1
|
Thew HY, Boon Keat K, Tan YC, Ong YS, Parat MO, Murugaiyah V, Goh BH, Khaw KY. Probing the anti-Aβ42 aggregation and protective effects of prenylated xanthone against Aβ42-induced toxicity in transgenic Caenorhabditis elegans model. Chem Biol Interact 2024; 394:110978. [PMID: 38552766 DOI: 10.1016/j.cbi.2024.110978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) protein aggregates, leading to synaptic dysfunction and neuronal cell death. In this study, we used a comprehensive approach encompassing in vitro assays, computational analyses, and an in vivo Caenorhabditis elegans model to evaluate the inhibitory effects of various xanthones, focusing on Garcinone D (GD), on Aβ42 oligomer formation. Dot blot analysis revealed concentration-dependent responses among xanthones, with GD consistently inhibiting Aβ42 oligomer formation at low concentrations (0.1 and 0.5 μM, inhibitions of 84.66 ± 2.25% and 85.06 ± 6.57%, respectively). Molecular docking and dynamics simulations provided insights into the molecular interactions between xanthones and Aβ42, highlighting the disruption of key residues involved in Aβ42 aggregation. The neuroprotective potential of GD was established using transgenic C. elegans GMC101, with substantial delays in paralysis reported at higher concentrations. Our findings show that GD is a potent suppressor of Aβ42 oligomer formation, suggesting its potential as a therapeutic candidate for AD. The concentration-dependent effects observed in both in vitro and in vivo models underscore the need for nuanced dose-response assessments. These findings contribute novel insights into the therapeutic landscape of xanthones against AD, emphasizing the multifaceted potential of GD for further translational endeavors in neurodegenerative disorder research.
Collapse
Affiliation(s)
- Hin Yee Thew
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khor Boon Keat
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yong Chiang Tan
- International Medical University, 57000 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Marie-Odile Parat
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Brisbane, QLD 4102, Australia
| | - Vikneswaran Murugaiyah
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia; Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
2
|
Taha HB, Chawla E, Bitan G. IM-MS and ECD-MS/MS Provide Insight into Modulation of Amyloid Proteins Self-Assembly by Peptides and Small Molecules. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2066-2086. [PMID: 37607351 DOI: 10.1021/jasms.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Neurodegenerative proteinopathies are characterized by formation and deposition of misfolded, aggregated proteins in the nervous system leading to neuronal dysfunction and death. It is widely believed that metastable oligomers of the offending proteins, preceding the fibrillar aggregates found in the tissue, are the proximal neurotoxins. There are currently almost no disease-modifying therapies for these diseases despite an active pipeline of preclinical development and clinical trials for over two decades, largely because studying the metastable oligomers and their interaction with potential therapeutics is notoriously difficult. Mass spectrometry (MS) is a powerful analytical tool for structural investigation of proteins, including protein-protein and protein-ligand interactions. Specific MS tools have been useful in determining the composition and conformation of abnormal protein oligomers involved in proteinopathies and the way they interact with drug candidates. Here, we analyze critically the utilization of ion-mobility spectroscopy-MS (IM-MS) and electron-capture dissociation (ECD) MS/MS for analyzing the oligomerization and conformation of multiple amyloidogenic proteins. We also discuss IM-MS investigation of their interaction with two classes of compounds developed by our group over the last two decades: C-terminal fragments derived from the 42-residue form of amyloid β-protein (Aβ42) and molecular tweezers. Finally, we review the utilization of ECD-MS/MS for elucidating the binding sites of the ligands on multiple proteins. These approaches are readily applicable to future studies addressing similar questions and hold promise for facilitating the development of successful disease-modifying drugs against neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Neurology, University of California Los Angeles, California 90095, United States
