bacteria, tRNA genes template CCA sporadically. Results In order to understand the variation in how prokaryotic tRNA genes template CCA, we re-annotated tRNA genes in tRNAdb-CE database version 0.8. Among 132,129 prokaryotic tRNA genes, initiator tRNA genes template CCA at the highest average frequency (74.1%) over all functional classes except selenocysteine and pyrrolysine tRNA genes (88.1% and 100% respectively). Across bacterial phyla and a wide range of genome sizes, many lineages exist in which predominantly initiator tRNA genes template CCA. Convergent and parallel retention of CCA templating in initiator tRNA genes evolved in independent histories of reductive genome evolution in Bacteria. Also, in a majority of cyanobacterial and actinobacterial genera, predominantly initiator tRNA genes template CCA. We also found that a surprising fraction of archaeal tRNA genes template CCA. Conclusions We suggest that cotranscriptional synthesis of initiator tRNA CCA 3′ ends can complement inefficient processing of initiator tRNA precursors, “bootstrap” rapid initiation of protein synthesis from a non-growing state, or contribute to an increase in cellular growth rates by reducing overheads of mass and energy to maintain nonfunctional tRNA precursor pools. More generally, CCA templating in structurally non-conforming tRNA genes can afford cells robustness and greater plasticity to respond rapidly to environmental changes and stimuli. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3314-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David H Ardell
- Program in Quantitative and Systems Biology, University of California, 5200 North Lake Road, CA, 95343, Merced, USA. .,Molecular and Cell Biology Unit, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA, 95343, USA.
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, BLSB 220, Philadelphia, PA, 19107, USA
| |
Collapse
|
14
|
Proteome-wide measurement of non-canonical bacterial mistranslation by quantitative mass spectrometry of protein modifications. Sci Rep 2016; 6:28631. [PMID: 27377007 PMCID: PMC4932531 DOI: 10.1038/srep28631] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/06/2016] [Indexed: 01/06/2023] Open
Abstract
The genetic code is virtually universal in biology and was likely established before the advent of cellular life. The extent to which mistranslation occurs is poorly understood and presents a fundamental question in basic research and production of recombinant proteins. Here we used shotgun proteomics combined with unbiased protein modification analysis to quantitatively analyze in vivo mistranslation in an E. coli strain with a defect in the editing mechanism of leucyl-tRNA synthetase. We detected the misincorporation of a non-proteinogenic amino acid norvaline on 10% of all measured leucine residues under microaerobic conditions and revealed preferential deployment of a tRNA(Leu)(CAG) isoacceptor during norvaline misincorporation. The strain with the norvalylated proteome demonstrated a substantial reduction in cell fitness under both prolonged aerobic and microaerobic cultivation. Unlike norvaline, isoleucine did not substitute for leucine even under harsh error-prone conditions. Our study introduces shotgun proteomics as a powerful tool in quantitative analysis of mistranslation.
Collapse
|
15
|
Rapid Curtailing of the Stringent Response by Toxin-Antitoxin Module-Encoded mRNases. J Bacteriol 2016; 198:1918-1926. [PMID: 27137501 DOI: 10.1128/jb.00062-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Escherichia coli regulates its metabolism to adapt to changes in the environment, in particular to stressful downshifts in nutrient quality. Such shifts elicit the so-called stringent response, coordinated by the alarmone guanosine tetra- and pentaphosphate [(p)ppGpp]. On sudden amino acid (aa) starvation, RelA [(p)ppGpp synthetase I] activity is stimulated by binding of uncharged tRNAs to a vacant ribosomal site; the (p)ppGpp level increases dramatically and peaks within the time scale of a few minutes. The decrease of the (p)ppGpp level after the peak is mediated by the decreased production of mRNA by (p)ppGpp-associated transcriptional regulation, which reduces the vacant ribosomal A site and thus constitutes negative feedback to the RelA-dependent (p)ppGpp synthesis. Here we showed that on sudden isoleucine starvation, this peak was higher in an E. coli strain that lacks the 10 known mRNase-encoding toxin-antitoxin (TA) modules present in the wild-type (wt) strain. This observation suggested that toxins are part of the negative-feedback mechanism to control the (p)ppGpp level during the early stringent response. We built a ribosome trafficking model to evaluate the fold increase in RelA activity just after the onset of aa starvation. Combining this with a feedback model between the (p)ppGpp level and the mRNA level, we obtained reasonable fits to the experimental data for both strains. The analysis revealed that toxins are activated rapidly, within a minute after the onset of starvation, reducing the mRNA half-life by ∼30%. IMPORTANCE The early stringent response elicited by amino acid starvation is controlled by a sharp increase of the cellular (p)ppGpp level. Toxin-antitoxin module-encoded mRNases are activated by (p)ppGpp through enhanced degradation of antitoxins. The present work shows that this activation happens over a very short time scale and that the activated mRNases negatively affect the (p)ppGpp level. The proposed mathematical model of (p)ppGpp regulation through the mRNA level highlights the importance of several feedback loops in early (p)ppGpp regulation.
Collapse
|
16
|
Conserved rates and patterns of transcription errors across bacterial growth states and lifestyles. Proc Natl Acad Sci U S A 2016; 113:3311-6. [PMID: 26884158 DOI: 10.1073/pnas.1525329113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Errors that occur during transcription have received much less attention than the mutations that occur in DNA because transcription errors are not heritable and usually result in a very limited number of altered proteins. However, transcription error rates are typically several orders of magnitude higher than the mutation rate. Also, individual transcripts can be translated multiple times, so a single error can have substantial effects on the pool of proteins. Transcription errors can also contribute to cellular noise, thereby influencing cell survival under stressful conditions, such as starvation or antibiotic stress. Implementing a method that captures transcription errors genome-wide, we measured the rates and spectra of transcription errors in Escherichia coli and in endosymbionts for which mutation and/or substitution rates are greatly elevated over those of E. coli Under all tested conditions, across all species, and even for different categories of RNA sequences (mRNA and rRNAs), there were no significant differences in rates of transcription errors, which ranged from 2.3 × 10(-5) per nucleotide in mRNA of the endosymbiont Buchnera aphidicola to 5.2 × 10(-5) per nucleotide in rRNA of the endosymbiont Carsonella ruddii The similarity of transcription error rates in these bacterial endosymbionts to that in E. coli (4.63 × 10(-5) per nucleotide) is all the more surprising given that genomic erosion has resulted in the loss of transcription fidelity factors in both Buchnera and Carsonella.
