1
|
Pahlow S, Schmidt S, Pappert T, Thieme L, Makarewicz O, Monecke S, Ehricht R, Weber K, Popp J. Evaluating the potential of vancomycin-modified magnetic beads as a tool for sample preparation in diagnostic assays. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7148-7160. [PMID: 39295576 DOI: 10.1039/d4ay01557f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Vancomycin-functionalized micro- or nanoparticles are frequently used for isolation and enrichment of bacteria from various samples. Theoretically, only Gram-positive organisms should adhere to the functionalized surfaces as vancomycin is an antibiotic targeting a peptidoglycan precursor in the cell wall, which in Gram-negative bacteria is shielded by the outer cell membrane. In the literature, however, it is often reported that Gram-negative bacteria also bind efficiently to the vancomycin-modified particles. The goal of our study was to identify the underlying cause for these different findings. For each species several strains, including patient isolates, were investigated, and effects such as day-to-day reproducibility, particle type, and the antimicrobial effect of vancomycin-coupled beads were explored. Overall, we found that there is a strong preference for binding Gram-positive organisms, but the specific yield is heavily influenced by the strain and experimental conditions. For Staphylococcus aureus average yields of approximately 100% were obtained. Respectively, yields of 44% for Staphylococcus cohnii, 22% for Staphylococcus warneri, 17% for Enterococcus faecalis and 5% for vancomycin-sensitive Enterococcus faecium were found. Yields for Gram-negative species (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii) and vancomycin-resistant Enterococcus faecium were below 3%. Our results indicate that the interaction between vancomycin and the D-alanine-D-alanine terminus of the peptidoglycan precursor in the bacterial cell wall is the dominant force responsible for the adherence of the bacteria to the particle surface. It needs to be considered though, that other factors, such as the specific molecules presented on the bacterial surface, as well as the pH, and the ion concentrations in the surrounding medium will also play a role, as these can lead to attractive or repulsive electrostatic forces. Last but not least, when using colony forming unit-based quantification for determining the yields, the influence of cell cluster formation and different sensitivities towards the antimicrobial effect of the vancomycin beads between species and strains needs to be considered.
Collapse
Affiliation(s)
- Susanne Pahlow
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Center for Applied Research, Philosophenweg 7, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Member of the Research Alliance "Leibniz Health Technologies", The Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
| | - Sabine Schmidt
- Leibniz Institute of Photonic Technology, Member of the Research Alliance "Leibniz Health Technologies", The Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
| | - Tabea Pappert
- Leibniz Institute of Photonic Technology, Member of the Research Alliance "Leibniz Health Technologies", The Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
| | - Lara Thieme
- Institute of Infectious Diseases and Infection Control, University Hospital Jena - Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Am Klinikum 1, 07747 Jena, Germany
| | - Oliwia Makarewicz
- Institute of Infectious Diseases and Infection Control, University Hospital Jena - Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Am Klinikum 1, 07747 Jena, Germany
| | - Stefan Monecke
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Center for Applied Research, Philosophenweg 7, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Member of the Research Alliance "Leibniz Health Technologies", The Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
| | - Ralf Ehricht
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Center for Applied Research, Philosophenweg 7, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Member of the Research Alliance "Leibniz Health Technologies", The Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
| | - Karina Weber
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Center for Applied Research, Philosophenweg 7, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Member of the Research Alliance "Leibniz Health Technologies", The Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
| | - Jürgen Popp
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Center for Applied Research, Philosophenweg 7, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Member of the Research Alliance "Leibniz Health Technologies", The Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
| |
Collapse
|
2
|
Zhang Y, Tian G, Sun X, Yang X, Zhang Y, Tan W, Duan L, Gao S, Yu J. Ultrasensitive colorimetric detection of Staphylococcus aureus using wheat germ agglutinin and IgY as a dual-recognition strategy. Mikrochim Acta 2024; 191:209. [PMID: 38499840 DOI: 10.1007/s00604-024-06288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
A novel colorimetric platform was designed for the determination of S. aureus by utilizing a dual-recognition strategy, where wheat germ agglutinin (WGA)-functionalized magnetic beads were served as separation elements to capture and enrich S. aureus efficiently from the matrix. Horseradish peroxidase (HRP) labeled chicken anti-protein A IgY (HRP-IgY) was used to label the captured S. aureus. A chicken IgY was introduced as a signal tracer to bind with staphylococcal protein A (SPA) on the surface of S. aureus, which can circumvent the interference from protein G-producing Streptococcus. Subsequently, the colorimetric signal was achieved by an HRP-catalyzed reaction, which was amplified by HRP-IgY bound by approximately 80,000 SPA molecules on one S. aureus. The entire detection process could be accomplished within 90 min. Under optimal conditions, the linear response of different S. aureus concentrations ranged from 7.8 × 102 to 2.0 × 105 CFU/mL and the limit of detection reached down to 3.9 × 102 CFU/mL. Some common non-target bacteria yielded negative results, indicating the excellent specificity of the method. The developed strategy was successfully applied to the determination of S. aureus in various types of samples with satisfactory recoveries. Therefore, the novel dual-recognition strategy possessed the advantages of high sensitivity, specificity, and low cost and exhibited considerable potential as a promising tool to defend public health.
Collapse
Affiliation(s)
- Yun Zhang
- Laboratory of Infection and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Ge Tian
- Laboratory of Infection and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Xueni Sun
- Laboratory of Infection and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Xiaoli Yang
- Laboratory of Infection and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Yi Zhang
- Laboratory of Infection and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Wenqing Tan
- Laboratory of Infection and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Liangwei Duan
- Laboratory of Infection and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China.
| | - Shunxiang Gao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China.
| | - Junping Yu
- Laboratory of Infection and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China.
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
3
|
Yu Y, Zhang Y, Chen X, Li W, Wang Z, Mi Q, Zhang J. Bi-functionality of glyoxal caged nucleic acid coupled with CRISPR/Cas12a system for Hg 2+ determination. Mikrochim Acta 2024; 191:120. [PMID: 38300346 DOI: 10.1007/s00604-024-06196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
A highly sensitive and selective fluorescence method has been conducted for the detection of Hg2+ based on aminophenylboronic acid-modified carboxyl magnetic beads (CMB@APBA) and CRISPR/Cas12a system mediated by glyoxal caged nucleic acid (gcDNA). As a bi-functional DNA linker, gcDNA offers advantages of simultaneous recognition by boronic acid and complementary DNA/RNA. Under acidic condition, gcDNA can be immobilized on CMB@APBA through the formation of borate ester bond. The formed boric acid-esterified gcDNA can further bind with complementary CRISPR RNA through A-T base pairing to activate Cas12a with kcat/Km ratio of 3.4 × 107 s-1 M-1, allowing for amplified signal. Hg2+ can specifically combine with CMB@APBA, resulting in the release of gcDNA from CMB@APBA and the following inhibition on the activation of CRISPR/Cas12a system around magnetic bead. Under optimal conditions, the method exhibits a linear range from 20 to 250 nM, with a detection limit of 2.72 nM. The proposed method can detect Hg2+ in milk and tea beverages, providing a great significance for on-site monitoring of Hg2+ contamination in food.
Collapse
Affiliation(s)
- Ying Yu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuan Zhang
- Center for Molecular Recognition and Biosensing, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xu Chen
- Center for Molecular Recognition and Biosensing, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wenhui Li
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengwu Wang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qin Mi
- Ruijin-Hainan Hospital Shanghai Jiaotong University School of Medicine (Hainan Boao Research Hospital), Shanghai, Hainan, 570203, China.