- Department of Integrative Biology & Physiology, University of California Los Angeles, California 90095, United States
| | - Esha Chawla
- Department of Neurology, University of California Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, California 90095, United States
| | - Gal Bitan
- Department of Neurology, University of California Los Angeles, California 90095, United States
- Brain Research Institute, University of California Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Robinson J, Sarangi NK, Keyes TE. Role of phosphatidylserine in amyloid-beta oligomerization at asymmetric phospholipid bilayers. Phys Chem Chem Phys 2023; 25:7648-7661. [PMID: 36317678 DOI: 10.1039/d2cp03344e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Amyloid-beta (Aβ1-42) aggregation triggers neurotoxicity and is linked to Alzheimer's disease. Aβ1-42 oligomers, rather than extended fibrils, adhere to the cell membrane, causing cell death. Phosphatidylserine (PS), an anionic phospholipid, is prevalent in neuronal membranes (< 20 molar percentage) and, while isolated to the cytoplasmic leaflet of the membrane in healthy cells, its exposure in apoptotic cells and migration to exoplasmic leaflet is triggered by oxidative damage to the membrane. It is widely believed that PS plays a crucial role in the Aβ peptide interaction in the membranes of neuronal cells. However, due to the complexity of the cell membrane, it can be challenging to address molecular level understanding of the PS-Aβ binding and oligomerization processes. Herein, we use microcavity supported lipid bilayers (MSLBs) to analyse PS and Aβ1-42 binding, oligomer formation, and membrane damage. MSLBs are a useful model to evaluate protein-membrane interactions because of their cell-like dual aspect fluidity, their addressability and compositional versatility. We used electrochemical impedance spectroscopy (EIS) and confocal fluorescence microscopy to compare the impact of Aβ1-42 on simple zwitterioinic membrane, dioleoylphosphatidylcholine (DOPC), with MSLBs comprised of transversally asymmetric binary DOPC and dioleoylphosphatidylserine (DOPS). Monomeric Aβ1-42 adsorbs weakly to the pristine zwitterionic DOPC membrane without aggregation. Using a membrane integrity test, with pyranine trapped within the cavities beneath the membrane, Aβ1-42 exposure did not result in pyranine leakage, indicating that DOPC membranes were intact. When 10 mol% DOPS was doped asymmetrically into the membrane's outer leaflet, oligomerization of Aβ1-42 monomer was evident in EIS and atomic force microscopy (AFM), and confocal imaging revealed that membrane damage, resulted in extensive pyranine leakage from the pores. The effects were time, and DOPS and Aβ1-42 concentration-dependent. Membrane pore formation was visible within 30 minutes, and oligomerization, membrane-oligomer multilayer, and Aβ1-42 fibril formation evident over 3 to 18 hours. In asymmetric membranes with DOPS localized to the lower leaflet, optothermally (laser induced) damage increased local DOPS concentrations at the distal leaflet, promoting Aβ1-42 aggregation.
Collapse
Affiliation(s)
- Jack Robinson
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Nirod Kumar Sarangi
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.,National Center for Sensor Research, Dublin City University, Dublin 9, Ireland.
| | - Tia E Keyes
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.,National Center for Sensor Research, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
4
|