Collapse
|
17
|
Svidritskiy E, Korostelev AA. Ribosome Structure Reveals Preservation of Active Sites in the Presence of a P-Site Wobble Mismatch. Structure 2015; 23:2155-61. [PMID: 26412335 DOI: 10.1016/j.str.2015.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 11/17/2022]
Abstract
Translation initiation in the P site occasionally occurs at atypical (non-AUG) start codons, including those forming a mismatch in the third (wobble) position. During elongation, however, a pyrimidine-pyrimidine wobble mismatch may trigger a translation quality-control mechanism, whereby the P-site mismatch is thought to perturb the downstream A-site codon or the decoding center, thereby reducing translation fidelity and inducing termination of aberrant translation. We report a crystal structure of the 70S initiation complex containing an AUC codon in the ribosomal P site. Remarkably, the ribosome stabilizes the mismatched codon-anticodon helix, arranging a normally disruptive cytosine-cytosine pair into a Watson-Crick-like conformation. Translation-competent conformations of the tRNA, mRNA, and decoding center suggest that a P-site wobble-position mismatch in the 70S initiation complex does not pre-arrange the mRNA or decoding center to favor subsequent miscoding events.
Collapse
Affiliation(s)
- Egor Svidritskiy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
18
|
Ribosome hibernation facilitates tolerance of stationary-phase bacteria to aminoglycosides. Antimicrob Agents Chemother 2015; 59:6992-9. [PMID: 26324267 DOI: 10.1128/aac.01532-15] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/25/2015] [Indexed: 12/23/2022] Open
Abstract
Upon entry into stationary phase, bacteria dimerize 70S ribosomes into translationally inactive 100S particles by a process called ribosome hibernation. Previously, we reported that the hibernation-promoting factor (HPF) of Listeria monocytogenes is required for 100S particle formation and facilitates adaptation to a number of stresses. Here, we demonstrate that HPF is required for the high tolerance of stationary-phase cultures to aminoglycosides but not to beta-lactam or quinolone antibiotics. The sensitivity of a Δhpf mutant to gentamicin was suppressed by the bacteriostatic antibiotics chloramphenicol and rifampin, which inhibit translation and transcription, respectively. Disruption of the proton motive force by the ionophore carbonyl cyanide m-chlorophenylhydrazone or mutation of genes involved in respiration also suppressed the sensitivity of the Δhpf mutant. Accordingly, Δhpf mutants had aberrantly high levels of ATP and reducing equivalents during prolonged stationary phase. Analysis of bacterial uptake of fluorescently labeled gentamicin demonstrated that the Δhpf mutant harbored increased intracellular levels of the drug. Finally, deletion of the main ribosome hibernation factor of Escherichia coli, ribosome modulation factor (rmf), rendered these bacteria susceptible to gentamicin. Taken together, these data suggest that HPF-mediated ribosome hibernation results in repression of the metabolic activity that underlies aminoglycoside tolerance. HPF is conserved in nearly every bacterial pathogen, and the role of ribosome hibernation in antibiotic tolerance may have clinical implications.
Collapse
|
19
|
Investigating Bacterial Protein Synthesis Using Systems Biology Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:21-40. [PMID: 26621460 DOI: 10.1007/978-3-319-23603-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein synthesis is essential for bacterial growth and survival. Its study in Escherichia coli helped uncover features conserved among bacteria as well as universally. The pattern of discovery and the identification of some of the longest-known components of the protein synthesis machinery, including the ribosome itself, tRNAs, and translation factors proceeded through many stages of successively more refined biochemical purifications, finally culminating in the isolation to homogeneity, identification, and mapping of the smallest unit required for performing the given function. These early studies produced a wealth of information. However, many unknowns remained. Systems biology approaches provide an opportunity to investigate protein synthesis from a global perspective, overcoming the limitations of earlier ad hoc methods to gain unprecedented insights. This chapter reviews innovative systems biology approaches, with an emphasis on those designed specifically for investigating the protein synthesis machinery in E. coli.
Collapse
|
20
|
Starosta AL, Lassak J, Jung K, Wilson DN. The bacterial translation stress response. FEMS Microbiol Rev 2014; 38:1172-201. [PMID: 25135187 DOI: 10.1111/1574-6976.12083] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/18/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022] Open
Abstract
Throughout their life, bacteria need to sense and respond to environmental stress. Thus, such stress responses can require dramatic cellular reprogramming, both at the transcriptional as well as the translational level. This review focuses on the protein factors that interact with the bacterial translational apparatus to respond to and cope with different types of environmental stress. For example, the stringent factor RelA interacts with the ribosome to generate ppGpp under nutrient deprivation, whereas a variety of factors have been identified that bind to the ribosome under unfavorable growth conditions to shut-down (RelE, pY, RMF, HPF and EttA) or re-program (MazF, EF4 and BipA) translation. Additional factors have been identified that rescue ribosomes stalled due to stress-induced mRNA truncation (tmRNA, ArfA, ArfB), translation of unfavorable protein sequences (EF-P), heat shock-induced subunit dissociation (Hsp15), or antibiotic inhibition (TetM, FusB). Understanding the mechanism of how the bacterial cell responds to stress will not only provide fundamental insight into translation regulation, but will also be an important step to identifying new targets for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Agata L Starosta
- Gene Center, Department for Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Patrick H O'Farrell
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA
| |
Collapse
|
22
|
Abstract
The composition of the cellular proteome is commonly thought to strictly adhere to the genetic code. However, accumulating evidence indicates that cells also regulate the synthesis of mutant protein molecules that deviate from the genetic code. Production of mutant proteins generally occurs when cells are stressed or when they undergo environmental adaptation, but production varies in amounts and specificity. The deliberate synthesis of mutant proteins suggests that some of these proteins can be useful in cellular stress response and adaptation. This review describes the occurrence of, the translation mechanisms for, and the functional hypotheses on regulated synthesis of mutant proteins.
