1
|
Wu MY, Huang SW, Kao IF, Yen SK. The Preparation and Characterization of Chitosan/Calcium Phosphate Composite Microspheres for Biomedical Applications. Polymers (Basel) 2024; 16:167. [PMID: 38256966 PMCID: PMC10820865 DOI: 10.3390/polym16020167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
In this study, we successfully prepared porous composite microspheres composed of hydroxyapatite (HAp), di-calcium phosphate di-hydrated (DCPD), and chitosan through the hydrothermal method. The chitosan played a crucial role as a chelating agent to facilitate the growth of related calcium phosphates. The synthesized porous composite microspheres exhibit a specific surface area of 38.16 m2/g and a pore volume of 0.24 cm3/g, with the pore size ranging from 4 to 100 nm. Given the unique properties of chitosan and the exceptional porosity of these composite microspheres, they may serve as carriers for pharmaceuticals. After being annealed, the chitosan transforms into a condensed form and the DCPD transforms into Ca2P2O7 at 300 °C. Then, the Ca2P2O7 initially combines with HAp to transform into β tricalcium phosphate (β-TCP) at 500 °C where the chitosan is also completely combusted. Finally, the microspheres are composed of Ca2P2O7, β-TCP, and HAp, also making them suitable for applications such as injectable bone graft materials.
Collapse
Affiliation(s)
- Meng-Ying Wu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.W.); (S.-W.H.)
- Department of Orthopedics, National Defense Medical Center, Taipei 114, Taiwan
- Department of Orthopedics, Taichung Armed Forces General Hospital, Taichung 404, Taiwan
| | - Shih-Wei Huang
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.W.); (S.-W.H.)
| | - I-Fang Kao
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.W.); (S.-W.H.)
| | - Shiow-Kang Yen
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.W.); (S.-W.H.)
| |
Collapse
|
2
|
Wan Y, Ma H, Ma Z, Tan L, Miao L. Enhanced Degradability of the Apatite-Based Calcium Phosphate Cement Incorporated with Amorphous MgZnCa Alloy. ACS Biomater Sci Eng 2023; 9:6084-6093. [PMID: 37909852 DOI: 10.1021/acsbiomaterials.3c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Degradability is vital for bone filling and plays an important role in bone regeneration. Evidence indicates that apatite-based calcium phosphate cement (ACPC) is a prospective biomaterial for bone repair with enhanced osteogenesis. However, poor degradability restricts their clinical application. In this study, MgZnCa-doped ACPC (MgZnCa/ACPC) composites were fabricated by adding 3 (wt) % amorphous MgZnCa powder in the solid phase of ACPC to enhance the biodegradation and bioactivity of the apatite ACPC. The chemical and the physical properties of the MgZnCa/ACPC composite were investigated and compared with the ACPC composite. The results showed that the incorporation of MgZnCa improved both the degradability and the compressive strength of the ACPC composite. X-ray diffraction and Fourier transform infrared spectrometry analysis suggested significant changes in the microstructures of the composites due to the incorporation and the anodic dissolution of MgZnCa alloy. These findings indicate that the MgZnCa/ACPC composite is capable of facilitating bone repair and regeneration by endowing favorable degradation property.
Collapse
Affiliation(s)
- Ye Wan
- School of Materials Science and Engineering, Shenyang Jianzhu University, Liaoning 110168, China
| | - Haoxiang Ma
- School of Materials Science and Engineering, Shenyang Jianzhu University, Liaoning 110168, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zheng Ma
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lili Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lei Miao
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Liaoning 110002, China
| |
Collapse
|
3
|
Kumar Dewangan V, Sampath Kumar TS, Doble M, Daniel Varghese V. Fabrication of injectable antibiotic-loaded apatitic bone cements with prolonged drug delivery for treating post-surgery infections. J Biomed Mater Res A 2023; 111:1750-1767. [PMID: 37353879 DOI: 10.1002/jbm.a.37584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
Antibiotic-loaded bioactive bone substitutes are widely used for treating various orthopedic diseases and prophylactically to avoid post implantation infection. Calcium deficient hydroxyapatite (also known as apatitic bone cement) is a potential bioactive bone substitute in orthopedics due to its chemical composition similar to that of natural bone minerals. In this study, fabrication of mannitol (a solid porogen) incorporated injectable synthetic (Syn) and eggshell derived (ESD) apatitic bone cements loaded with antibiotics (gentamicin/meropenem/ rifampicin/vancomycin) was investigated. The release kinetics of the antibiotics were studied by fitting them with different kinetic models. All the antibiotics-loaded apatitic bone cements set within clinically accepted setting time (20 ± 2 min) and with good injectability (>70%). The antibiotics released from these bone cements were found to be controlled and sustained throughout the study time. Weibull and Gompertz (applies in least initial burst and sustain drug release rate models) were the best models to predict the release behavior. They cements had acceptable compressive strength (6-10 MPa; in the range of trabecular bone) and were biodegradable (21%-27% within 12 weeks of incubation) in vitro in simulated body fluids at physiological conditions. These bone cements showed excellent antibacterial activity from day 1 onwards and no bacterial colony was found from day 3 onwards. The viability of MG63 cells in vitro after 72 h was significantly higher after 24 h (i.e., ~110%). The cells were well attached and spread over the surface of the cements with extended morphology. The ESD antibiotic-loaded apatitic bone cements showed better injectability, degradation and cytocompatibility compared when compared to Syn antibiotic-loaded apatitic bone cements. Thus, we believe that the ESD antibiotic-loaded apatitic bone cements are suitable as potential injectable bone substitutes to avoid post-operative implant associated and other acute or chronic bone infections.
Collapse
Affiliation(s)
- Vimal Kumar Dewangan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - T S Sampath Kumar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Mukesh Doble
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
- Department of Cariology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | |
Collapse
|
4
|
Balavigneswaran CK, Selvaraj S, Vasudha TK, Iniyan S, Muthuvijayan V. Tissue engineered skin substitutes: A comprehensive review of basic design, fabrication using 3D printing, recent advances and challenges. BIOMATERIALS ADVANCES 2023; 153:213570. [PMID: 37540939 DOI: 10.1016/j.bioadv.2023.213570] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/08/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
The multi-layered skin structure includes the epidermis, dermis and hypodermis, which forms a sophisticated tissue composed of extracellular matrix (ECM). The wound repair is a well-orchestrated process when the skin is injured. However, this natural wound repair will be ineffective for large surface area wounds. Autografts-based treatment is efficient but, additional pain and secondary healing of the patient limits its successful application. Therefore, there is a substantial need for fabricating tissue-engineered skin constructs. The development of a successful skin graft requires a fundamental understanding of the natural skin and its healing process, as well as design criteria for selecting a biopolymer and an appropriate fabrication technique. Further, the fabrication of an appropriate skin graft needs to meet physicochemical, mechanical, and biological properties equivalent to the natural skin. Advanced 3D bioprinting provides spatial control of the placement of functional components, such as biopolymers with living cells, which can satisfy the prerequisites for the preparation of an ideal skin graft. In this view, here we elaborate on the basic design requirements, constraints involved in the fabrication of skin graft and choice of ink, the probable solution by 3D bioprinting technique, as well as their latest advancements, challenges, and prospects.
Collapse
Affiliation(s)
- Chelladurai Karthikeyan Balavigneswaran
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - Sowmya Selvaraj
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - T K Vasudha
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Saravanakumar Iniyan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
5
|
Mishchenko O, Yanovska A, Kosinov O, Maksymov D, Moskalenko R, Ramanavicius A, Pogorielov M. Synthetic Calcium-Phosphate Materials for Bone Grafting. Polymers (Basel) 2023; 15:3822. [PMID: 37765676 PMCID: PMC10536599 DOI: 10.3390/polym15183822] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Synthetic bone grafting materials play a significant role in various medical applications involving bone regeneration and repair. Their ability to mimic the properties of natural bone and promote the healing process has contributed to their growing relevance. While calcium-phosphates and their composites with various polymers and biopolymers are widely used in clinical and experimental research, the diverse range of available polymer-based materials poses challenges in selecting the most suitable grafts for successful bone repair. This review aims to address the fundamental issues of bone biology and regeneration while providing a clear perspective on the principles guiding the development of synthetic materials. In this study, we delve into the basic principles underlying the creation of synthetic bone composites and explore the mechanisms of formation for biologically important complexes and structures associated with the various constituent parts of these materials. Additionally, we offer comprehensive information on the application of biologically active substances to enhance the properties and bioactivity of synthetic bone grafting materials. By presenting these insights, our review enables a deeper understanding of the regeneration processes facilitated by the application of synthetic bone composites.