Wu KY, Doan D, Medrano M, Chang CEA. Modeling structural interconversion in Alzheimers' amyloid beta peptide with classical and intrinsically disordered protein force fields. J Biomol Struct Dyn 2022; 40:10005-10022. [PMID: 34152264 DOI: 10.1080/07391102.2021.1939163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A comprehensive understanding of the aggregation mechanism in amyloid beta 42 (Aβ42) peptide is imperative for developing therapeutic drugs to prevent or treat Alzheimer's disease. Because of the high flexibility and lack of native tertiary structures of Aβ42, molecular dynamics (MD) simulations may help elucidate the peptide's dynamics with atomic details and collectively improve ensembles not seen in experiments. We applied microsecond-timescale MD simulations to investigate the dynamics and conformational changes of Aβ42 by using a newly developed Amber force field (ff14IDPSFF). We compared the ff14IDPSFF and the regular ff14SB force field by examining the conformational changes of two distinct Aβ42 monomers in explicit solvent. Conformational ensembles obtained by simulations depend on the force field and initial structure, Aβ42α-helix or Aβ42β-strand. The ff14IDPSFF sampled a high ratio of disordered structures and diverse β-strand secondary structures; in contrast, ff14SB favored helicity during the Aβ42α-helix simulations. The conformations obtained from Aβ42β-strand simulations maintained a balanced content in the disordered and helical structures when simulated by ff14SB, but the conformers clearly favored disordered and β-sheet structures simulated by ff14IDPSFF. The results obtained with ff14IDPSFF qualitatively reproduced the NMR chemical shifts well. In-depth peptide and cluster analysis revealed some characteristic features that may be linked to early onset of the fibril-like structure. The C-terminal region (mainly M35-V40) featured in-registered anti-parallel β-strand (β-hairpin) conformations with tested systems. Our work should expand the knowledge of force field and structure dependency in MD simulations and reveals the underlying structural mechanism-function relationship in Aβ42 peptides. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kingsley Y Wu
- Department of Chemistry, University of California, Riverside, CA, USA
| | - David Doan
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Marco Medrano
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, CA, USA
| |
Collapse
|
5
|
Saranya V, Shankar R, Gatasheh MK, Zehra S. Impact of Au 144 metal clusters on the structural and inhibitory mechanism of Aβ 42 peptide: A theoretical approach. ENVIRONMENTAL RESEARCH 2022; 204:111920. [PMID: 34464618 DOI: 10.1016/j.envres.2021.111920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
One of the main causes for Alzheimer disease is the abnormal self-assembly of the amyloid-beta (Aβ) peptide, which in turn forms a toxic β-rich aggregation. A recent study suggests that gold nanoparticles (AuNPs) can inhibit the Aβ aggregation. Nevertheless, the effects of AuNPs on Aβ peptide system are still ambiguous and needs exploration that is more detailed. Molecular dynamics simulations have been carried out to investigate the aggregation mechanism of Aβ42 peptide for 500 ns. During simulation, C-terminus regions of Met 35-Ala42 residues exhibits β-sheet conformations. Meanwhile, the Au144MC coordination induces substantial α-helical character, both α-helix and 310-helix structure at 0-500ns, in the region of Asp1-Arg5 and Val36-Ile41 residues. The Au144MC strongly coordinates with Asp1, Ala2, Glu3, Phe4, Asp7, Tyr10 and Gln15 residues that plays the significant effects to loss the β-sheet geometry in the N-terminal region and it converted into random α-helix, turn and bend conformation. On comparing the RMSF of the Aβ42 peptide and Aβ42-Au144MC complex shows that the coordination of Au144MC results in greater rigidity of the Aβ42 peptide backbone regions with exemptions for the Asp1, Ala2, Glu3, Leu34, Ile41 and Ala42 residues due to the strong binding between the metal cluster and the CHC (Leu17-Ala21) region. The structural stability of the Aβ42 peptide and Aβ42-Au144MC complex is enhanced by the several intermolecular and intramolecular interactions and it was visibly revealed in the H-bond. From the above results, it is very evident that the Au144MC can be used as inhibitor agent for the oligomerization of Aβ42.
Collapse
Affiliation(s)
- Vasudevan Saranya
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore, 641046, India
| | - Ramasamy Shankar
- Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore, 641046, India.