Collapse
Affiliation(s)
- Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
23
|
O'Farrell PH. Quiescence: early evolutionary origins and universality do not imply uniformity. Philos Trans R Soc Lond B Biol Sci 2012; 366:3498-507. [PMID: 22084377 PMCID: PMC3203459 DOI: 10.1098/rstb.2011.0079] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell cycle investigations have focused on relentless exponential proliferation of cells, an unsustainable situation in nature. Proliferation of cells, whether microbial or metazoan, is interrupted by periods of quiescence. The vast majority of cells in an adult metazoan lie quiescent. As disruptions in this quiescence are at the foundation of cancer, it will be important for the field to turn its attention to the mechanisms regulating quiescence. While often presented as a single topic, there are multiple forms of quiescence each with complex inputs, some of which are tied to conceptually challenging aspects of metazoan regulation such as size control. In an effort to expose the enormity of the challenge, I describe the differing biological purposes of quiescence, and the coupling of quiescence in metazoans to growth and to the structuring of tissues during development. I emphasize studies in the organism rather than in tissue culture, because these expose the diversity of regulation. While quiescence is likely to be a primitive biological process, it appears that in adapting quiescence to its many distinct biological settings, evolution has diversified it. Consideration of quiescence in different models gives us an overview of this diversity.
Collapse
Affiliation(s)
- Patrick H O'Farrell
- Department of Biochemistry, University of California, San Francisco, CA 94158-2200, USA.
| |
Collapse
|
24
|
Grönlund A, Lötstedt P, Elf J. Delay-induced anomalous fluctuations in intracellular regulation. Nat Commun 2011; 2:419. [DOI: 10.1038/ncomms1422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 07/07/2011] [Indexed: 11/09/2022] Open
|
25
|
Ksiazek K. Bacterial aging: from mechanistic basis to evolutionary perspective. Cell Mol Life Sci 2010; 67:3131-7. [PMID: 20526791 PMCID: PMC11115482 DOI: 10.1007/s00018-010-0417-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 04/22/2010] [Accepted: 05/12/2010] [Indexed: 01/08/2023]
Abstract
Aging-defined as the progressive impairment of an organism's functional capacity, resulting from deleterious changes in cells, organs, and biological systems-is one of the most fundamental features of Eukaryotes, from humans to the unicellular budding yeast Saccharomyces cerevisiae. It has recently been reported that this may also be the case for certain (if not all) types of bacteria. In this paper, the current view on the mechanistic background and evolutionary significance of bacterial kind of aging is presented, with particular emphasis on the role of asymmetric cell division, the characteristics of stationary growth phase, and the role of oxidative protein damage.
Collapse
Affiliation(s)
- Krzysztof Ksiazek
- Department of Pathophysiology, University of Medical Sciences, Swiecickiego 6, 60-781, Poznań, Poland.
| |
Collapse
|
26
|
Visualizing high error levels during gene expression in living bacterial cells. Proc Natl Acad Sci U S A 2010; 107:11543-8. [PMID: 20534550 DOI: 10.1073/pnas.0912989107] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To monitor inaccuracy in gene expression in living cells, we designed an experimental system in the bacterium Bacillus subtilis whereby spontaneous errors can be visualized and quantified at a single-cell level. Our strategy was to introduce mutations into a chromosomally encoded gfp allele, such that errors in protein production are reported in real time by the formation of fluorescent GFP molecules. The data reveal that the amount of errors can greatly exceed previous estimates, and that the error rate increases dramatically at lower temperatures and during stationary phase. Furthermore, we demonstrate that when facing an antibiotic threat, an increase in error level is sufficient to allow survival of bacteria carrying a mutated antibiotic-resistance gene. We propose that bacterial gene expression is error prone, frequently yielding protein molecules that differ slightly from the sequence specified by their DNA, thus generating a cellular reservoir of nonidentical protein molecules. This variation may be a key factor in increasing bacterial fitness, expanding the capability of an isogenic population to face environmental challenges.
Collapse
|
27
|
Increased RNA polymerase availability directs resources towards growth at the expense of maintenance. EMBO J 2009; 28:2209-19. [PMID: 19574956 DOI: 10.1038/emboj.2009.181] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 06/05/2009] [Indexed: 11/08/2022] Open
Abstract
Nutritionally induced changes in RNA polymerase availability have been hypothesized to be an evolutionary primeval mechanism for regulation of gene expression and several contrasting models have been proposed to explain how such 'passive' regulation might occur. We demonstrate here that ectopically elevating Escherichia coli RNA polymerase (Esigma(70)) levels causes an increased expression and promoter occupancy of ribosomal genes at the expense of stress-defense genes and amino acid biosynthetic operons. Phenotypically, cells overproducing Esigma(70) favours growth and reproduction at the expense of motility and damage protection; a response reminiscent of cells with no or diminished levels of the alarmone guanosine tetraphosphate (ppGpp). Consistently, we show that cells lacking ppGpp displayed markedly elevated levels of free Esigma(70) compared with wild-type cells and that the repression of ribosomal RNA expression and reduced growth rate of mutants with constitutively elevated levels of ppGpp can be suppressed by overproducing Esigma(70). We conclude that ppGpp modulates the levels of free Esigma(70) and that this is an integral part of the alarmone's means of regulating a trade-off between growth and maintenance.
Collapse
|
28
|
Abstract
I present a personal view of the beginning of two-dimensional gels and unsanctioned proteomics. I was still a young graduate student in the early 1970s when I developed methods for two-dimensional gel electrophoresis that became widely used. Though the method gave us the capacity to do things that had never been done, the value of global enumeration of proteins was not appreciated, and we were still two decades away from the invention of the term proteomics. I describe a period of exploration where, by exercising our new capability, we conducted the first proteomic type expression experiments, and made unforeseen contributions to advances in biology. Detection of single-amino acid substitutions validated genetic selections in cultured cells, and revealed a regulatory system that maintains the accuracy of protein synthesis by assuring an unbiased supply of its substrates. We documented biologic control with a dynamic range >10(8) fold, and, in a surprising turn, we identified an approach that provided a major breakthrough in recombinant DNA technology, the ability to express cloned sequences in Escherichia coli. The challenge then and now is to use a capability for global analysis to produce new insights into fundamental aspects of biology and to drive substantive technical advances.