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
4
|
Altalbawy FMA, Ali E, N Fenjan M, Fakri Mustafa Y, Mansouri S, D O B, Gulnikhol Idiyevna S, Misra N, Alawadi AH, Alsalamy A. Aptamer-Magnetic Nanoparticle Complexes for Powerful Biosensing: A Comprehensive Review. Crit Rev Anal Chem 2024:1-14. [PMID: 38165810 DOI: 10.1080/10408347.2023.2298328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The selective and sensitive diagnosis of diseases is a significant matter in the early stages of the cure of illnesses. To elaborate, although several types of probes have been broadly applied in clinics, magnetic nanomaterials-aptamers, as new-generation probes, are becoming more and more attractive. The presence of magnetic nanomaterials brings about quantification, purification, and quantitative analysis of biomedical, especially in complex samples. Elaborately, the superparamagnetic properties and numerous functionalized groups of magnetic nanomaterials are considered two main matters for providing separation ability and immobilization substrate, respectively. In addition, the selectivity and stability of aptamer can present a high potential recognition element. Importantly, the integration of aptamer and magnetic nanomaterials benefits can boost the performance of biosensors for biomedical analysis by introducing efficient and compact probes that need low patient samples and fast diagnosis, user-friendly application, and high repeatability in the quantification of biomolecules. The primary aim of this review is to suggest a summary of the effect of the employed other types of nanomaterials in the fabrication of novel aptasensors-based magnetic nanomaterials and to carefully explore various applications of these probes in the quantification of bioagents. Furthermore, the application of these versatile and high-potential probes in terms of the detection of cancer cells and biomarkers, proteins, drugs, bacteria, and nucleoside were discussed. Besides, research gaps and restrictions in the field of biomedical analysis by magnetic nanomaterials-aptamers will be discussed.
Collapse
Affiliation(s)
- Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, Egypt
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Laboratory of Biophysics and Medical Technologies, Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Bokov D O
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | | | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- Chemistry Department, The Islamic University, Najaf, Iraq
- Chemistry Department, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Chemistry Department, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- Chemistry Department, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
5
|
Tabaraki R, Nazari F. Vancomycin-modified nitrogen and chloride doped carbon dots and their application as a Staphylococcus aureus probe. Anal Chim Acta 2023; 1268:341311. [PMID: 37268336 DOI: 10.1016/j.aca.2023.341311] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 06/04/2023]
Abstract
In this research, N, Cl-doped carbon dots (N, Cl-CDs) were prepared in choline chloride-glycerol deep eutectic solvent (DES) by microwave method. N, Cl-CDs surface was modified with vancomycin for detection of Staphylococcus aureus (S. aureus) bacteria in the range of 102-107 colony-forming unit per milliliter (CFU/mL). The detection limit was 101 CFU/mL. Morphology and structure of N, Cl-CDs were characterized by transmission electron microscopy (TEM), X-ray photon spectroscopy (XPS), photoluminescence spectroscopy, FT-IR spectroscopy, energy dispersive X-ray spectroscopy (EDXS) and zeta potential. The prepared N, Cl-CDs had excellent dispersion in water, particle size range of 2-3 nm, and quantum yield of 38.75%. Speed, wide linear range and more convenient were advantages of new probe with respect to other methods.
Collapse
Affiliation(s)
- Reza Tabaraki
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran.
| | - Fereshteh Nazari
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| |
Collapse
|
6
|
Shan X, Xie H, Zhou T, Wu M, Yang J. Dual DNA recycling amplifications coupled with Au NPs@ZIF-MOF accelerator for enhanced electrochemical ratiometric sensing of pathogenic bacteria. Talanta 2023; 263:124751. [PMID: 37267887 DOI: 10.1016/j.talanta.2023.124751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
Sensitive and accurate quantification of pathogenic bacteria is vastly significant to the related food safety. Herein, a sensitive ratiometric electrochemical biosensor was developed for the detection of Staphylococcus aureus (S. aureus) based on dual DNA recycling amplifications and Au NPs@ZIF-MOF accelerator. Gold nanoparticles-loaded Zeolitic imidazolate metal-organic framework (Au NPs@ZIF-MOF) as electrode substrate possessed a large specific surface area for nucleic acid adsorption, and as an accelerator promoted the transfer of electrons. The strong recognition of aptamer to target S. aureus could initiate the padlock probe-based exponential rolling circle amplification (P-ERCA, as the first DNA recycling amplification), generating large numbers of trigger DNA strands. The released trigger DNA further activated the catalytic hairpin assembly (CHA, as the second DNA recycling amplification) on electrode surface. Consequently, P-ERCA and CHA continuously brought about one target to many signal transduction, leading to an exponential amplification. To achieve the accuracy of detection, the signal ratio of methylene blue (MB) and ferrocene (Fc) (IMB/IFc) was applied for intrinsic self-calibrating. Taking advantages of dual DNA recycling amplifications and Au NPs@ZIF-MOF, the proposed sensing system displayed high sensitivity for S. aureus quantification with a linear range of 5-108 CFU/mL, and the limit of detection was 1 CFU/mL. Moreover, this system represented excellent reproducibility, selectivity, and practicability for S. aureus analysis in foods.
Collapse
Affiliation(s)
- Xia Shan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, China; Xinglin College, Nantong University, Nantong 226019, China
| | - Haojie Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tianci Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Meisheng Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| | - Jie Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Effah CY, Ding L, Tan L, He S, Li X, Yuan H, Li Y, Liu S, Sun T, Wu Y. A SERS bioassay based on vancomycin-modified PEI-interlayered nanocomposite and aptamer-functionalized SERS tags for synchronous detection of Acinetobacter baumannii and Klebsiella pneumoniae. Food Chem 2023; 423:136242. [PMID: 37196408 DOI: 10.1016/j.foodchem.2023.136242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
Klebsiella pneumoniae (KP) and Acinetobacter baumannii (AB) are two important gram-negative bacteria that cause pneumonia and have been recently known to be associated with food. The rapid detection of these pathogens in food is important to minimize their colonization of the gut and stop new threats of the disease from spreading across the food chain. Herein, a double-edged sword aptasensor was developed for the synchronous detection of KP and AB in food and clinical samples. A highly sensitive, selective, specific, and synchronous detection of the target bacteria was achieved, and the limit of detection (LOD) was 10 cells/mL with a liner range of 50 to 105 cells/mL. The total assay time was 1.5 h. This study does not only provide a new tool for the detection of the target bacteria, but also serves as a promising tool for food safety and pneumonia diagnosis.
Collapse
Affiliation(s)
- Clement Yaw Effah
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Longlong Tan
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Li
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450003, China
| | - Huijie Yuan
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yi Li
- Department of Laboratory, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, China
| | - Shaohua Liu
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450003, China
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450003, China.
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Chen Y, Liu Y, Dong Q, Fan M, Li L. Loofah sac-like three-dimensional interwoven network composed of Van-PEG-MWCNTs for rapid and efficient capture of Staphylococcus aureus. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
9
|
Zolti O, Suganthan B, Ramasamy RP. Lab-on-a-Chip Electrochemical Biosensors for Foodborne Pathogen Detection: A Review of Common Standards and Recent Progress. BIOSENSORS 2023; 13:215. [PMID: 36831981 PMCID: PMC9954316 DOI: 10.3390/bios13020215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 05/27/2023]
Abstract
Foodborne pathogens are an important diagnostic target for the food, beverage, and health care industries due to their prevalence and the adverse effects they can cause to public health, food safety, and the economy. The standards that determine whether a given type of food is fit for consumption are set by governments and must be taken into account when designing a new diagnostic tool such as a biosensor platform. In order to meet these stringent detection limits, cost, and reliability standards, recent research has been focused on developing lab-on-a-chip-based approaches for detection devices that use microfluidic channels and platforms. The microfluidics-based devices are designed, developed, and used in different ways to achieve the established common standards for food pathogen testing that enable high throughput, rapid detection, low sample volume, and minimal pretreatment procedures. Combining microfluidic approaches with electrochemical biosensing could offer affordable, portable, and easy to use devices for food pathogen diagnostics. This review presents an analysis of the established common standards and the recent progress made in electrochemical sensors toward the development of future lab-on-a-chip devices that will aid 'collection-to-detection' using a single method and platform.