Collapse
Affiliation(s)
- Oleg Mishchenko
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Anna Yanovska
- Theoretical and Applied Chemistry Department, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine
| | - Oleksii Kosinov
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Denys Maksymov
- Department of Surgical and Propaedeutic Dentistry, Zaporizhzhia State Medical and Pharmaceutical University, 26, Prosp. Mayakovskogo, 69035 Zaporizhzhia, Ukraine; (O.M.); (O.K.); (D.M.)
| | - Roman Moskalenko
- Department of Pathology, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine;
| | - Arunas Ramanavicius
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, R-Korsakova Street, 40007 Sumy, Ukraine;
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Iela 3, LV-1004 Riga, Latvia
| |
Collapse
|
6
|
Yuste I, Luciano FC, Anaya BJ, Sanz-Ruiz P, Ribed-Sánchez A, González-Burgos E, Serrano DR. Engineering 3D-Printed Advanced Healthcare Materials for Periprosthetic Joint Infections. Antibiotics (Basel) 2023; 12:1229. [PMID: 37627649 PMCID: PMC10451995 DOI: 10.3390/antibiotics12081229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
The use of additive manufacturing or 3D printing in biomedicine has experienced fast growth in the last few years, becoming a promising tool in pharmaceutical development and manufacturing, especially in parenteral formulations and implantable drug delivery systems (IDDSs). Periprosthetic joint infections (PJIs) are a common complication in arthroplasties, with a prevalence of over 4%. There is still no treatment that fully covers the need for preventing and treating biofilm formation. However, 3D printing plays a major role in the development of novel therapies for PJIs. This review will provide a deep understanding of the different approaches based on 3D-printing techniques for the current management and prophylaxis of PJIs. The two main strategies are focused on IDDSs that are loaded or coated with antimicrobials, commonly in combination with bone regeneration agents and 3D-printed orthopedic implants with modified surfaces and antimicrobial properties. The wide variety of printing methods and materials have allowed for the manufacture of IDDSs that are perfectly adjusted to patients' physiognomy, with different drug release profiles, geometries, and inner and outer architectures, and are fully individualized, targeting specific pathogens. Although these novel treatments are demonstrating promising results, in vivo studies and clinical trials are required for their translation from the bench to the market.
Collapse
Affiliation(s)
- Iván Yuste
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Francis C. Luciano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Brayan J. Anaya
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Pablo Sanz-Ruiz
- Orthopaedic and Trauma Department, Hospital General Universitario Gregorio Marañón, 28029 Madrid, Spain;
- Department of Surgery, Faculty of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Almudena Ribed-Sánchez
- Hospital Pharmacy Unit, Hospital General Universitario Gregorio Marañón, 28029 Madrid, Spain;
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Dolores R. Serrano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
- Instituto Universitario de Farmacia Industrial, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| |
Collapse
|
7
|
Guo X, Song P, Li F, Yan Q, Bai Y, He J, Che Q, Cao H, Guo J, Su Z. Research Progress of Design Drugs and Composite Biomaterials in Bone Tissue Engineering. Int J Nanomedicine 2023; 18:3595-3622. [PMID: 37416848 PMCID: PMC10321437 DOI: 10.2147/ijn.s415666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Bone, like most organs, has the ability to heal naturally and can be repaired slowly when it is slightly injured. However, in the case of bone defects caused by diseases or large shocks, surgical intervention and treatment of bone substitutes are needed, and drugs are actively matched to promote osteogenesis or prevent infection. Oral administration or injection for systemic therapy is a common way of administration in clinic, although it is not suitable for the long treatment cycle of bone tissue, and the drugs cannot exert the greatest effect or even produce toxic and side effects. In order to solve this problem, the structure or carrier simulating natural bone tissue is constructed to control the loading or release of the preparation with osteogenic potential, thus accelerating the repair of bone defect. Bioactive materials provide potential advantages for bone tissue regeneration, such as physical support, cell coverage and growth factors. In this review, we discuss the application of bone scaffolds with different structural characteristics made of polymers, ceramics and other composite materials in bone regeneration engineering and drug release, and look forward to its prospect.
Collapse
Affiliation(s)
- Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Pan Song
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Feng Li
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, People’s Republic of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, People’s Republic of China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|
8
|
van Oirschot B, van den Beucken JJ, Mikos AG, Jansen JA. Lateral Bone Augmentation Using a Three-Dimensional-Printed Polymeric Chamber to Compare Biomaterials. Tissue Eng Part C Methods 2023; 29:287-297. [PMID: 37082957 PMCID: PMC10402696 DOI: 10.1089/ten.tec.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023] Open
Abstract
The aim of this study was to test the suitability of calcium phosphate cement mixed with poly(lactic-co-glycolic acid) (CPC-PLGA) microparticles into a ring-shaped polymeric space-maintaining device as bone graft material for lateral bone augmentation. Therefore, the bone chambers were installed on the lateral portion of the anterior region of the mandibular body of mini-pigs. Chambers were filled with either CPC-PLGA or BioOss® particles for comparison and left for 4 and 12 weeks. Histology and histomorphometry were used to obtain temporal insight in material degradation and bone formation. Results indicated that between 4 and 12 weeks of implantation, a significant degradation of the CPC-PLGA (from 75.1% to 23.1%), as well as BioOss material, occurred (from 40.6% to 14.4%). Degradation of both materials was associated with the presence of macrophage-like and osteoclast-like cells. Furthermore, a significant increase in bone formation occurred between 4 and 12 weeks for the CPC-PLGA (from 0.1% to 7.2%), as well as BioOss material (from 8.3% to 23.3%). Statistical analysis showed that bone formation had progressed significantly better using BioOss compared to CPC-PLGA (p < 0.05). In conclusion, this mini-pig study showed that CPC-PLGA does not stimulate lateral bone augmentation using a bone chamber device. Both treatments failed to achieve "clinically" meaningful alveolar ridge augmentation.
Collapse
Affiliation(s)
- Bart van Oirschot
- Regenerative Biomaterials, Department of Dentistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - John A. Jansen
- Regenerative Biomaterials, Department of Dentistry, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Rafikova G, Piatnitskaia S, Shapovalova E, Chugunov S, Kireev V, Ialiukhova D, Bilyalov A, Pavlov V, Kzhyshkowska J. Interaction of Ceramic Implant Materials with Immune System. Int J Mol Sci 2023; 24:4200. [PMID: 36835610 PMCID: PMC9959507 DOI: 10.3390/ijms24044200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
The immuno-compatibility of implant materials is a key issue for both initial and long-term implant integration. Ceramic implants have several advantages that make them highly promising for long-term medical solutions. These beneficial characteristics include such things as the material availability, possibility to manufacture various shapes and surface structures, osteo-inductivity and osteo-conductivity, low level of corrosion and general biocompatibility. The immuno-compatibility of an implant essentially depends on the interaction with local resident immune cells and, first of all, macrophages. However, in the case of ceramics, these interactions are insufficiently understood and require intensive experimental examinations. Our review summarizes the state of the art in variants of ceramic implants: mechanical properties, different chemical modifications of the basic material, surface structures and modifications, implant shapes and porosity. We collected the available information about the interaction of ceramics with the immune system and highlighted the studies that reported ceramic-specific local or systemic effects on the immune system. We disclosed the gaps in knowledge and outlined the perspectives for the identification to ceramic-specific interactions with the immune system using advanced quantitative technologies. We discussed the approaches for ceramic implant modification and pointed out the need for data integration using mathematic modelling of the multiple ceramic implant characteristics and their contribution for long-term implant bio- and immuno-compatibility.
Collapse
Affiliation(s)
- Guzel Rafikova
- Laboratory of Immunology, Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Svetlana Piatnitskaia
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Elena Shapovalova
- Department of Chemistry, Tomsk State University, 634050 Tomsk, Russia
| | | | - Victor Kireev
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
- Department of Applied Physics, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Daria Ialiukhova
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Azat Bilyalov
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | | | - Julia Kzhyshkowska
- Institute of Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
- Department of Chemistry, Tomsk State University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciecnes (MI3), Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg, 68167 Mannheim, Germany
| |
Collapse
|
10
|
Chan MH, Li CH, Chang YC, Hsiao M. Iron-Based Ceramic Composite Nanomaterials for Magnetic Fluid Hyperthermia and Drug Delivery. Pharmaceutics 2022; 14:2584. [PMID: 36559083 PMCID: PMC9788200 DOI: 10.3390/pharmaceutics14122584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Because of the unique physicochemical properties of magnetic iron-based nanoparticles, such as superparamagnetism, high saturation magnetization, and high effective surface area, they have been applied in biomedical fields such as diagnostic imaging, disease treatment, and biochemical separation. Iron-based nanoparticles have been used in magnetic resonance imaging (MRI) to produce clearer and more detailed images, and they have therapeutic applications in magnetic fluid hyperthermia (MFH). In recent years, researchers have used clay minerals, such as ceramic materials with iron-based nanoparticles, to construct nanocomposite materials with enhanced saturation, magnetization, and thermal effects. Owing to their unique structure and large specific surface area, iron-based nanoparticles can be homogenized by adding different proportions of ceramic minerals before and after modification to enhance saturation magnetization. In this review, we assess the potential to improve the magnetic properties of iron-based nanoparticles and in the preparation of multifunctional composite materials through their combination with ceramic materials. We demonstrate the potential of ferromagnetic enhancement and multifunctional composite materials for MRI diagnosis, drug delivery, MFH therapy, and cellular imaging applications.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
11
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. COATINGS 2022; 12:1380. [DOI: 10.3390/coatings12101380] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Various types of materials have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A short time later, such synthetic biomaterials were called bioceramics. Bioceramics can be prepared from diverse inorganic substances, but this review is limited to calcium orthophosphate (CaPO4)-based formulations only, due to its chemical similarity to mammalian bones and teeth. During the past 50 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the CaPO4-based implants would remain biologically stable once incorporated into the skeletal structure or whether they would be resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed, and such formulations became an integrated part of the tissue engineering approach. Now, CaPO4-based scaffolds are designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various biomolecules and/or cells. Therefore, current biomedical applications of CaPO4-based bioceramics include artificial bone grafts, bone augmentations, maxillofacial reconstruction, spinal fusion, and periodontal disease repairs, as well as bone fillers after tumor surgery. Prospective future applications comprise drug delivery and tissue engineering purposes because CaPO4 appear to be promising carriers of growth factors, bioactive peptides, and various types of cells.