Collapse
Affiliation(s)
- Patrick H O'Farrell
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94158-2517, USA.
| |
Collapse
|
29
|
Hartman MCT, Josephson K, Lin CW, Szostak JW. An expanded set of amino acid analogs for the ribosomal translation of unnatural peptides. PLoS One 2007; 2:e972. [PMID: 17912351 PMCID: PMC1989143 DOI: 10.1371/journal.pone.0000972] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 09/12/2007] [Indexed: 11/23/2022] Open
Abstract
Background The application of in vitro translation to the synthesis of unnatural peptides may allow the production of extremely large libraries of highly modified peptides, which are a potential source of lead compounds in the search for new pharmaceutical agents. The specificity of the translation apparatus, however, limits the diversity of unnatural amino acids that can be incorporated into peptides by ribosomal translation. We have previously shown that over 90 unnatural amino acids can be enzymatically loaded onto tRNA. Methodology/Principal Findings We have now used a competition assay to assess the efficiency of tRNA-aminoacylation of these analogs. We have also used a series of peptide translation assays to measure the efficiency with which these analogs are incorporated into peptides. The translation apparatus tolerates most side chain derivatives, a few α,α disubstituted, N-methyl and α-hydroxy derivatives, but no β-amino acids. We show that over 50 unnatural amino acids can be incorporated into peptides by ribosomal translation. Using a set of analogs that are efficiently charged and translated we were able to prepare individual peptides containing up to 13 different unnatural amino acids. Conclusions/Significance Our results demonstrate that a diverse array of unnatural building blocks can be translationally incorporated into peptides. These building blocks provide new opportunities for in vitro selections with highly modified drug-like peptides.
Collapse
Affiliation(s)
- Matthew C. T. Hartman
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kristopher Josephson
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Chi-Wang Lin
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jack W. Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Fredriksson Å, Ballesteros M, Peterson CN, Persson Ö, Silhavy TJ, Nyström T. Decline in ribosomal fidelity contributes to the accumulation and stabilization of the master stress response regulator sigmaS upon carbon starvation. Genes Dev 2007; 21:862-74. [PMID: 17403784 PMCID: PMC1838536 DOI: 10.1101/gad.409407] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The sigma(S) subunit of RNA polymerase is a master regulator of Escherichia coli that retards cellular senescence and bestows cells with general stress protective functions during growth arrest. We show that mutations and drugs triggering translational errors elevate sigma(S) levels and stability. Furthermore, mutations enhancing translational fidelity attenuate induction of the rpoS regulon and prevent stabilization of sigma(S) upon carbon starvation. Destabilization of sigma(S) by increased proofreading requires the presence of the sigma(S) recognition factor SprE (RssB) and the ClpXP protease. The data further suggest that sigma(S) becomes stabilized upon starvation as a result of ClpP sequestration and this sequestration is enhanced by oxidative modifications of aberrant proteins produced by erroneous translation. ClpP overproduction counteracted starvation-induced stabilization of sigma(S), whereas overproduction of a ClpXP substrate (ssrA-tagged GFP) stabilized sigma(S) in exponentially growing cells. We present a model for the sequence of events leading to the accumulation and activation of sigma(S) upon carbon starvation, which are linked to alterations in both ribosomal fidelity and efficiency.
Collapse
Affiliation(s)
- Åsa Fredriksson
- Department of Cell and Molecular Biology-Microbiology, Göteborg University, 405 30 Göteborg, Sweden
| | - Manuel Ballesteros
- Centro Andaluz de Biologia del Desarrollo (CABD), University “Pablo de Olavide,” Ctra Utrera km1, ES-41013 Seville, Spain
| | - Celeste N. Peterson
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Örjan Persson
- Department of Cell and Molecular Biology-Microbiology, Göteborg University, 405 30 Göteborg, Sweden
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Thomas Nyström
- Department of Cell and Molecular Biology-Microbiology, Göteborg University, 405 30 Göteborg, Sweden
- Corresponding author.E-MAIL ; FAX 46-31-7732599
| |
Collapse
|
31
|
Hecker M, Wiehle W, Schroeeter A, Mach F. Replikation und Expression des Plasmids pBR 322 während diskontinuierlicher Kultivierung eines stringent und relaxed kontrollierten Stammes von Escherichia coli. J Basic Microbiol 2007. [DOI: 10.1002/jobm.19830230606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Christensen-Dalsgaard M, Gerdes K. TwohigBAloci in theVibrio choleraesuperintegron encode mRNA cleaving enzymes and can stabilize plasmids. Mol Microbiol 2006; 62:397-411. [PMID: 17020579 DOI: 10.1111/j.1365-2958.2006.05385.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vibrio cholerae codes for 13 toxin-antitoxin (TA) loci all located within the superintegron on chromosome II. We show here that the two higBA TA loci of V. cholerae encode functional toxins, HigB-1 and HigB-2, whose ectopic expression inhibits cell growth of Escherichia coli, and functional antitoxins, HigA-1 and HigA-2, which counteract the toxicity of the cognate toxins. Three hours of ectopic expression of the HigB toxins resulted in bacteriostasis without any detectable loss of cell viability. The HigB toxins inhibited translation by cleavage of mRNA. Efficient mRNA cleavage occurred preferentially within the translated part of a model mRNA and only when the mRNA was translatable. Promoter analysis in V. cholerae and E. coli showed that the two higBA loci are both transcribed into bi-cistronic mRNAs and that the higBA-2 mRNA is leaderless. Transcription of the two higBA loci was strongly induced by amino acid (aa) starvation in V. cholerae and E. coli, indicating that the regulatory mechanisms of transcriptional induction are conserved across the two species. Both higBA loci stabilized a test-plasmid very efficiently in E. coli, raising the possibility that the loci contribute to maintain genetic stability of the V. cholerae superintegron. Based on these results we discuss the possible biological functions of the TA loci of V. cholerae.