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sadaf Zehra
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, PO Box N9B 3P4, Canada
| |
Collapse
|
6
|
Xin Y, Wang S, Liu H, Ke H, Tian S, Cao Y, Huang Y, Shang Y, Jia H, Su L, Yang X, Meng F, Luo L. Hierarchical Vitalization of Oligotyrosine in Mitigating Islet Amyloid Polypeptide Amyloidogenesis through Multivalent Macromolecules with Conformation-Restrained Nanobody Ligands. ACS NANO 2021; 15:13319-13328. [PMID: 34293858 DOI: 10.1021/acsnano.1c03083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of inhibitors that can effectively mitigate the amyloidogenesis of human islet amyloid polypeptide (hIAPP), which is linked to type II diabetes, remains a great challenge. Oligotyrosines are intriguing candidates in that they can block the hIAPP aggregation through multiplex phenol-hIAPP interactions. However, oligotyrosines containing too many tyrosine units (larger than three) may fail to inhibit amyloidogenesis due to their increased hydrophobicity and strong self-aggregation propensity. In this work, we developed a strategy to hierarchically vitalize oligotyrosines in mitigating hIAPP amyloidogenesis. Tetratyrosine YYYY (4Y) was grafted into the third complementary-determining region (CDR3) of a parent nanobody to construct a sequence-programmed nanobody N4Y, in which the conformation of the grafted 4Y fragment was constrained for a significantly enhanced binding affinity with hIAPP. We next conjugated N4Y to a polymer to approach a secondary vitalization of 4Y through a multivalent effect. The in vitro and in vivo experiments validated that the resulting PDN4Y could completely inhibit the hIAPP amyloidogenesis at low stoichiometric concentrations and effectively suppress the generation of toxic reactive oxygen species and alleviate amyloidogenesis-mediated damage to INS-1 cells and zebrafish (Danio rerio) embryos. The hierarchical vitalization of 4Y via a synergistic conformation restraint and multivalent effect represents a strategic prototype of boosting the efficacy of peptide-based amyloidogenesis inhibitors, especially those with a high hydrophobicity and strong aggregation tendency, which holds great promise for future translational studies.
Collapse
Affiliation(s)
- Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huichuan Ke
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujuan Cao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuanda Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunhu Shang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Su
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
7
|
Mahmoudinobar F, Nilsson BL, Dias CL. Effects of Ions and Small Compounds on the Structure of Aβ 42 Monomers. J Phys Chem B 2021; 125:1085-1097. [PMID: 33481611 DOI: 10.1021/acs.jpcb.0c09617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aggregation of amyloid-β (Aβ) proteins in the brain is a hallmark of Alzheimer's disease. This phenomenon can be promoted or inhibited by adding small molecules to the solution where Aβ is embedded. These molecules affect the ensemble of conformations sampled by Aβ monomers even before aggregation starts. Here, we perform extensive all-atom replica exchange molecular dynamics (REMD) simulations to provide a comparative study of the ensemble of conformations sampled by Aβ42 monomers in solutions that promote (i.e., aqueous solution containing NaCl) and inhibit (i.e., aqueous solutions containing scyllo-inositol or 4-aminophenol) aggregation. Simulations performed in pure water are used as our reference. We find that secondary-structure content is only affected in an antagonistic manner by promoters and inhibitors at the C-terminus and the central hydrophilic core. Moreover, the end of the C-terminus binds more favorably to the central hydrophobic core region of Aβ42 in NaCl adopting a type of strand-loop-strand structure that is disfavored by inhibitors. Nonpolar residues that form the dry core of larger aggregates of Aβ42 (e.g., PDB ID 2BEG) are found at close proximity in these strand-loop-strand structures, suggesting that their formation could play an important role in initiating nucleation. In the presence of inhibitors, the C-terminus binds the central hydrophilic core with a higher probability than in our reference simulation. This sensitivity of the C-terminus, which is affected in an antagonistic manner by inhibitors and promoters, provides evidence for its critical role in accounting for aggregation.
Collapse
Affiliation(s)
- Farbod Mahmoudinobar
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
8
|
Kakeshpour T, Ramanujam V, Barnes CA, Shen Y, Ying J, Bax A. A lowly populated, transient β-sheet structure in monomeric Aβ 1-42 identified by multinuclear NMR of chemical denaturation. Biophys Chem 2020; 270:106531. [PMID: 33453683 DOI: 10.1016/j.bpc.2020.106531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
Chemical denaturation is a well-established approach for probing the equilibrium between folded and unfolded states of proteins. We demonstrate applicability of this method to the detection of a small population of a transiently folded structural element in a system that is often considered to be intrinsically fully disordered. The 1HN, 15N, 13Cα, and 13C' chemical shifts of Aβ1-40 and Aβ1-42 peptides and their M35-oxidized variants were monitored as a function of urea concentration and compared to analogous urea titrations of synthetic pentapeptides of homologous sequence. Fitting of the chemical shift titrations yields a 10 ± 1% population for a structured element at the C-terminus of Aβ1-42 that folds with a cooperativity of m = 0.06 kcal/mol·M. The fit also yields the chemical shifts of the folded state and, using a database search, for Aβ1-42 these shifts identified an antiparallel intramolecular β-sheet for residues I32-A42, linked by a type I' β-turn at G37 and G38. The structure is destabilized by oxidation of M35. Paramagnetic relaxation rates and two previously reported weak, medium-range NOE interactions are consistent with this transient β-sheet. Introduction of the requisite A42C mutation and tagging with MTSL resulted in a small stabilization of this β-sheet. Chemical shift analysis suggests a C-terminal β-sheet may be present in Aβ1-40 too, but the turn type at G37 is not type I'. The approach to derive Transient Structure from chemical Denaturation by NMR (TSD-NMR), demonstrated here for Aβ peptides, provides a sensitive tool for identifying the presence of lowly populated, transiently ordered elements in proteins that are considered to be intrinsically disordered, and permits extraction of structural data for such elements.