Collapse
|
12
|
Khan HM, Liao X, Sheikh BA, Wang Y, Su Z, Guo C, Li Z, Zhou C, Cen Y, Kong Q. Smart biomaterials and their potential applications in tissue engineering. J Mater Chem B 2022; 10:6859-6895. [PMID: 36069198 DOI: 10.1039/d2tb01106a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smart biomaterials have been rapidly advancing ever since the concept of tissue engineering was proposed. Interacting with human cells, smart biomaterials can play a key role in novel tissue morphogenesis. Various aspects of biomaterials utilized in or being sought for the goal of encouraging bone regeneration, skin graft engineering, and nerve conduits are discussed in this review. Beginning with bone, this study summarizes all the available bioceramics and materials along with their properties used singly or in conjunction with each other to create scaffolds for bone tissue engineering. A quick overview of the skin-based nanocomposite biomaterials possessing antibacterial properties for wound healing is outlined along with skin regeneration therapies using infrared radiation, electrospinning, and piezoelectricity, which aid in wound healing. Furthermore, a brief overview of bioengineered artificial skin grafts made of various natural and synthetic polymers has been presented. Finally, by examining the interactions between natural and synthetic-based biomaterials and the biological environment, their strengths and drawbacks for constructing peripheral nerve conduits are highlighted. The description of the preclinical outcome of nerve regeneration in injury healed with various natural-based conduits receives special attention. The organic and synthetic worlds collide at the interface of nanomaterials and biological systems, producing a new scientific field including nanomaterial design for tissue engineering.
Collapse
Affiliation(s)
- Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Xiaoxia Liao
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Bilal Ahmed Sheikh
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhixuan Su
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Chuan Guo
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
13
|
Bakhshyani M, Jallab M, Aarabi M, Ghaffari M. Development of a high-performance PVA/DOPA bone adhesive incorporated with bioactive glass and hydroxyapatite particles for highly comminuted bone fractures. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.1995419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Mobina Bakhshyani
- Department of Polymer Engineering, School of Engineering, Golestan University, Gorgan, Iran
| | - Mojtaba Jallab
- Department of Polymer Engineering, School of Engineering, Golestan University, Gorgan, Iran
| | - Mehdi Aarabi
- Bone, and Connective Tissue Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Ghaffari
- Department of Polymer Engineering, School of Engineering, Golestan University, Gorgan, Iran
| |
Collapse
|
14
|
Application of additively manufactured 3D scaffolds for bone cancer treatment: a review. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractBone cancer is a critical health problem on a global scale, and the associated huge clinical and economic burdens are still rising. Although many clinical approaches are currently used for bone cancer treatment, these methods usually affect the normal body functions and thus present significant limitations. Meanwhile, advanced materials and additive manufacturing have opened up promising avenues for the development of new strategies targeting both bone cancer treatment and post-treatment bone regeneration. This paper presents a comprehensive review of bone cancer and its current treatment methods, particularly focusing on a number of advanced strategies such as scaffolds based on advanced functional materials, drug-loaded scaffolds, and scaffolds for photothermal/magnetothermal therapy. Finally, the main research challenges and future perspectives are elaborated.
Collapse
|
15
|
Floriano JF, Emanueli C, Vega S, Barbosa AMP, Oliveira RGD, Floriano EAF, Graeff CFDO, Abbade JF, Herculano RD, Sobrevia L, Rudge MVC. Pro-angiogenic approach for skeletal muscle regeneration. Biochim Biophys Acta Gen Subj 2022; 1866:130059. [PMID: 34793875 DOI: 10.1016/j.bbagen.2021.130059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
The angiogenesis process is a phenomenon in which numerous molecules participate in the stimulation of the new vessels' formation from pre-existing vessels. Angiogenesis is a crucial step in tissue regeneration and recovery of organ and tissue function. Muscle diseases affect millions of people worldwide overcome the ability of skeletal muscle to self-repair. Pro-angiogenic therapies are key in skeletal muscle regeneration where both myogenesis and angiogenesis occur. These therapies have been based on mesenchymal stem cells (MSCs), exosomes, microRNAs (miRs) and delivery of biological factors. The use of different calls of biomaterials is another approach, including ceramics, composites, and polymers. Natural polymers are use due its bioactivity and biocompatibility in addition to its use as scaffolds and in drug delivery systems. One of these polymers is the natural rubber latex (NRL) which is biocompatible, bioactive, versatile, low-costing, and capable of promoting tissue regeneration and angiogenesis. In this review, the advances in the field of pro-angiogenic therapies are discussed.
Collapse
Affiliation(s)
- Juliana Ferreira Floriano
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; National Heart and Lung Institute, Imperial College London, London, UK.
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sofia Vega
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | | | | | | | | | - Joelcio Francisco Abbade
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil
| | | | - Luis Sobrevia
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland, Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD, 4029, Queensland, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, the Netherlands.
| | | |
Collapse
|
16
|
Drexelius MG, Neundorf I. Application of Antimicrobial Peptides on Biomedical Implants: Three Ways to Pursue Peptide Coatings. Int J Mol Sci 2021; 22:13212. [PMID: 34948009 PMCID: PMC8703712 DOI: 10.3390/ijms222413212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/12/2022] Open
Abstract
Biofilm formation and inflammations are number one reasons of implant failure and cause a severe number of postoperative complications every year. To functionalize implant surfaces with antibiotic agents provides perspectives to minimize and/or prevent bacterial adhesion and proliferation. In recent years, antimicrobial peptides (AMP) have been evolved as promising alternatives to commonly used antibiotics, and have been seen as potent candidates for antimicrobial surface coatings. This review aims to summarize recent developments in this field and to highlight examples of the most common techniques used for preparing such AMP-based medical devices. We will report on three different ways to pursue peptide coatings, using either binding sequences (primary approach), linker layers (secondary approach), or loading in matrixes which offer a defined release (tertiary approach). All of them will be discussed in the light of current research in this area.
Collapse
Affiliation(s)
| | - Ines Neundorf
- Institute for Biochemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany;
| |
Collapse
|
17
|
Sonatkar J, Kandasubramanian B. Bioactive glass with biocompatible polymers for bone applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Gordienko M, Karakatenko E, Menshutina N, Koroleva M, Gilmutdinova I, Eremin P. Composites Composed of Hydrophilic and Hydrophobic Polymers, and Hydroxyapatite Nanoparticles: Synthesis, Characterization, and Study of Their Biocompatible Properties. J Funct Biomater 2021; 12:jfb12040055. [PMID: 34698183 PMCID: PMC8544586 DOI: 10.3390/jfb12040055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 10/26/2022] Open
Abstract
The creation of artificial biocomposites consisting of biocompatible materials in combination with bioactive molecules is one of the main tasks of tissue engineering. The development of new materials, which are biocompatible, functional, and also biodegradable in vivo, is a specific problem. Two types of products can be formed from these materials in the processes of biodegradation. The first types of substances are natural for a living organism and are included in the metabolism of cells, for example, sugars, lactic, glycolic, and β-hydroxybutyric acids. Substances that are not metabolized by cells represent the other type. In the latter case, such products should not be toxic, and their concentration when entering the bloodstream should not exceed the established maximum permissible level. The composite materials based on a mixture of biodegradable synthetic and natural polymers with the addition of hydroxyapatite nanoparticles, which acts as a stabilizer of the dispersed system during production of the composite, and which is a biologically active component of the resulting matrix, were obtained and studied. The indirect effect of the shape, size, and surface charge of hydroxyapatite nanoparticles on the structure and porosity of the formed matrix was shown. An in vivo study showed the absence of acute toxicity of the developed composites.