Collapse
Affiliation(s)
- Mikkel Christensen-Dalsgaard
- Department of Biochemistry and Molecular Biology, Campusvej 55, DK-5230 Odense M, University of Southern Denmark, Denmark
| | | |
Collapse
|
33
|
Bonomi G. Long stretches of sequential and identical serine or alanine codons are compatible with an efficient full-length protein expression in Escherichia coli. Protein Expr Purif 2006; 48:160-6. [PMID: 16600623 DOI: 10.1016/j.pep.2006.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 02/15/2006] [Accepted: 02/15/2006] [Indexed: 11/26/2022]
Abstract
The Schistosoma japonicum glutathione S-transferase (GST) recombinant cDNAs, carrying blocks of sequential and identical triplets, consisting of 15-30-45 GCT (Ala) codons or 15-30 and also up to 75 AGC (Ser) codons, are expressed efficiently in an Escherichia coli system in the form of full-length protein chains, as detected by Coomassie-stained SDS-polyacrylamide gels, and soluble fusion proteins are purified by GSH-affinity chromatography. High expression levels and high yields of purified recombinant proteins are achieved. The efficient protein expression is independent of the molecular context and position of the polySer/polyAla string inserted into the GST carrier (near the part of the gene encoding the N- or the C-terminus). These findings suggest that E. coli is a powerful biological system to express foreign genes carrying long stretches coding for Ser- or Ala-rich domains, which are not uncommon in eukaryotic proteins. Moreover, data reported here show that the negative effect of sequential serine codons on protein expression in bacteria, previously reported in the literature, is not a general phenomenon.
Collapse
Affiliation(s)
- Giovanna Bonomi
- Institute of Genetics and Biophysics Adriano Buzzati - Traverso, CNR, Naples, Italy.
| |
Collapse
|
34
|
Han MJ, Lee SY. The Escherichia coli proteome: past, present, and future prospects. Microbiol Mol Biol Rev 2006; 70:362-439. [PMID: 16760308 PMCID: PMC1489533 DOI: 10.1128/mmbr.00036-05] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteomics has emerged as an indispensable methodology for large-scale protein analysis in functional genomics. The Escherichia coli proteome has been extensively studied and is well defined in terms of biochemical, biological, and biotechnological data. Even before the entire E. coli proteome was fully elucidated, the largest available data set had been integrated to decipher regulatory circuits and metabolic pathways, providing valuable insights into global cellular physiology and the development of metabolic and cellular engineering strategies. With the recent advent of advanced proteomic technologies, the E. coli proteome has been used for the validation of new technologies and methodologies such as sample prefractionation, protein enrichment, two-dimensional gel electrophoresis, protein detection, mass spectrometry (MS), combinatorial assays with n-dimensional chromatographies and MS, and image analysis software. These important technologies will not only provide a great amount of additional information on the E. coli proteome but also synergistically contribute to other proteomic studies. Here, we review the past development and current status of E. coli proteome research in terms of its biological, biotechnological, and methodological significance and suggest future prospects.
Collapse
Affiliation(s)
- Mee-Jung Han
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | |
Collapse
|
35
|
Fredriksson A, Ballesteros M, Dukan S, Nyström T. Induction of the heat shock regulon in response to increased mistranslation requires oxidative modification of the malformed proteins. Mol Microbiol 2006; 59:350-9. [PMID: 16359340 DOI: 10.1111/j.1365-2958.2005.04947.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Escherichia coli rpsD12 allele, which reduces translational fidelity and elevates expression of heat shock protein (Hsp) genes, only enhanced Hsp gene expression in the presence of oxygen. Similarly, the rpsL141 allele, which reduces mistranslation and Hsp gene expression, failed to affect the Hsp regulon in cells grown anaerobically. Increased production of Hsps in response to starvation is associated with increased mistranslation and was demonstrated to likewise require the presence of oxygen. Thus, mistranslation triggered by starvation or mutations in the accuracy centre of the ribosome appear to elevate Hsp gene expression via an oxidative modification of mistranslated proteins. In contrast, Hsp gene induction during temperature upshifts was independent of oxygen availability. The data further suggest that it is the oxidative modification of mistranslated DnaK substrates rather than oxidation of DnaK itself that triggers Hsp gene expression upon starvation.
Collapse
Affiliation(s)
- Asa Fredriksson
- Department of Cell and Molecular Biology - Microbiology, Göteborg University, Medicinaregatan 9C, 413 90 Göteborg, Sweden
| | | | | | | |
Collapse
|
36
|
Dittmar KA, Sørensen MA, Elf J, Ehrenberg M, Pan T. Selective charging of tRNA isoacceptors induced by amino-acid starvation. EMBO Rep 2005; 6:151-7. [PMID: 15678157 PMCID: PMC1299251 DOI: 10.1038/sj.embor.7400341] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 12/07/2004] [Accepted: 12/17/2004] [Indexed: 11/08/2022] Open
Abstract
Aminoacylated (charged) transfer RNA isoacceptors read different messenger RNA codons for the same amino acid. The concentration of an isoacceptor and its charged fraction are principal determinants of the translation rate of its codons. A recent theoretical model predicts that amino-acid starvation results in 'selective charging' where the charging levels of some tRNA isoacceptors will be low and those of others will remain high. Here, we developed a microarray for the analysis of charged fractions of tRNAs and measured charging for all Escherichia coli tRNAs before and during leucine, threonine or arginine starvation. Before starvation, most tRNAs were fully charged. During starvation, the isoacceptors in the leucine, threonine or arginine families showed selective charging when cells were starved for their cognate amino acid, directly confirming the theoretical prediction. Codons read by isoacceptors that retain high charging can be used for efficient translation of genes that are essential during amino-acid starvation. Selective charging can explain anomalous patterns of codon usage in the genes for different families of proteins.