Collapse
Affiliation(s)
- Tayeb Kakeshpour
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Venkat Ramanujam
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - C Ashley Barnes
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Ahyayauch H, García-Arribas AB, Masserini ME, Pantano S, Goñi FM, Alonso A. β-Amyloid (1-42) peptide adsorbs but does not insert into ganglioside-containing phospholipid membranes in the liquid-disordered state: modelling and experimental studies. Int J Biol Macromol 2020; 164:2651-2658. [PMID: 32846182 DOI: 10.1016/j.ijbiomac.2020.08.165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/09/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
β-Amyloid (Aβ) is a 39-43 residue peptide involved in the pathogenesis of Alzheimer's disease. Aβ deposits onto the cells and gives rise to the plaques that are characteristic of the disease. In an effort to understand the molecular mechanism of plaque formation, we have examined the interaction of Aβ42, considered to be the most pathogenic of the peptides, with lipid bilayers consisting of 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) to which small amounts of GM1 ganglioside (1-5 mol%) were incorporated. POPC bilayers exist in the fluid, or liquid-disordered state at room temperature, mimicking the fluidity of cell membranes. An Aβ42 preparation consisting essentially of peptide monomers was used. A combination of molecular dynamics (MD), isothermal calorimetry and Langmuir balance measurements was applied. Our results show that Aβ binds POPC bilayers, and that binding increases (ΔG of binding decreases) with GM1, but only up to 3 mol% of the ganglioside, larger concentrations appearing to have a lower effect. MD and Langmuir balance measurements concur in showing that the peptide adsorbs onto the bilayer surface, but does not become inserted into it at surface pressures compatible with the cell membrane conditions. Thioflavin T measurements agree with MD in revealing a very low degree of peptide oligomerization/aggregation under our conditions. This is in contrast with previous studies showing peptide aggregation and insertion when interacting with membranes in the liquid-ordered state. The present contribution underlines the importance of bilayer lipid composition and properties for Aβ plaque formation.
Collapse
Affiliation(s)
- Hasna Ahyayauch
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain; Institut Supérieur des Professions Infirmières et Techniques de Santé, Rabat, Morocco; Neuroendocrinology Unit, Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofail University, Kénitra, Morocco
| | - Aritz B García-Arribas
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | | | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain.