Collapse
Affiliation(s)
| | | | - Ramaraja P. Ramasamy
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Dayalan S, Gedda G, Li R, Zulfajri M, Huang GG. Vancomycin functionalization of gold nanostars for sensitive detection of foodborne pathogens through surface‐enhanced Raman scattering. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sandhiya Dayalan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung Taiwan
| | - Gangaraju Gedda
- Department of Chemistry, School of Engineering Presidency University Bangalore India
| | - Ruei–Nian Li
- Department of Biomedical Science and Environmental Biology Kaohsiung Medical University Kaohsiung Taiwan
| | - Muhammad Zulfajri
- Department of Chemistry Education Universitas Serambi Mekkah Banda Aceh Indonesia
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung Taiwan
- Department of Medical Research Kaohsiung Medical University Hospital Kaohsiung Taiwan
- Department of Chemistry National Sun Yat‐sen University Kaohsiung Taiwan
| |
Collapse
|
11
|
A Novel Aptamer Lateral Flow Strip for the Rapid Detection of Gram-positive and Gram-negative Bacteria. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Li Y, Chen M, Fan X, Peng J, Pan L, Tu K, Chen Y. Sandwich fluorometric method for dual-role recognition of Listeria monocytogenes based on antibiotic-affinity strategy and fluorescence quenching effect. Anal Chim Acta 2022; 1221:340085. [DOI: 10.1016/j.aca.2022.340085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/01/2022]
|
13
|
Detection of fumonisin B1 by aptamer-functionalized magnetic beads and ultra-performance liquid chromatography. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Azzam AM, Shenashen MA, Selim MS, Mostafa B, Tawfik A, El-Safty SA. Vancomycin-Loaded Furriness Amino Magnetic Nanospheres for Rapid Detection of Gram-Positive Water Bacterial Contamination. NANOMATERIALS 2022; 12:nano12030510. [PMID: 35159855 PMCID: PMC8839226 DOI: 10.3390/nano12030510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 12/21/2022]
Abstract
Bacterial pathogens pose high threat to public health worldwide. Different types of nanomaterials have been synthesized for the rapid detection and elimination of pathogens from environmental samples. However, the selectivity of these materials remains challenging, because target bacterial pathogens commonly exist in complex samples at ultralow concentrations. In this study, we fabricated novel furry amino magnetic poly-L-ornithine (PLO)/amine-poly(ethylene glycol) (PEG)-COOH/vancomycin (VCM) (AM-PPV) nanospheres with high-loading VCM for vehicle tracking and the highly efficient capture of pathogens. The magnetic core was coated with organosilica and functionalized with cilia. The core consisted of PEG/PLO loaded with VCM conjugated to Gram-positive bacterial cell membranes, forming hydrogen bonds with terminal peptides. The characterization of AM-PPV nanospheres revealed an average particle size of 56 nm. The field-emission scanning electron microscopy (FE-SEM) micrographs showed well-controlled spherical AM-PPV nanospheres with an average size of 56 nm. The nanospheres were relatively rough and contained an additional 12.4 nm hydrodynamic layer of PLO/PEG/VCM, which provided additional stability in the suspension. The furry AM-PPV nanospheres exhibited a significant capture efficiency (>90%) and a high selectivity for detecting Bacillus cereus (employed as a model for Gram-positive bacteria) within 15 min, even in the presence of other biocompatible pathogens. Moreover, AM-PPV nanospheres rapidly and accurately detected B. cereus at levels less than 10 CFU/mL. The furry nano-design can potentially satisfy the increasing demand for the rapid and sensitive detection of pathogens in clinical and environmental samples.
Collapse
Affiliation(s)
- Ahmed M. Azzam
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi 305-0047, Ibaraki-ken, Japan; (A.M.A.); (M.S.S.)
- Environmental Research Department, Theodor Bilharz Research Institute (TBRI), Imbaba, Giza 12411, Egypt;
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi 305-0047, Ibaraki-ken, Japan; (A.M.A.); (M.S.S.)
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
- Correspondence: (M.A.S.); (S.A.E.-S.)
| | - Mohamed S. Selim
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi 305-0047, Ibaraki-ken, Japan; (A.M.A.); (M.S.S.)
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Bayaumy Mostafa
- Environmental Research Department, Theodor Bilharz Research Institute (TBRI), Imbaba, Giza 12411, Egypt;
| | - Ahmed Tawfik
- Water Pollution Research Department, National Research Centre (NRC), Dokki, Giza 12622, Egypt;
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi 305-0047, Ibaraki-ken, Japan; (A.M.A.); (M.S.S.)
- Correspondence: (M.A.S.); (S.A.E.-S.)
| |
Collapse
|
15
|
Mi F, Hu C, Wang Y, Wang L, Peng F, Geng P, Guan M. Recent advancements in microfluidic chip biosensor detection of foodborne pathogenic bacteria: a review. Anal Bioanal Chem 2022; 414:2883-2902. [PMID: 35064302 PMCID: PMC8782221 DOI: 10.1007/s00216-021-03872-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022]
Abstract
Foodborne diseases caused by pathogenic bacteria pose a serious threat to human health. Early and rapid detection of foodborne pathogens is an urgent task for preventing disease outbreaks. Microfluidic devices are simple, automatic, and portable miniaturized systems. Compared with traditional techniques, microfluidic devices have attracted much attention because of their high efficiency and convenience in the concentration and detection of foodborne pathogens. This article firstly reviews the bio-recognition elements integrated on microfluidic chips in recent years and the progress of microfluidic chip development for pathogen pretreatment. Furthermore, the research progress of microfluidic technology based on optical and electrochemical sensors for the detection of foodborne pathogenic bacteria is summarized and discussed. Finally, the future prospects for the application and challenges of microfluidic chips based on biosensors are presented.
Collapse
Affiliation(s)
- Fang Mi
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
- Department of Cuisine and Tourism, Xinjiang Bingtuan Xingxin Vocational and Technical College, Urumqi, 830074, China
| | - Cunming Hu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
| | - Ying Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
| | - Li Wang
- Department of Cuisine and Tourism, Xinjiang Bingtuan Xingxin Vocational and Technical College, Urumqi, 830074, China
| | - Fei Peng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
| | - PengFei Geng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
| | - Ming Guan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China.
| |
Collapse
|
16
|
Rai A, Ferrão R, Palma P, Patricio T, Parreira P, Anes E, Tonda-Turo C, Martins C, Alves N, Ferreira L. Antimicrobial peptide-based materials: opportunities and challenges. J Mater Chem B 2022; 10:2384-2429. [DOI: 10.1039/d1tb02617h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The multifunctional properties of antimicrobial peptides (AMPs) make them attractive candidates for the treatment of various diseases. AMPs are considered alternatives to antibiotics due to the rising number of multidrug-resistant...
Collapse
|
17
|
Detection of Listeria monocytogenes based on teicoplanin functionalized magnetic beads combined with fluorescence assay. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Sande MG, Rodrigues JL, Ferreira D, Silva CJ, Rodrigues LR. Novel Biorecognition Elements against Pathogens in the Design of State-of-the-Art Diagnostics. BIOSENSORS 2021; 11:bios11110418. [PMID: 34821636 PMCID: PMC8615483 DOI: 10.3390/bios11110418] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 05/21/2023]
Abstract
Infectious agents, especially bacteria and viruses, account for a vast number of hospitalisations and mortality worldwide. Providing effective and timely diagnostics for the multiplicity of infectious diseases is challenging. Conventional diagnostic solutions, although technologically advanced, are highly complex and often inaccessible in resource-limited settings. An alternative strategy involves convenient rapid diagnostics which can be easily administered at the point-of-care (POC) and at low cost without sacrificing reliability. Biosensors and other rapid POC diagnostic tools which require biorecognition elements to precisely identify the causative pathogen are being developed. The effectiveness of these devices is highly dependent on their biorecognition capabilities. Naturally occurring biorecognition elements include antibodies, bacteriophages and enzymes. Recently, modified molecules such as DNAzymes, peptide nucleic acids and molecules which suffer a selective screening like aptamers and peptides are gaining interest for their biorecognition capabilities and other advantages over purely natural ones, such as robustness and lower production costs. Antimicrobials with a broad-spectrum activity against pathogens, such as antibiotics, are also used in dual diagnostic and therapeutic strategies. Other successful pathogen identification strategies use chemical ligands, molecularly imprinted polymers and Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease. Herein, the latest developments regarding biorecognition elements and strategies to use them in the design of new biosensors for pathogens detection are reviewed.