Collapse
Affiliation(s)
- Mariia Gordienko
- Chemical and Pharmaceutical Engineering Department, D. Mendeleev University of Chemical-Technology of Russia, 125480 Moscow, Russia;
- Correspondence: ; Tel./Fax: +7-4954950029
| | - Elena Karakatenko
- Nanomaterials and Nanotechnology Department, D. Mendeleev University of Chemical-Technology of Russia, 125480 Moscow, Russia; (E.K.); (M.K.)
| | - Natalia Menshutina
- Chemical and Pharmaceutical Engineering Department, D. Mendeleev University of Chemical-Technology of Russia, 125480 Moscow, Russia;
| | - Marina Koroleva
- Nanomaterials and Nanotechnology Department, D. Mendeleev University of Chemical-Technology of Russia, 125480 Moscow, Russia; (E.K.); (M.K.)
| | - Ilmira Gilmutdinova
- National Research Medical Centre of Rehabilitation and Balneology, Ministry of Health of the Russian Federation, 121099 Moscow, Russia; (I.G.); (P.E.)
| | - Petr Eremin
- National Research Medical Centre of Rehabilitation and Balneology, Ministry of Health of the Russian Federation, 121099 Moscow, Russia; (I.G.); (P.E.)
| |
Collapse
|
19
|
Yin TJ, Jeyapalina S, Naleway SE. Characterization of porous fluorohydroxyapatite bone-scaffolds fabricated using freeze casting. J Mech Behav Biomed Mater 2021; 123:104717. [PMID: 34352488 DOI: 10.1016/j.jmbbm.2021.104717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022]
Abstract
With the increasing demand for orthopedic and dental reconstruction surgeries, there comes a shortage of viable bone substitutes. This study was therefore designed to assess the efficacy of porous fluorohydroxyapatite (FHA) as a potential bone substitute. For this, porous FHA scaffolds were fabricated using the freeze casting technique. They were then sintered at 1250, 1350 and, 1450 °C, and microstructural, mechanical, and in vitro properties were analyzed. The microstructure analyses revealed the porosity remained constant within the temperature range. However, the pore size decreased with increasing sintering temperature. The greatest compressive strength and elastic modulus were obtained at 1450 °C, which were 13.5 ± 4.0 MPa and 379 ± 182 MPa, respectively. These are comparable values to human trabecular bone and other porous scaffolds made using hydroxyapatite. This analysis has thus helped to attain an understanding of the mechanical and material properties of freeze-cast FHA scaffolds that have not been presented before. In vitro studies revealed an increasing rate of human osteoblast cell proliferation on freeze-cast FHA scaffolds with increasing sintering temperature, suggesting improved osteogenic properties. Additionally, osteoblasts cells were also shown to proliferate into the interior pores of all freeze-cast FHA scaffolds. These results indicate the potential of porous FHA scaffolds fabricated using the freeze-casting technique to be utilized clinically as bone substitutes.
Collapse
Affiliation(s)
- Tony J Yin
- Department of Mechanical Engineering, University of Utah, USA
| | - Sujee Jeyapalina
- Division of Plastic Surgery, Department of Surgery, University of Utah Health, USA; Research, Department of Veterans Affairs Salt Lake City Health Care System, USA
| | | |
Collapse
|
20
|
Biological analysis of an innovative biodegradable antibiotic eluting bioactive glass/gypsum composite bone cement for treating experimental chronic MRSA osteomyelitis. J Pharm Anal 2021; 12:164-177. [PMID: 35573888 PMCID: PMC9073225 DOI: 10.1016/j.jpha.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/03/2022] Open
Abstract
A multi-barrier antibiotics loaded biodegradable composite bone cement for resolving chronic osteomyelitis has been studied to understand the physico-mechanical properties, drug loading/eluting efficiency, and different merits and demerits prior to clinical application. After successful induction of bone infection in 28 rabbits using methicillin-resistant Staphylococcus aureus (MRSA) strains, calcium sulfate/bioactive glass based composite cement was implanted in 12 defects to assess its performance over parenteral therapy with microscopic and radiological examination for 90 days. The composite cement revealed acceptable physico-mechanical properties and controlled drug elution kinetics. Furthermore, the antibiotics concentrations in bone up to 42 days were sufficient to kill MRSA without eliciting adverse drug reactions. The striking feature of platelets aggregation by composite cement could assist bone healing. The controlled degradation with simultaneous entrapment of composite cement within the osteoid tissues and complete repair of infected cortical defects (holes) in rabbit tibia at 6 weeks indicated the excellent anti-infective and osteoconductive properties of composite cement. Thus, the animal study demonstrated the superiority of composite over injectable antibiotic therapy based on infection resolution and bone regeneration. We thereby conclude that the composite cement can be effectively applied in the treatment of resistant cases of chronic osteomyelitis. Described the preparation method of multi-barrier CS/BG composite bone cement. Made by coating the antibiotics loaded porous BG granules with PLGA and α-CSH. Introduced antibiotics elution study in ideal immersion medium. Beneficial role of PLGA on drug release and activation of platelets by cement was explored. New cement showed great potential to repair bone infection and to hasten osteosynthesis.
Collapse
|
21
|
Raboh ASA, El-khooly MS, Hassaan MY. Bioactivity and Drug Release Study of Dexamethasone Loaded Bioglass/Chitosan Composites for Biomedical Applications. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01936-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Lodoso-Torrecilla I, van den Beucken J, Jansen J. Calcium phosphate cements: Optimization toward biodegradability. Acta Biomater 2021; 119:1-12. [PMID: 33065287 DOI: 10.1016/j.actbio.2020.10.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022]
Abstract
Synthetic calcium phosphate (CaP) ceramics represent the most widely used biomaterials for bone regenerative treatments due to their biological performance that is characterized by bioactivity and osteoconductive properties. From a clinical perspective, injectable CaP cements (CPCs) are highly appealing, as CPCs can be applied using minimally invasive surgery and can be molded to optimally fill irregular bone defects. Such CPCs are prepared from a powder and a liquid component, which upon mixing form a paste that can be injected into a bone defect and hardens in situ within an appropriate clinical time window. However, a major drawback of CPCs is their poor degradability. Ideally, CPCs should degrade at a suitable pace to allow for concomitant new bone to form. To overcome this shortcoming, control over CPC degradation has been explored using multiple approaches that introduce macroporosity within CPCs. This strategy enables faster degradation of CPC by increasing the surface area available to interact with the biological surroundings, leading to accelerated new bone formation. For a comprehensive overview of the path to degradable CPCs, this review presents the experimental procedures followed for their development with specific emphasis on (bio)material properties and biological performance in pre-clinical bone defect models.
Collapse
|
23
|
Cazin I, Rossegger E, Guedes de la Cruz G, Griesser T, Schlögl S. Recent Advances in Functional Polymers Containing Coumarin Chromophores. Polymers (Basel) 2020; 13:E56. [PMID: 33375724 PMCID: PMC7794725 DOI: 10.3390/polym13010056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 11/17/2022] Open
Abstract
Natural and synthetic coumarin derivatives have gained increased attention in the design of functional polymers and polymer networks due to their unique optical, biological, and photochemical properties. This review provides a comprehensive overview over recent developments in macromolecular architecture and mainly covers examples from the literature published from 2004 to 2020. Along with a discussion on coumarin and its photochemical properties, we focus on polymers containing coumarin as a nonreactive moiety as well as polymer systems exploiting the dimerization and/or reversible nature of the [2πs + 2πs] cycloaddition reaction. Coumarin moieties undergo a reversible [2πs + 2πs] cycloaddition reaction upon irradiation with specific wavelengths in the UV region, which is applied to impart intrinsic healability, shape-memory, and reversible properties into polymers. In addition, coumarin chromophores are able to dimerize under the exposure to direct sunlight, which is a promising route for the synthesis and cross-linking of polymer systems under "green" and environment-friendly conditions. Along with the chemistry and design of coumarin functional polymers, we highlight various future application fields of coumarin containing polymers involving tissue engineering, drug delivery systems, soft robotics, or 4D printing applications.
Collapse
Affiliation(s)
- Ines Cazin
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria; (I.C.); (E.R.)
| | - Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria; (I.C.); (E.R.)
| | - Gema Guedes de la Cruz
- Department Polymer Engineering and Science, Institute Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto Glöckel-Strasse 2, 8700 Leoben, Austria; (G.G.d.l.C.); (T.G.)
| | - Thomas Griesser
- Department Polymer Engineering and Science, Institute Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto Glöckel-Strasse 2, 8700 Leoben, Austria; (G.G.d.l.C.); (T.G.)
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria; (I.C.); (E.R.)
| |
Collapse
|
24
|
Douloudi M, Nikoli E, Katsika T, Vardavoulias M, Arkas M. Dendritic Polymers as Promising Additives for the Manufacturing of Hybrid Organoceramic Nanocomposites with Ameliorated Properties Suitable for an Extensive Diversity of Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E19. [PMID: 33374206 PMCID: PMC7823723 DOI: 10.3390/nano11010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
As the field of nanoscience is rapidly evolving, interest in novel, upgraded nanomaterials with combinatory features is also inevitably increasing. Hybrid composites, offer simple, budget-conscious and environmental-friendly solutions that can cater multiple needs at the same time and be applicable in many nanotechnology-related and interdisciplinary studies. The physicochemical idiocrasies of dendritic polymers have inspired their implementation as sorbents, active ingredient carriers and templates for complex composites. Ceramics are distinguished for their mechanical superiority and absorption potential that render them ideal substrates for separation and catalysis technologies. The integration of dendritic compounds to these inorganic hosts can be achieved through chemical attachment of the organic moiety onto functionalized surfaces, impregnation and absorption inside the pores, conventional sol-gel reactions or via biomimetic mediation of dendritic matrices, inducing the formation of usually spherical hybrid nanoparticles. Alternatively, dendritic polymers can propagate from ceramic scaffolds. All these variants are covered in detail. Optimization techniques as well as established and prospected applications are also presented.