| |
Collapse
|
10
|
Ghosh DK, Ranjan A. The metastable states of proteins. Protein Sci 2020; 29:1559-1568. [PMID: 32223005 PMCID: PMC7314396 DOI: 10.1002/pro.3859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/26/2022]
Abstract
The intriguing process of protein folding comprises discrete steps that stabilize the protein molecules in different conformations. The metastable state of protein is represented by specific conformational characteristics, which place the protein in a local free energy minimum state of the energy landscape. The native-to-metastable structural transitions are governed by transient or long-lived thermodynamic and kinetic fluctuations of the intrinsic interactions of the protein molecules. Depiction of the structural and functional properties of metastable proteins is not only required to understand the complexity of folding patterns but also to comprehend the mechanisms of anomalous aggregation of different proteins. In this article, we review the properties of metastable proteins in context of their stability and capability of undergoing atypical aggregation in physiological conditions.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and DiagnosticsUppal, HyderabadTelanganaIndia
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and DiagnosticsUppal, HyderabadTelanganaIndia
| |
Collapse
|
11
|
Iscen A, Brue CR, Roberts KF, Kim J, Schatz GC, Meade TJ. Inhibition of Amyloid-β Aggregation by Cobalt(III) Schiff Base Complexes: A Computational and Experimental Approach. J Am Chem Soc 2019; 141:16685-16695. [DOI: 10.1021/jacs.9b06388] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Aysenur Iscen
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Christopher R. Brue
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Kaleigh F. Roberts
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Joy Kim
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - George C. Schatz
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Thomas J. Meade
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
12
|
Owen MC, Kulig W, Poojari C, Rog T, Strodel B. Physiologically-relevant levels of sphingomyelin, but not GM1, induces a β-sheet-rich structure in the amyloid-β(1-42) monomer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1709-1720. [PMID: 29626441 DOI: 10.1016/j.bbamem.2018.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 01/07/2023]
Abstract
To resolve the contribution of ceramide-containing lipids to the aggregation of the amyloid-β protein into β-sheet rich toxic oligomers, we employed molecular dynamics simulations to study the effect of cholesterol-containing bilayers comprised of POPC (70% POPC, and 30% cholesterol) and physiologically relevant concentrations of sphingomyelin (SM) (30% SM, 40% POPC, and 30% cholesterol), and the GM1 ganglioside (5% GM1, 70% POPC, and 25% cholesterol). The increased bilayer rigidity provided by SM (and to a lesser degree, GM1) reduced the interactions between the SM-enriched bilayer and the N-terminus of Aβ42 (and also residues Ser26, Asn27, and Lys28), which facilitated the formation of a β-sheet in the normally disordered N-terminal region. Aβ42 remained anchored to the SM-enriched bilayer through hydrogen bonds with the side chain of Arg5. With β-sheets in the at the N and C termini, the structure of Aβ42 in the sphingomyelin-enriched bilayer most resembles β-sheet-rich structures found in higher-ordered Aβ fibrils. Conversely, when bound to a bilayer comprised of 5% GM1, the conformation remained similar to that observed in the absence of GM1, with Aβ42 only making contact with one or two GM1 molecules. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Michael C Owen
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany; CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic.
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland; Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - Chetan Poojari
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland; Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - Tomasz Rog
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland; Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
13
|
Jiang Z, Dong X, Yan X, Liu Y, Zhang L, Sun Y. Nanogels of dual inhibitor-modified hyaluronic acid function as a potent inhibitor of amyloid β-protein aggregation and cytotoxicity. Sci Rep 2018; 8:3505. [PMID: 29472606 PMCID: PMC5823891 DOI: 10.1038/s41598-018-21933-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/14/2018] [Indexed: 12/23/2022] Open
Abstract
Inhibition of amyloid β-protein (Aβ) aggregation is considered as a promising strategy for the prevention and treatment of Alzheimer’s disease. Epigallocatechin-3-gallate (EGCG) and curcumin have been recognized as effective inhibitors of Aβ aggregation. Herein, we proposed dual-inhibitor modification of hyaluronic acid (HA) to explore the synergistic effect of the two inhibitors. EGCG-modified HA (EHA) formed dispersed hydrogel structures, while EGCG-curcumin bi-modified HA (CEHA) self-assembled into nanogels like curcumin-modified HA (CHA). Thioflavin T fluorescent assays revealed that the inhibitory effect of CEHA was 69% and 55% higher than EHA and CHA, respectively, and cytotoxicity assays showed that the viability of SH-SY5Y cells incubated with Aβ and CEHA was 28% higher than that with Aβ and the mixture of EHA and CHA. These results clearly indicate the synergism of the two inhibitors. It is considered that the difference in the hydrophobicities of the two inhibitors made the bi-modification of HA provide a favorable CEHA nanostructure that coordinated different inhibition effects of the two inhibitors. This research indicates that fabrication of dual-inhibitor nanosystem is promising for the development of potent agents against Aβ aggregation and cytotoxicity.