Collapse
Affiliation(s)
- Maria G. Sande
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
| | - Joana L. Rodrigues
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
| | - Débora Ferreira
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
| | - Carla J. Silva
- CENTI—Center for Nanotechnology and Smart Materials, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal;
- CITEVE—Technological Center for the Textile and Clothing Industries of Portugal, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Ligia R. Rodrigues
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
- Correspondence: ; Tel.: +351-253601978
| |
Collapse
|
19
|
Kuzma BA, Pence IJ, Greenfield DA, Ho A, Evans CL. Visualizing and quantifying antimicrobial drug distribution in tissue. Adv Drug Deliv Rev 2021; 177:113942. [PMID: 34437983 DOI: 10.1016/j.addr.2021.113942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
The biodistribution and pharmacokinetics of drugs are vital to the mechanistic understanding of their efficacy. Measuring antimicrobial drug efficacy has been challenging as plasma drug concentration is used as a surrogate for tissue drug concentration, yet typically does not reflect that at the intended site(s) of action. Utilizing an image-guided approach, it is feasible to accurately quantify the biodistribution and pharmacokinetics within the desired site(s) of action. We outline imaging modalities used in visualizing drug distribution with examples ranging from in vitro cellular drug uptake to clinical treatment of microbial infections. The imaging modalities of interest are: radio-labeling, magnetic resonance, mass spectrometry imaging, computed tomography, fluorescence, and Raman spectroscopy. We outline the progress, limitations, and future outlook for each methodology. Further advances in these optical approaches would benefit patients and researchers alike, as non-invasive imaging could yield more profound insights with a lower clinical burden than invasive measurement approaches used today.
Collapse
Affiliation(s)
- Benjamin A Kuzma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Daniel A Greenfield
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Alexander Ho
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.
| |
Collapse
|
20
|
Chen LJ, Liu YY, Zhao X, Yan XP. Vancomycin-Functionalized Porphyrinic Metal-Organic Framework PCN-224 with Enhanced Antibacterial Activity against Staphylococcus Aureus. Chem Asian J 2021; 16:2022-2026. [PMID: 34096181 DOI: 10.1002/asia.202100546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/03/2021] [Indexed: 11/07/2022]
Abstract
A vancomycin (Van) modification strategy on a porphyrinic metal-organic framework (MOF) PCN-224 is presented. The obtained Van-PCN-224 gives the combined advantages of porphyrinic MOF and Van with high photosensitive activity and excellent targeted antibacterial activity against Staphylococcus aureus. The features make Van-PCN-224 promising for antimicrobial therapy.
Collapse
Affiliation(s)
- Li-Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yao-Yao Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xu Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
21
|
Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 2021; 230:122026. [PMID: 33934756 PMCID: PMC7854185 DOI: 10.1016/j.talanta.2020.122026] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a potential risk for public health and the global economy. Fast and accurate detection of the pathogens that cause these infections is important to avoid the transmission of the diseases. Conventional methods for the detection of these microorganisms are time-consuming, costly, and not applicable for on-site monitoring. Biosensors can provide a fast, reliable, and point of care diagnostic. Nanomaterials, due to their outstanding electrical, chemical, and optical features, have become key players in the area of biosensors. This review will cover different nanomaterials that employed in electrochemical, optical, and instrumental biosensors for infectious disease diagnosis and how these contributed to enhancing the sensitivity and rapidity of the various sensing platforms. Examples of nanomaterial synthesis methods as well as a comprehensive description of their properties are explained. Moreover, when available, comparative data, in the presence and absence of the nanomaterials, have been reported to further highlight how the usage of nanomaterials enhances the performances of the sensor.
Collapse
Affiliation(s)
- Elham Sheikhzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding author
| | - Valerio Beni
- Digital Systems, Department Smart Hardware, Unit Bio–& Organic Electronics, RISE Acreo, Research Institutes of Sweden, Norrkoping, 60221, Sweden
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia,King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia,Corresponding author. Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
22
|
Chen G, Yang G, Wang Y, Deng M, Wang Z, Aguilar ZP, Xu H. Antibiotic-Based Magnetic Nanoprobes Combined with mPCR for Simultaneous Detection of Staphylococcus aureus and Bacillus cereus. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02026-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Wang S, Shen W, Zheng S, Li Z, Wang C, Zhang L, Liu Y. Dual-signal lateral flow assay using vancomycin-modified nanotags for rapid and sensitive detection of Staphylococcus aureus. RSC Adv 2021; 11:13297-13303. [PMID: 35423879 PMCID: PMC8697553 DOI: 10.1039/d1ra01085a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/28/2021] [Indexed: 12/17/2022] Open
Abstract
This paper reports a colorimetric-fluorescent dual-signal lateral flow assay (LFA) based on vancomycin (Van)-modified SiO2-Au-QD tags for sensitive and quantitative detection of Staphylococcus aureus (S. aureus). The combination of high-performance Van-tags and detection antibodies integrated into the LFA system produced assays with high sensitivity and specificity. The visualization limit of the colorimetric signal and the detection limit of the fluorescence signal of the proposed method for S. aureus can reach 104 and 100 cells mL-1, respectively.
Collapse
Affiliation(s)
- Shu Wang
- Hefei Institute of Physical Science, Chinese Academy of Sciences Hefei 230036 PR China
- University of Science and Technology of China Hefei 230036 PR China
| | - Wanzhu Shen
- Anhui Agricultural University Hefei 230036 PR China
- Beijing Institute of Radiation Medicine Beijing 100850 PR China
| | - Shuai Zheng
- Anhui Agricultural University Hefei 230036 PR China
- Beijing Institute of Radiation Medicine Beijing 100850 PR China
| | - Zhigang Li
- Hefei Institute of Physical Science, Chinese Academy of Sciences Hefei 230036 PR China
| | - Chongwen Wang
- Anhui Agricultural University Hefei 230036 PR China
- Beijing Institute of Radiation Medicine Beijing 100850 PR China
| | - Long Zhang
- Hefei Institute of Physical Science, Chinese Academy of Sciences Hefei 230036 PR China
- University of Science and Technology of China Hefei 230036 PR China
| | - Yong Liu
- Hefei Institute of Physical Science, Chinese Academy of Sciences Hefei 230036 PR China
- University of Science and Technology of China Hefei 230036 PR China
| |
Collapse
|
24
|
Wang P, Sun Y, Li X, Wang L, Xu Y, He L, Li G. Recent advances in dual recognition based surface enhanced Raman scattering for pathogenic bacteria detection: A review. Anal Chim Acta 2021; 1157:338279. [PMID: 33832584 DOI: 10.1016/j.aca.2021.338279] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
Rapid and reliable detection of pathogenic bacteria at the early stage represents a highly topical research area for food safety and public health. Although culture based method is the gold standard method for bacteria detection, recent techniques have promoted the development of alternative methods, such as surface enhanced Raman scattering (SERS). SERS provides additional advantages of high speed, simultaneous detection and characterization, multiplex analysis, and comparatively low cost. However, conventional SERS methods for bacteria detection are facing limitations of low sensitivity, susceptible to matrix interference, and poor accuracy. In recent years, specific detection of pathogenic bacteria with dual recognition based SERS methods has attracted increasing attentions. These methods include two steps recognition of target bacteria, and integrate the functions of target separation and detection. Considering their merits of excellent specificity, ultrahigh sensitivity, multiplex detection capability, and potential for on-site applications, these methods are promising alternatives for rapid and reliable detection of pathogenic bacteria. Herein, this review aims to summarize the recent advances in dual recognition based SERS methods for specific detection of pathogenic bacteria. Their advantages and limitations are discussed, and further perspectives are tentatively given. This review provides new insights into the application of SERS as a reliable tool for pathogenic bacteria detection.
Collapse
Affiliation(s)
- Panxue Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Yan Sun
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Xiang Li
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Li Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Ying Xu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Lili He
- Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, MA, 01003, USA
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| |
Collapse
|
25
|
Releasing bacteria from functional magnetic beads is beneficial to MALDI-TOF MS based identification. Talanta 2020; 225:121968. [PMID: 33592721 DOI: 10.1016/j.talanta.2020.121968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 01/08/2023]
Abstract
Bacterial infections are the key cause of morbidity and mortality worldwide. Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS)-based bacterial identification has been widely accepted in the clinic. Functional material, such as rabbit immunoglobulin G-modified Fe3O4 (IgG@Fe3O4) and fragment crystallizable mannose binding lectin-modified Fe3O4 (FcMBL@Fe3O4), is used to capture bacteria from biological samples for MALDI-TOF MS identification, and the bacteria MS signals are usually obtained by directly smearing enriched bacteria on a MALDI target with MALDI matrix solution. However, the accuracy of identification based on MALDI-TOF MS may be affected by the presence of functional molecules, especially proteins, resulting in errors in the comparison with the standard bacterial spectra in the database. Moreover, the long-term presence of the magnetic beads on the MALDI-TOF target may reduce the instrument service life. In this study, we constructed FcMBL@Fe3O4 and used it to capture bacteria from both aqueous solution and bovine blood, and the bacterial identification accuracy based on different target preparation methods was compared. In the presence of Ca2+, the similarity scores for bacteria identified with FcMBL@Fe3O4 were ~88% and ~82% for Staphylococcus. aureus and Escherichia coli, respectively. In the presence of ethylenediaminetetraacetic acid (EDTA), bacteria separate from FcMBL@Fe3O4, resulting in similarity scores of ~96% and ~92% for S. aureus and E. coli, respectively. These results indicate that the functional proteins on the surface of nanoparticles affect the accuracy of identification accuracy based on the MALDI-TOF MS database. Thus, the release of bacteria from the functional material could increase the identification accuracy and be beneficial for maintaining the instrument.