Collapse
Affiliation(s)
- Marilina Douloudi
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (E.N.); (T.K.)
| | - Eleni Nikoli
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (E.N.); (T.K.)
| | - Theodora Katsika
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (E.N.); (T.K.)
| | | | - Michael Arkas
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (E.N.); (T.K.)
| |
Collapse
|
25
|
Chakraborty PK, Azadmanjiri J, Pavithra CLP, Wang X, Masood SH, Dey SR, Wang J. Advancements in Therapeutics via 3D Printed Multifunctional Architectures from Dispersed 2D Nanomaterial Inks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004900. [PMID: 33185035 DOI: 10.1002/smll.202004900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/01/2020] [Indexed: 06/11/2023]
Abstract
2D nanomaterials (2DNMs) possess fascinating properties and are found in multifarious devices and applications including energy storage devices, new generation of battery technologies, sensor devices, and more recently in biomedical applications. Their use in biomedical applications such as tissue engineering, photothermal therapy, neural regeneration, and drug delivery has opened new horizons in treatment of age-old ailments. It is also a rapidly developing area of advanced research. A new approach of integrating 3D printing (3DP), a layer-by-layer deposition technique for building structures, along with 2DNM multifunctional inks, has gained considerable attention in recent times, especially in biomedical applications. With the ever-growing demand in healthcare industry for novel, efficient, and rapid technologies for therapeutic treatment methods, 3DP structures of 2DNMs provide vast scope for evolution of a new generation of biomedical devices. Recent advances in 3DP structures of dispersed 2DNM inks with established high-performance biomedical properties are focused on. The advantages of their 3D structures, the sustainable formulation methods of such inks, and their feasible printing methods are also covered. Subsequently, it deals with the therapeutic applications of some already researched 3DP structures of 2DNMs and concludes with highlighting the challenges as well as the future directions of research in this area.
Collapse
Affiliation(s)
- Pritam K Chakraborty
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
- School of Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria, Hawthorn, 3122, Australia
| | - Jalal Azadmanjiri
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, Prague, 166 28, Czech Republic
| | - Chokkakula L P Pavithra
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
| | - Xiaojian Wang
- Centre for 3D Printing Materials and Additive Manufacturing Technology, Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, 510632, China
| | - Syed H Masood
- School of Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria, Hawthorn, 3122, Australia
| | - Suhash Ranjan Dey
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
| | - James Wang
- School of Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria, Hawthorn, 3122, Australia
| |
Collapse
|
26
|
Morozov AG, Moskalev MV, Razborov DA, Fedushkin IL. Magnesium and calcium complexes bearing mono-oxidized or monoprotonated acenaphthylenebisamido ligand: Structure features and ROP activity. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Du Z, Cao G, Li K, Zhang R, Li X. Nanocomposites for the delivery of bioactive molecules in tissue repair: vital structural features, application mechanisms, updated progress and future perspectives. J Mater Chem B 2020; 8:10271-10289. [PMID: 33084730 DOI: 10.1039/d0tb01670e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, nanocomposites have attracted great attention in tissue repair as carriers for bioactive molecule delivery due to their biochemical and nanostructural similarity to that of physiological tissues, and controlled delivery of bioactive molecules. In this review, we aim to comprehensively clarify how the applications of nanocomposites for bioactive molecule delivery in tissue repair are achieved by focusing on the following aspects: (1) vital structural features (size, shape, pore, etc.) of nanocomposites that have crucial effects on the biological properties and function of bioactive molecule-delivery systems, (2) delivery performance of bioactive molecules possessing high entrapment efficiency of bioactive molecules and good controlled- and sustained-release of bioactive molecules, (3) application mechanisms of nanocomposites to deliver and release bioactive molecules in tissue repair, (4) updated research progress of nanocomposites for bioactive molecule delivery in hard and soft tissue repair, and (5) future perspectives in the development of bioactive molecule-delivery systems based on nanocomposites.
Collapse
Affiliation(s)
- Zhipo Du
- Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | - Kun Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Ruihong Zhang
- Department of Research and Teaching, the Fourth Central Hospital of Baoding City, Baoding 072350, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
28
|
Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:922. [PMID: 32974298 PMCID: PMC7471872 DOI: 10.3389/fbioe.2020.00922] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
This review article addresses the various aspects of nano-biomaterials used in or being pursued for the purpose of promoting bone regeneration. In the last decade, significant growth in the fields of polymer sciences, nanotechnology, and biotechnology has resulted in the development of new nano-biomaterials. These are extensively explored as drug delivery carriers and as implantable devices. At the interface of nanomaterials and biological systems, the organic and synthetic worlds have merged over the past two decades, forming a new scientific field incorporating nano-material design for biological applications. For this field to evolve, there is a need to understand the dynamic forces and molecular components that shape these interactions and influence function, while also considering safety. While there is still much to learn about the bio-physicochemical interactions at the interface, we are at a point where pockets of accumulated knowledge can provide a conceptual framework to guide further exploration and inform future product development. This review is intended as a resource for academics, scientists, and physicians working in the field of orthopedics and bone repair.
Collapse
Affiliation(s)
- Joseph G. Lyons
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Mark A. Plantz
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Silvia Minardi
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| |
Collapse
|
29
|
Dewhurst RM, Scalzone A, Buckley J, Mattu C, Rankin KS, Gentile P, Ferreira AM. Development of Natural-Based Bone Cement for a Controlled Doxorubicin-Drug Release. Front Bioeng Biotechnol 2020; 8:754. [PMID: 32733869 PMCID: PMC7363953 DOI: 10.3389/fbioe.2020.00754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma (OS) accounts for 60% of all global bone cancer diagnoses. Intravenous administration of Doxorubicin Hydrochloride (DOXO) is the current form of OS treatment, however, systemic delivery has been linked to the onset of DOXO induced cardiomyopathy. Biomaterials including calcium phosphate cements (CPCs) and nanoparticles (NPs) have been tested as localized drug delivery scaffolds for OS cells. However, the tumor microenvironment is critical in cancer progression, with mesenchymal stem cells (MSCs) thought to promote OS metastasis and drug resistance. The extent of MSC assisted survival of OS cells in response to DOXO delivered by CPCs is unknown. In this study, we aimed at investigating the effect of DOXO release from a new formulation of calcium phosphate-based bone cement on the viability of OS cells cocultured with hMSC in vitro. NPs made of PLGA were loaded with DOXO and incorporated in the formulated bone cement to achieve local drug release. The inclusion of PLGA-DOXO NPs into CPCs was also proven to increase the levels of cytotoxicity of U2OS cells in mono- and coculture after 24 and 72 h. Our results demonstrate that a more effective localized DOXO delivery can be achieved via the use of CPCs loaded with PLGA-DOXO NPs compared to CPCs loaded with DOXO, by an observed reduction in metabolic activity of U2OS cells in indirect coculture with hMSCs. The presence of hMSCs offer a degree of DOXO resistance in U2OS cells cultured on PLGA-DOXO NP bone cements. The consideration of the tumor microenvironment via the indirect inclusion of hMSCs in this study can act as a starting point for future direct coculture and in vivo investigations.
Collapse
Affiliation(s)
- Rebecca Marie Dewhurst
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Annachiara Scalzone
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Buckley
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Clara Mattu
- Department of Mechanical and Aerospace, Politecnico di Torino, Turin, Italy
| | - Kenneth S Rankin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
30
|
Su H, Xu F, Sun H, Fu X, Zhao Y. Preparation and Evaluation of BDNF Composite Conduits for Regeneration of Sciatic Nerve Defect in Rats. J Pharm Sci 2020; 109:2189-2195. [DOI: 10.1016/j.xphs.2020.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/22/2020] [Accepted: 03/17/2020] [Indexed: 01/10/2023]
|
31
|
Honda M, Kawanobe Y, Nagata K, Ishii K, Matsumoto M, Aizawa M. Bactericidal and Bioresorbable Calcium Phosphate Cements Fabricated by Silver-Containing Tricalcium Phosphate Microspheres. Int J Mol Sci 2020; 21:ijms21113745. [PMID: 32466460 PMCID: PMC7312163 DOI: 10.3390/ijms21113745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Bacterial adhesion to the calcium phosphate surface is a serious problem in surgery. To prevent bacterial infection, the development of calcium-phosphate cements (CPCs) with bactericidal properties is indispensable. The aim of this study was to fabricate antibacterial CPCs and evaluate their biological properties. Silver-containing tricalcium phosphate (Ag-TCP) microspheres consisting of α/β-TCP phases were synthesized by an ultrasonic spray-pyrolysis technique. The powders prepared were mixed with the setting liquid to fabricate the CPCs. The resulting cements consisting of β-TCP and hydroxyapatite had a porous structure and wash-out resistance. Additionally, silver and calcium ions could be released into the culture medium from Ag-TCP cements for a long time accompanied by the dissolution of TCP. These data showed the bioresorbability of the Ag-TCP cement. In vitro antibacterial evaluation demonstrated that both released and immobilized silver suppressed the growth of bacteria and prevented bacterial adhesion to the surface of CPCs. Furthermore, histological evaluation by implantation of Ag-TCP cements into rabbit tibiae exhibited abundant bone apposition on the cement without inflammatory responses. These results showed that Ag-TCP cement has a good antibacterial property and good biocompatibility. The present Ag-TCP cements are promising for bone tissue engineering and may be used as antibacterial biomaterials.