Collapse
Affiliation(s)
- Kimberly A Dittmar
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 East 58th street, Chicago, Illinois 60637, USA
| | - Michael A Sørensen
- Department of Molecular Cell Biology, University of Copenhagen, Oester Farimagsgade 2A, DK-1353 Copenhagen, Denmark
| | - Johan Elf
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, 751 24 Uppsala, Sweden
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, 751 24 Uppsala, Sweden
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 East 58th street, Chicago, Illinois 60637, USA
- Tel: +1 773 702 4179; Fax: +1 773 702 0439; E-mail:
| |
Collapse
|
37
|
Gerdes K, Christensen SK, Løbner-Olesen A. Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol 2005; 3:371-82. [PMID: 15864262 DOI: 10.1038/nrmicro1147] [Citation(s) in RCA: 832] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although toxin-antitoxin gene cassettes were first found in plasmids, recent database mining has shown that these loci are abundant in free-living prokaryotes, including many pathogenic bacteria. For example, Mycobacterium tuberculosis has 38 chromosomal toxin-antitoxin loci, including 3 relBE and 9 mazEF loci. RelE and MazF are toxins that cleave mRNA in response to nutritional stress. RelE cleaves mRNAs that are positioned at the ribosomal A-site, between the second and third nucleotides of the A-site codon. It has been proposed that toxin-antitoxin loci function in bacterial programmed cell death, but evidence now indicates that these loci provide a control mechanism that helps free-living prokaryotes cope with nutritional stress.
Collapse
Affiliation(s)
- Kenn Gerdes
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | | | | |
Collapse
|
38
|
Nyström T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J 2005; 24:1311-7. [PMID: 15775985 PMCID: PMC1142534 DOI: 10.1038/sj.emboj.7600599] [Citation(s) in RCA: 553] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 02/04/2005] [Indexed: 12/16/2022] Open
Abstract
Proteins can become modified by a large number of reactions involving reactive oxygen species. Among these reactions, carbonylation has attracted a great deal of attention due to its irreversible and unrepairable nature. Carbonylated proteins are marked for proteolysis by the proteasome and the Lon protease but can escape degradation and form high-molecular-weight aggregates that accumulate with age. Such carbonylated aggregates can become cytotoxic and have been associated with a large number of age-related disorders, including Parkinson's disease, Alzheimer's disease, and cancer. This review focuses on the generation of and defence against protein carbonyls and speculates on the potential role of carbonylation in protein quality control, cellular deterioration, and senescence.
Collapse
Affiliation(s)
- Thomas Nyström
- Department of Cell and Molecular Biology-Microbiology, Göteborg University, Göteborg, Sweden.
| |
Collapse
|
39
|
Abstract
Bacteria enjoy an infinite capacity for reproduction as long as they reside in an environment supporting growth. However, their rapid growth and efficient metabolism ultimately results in depletion of growth-supporting substrates and the population of cells enters a phase defined as the stationary phase of growth. In this phase, their reproductive ability is gradually lost. The molecular mechanism underlying this cellular degeneration has not been fully deciphered. Still, recent analysis of the physiology and molecular biology of stationary-phase E. coli cells has revealed interesting similarities to the aging process of higher organisms. The similarities include increased oxidation of cellular constituents and its target specificity, the role of antioxidants and oxygen tension in determining life span, and an apparent trade-off between activities related to reproduction and survival.
Collapse
Affiliation(s)
- Thomas Nyström
- Department of Cell and Molecular Biology, Microbiology, Göteborg University, Box 462, 405 30 Göteborg , Sweden.
| |
Collapse
|
40
|
Abstract
Prokaryotes are the major source of biological diversity on earth. This is not simply because of the large number of species present, or because of their diverse growth conditions and environmental niches populated by them, but because of the wealth of genes, metabolic pathways and molecular processes that are only found in prokaryotic cells. Therefore, Bacteria and Archaea (and their phages) cannot be considered any longer as miniaturized models of Eukaryotes, but as a genuine source of unique biological processes that are mediated by unique sets of genes and molecular devices. A true understanding of complex biological phenomena will require a deeper knowledge of this vast prokaryotic world. The second European Molecular Biology Organization (EMBO) conference on Molecular Microbiology entitled 'Exploring Prokaryotic Diversity' explored many aspects of this newly emerging interest in the prokaryotic world.
Collapse
Affiliation(s)
- Luis Angel Fernández
- Centro Nacional de Biotecnología del Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
41
|
Dennis PP, Ehrenberg M, Bremer H. Control of rRNA synthesis in Escherichia coli: a systems biology approach. Microbiol Mol Biol Rev 2004; 68:639-68. [PMID: 15590778 PMCID: PMC539008 DOI: 10.1128/mmbr.68.4.639-668.2004] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first part of this review contains an overview of the various contributions and models relating to the control of rRNA synthesis reported over the last 45 years. The second part describes a systems biology approach to identify the factors and effectors that control the interactions between RNA polymerase and rRNA (rrn) promoters of Escherichia coli bacteria during exponential growth in different media. This analysis is based on measurements of absolute rrn promoter activities as transcripts per minute per promoter in bacterial strains either deficient or proficient in the synthesis of the factor Fis and/or the effector ppGpp. These absolute promoter activities are evaluated in terms of rrn promoter strength (V(max)/K(m)) and free RNA polymerase concentrations. Three major conclusions emerge from this evaluation. First, the rrn promoters are not saturated with RNA polymerase. As a consequence, changes in the concentration of free RNA polymerase contribute to changes in rrn promoter activities. Second, rrn P2 promoter strength is not specifically regulated during exponential growth at different rates; its activity changes only when the concentration of free RNA polymerase changes. Third, the effector ppGpp reduces the strength of the rrn P1 promoter both directly and indirectly by reducing synthesis of the stimulating factor Fis. This control of rrn P1 promoter strength forms part of a larger feedback loop that adjusts the synthesis of ribosomes to the availability of amino acids via amino acid-dependent control of ppGpp accumulation.