Collapse
|
26
|
Deng J, Zhao S, Liu Y, Liu C, Sun J. Nanosensors for Diagnosis of Infectious Diseases. ACS APPLIED BIO MATERIALS 2020; 4:3863-3879. [DOI: 10.1021/acsabm.0c01247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinqi Deng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Zhao
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Jung T, Jung Y, Ahn J, Yang S. Continuous, rapid concentration of foodborne bacteria (Staphylococcus aureus, Salmonella typhimurium, and Listeria monocytogenes) using magnetophoresis-based microfluidic device. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107229] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Liu P, Wang Y, Han L, Cai Y, Ren H, Ma T, Li X, Petrenko VA, Liu A. Colorimetric Assay of Bacterial Pathogens Based on Co 3O 4 Magnetic Nanozymes Conjugated with Specific Fusion Phage Proteins and Magnetophoretic Chromatography. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9090-9097. [PMID: 32023032 DOI: 10.1021/acsami.9b23101] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is important to detect pathogens rapidly, sensitively, and selectively for clinical medicine, homeland security, food safety, and environmental control. We report here a specific and sensitive colorimetric assay that incorporated a bovine serum albumin-templated Co3O4 magnetic nanozyme (Co3O4 MNE) with a novel specific fusion phage protein and magnetophoretic chromatography to detect Staphylococcus aureus. The Co3O4 MNE was conjugated to S. aureus-specific fusion-pVIII (Co3O4 MNE@fusion-pVIII), screened from the S. aureus-specific phage AQTFLGEQD (the phage monoclone is denoted by the peptide sequence). The as-prepared triple-functional Co3O4 MNE@fusion-pVIII particles were capable of capturing S. aureus in sterile milk, which were then isolated from milk magnetically. Assisted by polyethylene glycol, the Co3O4 MNE@fusion-pVIII@S. aureus complex was separated from the free Co3O4 MNE@fusion-pVIII by magnetophoretic chromatography in an external magnetic field. After transferring the isolated Co3O4 MNE@fusion-pVIII@S. aureus complexes into a 96-well plate, diammonium salt of 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) and H2O2 were added to develop color because of the peroxidase mimetics activity of the Co3O4 MNE. A S. aureus concentration within 10-10,000 cfu/mL in milk can be detected (detection limit: 8 cfu/mL). The as-developed method is simple, cost-efficient, and sensitive, which is useful for rapidly diagnosing pathogenic bacteria and helpful to prevent disease outbreaks induced by pathogens in developing countries.
Collapse
Affiliation(s)
- Pei Liu
- Institute for Chemical Biology & Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
- Faculty of Life Science and Food Engineering, Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration , HuaiYin Institute of Technology , 1 Meicheng East Road , Huaian 223003 , China
| | - Yanbo Wang
- Institute for Chemical Biology & Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , 700 Changcheng Road , Qingdao 266109 , China
| | - Yuanyuan Cai
- School of Pharmacy, Medical College , Qingdao University , Qingdao 266021 , China
| | - Han Ren
- School of Pharmacy, Medical College , Qingdao University , Qingdao 266021 , China
| | - Tengxin Ma
- Institute for Chemical Biology & Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Xiangqian Li
- Faculty of Life Science and Food Engineering, Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration , HuaiYin Institute of Technology , 1 Meicheng East Road , Huaian 223003 , China
| | - Valery A Petrenko
- Department of Pathobiology , Auburn University , 269 Greene Hall , Auburn , Alabama 36849-5519 , United States
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
- School of Pharmacy, Medical College , Qingdao University , Qingdao 266021 , China
| |
Collapse
|
29
|
Zhang Y, Cui G, Qin N, Yu X, Zhang H, Jia X, Li X, Zhang X, Hun X. An assay for Staphylococcus aureus based on a self-catalytic ampicillin–metal (Fe3+)-organic gels–H2O2 chemiluminescence system with near-zero background noise. Chem Commun (Camb) 2020; 56:3421-3424. [DOI: 10.1039/c9cc09166a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A self-catalytic ampicillin–metal (Fe3+)-organic gels (AMP–MOGs (Fe))–H2O2 CL system, which is not influenced by transition metal ions, was studied.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Gaoxi Cui
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Nana Qin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Xijuan Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Hui Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Xiaofei Jia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Xiaohua Li
- School of Chemistry and Environmental Engineering
- Shanxi Datong University
- Shanxi 037009
- China
| | - Xuzhi Zhang
- Yellow Sea Fisheries Research Institute
- Chinese Academy of Fishery Sciences
- Laboratory for Marine Fisheries Science and Food Production Processes
- Qingdao National Laboratory for Marine Science and Technology
- Qingdao 266071
| | - Xu Hun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| |
Collapse
|
30
|
Hao J, Wang F, Xing G, Liu Y, Deng R, Zhang H, Cheng A, Zhang G. Design and preliminary application of affinity peptide based on the structure of the porcine circovirus type II Capsid (PCV2 Cap). PeerJ 2019; 7:e8132. [PMID: 31824765 PMCID: PMC6899342 DOI: 10.7717/peerj.8132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/31/2019] [Indexed: 01/14/2023] Open
Abstract
Background Affinity peptides, as a core part of affinity chromatography, play an important role in the purification of target molecules. Methods Here we describe the use of molecular docking technology for virtual screening of affinity peptides that specifically recognize the PCV2 Cap protein for the first time. Thirteen candidate peptides with high scores were obtained and then further characterized. Experimentally, the affinity and sensitivity of the peptides studied were identified by ELISA and LSPR, respectively. In order to investigate the purification effect of a selected peptide (L11) for the recombinant PCV2 Cap protein, it was coupled to NHS agarose magnetic beads as an affinity adsorbent (NaMB-L11); and the ligand density of the affinity adsorbent and pH value in the purification of the recombinant PCV2 Cap protein were optimized. Results Our data showed that the peptide L11- DYWWQSWE has the smallest KD = 103 nM with higher specificity for PCV2 Cap protein recognition. The NaMB-L11 affinity adsorbent yielded a purified Cap sample with 98% purity at 90% recovery in a single step. Conclusion Based on the structure, we obtained a high affinity peptide L11 binding to the PCV2 Cap protein by molecular docking technology. It not only provides a theoretical basis for the design of PCV2 Cap affinity peptide, but a new method for the purification of the PCV2 Cap protein.
Collapse
Affiliation(s)
- Junfang Hao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Fangyu Wang
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guangxu Xing
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yunchao Liu
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ruiguang Deng
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hao Zhang
- Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gaiping Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.,College of Life Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
31
|
Zhang Y, Tan W, Zhang Y, Mao H, Shi S, Duan L, Wang H, Yu J. Ultrasensitive and selective detection of Staphylococcus aureus using a novel IgY-based colorimetric platform. Biosens Bioelectron 2019; 142:111570. [PMID: 31401227 DOI: 10.1016/j.bios.2019.111570] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022]
Abstract
To develop a specific method for the detection of S. aureus, chicken anti-protein A IgY was adopted for specifically capturing S. aureus, depending on the specific recognition of staphylococcal protein A (SPA) by chicken anti-protein A IgY, which can eliminate the interference from protein G-producing Streptococcus. HRP labeled IgG, Fc region of which has a high affinity towards SPA, was paired with IgY for the colorimeter analysis of the system. By optimizing the system, a super-low detection limit of 11 CFU of S. aureus in 100 μL PBS without enrichment, with a linear range from 5.0 × 102 CFU mL-1 to 5.0 × 104 CFU mL-1 was obtained. The entire assay was accomplished in less than 90 min and no cross-reactivity with the other tested bacterial species was observed. Moreover, the developed assay has been applied for the detection of S. aureus in three different types of real samples (sodium chloride injection, apple juice and human urine) with satisfactory results. To the best of our knowledge, it is the first time to report using chicken anti-protein A IgY and any IgG to detect S. aureus based on the dual-recognition mode of SPA. The novel method opened up a way for monitoring S. aureus in food samples with high sensitivity, specificity and simple operation.