Collapse
Affiliation(s)
- Michiyo Honda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kanagawa 214-8571, Japan; (Y.K.); (K.N.); (M.A.)
- Correspondence: ; Tel.: +81-44-934-7210
| | - Yusuke Kawanobe
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kanagawa 214-8571, Japan; (Y.K.); (K.N.); (M.A.)
| | - Kohei Nagata
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kanagawa 214-8571, Japan; (Y.K.); (K.N.); (M.A.)
| | - Ken Ishii
- Department of Orthopedic Surgery, School of Medicine, International University of Health and Welfare Mita Hospital, 1-4-3, Mita, Minato-ku, Tokyo 108-8329, Japan;
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan;
| | - Mamoru Aizawa
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kanagawa 214-8571, Japan; (Y.K.); (K.N.); (M.A.)
| |
Collapse
|
32
|
Bose S, Sarkar N. Natural Medicinal Compounds in Bone Tissue Engineering. Trends Biotechnol 2020; 38:404-417. [PMID: 31882304 PMCID: PMC8015414 DOI: 10.1016/j.tibtech.2019.11.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/01/2022]
Abstract
Recent advances in 3D printing have provided unprecedented opportunities in bone tissue engineering applications for producing a variety of complex patient-specific implants for the treatment of critical-sized bone defects. Natural medicinal compounds (NMCs) with osteogenic potential can be incorporated into these 3D-printed parts to improve bone formation and therefore enhance implant performance. Using NMCs to treat bone-related disorders may prove to be a healthy preventive choice as they are considered safe, have lesser or no side effects, and are more suitable for prolonged use than synthetic drugs. In this review paper, the current challenges of bone tissue engineering are addressed briefly, highlighting the immense potential of NMCs integrated within tissue engineering scaffolds for orthopedic and dental applications.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
| | - Naboneeta Sarkar
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
33
|
Seyedmajidi S, Rajabnia R, Seyedmajidi M. Evaluation of antibacterial properties of hydroxyapatite/bioactive glass and fluorapatite/bioactive glass nanocomposite foams as a cellular scaffold of bone tissue. J Lab Physicians 2020; 10:265-270. [PMID: 30078960 PMCID: PMC6052815 DOI: 10.4103/jlp.jlp_167_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIMS AND OBJECTIVES: Infection is a serious problem for patients after implantation surgery, which is difficult to treat with antibiotic therapy. The present study was developed to evaluate and compare the antibacterial properties of hydroxyapatite/bioactive glass (HA/BG) and fluorapatite/bioactive glass (FA/BG) nanocomposite foams as a cellular scaffold for use in bone defects by two macrodilution and disk diffusion methods. MATERIALS AND METHODS: Staphylococcus aureus, Enterococcus faecalis, and Streptococcus mutans were cultured in brain heart infusion broth medium with nanocomposite powder for 5 days, and their bioactivity levels were evaluated by daily culturing on solid agar medium plates. To carry out the disk diffusion test, a disc form of nanocomposite foams was used on agar medium with 48 h incubation. RESULTS: None of two nanocomposites even at their highest concentration (200 mg/mL) did not prevent the growth of two Staphylococcus aureus and Enterococcus faecalis microorganisms. However, HA/BG nanocomposite on the 3rd day at a concentration of 200 mg/mL and on 4th and 5th day at a concentration of 100 mg/mL and FA/BG nanocomposite on the 4th day at a concentration of 100 mg/mL and on the 5th day at a concentration of 50 mg/mL could be able to kill Streptococcus mutans microorganism. In the disc diffusion test, none of the nanocomposites could create a nongrowth zone. Both tested biomaterials showed increased antibacterial properties over time and concentration increase. CONCLUSION: HA/BG and FA/BG nanocomposites, due to their biocompatibility and antimicrobial properties, are good choices for implantation instead of damaged bone tissue in tissue engineering.
Collapse
Affiliation(s)
- Seyedali Seyedmajidi
- Dental Materials Research Center, Institute of Health, Babol University of Medical Silences, Babol, Iran
| | - Ramazan Rajabnia
- Infectious Diseases and Tropical Medicine Research Center, Institute of Health, Babol University of Medical Silences, Babol, Iran
| | - Maryam Seyedmajidi
- Dental Materials Research Center, Institute of Health, Babol University of Medical Silences, Babol, Iran
| |
Collapse
|
34
|
|
35
|
Ramesh B, Cherian KM, Fakoya AOJ. Fabrication and Electrospinning of 3D Biodegradable Poly-l-Lactic Acid (PLLA) Nanofibers for Clinical Application. Methods Mol Biol 2020; 2125:119-128. [PMID: 30771191 DOI: 10.1007/7651_2019_213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Poly-L-lactic acid (PLLA) is a biodegradable synthetic polyester synthesized by polymerization or polycondensation. PLLA hydrolytically degrades into lactic acid, a biocompatible metabolic by-product, making it suitable for clinical applications. PLLA scaffolds or nanofibers have been used in various regenerative medicine and drug delivery applications. These scaffolds impart biocompatible properties of high surface area, hydrophobicity, native extracellular properties, and mechanical strength for an organ system. Moreover, PLLA nanofibers hold great promise as drug delivery systems, where fabrication parameters and drug-PLA compatibility greatly affect the drug release kinetics. In this chapter, we present the protocols to fabricate, electrospinning, and validation of 3D PLLA nanofibrous scaffolds for tissue engineering application and offer perspectives on their future use.
Collapse
|
36
|
Lei X, Gao J, Xing F, Zhang Y, Ma Y, Zhang G. Comparative evaluation of the physicochemical properties of nano-hydroxyapatite/collagen and natural bone ceramic/collagen scaffolds and their osteogenesis-promoting effect on MC3T3-E1 cells. Regen Biomater 2019; 6:361-371. [PMID: 31827888 PMCID: PMC6897342 DOI: 10.1093/rb/rbz026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 01/11/2023] Open
Abstract
The use of various types of calcium phosphate has been reported in the preparation of repairing materials for bone defects. However, the physicochemical and biological properties among them might be vastly different. In this study, we prepared two types of calcium phosphates, nano-hydroxyapatite (nHA) and natural bone ceramic (NBC), into 3D scaffolds by mixing with type I collagen (CoL), resulting in the nHA/CoL and NBC/CoL scaffolds. We then evaluated and compared the physicochemical and biological properties of these two calcium phosphates and their composite scaffold with CoL. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD) and compressive tests were used to, respectively, characterize the morphology, composition, distribution and the effect of nHA and NBC to collagen. Next, we examined the biological properties of the scaffolds using cytotoxicity testing, flow cytometry, immunofluorescence staining, biocompatibility testing, CCK-8 assays and RT-PCR. The results reflected that the Ca2+ released from nHA and NBC could bind chemically with collagen and affect its physicochemical properties, including the infrared absorption spectrum and compression modulus, among others. Furthermore, the two kinds of scaffolds could promote the expression of osteo-relative genes, but showed different gene induction properties. In short, NBC/CoL could promote the expression of early osteogenic genes, while nHA/CoL could upregulate late osteogenic genes. Conclusively, these two composite scaffolds could provide MC3T3-E1 cells with a biomimetic surface for adhesion, proliferation and the formation of mineralized extracellular matrices. Moreover, nHA/CoL and NBC/CoL had different effects on the period and extent of MC3T3-E1 cell mineralization.
Collapse
Affiliation(s)
- Xiongxin Lei
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianping Gao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangyu Xing
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yang Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Henan, 453003, China
| | - Ye Ma
- Department of Pathogen Biology and Immunology, School of Basic Course, Guandong Pharmaceutical University, Guangzhou, 510006, China
| | - Guifeng Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Xu Y, Chen C, Hellwarth PB, Bao X. Biomaterials for stem cell engineering and biomanufacturing. Bioact Mater 2019; 4:366-379. [PMID: 31872161 PMCID: PMC6909203 DOI: 10.1016/j.bioactmat.2019.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/09/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Recent years have witnessed the expansion of tissue failures and diseases. The uprising of regenerative medicine converges the sight onto stem cell-biomaterial based therapy. Tissue engineering and regenerative medicine proposes the strategy of constructing spatially, mechanically, chemically and biologically designed biomaterials for stem cells to grow and differentiate. Therefore, this paper summarized the basic properties of embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. The properties of frequently used biomaterials were also described in terms of natural and synthetic origins. Particularly, the combination of stem cells and biomaterials for tissue repair applications was reviewed in terms of nervous, cardiovascular, pancreatic, hematopoietic and musculoskeletal system. Finally, stem-cell-related biomanufacturing was envisioned and the novel biofabrication technologies were discussed, enlightening a promising route for the future advancement of large-scale stem cell-biomaterial based therapeutic manufacturing.