Collapse
Affiliation(s)
- Zhiqiang Jiang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Xin Yan
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yang Liu
- Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, Guangdong, 515063, China
| | - Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
14
|
Xi W, Vanderford EK, Hansmann UHE. Out-of-Register Aβ 42 Assemblies as Models for Neurotoxic Oligomers and Fibrils. J Chem Theory Comput 2018; 14:1099-1110. [PMID: 29357242 DOI: 10.1021/acs.jctc.7b01106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We propose a variant of the recently found S-shaped Aβ1-42-motif that is characterized by out-of-register C-terminal β-strands. We show that chains with this structure can form not only fibrils that are compatible with the NMR signals but also barrel-shaped oligomers that resemble the ones formed by the much smaller cylindrin peptides. By running long all-atom molecular dynamics simulations at physiological temperatures with an explicit solvent, we study the stability of these constructs and show that they are plausible models for neurotoxic oligomers. After analyzing the transitions between different assemblies, we suggest a mechanism for amyloid formation in Alzheimer's disease.
Collapse
Affiliation(s)
- Wenhui Xi
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Elliott K Vanderford
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| |
Collapse
|
15
|
Dorosh L, Stepanova M. Probing oligomerization of amyloid beta peptide in silico. MOLECULAR BIOSYSTEMS 2017; 13:165-182. [PMID: 27844078 DOI: 10.1039/c6mb00441e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Aggregation of amyloid β (Aβ) peptide is implicated in fatal Alzheimer's disease, for which no cure is available. Understanding the mechanisms responsible for this aggregation is required in order for therapies to be developed. In an effort to better understand the molecular mechanisms involved in spontaneous aggregation of Aβ peptide, extensive molecular dynamics simulations are reported, and the results are analyzed through a combination of structural biology tools and a novel essential collective dynamics method. Several model systems composed of ten or twelve Aβ17-42 chains in water are investigated, and the influence of metal ions is probed. The results suggest that Aβ monomers tend to aggregate into stable globular-like oligomers with 13-23% of β-sheet content. Two stages of oligomer formation have been identified: quick collapse within the first 40 ns of the simulation, characterized by a decrease in inter-chain separation and build-up of β-sheets, and the subsequent slow relaxation of the oligomer structure. The resulting oligomers comprise a stable, coherently moving sub-aggregate of 6-9 strongly inter-correlated chains. Cu2+ and Fe2+ ions have been found to develop coordination bonds with carboxylate groups of E22, D23 and A42, which remain stable during 200 ns simulations. The presence of Fe2+, and particularly Cu2+ ions, in negatively charged cavities has been found to cause significant changes in the structure and dynamics of the oligomers. The results indicate, in particular, that formation of non-fibrillar oligomers might be involved in early template-free aggregation of Aβ17-42 monomers, with charged species such as Cu2+ or Fe2+ ions playing an important role.
Collapse
Affiliation(s)
- L Dorosh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada. and National Research Council of Canada, Edmonton, Alberta, Canada
| | - M Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada. and National Research Council of Canada, Edmonton, Alberta, Canada and Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO, USA
| |
Collapse
|
16
|
EGCG inhibits the oligomerization of amyloid beta (16-22) hexamer: Theoretical studies. J Mol Graph Model 2017; 76:1-10. [PMID: 28658644 DOI: 10.1016/j.jmgm.2017.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 11/21/2022]
Abstract
An extensive replica exchange molecular dynamics (REMD) simulation was performed to investigate the progress patterns of the inhibition of (-)-epigallocatechin-3-gallate (EGCG) on the Aβ16-22 hexamer. Structural variations of the oligomers without and with EGCG were monitored and analyzed in detail. It has been found that EGCG prevents the formation of Aβ oligomer through two different ways by either accelerating the Aβ oligomerization or reducing the β-content of the hexamer. It also decreases the potential "highly toxic" conformations of Aβ oligomer, which is related to the conformations having high order β-sheet sizes. Both electrostatic and van der Waals interaction energies are found to be involved to the binding process. Computed results using quantum chemical methods show that the π-π stacking is a critical factor of the interaction between EGCG and the peptides. As a result, the binding free energy of the EGCG to the Aβ peptides is slightly larger than that of the curcumin.