Collapse
Affiliation(s)
- Yun Zhang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China.
| | - Wenqing Tan
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Yang Zhang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Huili Mao
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Shuyou Shi
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Liangwei Duan
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| |
Collapse
|
32
|
Xu C, Han Q, Dong S, Liu X, Liu X. Establishment of an ultrasensitive indirect competitive time-resolved fluoroimmunoassay for vancomycin determination. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1639629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Chongxin Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Qi Han
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Sa Dong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xiaoqin Liu
- Department of animal science and technology, Huaihua Vocational and Technical College, Huaihua, People’s Republic of China
| | - Xianjin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| |
Collapse
|
33
|
Wu X, Lai T, Jiang J, Ma Y, Tao G, Liu F, Li N. An on-site bacterial detection strategy based on broad-spectrum antibacterial ε-polylysine functionalized magnetic nanoparticles combined with a portable fluorometer. Mikrochim Acta 2019; 186:526. [PMID: 31292779 DOI: 10.1007/s00604-019-3632-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/21/2019] [Indexed: 11/25/2022]
Abstract
A sensitive on-site bacterial detection strategy is presented that integrates the broad-spectrum capturing feature of ε-polylysine-functionalized magnetic nanoparticles with an in-house built portable fluorometer. Based on the electrostatic interaction, the functionalized magnetic nanoparticles (ε-PL-MNPs) were prepared for Gram-positive and Gram-negative bacterial separation and subsequent viable release. ε-PL-MNPs show a broad reactivity towards bacteria with the high capture efficiency from real-world sample media. They also enable controlled viable bacterial release with pH adjustment. Detection of bacteria is based on a combination of broad-spectrum capture with colorimetric and fluorimetric immunoassays. A portable fluorometer is built to enhance the applicability for sensitive on-site detection. A limit of detection of 98 CFU·mL-1 is achieved that is comparable to that of a known spectrofluorometric method for E. coli DH5α. Graphical abstract Schematic presentation of bacterial capture using cationic polymer functionalized magnetic nanoparticles and general fluorometric immunoassay with portable fluorometer. The limit of detection is 98 CFU·mL-1 for E. coli DH5α.
Collapse
Affiliation(s)
- Xi Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Tiancheng Lai
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiezhang Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yurou Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Guangyu Tao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
34
|
Rapid detection of trace Salmonella in milk and chicken by immunomagnetic separation in combination with a chemiluminescence microparticle immunoassay. Anal Bioanal Chem 2019; 411:6067-6080. [DOI: 10.1007/s00216-019-01991-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/20/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
|
35
|
Xu C, Akakuru OU, Zheng J, Wu A. Applications of Iron Oxide-Based Magnetic Nanoparticles in the Diagnosis and Treatment of Bacterial Infections. Front Bioeng Biotechnol 2019; 7:141. [PMID: 31275930 PMCID: PMC6591363 DOI: 10.3389/fbioe.2019.00141] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
Diseases caused by bacterial infections, especially drug-resistant bacteria have seriously threatened human health throughout the world. It has been predicted that antimicrobial resistance alone will cause 10 million deaths per year and that early diagnosis and therapy will efficiently decrease the mortality rate caused by bacterial infections. Considering this severity, it is urgent to develop effective methods for the early detection, prevention and treatment of these infections. Until now, numerous efforts based on nanoparticles have been made to detect and kill pathogenic bacteria. Iron oxide-based magnetic nanoparticles (MNPs), as potential platforms for bacteria detection and therapy, have drawn great attention owing to their magnetic property. These MNPs have also been broadly used as bioimaging contrast agents and drug delivery and magnetic hyperthermia agents to diagnose and treat bacterial infections. This review therefore overviews the recent progress on MNPs for bacterial detection and therapy, including bacterial separation and enrichment in vitro, bacterial infection imaging in vivo, and their therapeutic activities on pathogenic bacteria. Furthermore, some bacterial-specific targeting agents, used to selectively target the pathogenic bacteria, are also introduced. In addition, the challenges and future perspective of MNPs for bacterial diagnosis and therapy are given at the end of this review. It is expected that this review will provide a better understanding toward the applications of MNPs in the detection and therapy of bacterial infections.
Collapse
Affiliation(s)
- Chen Xu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Department of Experimental Medical Science, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Jianjun Zheng
- Department of Radiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
36
|
Huang Z, Hu S, Xiong Y, Wei H, Xu H, Duan H, Lai W. Application and development of superparamagnetic nanoparticles in sample pretreatment and immunochromatographic assay. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Sai-Anand G, Sivanesan A, Benzigar MR, Singh G, Gopalan AI, Baskar AV, Ilbeygi H, Ramadass K, Kambala V, Vinu A. Recent Progress on the Sensing of Pathogenic Bacteria Using Advanced Nanostructures. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180280] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gopalan Sai-Anand
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Arumugam Sivanesan
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- Metrohm Australia, 56 Buffalo Road, Gladesville, NSW 2111, Australia
| | - Mercy R Benzigar
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Anantha-Iyengar Gopalan
- Research Institute of Advanced Energy Technology, Kyungpook National University, Daegu 41566, Korea
| | - Arun Vijay Baskar
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Hamid Ilbeygi
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Venkata Kambala
- Hudson Marketing Pty Ltd, Level 2/131 Macquarie St, Sydney NSW 2000, Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
38
|
Lim J, Choi J, Guk K, Son SU, Lee DK, Yeom SJ, Kang T, Jung J, Lim EK. Peptidoglycan binding protein (PGBP)-modified magnetic nanobeads for efficient magnetic capturing of Staphylococcus aureus associated with sepsis in blood. Sci Rep 2019; 9:129. [PMID: 30644425 PMCID: PMC6333782 DOI: 10.1038/s41598-018-37194-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
Peptidoglycan-binding protein-modified magnetic nanobeads (PGBP-MNBs) were prepared for efficient magnetic capturing of Staphylococcus aureus (S. aureus), which is associated with sepsis, using the binding affinity of PGBP for the peptidoglycan (PG) layer on S. aureus. These PGBP-MNBs can simply capture S. aureus in plasma within 1 hr or even 15 min. Importantly, they also can capture various types of Gram-positive bacteria, such as Bacillus cereus and methicillin-resistant and methicillin-susceptible S. aureus (MRSA and MSSA). We believe that PGBP-based systems will be used to develop diagnostic systems for Gram-positive bacteria-related diseases.