Collapse
Affiliation(s)
| | | | | | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, West Lafayette, IN, 47907, USA
| |
Collapse
|
38
|
Caritá AC, Fonseca-Santos B, Shultz JD, Michniak-Kohn B, Chorilli M, Leonardi GR. Vitamin C: One compound, several uses. Advances for delivery, efficiency and stability. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102117. [PMID: 31676375 DOI: 10.1016/j.nano.2019.102117] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/03/2019] [Accepted: 10/18/2019] [Indexed: 11/20/2022]
Abstract
Vitamin C (Vit C) is a potent antioxidant with several applications in the cosmetic and pharmaceutical fields. However, the biggest challenge in the utilization of Vit C is to maintain its stability and improve its delivery to the active site. Several strategies have been developed such as: controlling the oxygen levels during formulation and storage, low pH, reduction of water content in the formulation and the addition of preservative agents. Additionally, the utilization of derivatives of Vit C and the development of micro and nanoencapsulated delivery systems have been highlighted. In this article, the multiple applications and mechanisms of action of vitamin C will be reviewed and discussed, as well as the new possibilities of delivery and improvement of stability.
Collapse
Affiliation(s)
- Amanda Costa Caritá
- Department of Translational Medicine-Federal University of São Paulo, Brazil.
| | - Bruno Fonseca-Santos
- Department of Drugs and Medicines - School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Jemima Daniela Shultz
- Department of Translational Medicine-Federal University of São Paulo, Brazil; Department of Drugs and Medicines - School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| | - Bozena Michniak-Kohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, USA
| | - Marlus Chorilli
- Department of Drugs and Medicines - School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | | |
Collapse
|
39
|
Hasan ML, Kim B, Padalhin AR, Faruq O, Sultana T, Lee BT. In vitro and in vivo evaluation of bioglass microspheres incorporated brushite cement for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109775. [DOI: 10.1016/j.msec.2019.109775] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 05/04/2019] [Accepted: 05/17/2019] [Indexed: 01/15/2023]
|
40
|
Soriano-Souza C, Valiense H, Mavropoulos E, Martinez-Zelaya V, Costa AM, Alves AT, Longuinho M, Resende R, Mourão C, Granjeiro J, Rocha-Leao MH, Rossi A, Calasans-Maia M. Doxycycline containing hydroxyapatite ceramic microspheres as a bone-targeting drug delivery system. J Biomed Mater Res B Appl Biomater 2019; 108:1351-1362. [PMID: 31496111 DOI: 10.1002/jbm.b.34484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/26/2019] [Accepted: 08/17/2019] [Indexed: 01/24/2023]
Abstract
Drug delivery technology is a promising way to enhance the therapeutic efficacy of drugs. The purpose of this study is to evaluate the physical and chemical properties of hydroxyapatite ceramic microspheres loaded with doxycycline (HADOX), their effects on in vitro osteoblast viability, and their antimicrobial activity, and to determine the effects of DOX on the healing of rat sockets after tooth extraction. The internal microsphere porosity was sensitive to the treatment used to adsorb DOX onto microsphere surface; HA microspheres without DOX presented 26% of pores, whereas HADOX0.15 microspheres presented 52.0%. An initial drug release of 49.15 μg/ml was observed in the first 24 hr. The minimal inhibitory concentration (MIC) tested against Enterococcus faecalis demonstrated that bacterial growth was inhibited for up to 7 days. Results of cell viability and cell proliferation did not indicate statistical differences in the metabolic activity of HADOX samples relative to HA without DOX microspheres (p > .05). After 1 week, a discreet inflammation reaction was observed in the control group, and after 6 weeks, newly-formed bone was observed in the HADOX0.15 (p < .05). The HADOX did not interfere in the bone repair and controlled the early inflammatory response. HADOX could be a promising biomaterial to promote bone repair in infected sites.
Collapse
Affiliation(s)
- Carlos Soriano-Souza
- Department of Applied Physics, Brazilian Center for Physics Research, Rio de Janeiro, Brazil
| | - Helder Valiense
- Dentistry School, Federal Fluminense University, Rio de Janeiro, Brazil
| | - Elena Mavropoulos
- LABIOMAT, Brazilian Center for Physics Research, Rio de Janeiro, Brazil
| | | | | | - Adriana T Alves
- Department of Oral Pathology, Federal Fluminense University, Rio de Janeiro, Brazil
| | - Mariana Longuinho
- Department of Applied Physics, Brazilian Center for Physics Research, Rio de Janeiro, Brazil
| | - Rodrigo Resende
- Oral Surgery Department, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Carlos Mourão
- Unidade de Pesquisa Clínica, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Jose Granjeiro
- Department of Bioengineering, National Institute of Metrology, Standardization and Industrial Quality, Rio de Janeiro, Brazil
| | - Maria H Rocha-Leao
- Chemistry School, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Rossi
- Department of Applied Physics, Brazilian Center for Physics Research, Rio de Janeiro, Brazil
| | - Mônica Calasans-Maia
- Oral Surgery Department, Dentistry School, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Marinescu C, Sofronia A, Anghel EM, Baies R, Constantin D, Seciu AM, Gingu O, Tanasescu S. Microstructure, stability and biocompatibility of hydroxyapatite – titania nanocomposites formed by two step sintering process. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2017.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
42
|
Pajor K, Pajchel L, Kolmas J. Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology-A Review. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2683. [PMID: 31443429 PMCID: PMC6747619 DOI: 10.3390/ma12172683] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 01/18/2023]
Abstract
Calcium phosphate, due to its similarity to the inorganic fraction of mineralized tissues, has played a key role in many areas of medicine, in particular, regenerative medicine and orthopedics. It has also found application in conservative dentistry and dental surgery, in particular, as components of toothpaste and mouth rinse, coatings of dental implants, cements, and bone substitute materials for the restoration of cavities in maxillofacial surgery. In dental applications, the most important role is played by hydroxyapatite and fluorapatite, i.e., calcium phosphates characterized by the highest chemical stability and very low solubility. This paper presents the role of both apatites in dentistry and a review of recent achievements in the field of the application of these materials.
Collapse
Affiliation(s)
- Kamil Pajor
- Analytical Group, Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Lukasz Pajchel
- Analytical Group, Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Joanna Kolmas
- Analytical Group, Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, 02-097 Warsaw, Poland.
| |
Collapse
|
43
|
A facile way for development of three-dimensional localized drug delivery system for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110032. [PMID: 31546347 DOI: 10.1016/j.msec.2019.110032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 12/18/2022]
Abstract
Removing malignant bone tumors results in critical size bone defects. These voids in bones should be filled by a proper scaffold that not only can support cell ingrowth and bone regeneration but also it has to show a desirable ability in long-term releasing anticancer drugs in order to prevent the growth of remaining cancer cells. Applying this scaffold can significantly improve the outcome of bone tumors treatment. In this study, a novel way is proposed for immobilization of doxorubicin (DOX)-loaded polycaproloactone (PCL) microparticles on the hardystonite (HT) scaffold surfaces. High interconnected porous HT scaffolds with immobilized DOX-encapsulated PCL microparticles can be successfully fabricated by modified water/oil/water method. In the present work, we verify a slow release of DOX over 30 days from PCL microparticles inside HT scaffold. Our developed HT scaffolds with the long-term release of DOX are more effective in reduction of Saos-2 cancer cells viability and induce higher degrees of apoptosis compared to DOX dip coated HT scaffolds. Encapsulating DOX into PCL microparticles significantly improves the anti-tumor activity of DOX by regulating the expression of apoptosis-related genes. Our results suggest that by immobilization of polymeric vehicles on the ceramic scaffold for controlled drug release, we can achieve high efficiency in apoptosis of cancer cells.
Collapse
|
44
|
Roi A, Ardelean LC, Roi CI, Boia ER, Boia S, Rusu LC. Oral Bone Tissue Engineering: Advanced Biomaterials for Cell Adhesion, Proliferation and Differentiation. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2296. [PMID: 31323766 PMCID: PMC6679077 DOI: 10.3390/ma12142296] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022]
Abstract
The advancements made in biomaterials have an important impact on oral tissue engineering, especially on the bone regeneration process. Currently known as the gold standard in bone regeneration, grafting procedures can sometimes be successfully replaced by a biomaterial scaffold with proper characteristics. Whether natural or synthetic polymers, biomaterials can serve as potential scaffolds with major influences on cell adhesion, proliferation and differentiation. Continuous research has enabled the development of scaffolds that can be specifically designed to replace the targeted tissue through changes in their surface characteristics and the addition of growth factors and biomolecules. The progress in tissue engineering is incontestable and research shows promising contributions to the further development of this field. The present review aims to outline the progress in oral tissue engineering, the advantages of biomaterial scaffolds, their direct implication in the osteogenic process and future research directions.