Collapse
Affiliation(s)
- Patrick P Dennis
- Division of Molecular and Cellular Biosciences, National Science Foundation, 4201 Wilson Blvd., Arlington VA 22230, USA.
| | | | | |
Collapse
|
42
|
Elf J, Ehrenberg M. Near-critical behavior of aminoacyl-tRNA pools in E. coli at rate-limiting supply of amino acids. Biophys J 2004; 88:132-46. [PMID: 15501947 PMCID: PMC1304992 DOI: 10.1529/biophysj.104.051383] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rates of consumption of different amino acids in protein synthesis are in general stoichiometrically coupled with coefficients determined by codon usage frequencies on translating ribosomes. We show that when the rates of synthesis of two or more amino acids are limiting for protein synthesis and exactly matching their coupled rates of consumption on translating ribosomes, the pools of aminoacyl-tRNAs in ternary complex with elongation factor Tu and GTP are hypersensitive to a variation in the rate of amino acid supply. This high sensitivity makes a macroscopic analysis inconclusive, because it is accompanied by almost free and anticorrelated diffusion in copy numbers of ternary complexes. This near-critical behavior is relevant for balanced growth of Escherichia coli cells in media that lack amino acids and for adaptation of E. coli cells after downshifts from amino-acid-containing to amino-acid-lacking growth media. The theoretical results are used to discuss transcriptional control of amino acid synthesis during multiple amino acid limitation, the recovery of E. coli cells after nutritional downshifts and to propose a robust mechanism for the regulation of RelA-dependent synthesis of the global effector molecule ppGpp.
Collapse
Affiliation(s)
- Johan Elf
- Department of Cell & Molecular Biology, BMC, Uppsala University, S-751 24 Uppsala, Sweden
| | | |
Collapse
|
43
|
Agafonov DE, Spirin AS. The ribosome-associated inhibitor A reduces translation errors. Biochem Biophys Res Commun 2004; 320:354-8. [PMID: 15219834 DOI: 10.1016/j.bbrc.2004.05.171] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2004] [Indexed: 11/28/2022]
Abstract
Recently we have reported about a novel stress response protein (pY or RaiA) associated with Escherichia coli ribosomes that inhibits translation at the aminoacyl-tRNA binding stage. Here we show that leucine misincorporation during in vitro poly(U) translation is inhibited by this protein much stronger than the incorporation of phenylalanine. The miscoding counteraction by RaiA is especially strong at the concentrations of magnesium ions close to those observed in vivo and diminishes at higher magnesium concentrations. The results obtained suggest that the anti-miscoding activity of RaiA could be the main function of the protein, rather than the inhibition of translation. The role of the protein in adaptation of cells to environmental stress is discussed.
Collapse
Affiliation(s)
- Dmitry E Agafonov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| | | |
Collapse
|
44
|
Okamoto-Hosoya Y, Hosaka T, Ochi K. An aberrant protein synthesis activity is linked with antibiotic overproduction in rpsL mutants of Streptomyces coelicolor A3(2). MICROBIOLOGY-SGM 2004; 149:3299-3309. [PMID: 14600242 DOI: 10.1099/mic.0.26490-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Certain mutations in the rpsL gene (encoding the ribosomal protein S12) activate or enhance antibiotic production in various bacteria. K88E and P91S rpsL mutants of Streptomyces coelicolor A3(2), with an enhanced actinorhodin production, were found to exhibit an aberrant protein synthesis activity. While a high level of this activity (as determined by the incorporation of labelled leucine) was detected at the late stationary phase in the mutants, it decreased with age of the cells in the wild-type strain. In addition, the aberrant protein synthesis was particularly pronounced when cells were subjected to amino acid shift-down, and was independent of their ability to accumulate ppGpp. Ribosomes of K88E and P91S mutants displayed an increased accuracy in protein synthesis as demonstrated by the poly(U)-directed cell-free translation system, but so did K43N, K43T, K43R and K88R mutants, which were streptomycin resistant but showed no effect on actinorhodin production. This eliminates the possibility that the increased accuracy level is a cause of the antibiotic overproduction in the K88E and P91S mutants. The K88E and P91S mutant ribosomes exhibited an increased stability of the 70S complex under low concentrations of magnesium. The authors propose that the aberrant activation of protein synthesis caused by the increased stability of the ribosome is responsible for the remarkable enhancement of antibiotic production in the K88E and P91S mutants.
Collapse
Affiliation(s)
| | - Takeshi Hosaka
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | - Kozo Ochi
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| |
Collapse
|
45
|
Lee PS, Lee KH. Escherichia coli?a model system that benefits from and contributes to the evolution of proteomics. Biotechnol Bioeng 2003; 84:801-14. [PMID: 14708121 DOI: 10.1002/bit.10848] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The large body of knowledge about Escherichia coli makes it a useful model organism for the expression of heterologous proteins. Proteomic studies have helped to elucidate the complex cellular responses of E. coli and facilitated its use in a variety of biotechnology applications. Knowledge of basic cellular processes provides the means for better control of heterologous protein expression. Beyond such important applications, E. coli is an ideal organism for testing new analytical technologies because of the extensive knowledge base available about the organism. For example, improved technology for characterization of unknown proteins using mass spectrometry has made two-dimensional electrophoresis (2DE) studies more useful and more rewarding, and much of the initial testing of novel protocols is based on well-studied samples derived from E. coli. These techniques have facilitated the construction of more accurate 2DE maps. In this review, we present work that led to the 2DE databases, including a new map based on tandem time-of-flight (TOF) mass spectrometry (MS); describe cellular responses relevant to biotechnology applications; and discuss some emerging proteomic techniques.
Collapse
Affiliation(s)
- Pat S Lee
- School of Chemical and Biomolecular Engineering, Cornell University, 102 Olin Hall, Ithaca, New York 14853, USA
| | | |
Collapse
|
46
|
Karring H, Björnsson A, Thirup S, Clark BFC, Knudsen CR. Functional effects of deleting the coiled-coil motif in Escherichia coli elongation factor Ts. ACTA ACUST UNITED AC 2003; 270:4294-305. [PMID: 14622294 DOI: 10.1046/j.1432-1033.2003.03822.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Elongation factor Ts (EF-Ts) is the guanine nucleotide-exchange factor for elongation factor Tu (EF-Tu) that is responsible for promoting the binding of aminoacyl-tRNA to the mRNA-programmed ribosome. The structure of the Escherichia coli EF-Tu-EF-Ts complex reveals a protruding antiparallel coiled-coil motif in EF-Ts, which is responsible for the dimerization of EF-Ts in the crystal. In this study, the sequence encoding the coiled-coil motif in EF-Ts was deleted from the genome in Escherichia coli by gene replacement. The growth rate of the resulting mutant strain was 70-95% of that of the wild-type strain, depending on the growth conditions used. The mutant strain sensed amino acid starvation and synthesized the nucleotides guanosine 5'-diphosphate 3'-diphosphate and guanosine 5'-triphosphate 3'-diphosphate at a lower cell density than the wild-type strain. Deletion of the coiled-coil motif only partially reduced the ability of EF-Ts to stimulate the guanine nucleotide exchange in EF-Tu. However, the concentration of guanine nucleotides (GDP and GTP) required to dissociate the mutant EF-Tu-EF-Ts complex was at least two orders of magnitude lower than that for the wild-type complex. The results show that the coiled-coil motif plays a significant role in the ability of EF-Ts to compete with guanine nucleotides for the binding to EF-Tu. The present results also indicate that the deletion alters the competition between EF-Ts and kirromycin for the binding to EF-Tu.