Collapse
Affiliation(s)
- Jaewoo Lim
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Jongmin Choi
- BioNano Health Guard Research Center, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Kyeonghye Guk
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Seong Uk Son
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Do Kyung Lee
- BioNano Health Guard Research Center, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Soo-Jin Yeom
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Taejoon Kang
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Juyeon Jung
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Eun-Kyung Lim
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
39
|
Shan Y, Xu C, Wang M, Zhu Z, Wu FG, Shi Z, Cui Q, Arumugam GM. Bilinear Staphylococcus aureus detection based on suspension immunoassay. Talanta 2019; 192:154-159. [DOI: 10.1016/j.talanta.2018.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 12/23/2022]
|
40
|
Zhang Y, Shi S, Xing J, Tan W, Zhang C, Zhang L, Yuan H, Zhang M, Qiao J. A novel colorimetric sensing platform for the detection ofS. aureuswith high sensitivity and specificity. RSC Adv 2019; 9:33589-33595. [PMID: 35528901 PMCID: PMC9073649 DOI: 10.1039/c9ra05304b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
In this study, a novel colorimetric sensing platform was developed for the detection of S. aureus using dog immunoglobulin G (IgG) as the capture antibody and chicken anti-protein A immunoglobulin Y labeled with horseradish peroxidase (HRP-IgY) as the detection antibody. Dog IgG labeled with magnetic beads was used to capture S. aureus through the interaction between the Fc region of dog IgG and Staphylococcal protein A (SPA). HRP-IgY was introduced to recognize the residual SPA on the surface of S. aureus and to create a sandwich format, after which a soluble 3,3′,5,5′-tetramethylbenzidine (TMB) substrate was added. A stop solution was utilized to cease the enzymatic chromogenic reaction, and then optical density was read at 450 nm. Under optimal conditions, the proposed method displayed a low detection limit of 1.0 × 103 CFU mL−1 and a wide linear range of 3.1 × 103 to 2.0 × 105 CFU mL−1. This detection method exhibited high specificity against other foodborne bacteria. The recovery rates ranged from 95.2% to 129.2%. To our knowledge, this is the first report to employ dog IgG and chicken IgY as an antibody pair to detect S. aureus. This technique exhibits high application potential for S. aureus monitoring in various kinds of samples. Utilization of dog IgG and chicken anti-protein A IgY as an antibody pair for sensitive and selective detection of S. aureus.![]()
Collapse
Affiliation(s)
- Yun Zhang
- Henan Key Laboratory of Immunology and Targeted Therapy
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine
- School of Laboratory Medicine
- Xinxiang Medical University
- Xinxiang 453003
| | - Shuyou Shi
- Henan Key Laboratory of Immunology and Targeted Therapy
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine
- School of Laboratory Medicine
- Xinxiang Medical University
- Xinxiang 453003
| | - Jiajia Xing
- School of International Education
- Xinxiang Medical University
- Xinxiang 453003
- PR China
| | - Wenqing Tan
- Henan Key Laboratory of Immunology and Targeted Therapy
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine
- School of Laboratory Medicine
- Xinxiang Medical University
- Xinxiang 453003
| | - Chenguang Zhang
- Henan Key Laboratory of Immunology and Targeted Therapy
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine
- School of Laboratory Medicine
- Xinxiang Medical University
- Xinxiang 453003
| | - Lin Zhang
- School of Innovation and Entrepreneurship
- Xinxiang Medical University
- Xinxiang 453003
- PR China
| | - Huan Yuan
- Henan Key Laboratory of Immunology and Targeted Therapy
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine
- School of Laboratory Medicine
- Xinxiang Medical University
- Xinxiang 453003
| | - Miaomiao Zhang
- Henan Key Laboratory of Immunology and Targeted Therapy
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine
- School of Laboratory Medicine
- Xinxiang Medical University
- Xinxiang 453003
| | - Jinjuan Qiao
- Department of Medical Laboratory
- Weifang Medical University
- Weifang 261053
- PR China
| |
Collapse
|
41
|
Song Z, Li M, Li B, Yan Y, Song Y. Automatic detecting and counting magnetic beads-labeled target cells from a suspension in a microfluidic chip. Electrophoresis 2018; 40:897-905. [DOI: 10.1002/elps.201800345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/11/2018] [Accepted: 10/26/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Zhenyu Song
- Department of Radiotherapy; Jiaozhou Central Hospital; Qingdao P. R. China
| | - Mengqi Li
- Department of Mechanical and Mechatronics Engineering; University of Waterloo; Waterloo ON Canada
| | - Bao Li
- Department of Marine Engineering; Dalian Maritime University; Dalian P. R. China
| | - Yimo Yan
- Department of Biomedical Engineering; School of Medicine; Tsinghua University; Beijing P. R. China
- Graduate School at Shenzhen; Tsinghua University; Shenzhen P. R. China
| | - Yongxin Song
- Department of Marine Engineering; Dalian Maritime University; Dalian P. R. China
| |
Collapse
|
42
|
He P, Lv F, Liu L, Wang S. Synthesis of amphiphilic poly(fluorene) derivatives for selective imaging of Staphylococcus aureus. Sci Bull (Beijing) 2018; 63:900-906. [PMID: 36658971 DOI: 10.1016/j.scib.2018.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/31/2018] [Accepted: 05/09/2018] [Indexed: 01/21/2023]
Abstract
Three amphiphilic poly(fluorene-co-phenylene) derivatives with different side chains (PFP-1, PFP-2, PFP-3) were designed and synthesized for exploring their detection and imaging of pathogens. Upon incubation with six kinds of different pathogens, it was found the three polymers could selectively interact with Staphylococcus aureus (S. aureus). Their selective imaging towards S. aureus were thus realized. The selective imaging towards S. aureus was also confirmed even under the blend of microbes. PFP-3 shows stronger fluorescence imaging signal than PFP-1 and PFP-2. Zeta potential and isothermal titration microcalorimetry (ITC) tests demonstrated that both electrostatic interactions and hydrophobic interactions played important roles in the binding between PFPs and pathogens. Thus, amphiphilic PFP-3 exhibits great potential for specific imaging of S. aureus in a simple and rapid manner.
Collapse
Affiliation(s)
- Ping He
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengting Lv
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libing Liu
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shu Wang
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
43
|
Peng L, Xiong Y, Wang M, Han M, Cai W, Li Z. Chemical Composition of Essential Oil in Mosla Chinensis Maxim Cv. Jiangxiangru and its Inhibitory Effect on Staphylococcus Aureus Biofilm Formation. Open Life Sci 2018; 13:1-10. [PMID: 33817061 PMCID: PMC7874676 DOI: 10.1515/biol-2018-0001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/27/2017] [Indexed: 11/15/2022] Open
Abstract
The essential oil of Mosla chinensis Maxim cv. Jiangxiangru is known for its antibacterial ability. This study aimed to investigate the chemical composition of Jiangxiangru essential oil and its inhibitory effect on Staphylococcus aureus biofilm formation. Gas chromatography/mass spectrometry (GC–MS) was used to determine the chemical composition of Jiangxiangru essential oil. Subsequently, the eight major chemical components were quantitatively analyzed using GC– MS, and their minimum inhibitory concentration (MIC) values against S. aureus were tested. Biofilm formation was detected by crystal violet semi-quantitative method and silver staining. Of the 59 peaks detected, 29 were identified by GC–MS. Of these peaks, thymol, carvacrol, p-cymene, γ-terpinene, thymol acetate, α-caryophyllene, 3-carene, and carvacryl acetate were present at a relatively higher concentration. The results of the quantitative test showed that thymol, carvacrol, p-cymene, and γ-terpinene were the major components of the essential oil. Among the eight reference substances, only thymol, carvacrol, and thymol acetate had lower MICs compared with the essential oil. Essential oil, carvacrol, carvacryl acetate, α-caryophyllene, and 3-carene showed the better inhibition of S. aureus biofilm formation. When one fourth of the MIC concentrations were used for these substances (0.0625 mg/mL for essential oil, 0.0305 mg/mL for carvacrol, 1.458 mg/mL for carvacryl acetate, 0.1268 mg/mL for α-caryophyllene, and 2.5975 mg/mL for 3-carene), the inhibition rates were over 80%. However, thymol, γ-terpinene, thymol acetate, and p-cymene showed a relatively poor inhibition of S. aureus biofilm formation. When 1× MIC concentrations of these substances were used, the inhibition rates were less than 50%. In conclusion, Jiangxiangru essential oil and its major components, carvacrol, carvacryl acetate, α-caryophyllene, and 3-carene, strongly inhibited biofilm formation in S. aureus.
Collapse
Affiliation(s)
- Liang Peng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang330013, P.R. China
| | - Yunhao Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang330013, P.R. China
| | - Mei Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang330013, P.R. China
| | - Manman Han
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang330013, P.R. China
| | - Weilan Cai
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang330013, P.R. China
| | - Zhimin Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang330013, P.R. China
- E-mail:
| |
Collapse
|
44
|
Wang C, Gu B, Liu Q, Pang Y, Xiao R, Wang S. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria. Int J Nanomedicine 2018. [PMID: 29520142 PMCID: PMC5834169 DOI: 10.2147/ijn.s150336] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. Methods We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe3O4@Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively capture and discriminate bacterial pathogens from solution. The high-performance Fe3O4@Ag MNPs were modified with vancomycin and used as bacteria capturer for magnetic separation and enrichment. The modified MNPS were found to exhibit strong affinity with a broad range of Gram-positive and Gram-negative bacteria. After separating and rinsing bacteria, Fe3O4@Ag-Van MNPs and Au@Ag NPs were synergistically used to construct a very large number of hot spots on bacteria cells, leading to ultrasensitive SERS detection. Results The dominant merits of our dual enhanced strategy included high bacterial-capture efficiency (>65%) within a wide pH range (pH 3.0–11.0), a short assay time (<30 min), and a low detection limit (5×102 cells/mL). Moreover, the spiked tests show that this method is still valid in milk and blood samples. Owing to these capabilities, the combined system enabled the sensitive and specific discrimination of different pathogens in complex solution, as verified by its detection of Gram-positive bacterium Escherichia coli, Gram-positive bacterium Staphylococcus aureus, and methicillin-resistant S. aureus. Conclusion This method has great potential for field applications in food safety, environmental monitoring, and infectious disease diagnosis.