Collapse
Affiliation(s)
- Alexandra Roi
- Department of Oral Pathology, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lavinia Cosmina Ardelean
- Department of Technology of Materials and Devices in Dental Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania.
| | - Ciprian Ioan Roi
- Department of Anaesthesiology and Oral Surgery, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Eugen-Radu Boia
- Department of Ear, Nose and Throat, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Simina Boia
- Department of Periodontology, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Laura-Cristina Rusu
- Department of Oral Pathology, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| |
Collapse
|
45
|
Sungsee P, Tanrattanakul V. Biocomposite foams from poly(lactic acid) and rubber wood sawdust: Mechanical properties, cytotoxicity, and
in vitro
degradation. J Appl Polym Sci 2019. [DOI: 10.1002/app.48259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pasuta Sungsee
- Department of Materials Science, Faculty of SciencePrince of Songkla University Songkla Thailand
| | - Varaporn Tanrattanakul
- Department of Materials Science, Faculty of SciencePrince of Songkla University Songkla Thailand
| |
Collapse
|
46
|
Chehreghanianzabi Y, Barua R, Shi T, Yurgelevic S, Auner G, Markel DC, Ren W. Comparing the release of erythromycin and vancomycin from calcium polyphosphate hydrogel using different drug loading methods. J Biomed Mater Res B Appl Biomater 2019; 108:475-483. [DOI: 10.1002/jbm.b.34404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 11/09/2022]
Affiliation(s)
| | - Rajib Barua
- Department of Biomedical EngineeringWayne State University Detroit Michigan
| | - Tong Shi
- Department of Biomedical EngineeringWayne State University Detroit Michigan
| | - Sally Yurgelevic
- Department of Biomedical EngineeringWayne State University Detroit Michigan
| | - Gregory Auner
- Department of Biomedical EngineeringWayne State University Detroit Michigan
| | - David C. Markel
- Department of OrthopedicsProvidence Hospital and Medical Center Southfield Michigan
| | - Weiping Ren
- Department of Biomedical EngineeringWayne State University Detroit Michigan
- Department of OrthopedicsProvidence Hospital and Medical Center Southfield Michigan
| |
Collapse
|
47
|
Aghaloo TL, Tencati E, Hadaya D. Biomimetic Enhancement of Bone Graft Reconstruction. Oral Maxillofac Surg Clin North Am 2019; 31:193-205. [DOI: 10.1016/j.coms.2018.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Dang HP, Shabab T, Shafiee A, Peiffer QC, Fox K, Tran N, Dargaville TR, Hutmacher DW, Tran PA. 3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function. Biofabrication 2019; 11:035014. [PMID: 30933941 DOI: 10.1088/1758-5090/ab14ff] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tissue engineering macroporous scaffolds are important for regeneration of large volume defects resulting from diseases such as breast or bone cancers. Another important part of the treatment of these conditions is adjuvant drug therapy to prevent disease recurrence or surgical site infection. In this study, we developed a new type of macroporous scaffolds that have drug loading and release functionality to use in these scenarios. 3D printing allows for building macroporous scaffolds with deterministically designed complex architectures for tissue engineering yet they often have low surface areas thus limiting their drug loading capability. In this proof-of-concept study, we aimed to introduce microscale porosity into macroporous scaffolds to allow for efficient yet simple soak-loading of various clinical drugs and control their release. Manufacturing of scaffolds having both macroporosity and microscale porosity remains a difficult task. Here, we combined porogen leaching and 3D printing to achieve this goal. Porogen microparticles were mixed with medical grade polycaprolactone and extruded into scaffolds having macropores of 0.7 mm in size. After leaching, intra-strut microscale pores were realized with pore size of 20-70 μm and a total microscale porosity of nearly 40%. Doxorubicin (DOX), paclitaxel (PTX) and cefazolin (CEF) were chosen as model drugs of different charges and solubilities to soak-load the scaffolds and achieved loading efficiency of over 80%. The microscale porosity was found to significantly reduce the burst release allowing the microporous scaffolds to release drugs up to 200, 500 and 150 h for DOX, PTX and CEF, respectively. Finally, cell assays were used and confirmed the bioactivities and dose response of the drug-loaded scaffolds. Together, the findings from this proof-of-concept study demonstrate a new type of scaffolds with dual micro-, macro-porosity for tissue engineering applications with intrinsic capability for efficient loading and sustained release of drugs to prevent post-surgery complications.
Collapse
Affiliation(s)
- Hoang Phuc Dang
- ARC Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, Queensland, Australia. Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, QUT, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lodoso-Torrecilla I, Grosfeld EC, Marra A, Smith BT, Mikos AG, Ulrich DJ, Jansen JA, van den Beucken JJ. Multimodal porogen platforms for calcium phosphate cement degradation. J Biomed Mater Res A 2019; 107:1713-1722. [PMID: 30920119 PMCID: PMC6618311 DOI: 10.1002/jbm.a.36686] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/20/2019] [Accepted: 03/22/2019] [Indexed: 11/10/2022]
Abstract
Calcium phosphate cements (CPCs) represent excellent bone substitute materials due to their biocompatibility and injectability. However, their poor degradability and lack of macroporosity limits bone regeneration. The addition of poly(d,l-lactic-co-glycolic acid) (PLGA) particles improves macroporosity and therefore late stage material degradation. CPC degradation and hence, bone formation at an early stage remains challenging, due to the delayed onset of PLGA degradation (i.e., after 2-3 weeks). Consequently, we here explored multimodal porogen platforms based on sucrose porogens (for early pore formation) and PLGA porogens (for late pore formation) to enhance CPC degradation and analyzed mechanical properties, dynamic in vitro degradation and in vivo performance in a rat femoral bone defect model. Porogen addition to CPC showed to decrease compressive strength of all CPC formulations; transition of the crystal phase upon in vitro incubation increased compressive strength. Although dynamic in vitro degradation showed rapid sucrose dissolution within 1 week, no additional effects on CPC degradation or bone formation were observed upon in vivo implantation. © 2019 The Authors. journal Of Biomedical Materials Research Part A Published By Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1713-1722, 2019.
Collapse
Affiliation(s)
- Irene Lodoso-Torrecilla
- Department of Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Eline-Claire Grosfeld
- Department of Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Abe Marra
- Department of Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Brandon T Smith
- Department of Bioengineering, Rice University, Houston, Texas 77030
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, Texas 77030.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005
| | - Dietmar Jo Ulrich
- Department of Plastic & Reconstructive Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - John A Jansen
- Department of Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Jeroen Jjp van den Beucken
- Department of Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
50
|
Cao Y, Xiao L, Cao Y, Nanda A, Xu C, Ye Q. 3D printed β-TCP scaffold with sphingosine 1-phosphate coating promotes osteogenesis and inhibits inflammation. Biochem Biophys Res Commun 2019; 512:889-895. [PMID: 30929923 DOI: 10.1016/j.bbrc.2019.03.132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 12/22/2022]
Abstract
Traditional treatments for bone repair with allografts and autografts are limited by the source of bone substitutes. Bone tissue engineering via a cell-based bone tissue scaffold is a new strategy for treatment against large bone defects with many advantages, such as the accessibility of biomaterials, good biocompatibility and osteoconductivity; however, the inflammatory immune response is still an issue that impacts osteogenesis. Sphingosine 1-phosphate (S1P) is a cell-derived sphingolipid that can mediate cell proliferation, immunoregulation and bone regeneration. We hypothesised that coating S1P on a β-Tricalcium phosphate (β-TCP) scaffold could regulate the immune response and increase osteogenesis. We tested the immunoregulation capability on macrophages and the osteogenic capability on rat bone marrow stromal cells of the coated scaffolds, which showed good biocompatibility. Additionally, the coated scaffolds exhibited dose-dependent inhibition of inflammatory-related gene expression. A high concentration of S1P (0.5 μM) upregulated osteogenic-related gene expression of OPN, OCN and RUNX2, which also significantly increased the alkaline phosphatase activity, as compared with the control group. In conclusion, S1P coated β-TCP scaffold could inhibit inflammation and promote bone regeneration.
Collapse
Affiliation(s)
- Yuxue Cao
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
| | - Lan Xiao
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, 4006, Australia
| | - Yanfan Cao
- WMU-UQ Group for Regenerative Medicine, School of Stomatology, Wenzhou Medical University, China
| | - Ashwin Nanda
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia; WMU-UQ Group for Regenerative Medicine, School of Stomatology, Wenzhou Medical University, China.
| | - Qingsong Ye
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia; WMU-UQ Group for Regenerative Medicine, School of Stomatology, Wenzhou Medical University, China.
| |
Collapse
|