Collapse
Affiliation(s)
- Henrik Karring
- Department of Molecular Biology, Aarhus University, Denmark
| | | | | | | | | |
Collapse
|
47
|
Elf J, Nilsson D, Tenson T, Ehrenberg M. Selective charging of tRNA isoacceptors explains patterns of codon usage. Science 2003; 300:1718-22. [PMID: 12805541 DOI: 10.1126/science.1083811] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We modeled how the charged levels of different transfer RNAs (tRNAs) that carry the same amino acid (isoacceptors) respond when this amino acid becomes growth-limiting. The charged levels will approach zero for some isoacceptors (such as tRNA2Leu) and remain high for others (such as tRNA4Leu), as determined by the concentrations of isoacceptors and how often their codons occur in protein synthesis. The theory accounts for (synonymous) codons for the same amino acid that are used in ribosome-mediated transcriptional attenuation, the choices of synonymous codons in trans-translating transfermessenger RNA, and the overrepresentation of rare codons in messenger RNAs for amino acid biosynthetic enzymes.
Collapse
MESH Headings
- Amino Acids/metabolism
- Amino Acyl-tRNA Synthetases/metabolism
- Codon
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Escherichia coli Proteins/biosynthesis
- Escherichia coli Proteins/genetics
- Frameshifting, Ribosomal
- Gene Expression Regulation, Bacterial
- Kinetics
- Mathematics
- Models, Genetic
- Operon
- Protein Biosynthesis
- Pyrophosphatases/genetics
- Pyrophosphatases/metabolism
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Johan Elf
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, 751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
48
|
Abstract
Like ageing insects, worms and mammals, growth-arrested Escherichia coli cells accumulate oxidatively damaged proteins. In the early stages of the E. coli stationary phase, this oxidation is caused by an increased production of aberrant proteins, which are especially susceptible to oxidative attack. This route of oxidation appears to elude the classical oxidative defence proteins. The failure of growth-arrested cells fully to combat oxidative damage may also be linked to a trade-off between proliferation activities (primarily directed by the housekeeping sigma factor, sigma70) and maintenance (primarily directed by sigmaS). This trade-off is regulated by the alarmone ppGpp such that elevated ppGpp levels allow sigmaS, and other alternative sigma factors, to work in concert with sigma70 by shifting their relative competitiveness for RNA polymerase binding. However, even during elevated ppGpp levels and stasis, E. coli cells maintain a basal transcription of housekeeping sigma70-dependent genes, and resources are thus partly diverted from maintenance and stress defences to activities relating to proliferation. An alternative view argues for ppGpp being involved in programmed cell death upon growth arrest by regulating chromosomally located toxin-antitoxin loci. Thus, models of bacterial senescence, like those dealing with ageing in higher organisms, encompass both stochastic deterioration theories and programming theories. This review summarizes and evaluates these models.
Collapse
Affiliation(s)
- Thomas Nyström
- Department of Cell and Molecular Biology - Microbiology, Göteborg University, Medicinaregatan 9C, 413 90 Göteborg, Sweden.
| |
Collapse
|
49
|
Abstract
Upon starvation and growth arrest, Escherichia coli cells gradually lose their ability to reproduce. These apparently sterile/nonculturable cells initially remain intact and metabolically active and the underlying molecular mechanism behind this sterility is something of an enigma in bacteriology. Three different models have been proposed to explain this phenomenon. The first theory suggests that starving cells become nonculturable due to cellular deterioration, are moribund, and show some of the same signs of senescence as aging organisms. The two other theories suggest that genetically programmed pathways, rather than stochastic deterioration, trigger nonculturability. One "program" theory suggests that nonculturability is the culmination of an adaptive pathway generating dormant survival forms, similar to spore formation in differentiating bacteria. The other "program" theory states that starved cells lose viability due to activation of genetic modules mediating programmed cell death. The different models will be reviewed and evaluated in light of recent data on the physiology and molecular biology of growth-arrested E. coli cells.
Collapse
Affiliation(s)
- Thomas Nyström
- Department of Cell and Molecular Biology, Microbiology, Göteborg University, Box 462, 405 30 Göteborg, Sweden.
| |
Collapse
|
50
|
Pedersen K, Zavialov AV, Pavlov MY, Elf J, Gerdes K, Ehrenberg M. The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell 2003; 112:131-40. [PMID: 12526800 DOI: 10.1016/s0092-8674(02)01248-5] [Citation(s) in RCA: 444] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Escherichia coli relBE operon encodes a toxin-antitoxin pair, RelE-RelB. RelB can reverse inhibition of protein synthesis by RelE in vivo. We have found that although RelE does not degrade free RNA, it cleaves mRNA in the ribosomal A site with high codon specificity. Among stop codons UAG is cleaved with fast, UAA intermediate and UGA slow rate, while UCG and CAG are cleaved most rapidly among sense codons. We suggest that inhibition of protein synthesis by RelE is reversed with the help of tmRNA, and that RelE plays a regulatory role in bacteria during adaptation to poor growth conditions.
Collapse
Affiliation(s)
- Kim Pedersen
- Department of Biochemistry and Molecular Biology, OU, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | | | | | | | | | | |
Collapse
|