Collapse
Affiliation(s)
- Chongwen Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Bing Gu
- Medical Technology School, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Qiqi Liu
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Yuanfeng Pang
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, People's Republic of China.,Department of Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Rui Xiao
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Shengqi Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, People's Republic of China.,Medical Technology School, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
45
|
Yang L, Deng W, Cheng C, Tan Y, Xie Q, Yao S. Fluorescent Immunoassay for the Detection of Pathogenic Bacteria at the Single-Cell Level Using Carbon Dots-Encapsulated Breakable Organosilica Nanocapsule as Labels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3441-3448. [PMID: 29299908 DOI: 10.1021/acsami.7b18714] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Herein, carbon dots (CDs)-encapsulated breakable organosilica nanocapsules (BONs) were facilely prepared and used as advanced fluorescent labels for ultrasensitive detection of Staphylococcus aureus. The CDs were entrapped in organosilica shells by cohydrolyzation of tetraethyl orthosilicate and bis[3-(triethoxysilyl)propyl]disulfide to form core-shell CDs@BONs, where hundreds of CDs were encapsulated in each nanocapsule. Immunofluorescent nanocapsules, i.e., anti-S. aureus antibody-conjugated CDs@BONs, were prepared to specifically recognize S. aureus. Before fluorescent detection, CDs were released from the BONs by simple NaBH4 reduction. The fluorescent signals were amplified by 2 orders of magnitude because of hundreds of CDs encapsulated in each nanocapsule, compared with a conventional immunoassay using CDs as fluorescent labels. A linear range was obtained at the S. aureus concentration from 1 to 200 CFU mL-1. CDs@BONs are also expected to expand to other systems and allow the detection of ultralow concentrations of targets.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| | - Chang Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| |
Collapse
|
46
|
Zhang C, Wang C, Xiao R, Tang L, Huang J, Wu D, Liu S, Wang Y, Zhang D, Wang S, Chen X. Sensitive and specific detection of clinical bacteria via vancomycin-modified Fe3O4@Au nanoparticles and aptamer-functionalized SERS tags. J Mater Chem B 2018; 6:3751-3761. [DOI: 10.1039/c8tb00504d] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A sensitive SERS platform for the simultaneous detection of S. aureus and E. coli on the basis of dual recognition by vancomycin and aptamers is reported.
Collapse
|
47
|
Wen J, Zhou S, Yu Z, Chen J, Yang G, Tang J. Decomposable quantum-dots/DNA nanosphere for rapid and ultrasensitive detection of extracellular respiring bacteria. Biosens Bioelectron 2017; 100:469-474. [PMID: 28963964 DOI: 10.1016/j.bios.2017.09.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 01/17/2023]
Abstract
Extracellular respiring bacteria (ERB) are a group of bacteria capable of transferring electrons to extracellular acceptors and have important application in environmental remediation. In this study, a decomposable quantum-dots (QDs)/DNA nanosphere probe was developed for rapid and ultrasensitive detection of ERB. The QDs/DNA nanosphere was self-assembled from QDs-streptavidin conjugate (QDs-SA) and Y-shaped DNA nanostructure that is constructed based on toehold-mediated strand displacement. It can release numerous fluorescent QDs-SA in immunomagnetic separation (IMS)-based immunoassay via simple biotin displacement, which remarkably amplifies the signal of antigen-antibody recognizing event. This QDs/DNA-nanosphere-based IMS-fluorescent immunoassay is ultrasensitive for model ERB Shewanella oneidensis, showing a wide detection range between 1.0 cfu/mL and 1.0 × 108 cfu/mL with a low detection limit of 1.37 cfu/mL. Moreover, the proposed IMS-fluorescent immunoassay exhibits high specificity, acceptable reproducibility and stability. Furthermore, the proposed method shows acceptable recovery (92.4-101.4%) for detection of S. oneidensis spiked in river water samples. The proposed IMS-fluorescent immunoassay advances an intelligent strategy for rapid and ultrasensitive quantitation of low-abundance analyte and thus holds promising potential in food, medical and environmental applications.
Collapse
Affiliation(s)
- Junlin Wen
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| | - Shungui Zhou
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China.
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| | - Junhua Chen
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| | - Guiqin Yang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| | - Jia Tang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| |
Collapse
|
48
|
Zou M, Wang S. An Aptamer-based Self-Catalytic Colorimetric Assay for Carcinoembryonic Antigen. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mingjing Zou
- Central Laboratory; Heze Medical College; Heze 274030 China
| | - Shuyu Wang
- Clinical Laboratory; Heze City Hospital; Heze 274000 China
| |
Collapse
|
49
|
Templier V, Roupioz Y. On the challenges of detecting whole Staphylococcus aureus cells with biosensors. J Appl Microbiol 2017; 123:1056-1067. [PMID: 28609570 DOI: 10.1111/jam.13510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/15/2022]
Abstract
Due to the increasing number of nosocomial infections and multidrug-resistant bacterial strains, Staphylococcus aureus is now a major worldwide concern. Rapid detection and characterization of this bacterium has become an important issue for biomedical applications. Biosensors are increasingly appearing as low-cost, easy-to-operate and fast alternatives for rapid detection. In this review, we will introduce the main characteristics of S. aureus and will focus on the interest of biosensors for a faster detection of whole S. aureus cells. In particular, we will review the most promising strategies in the choice of ligand for the design of selective and efficient biosensors. Their specific characteristics as well as their advantages and/or disadvantages will also be commented.
Collapse
Affiliation(s)
- V Templier
- CNRS, CEA, INAC, SYMMES, Univ. Grenoble Alpes, Grenoble, France
| | - Y Roupioz
- CNRS, CEA, INAC, SYMMES, Univ. Grenoble Alpes, Grenoble, France
| |
Collapse
|
50
|
Meng X, Yang G, Li F, Liang T, Lai W, Xu H. Sensitive Detection of Staphylococcus aureus with Vancomycin-Conjugated Magnetic Beads as Enrichment Carriers Combined with Flow Cytometry. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21464-21472. [PMID: 28590745 DOI: 10.1021/acsami.7b05479] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel sandwich strategy was designed to detect Staphylococcus aureus. The strategy is based on an antibacterial agent that captures bacterial cells and a fluorescein-labeled antibody that acts as the signal-output probe. Vancomycin (Van), which exerts a strong antibacterial effect on Gram-positive bacteria, was utilized as a molecular recognition agent to detect pathogenic bacteria. To effectively concentrate S. aureus, we used bovine serum albumin (BSA) as the amplification carrier to modify magnetic beads (MBs), which were then functionalized with Van. To improve the specificity of the method for S. aureus detection, we adopted fluorescein isothiocyanate (FITC)-tagged pig immunoglobulin G (FITC-pig IgG) as the signal probe and the second recognition agent that bound between the Fc fragment of pig IgG and protein A in the surface of S. aureus. To quantify S. aureus, we measured the fluorescence signal by flow cytometry (FCM). The use of multivalent magnetic nanoprobes (Van-BSA-MBs) showed a high concentration efficiency (>98%) at bacterial concentrations of only 33 colony-forming units (CFU)/mL. Furthermore, the sandwich mode (FITC-pig IgG/SA/Van-BSA-MBs) also showed ideal specificity because Van and IgG bound with S. aureus at two distinct sites. The detection limit for S. aureus was 3.3 × 101 CFU/mL and the total detection process could be completed within 120 min. Other Gram-positive bacteria and Gram-negative bacteria, including Listeria monocytogenes, Bacillus cereus, Cronobacter sakazakii, Escherichia coli O157:H7, and Salmonella Enteritidis, negligibly interfered with S. aureus detection. The proposed detection strategy for S. aureus possesses attractive characteristics, such as high sensitivity, simple operation, short testing time, and low cost.
Collapse
Affiliation(s)
- Xiangyu Meng
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Guotai Yang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Fulai Li
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Taobo Liang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| |
Collapse
|