Collapse
|
17
|
Carballo‐Pacheco M, Strodel B. Comparison of force fields for Alzheimer's A β42: A case study for intrinsically disordered proteins. Protein Sci 2017; 26:174-185. [PMID: 27727496 PMCID: PMC5275744 DOI: 10.1002/pro.3064] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 10/02/2016] [Accepted: 10/09/2016] [Indexed: 01/06/2023]
Abstract
Intrinsically disordered proteins are essential for biological processes such as cell signalling, but are also associated to devastating diseases including Alzheimer's disease, Parkinson's disease or type II diabetes. Because of their lack of a stable three-dimensional structure, molecular dynamics simulations are often used to obtain atomistic details that cannot be observed experimentally. The applicability of molecular dynamics simulations depends on the accuracy of the force field chosen to represent the underlying free energy surface of the system. Here, we use replica exchange molecular dynamics simulations to test five modern force fields, OPLS, AMBER99SB, AMBER99SB*ILDN, AMBER99SBILDN-NMR and CHARMM22*, in their ability to model Aβ42 , an intrinsically disordered peptide associated with Alzheimer's disease, and compare our results to nuclear magnetic resonance (NMR) experimental data. We observe that all force fields except AMBER99SBILDN-NMR successfully reproduce local NMR observables, with CHARMM22* being slightly better than the other force fields.
Collapse
Affiliation(s)
- Martín Carballo‐Pacheco
- Institute of Complex Systems, Structural Biochemistry (ICS‐6), Forschungszentrum Jülich GmbHJülich52425Germany
- AICES Graduate School, RWTH Aachen UniversitySchinkelstraße 2Aachen52062Germany
| | - Birgit Strodel
- Institute of Complex Systems, Structural Biochemistry (ICS‐6), Forschungszentrum Jülich GmbHJülich52425Germany
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University DüsseldorfUniversitätstraße 1Düsseldorf40225Germany
| |
Collapse
|
18
|
Nguyen HL, Thi Minh Thu T, Truong PM, Lan PD, Man VH, Nguyen PH, Tu LA, Chen YC, Li MS. Aβ41 Aggregates More Like Aβ40 than Like Aβ42: In Silico and in Vitro Study. J Phys Chem B 2016; 120:7371-9. [DOI: 10.1021/acs.jpcb.6b06368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hoang Linh Nguyen
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh
Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Department
of Applied Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology - VNU HCM, 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City, Vietnam
| | - Tran Thi Minh Thu
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh
Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Department
of Applied Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology - VNU HCM, 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City, Vietnam
| | - Phan Minh Truong
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh
Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Pham Dang Lan
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh
Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Viet Hoang Man
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Phuong H. Nguyen
- Laboratoire
de
Biochimie Theorique, UPR 9080 CNRS, IBPC, Universite Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ly Anh Tu
- Department
of Applied Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology - VNU HCM, 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City, Vietnam
| | - Yi-Cheng Chen
- Department
of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
19
|
Ngo ST, Fang ST, Huang SH, Chou CL, Huy PDQ, Li MS, Chen YC. Anti-arrhythmic Medication Propafenone a Potential Drug for Alzheimer's Disease Inhibiting Aggregation of Aβ: In Silico and in Vitro Studies. J Chem Inf Model 2016; 56:1344-56. [PMID: 27304669 DOI: 10.1021/acs.jcim.6b00029] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia caused by the formation of Aβ aggregates. So far, no effective medicine for the treatment of AD is available. Many efforts have been made to find effective medicine to cope with AD. Curcumin is a drug candidate for AD, being a potent anti-amyloidogenic compound, but the results of clinical trials for it were either negative or inclusive. In the present study, we took advantages from accumulated knowledge about curcumin and have screened out four compounds that have chemical and structural similarity with curcumin more than 80% from all FDA-approved oral drugs. Using all-atom molecular dynamics simulation and the free energy perturbation method we showed that among predicted compounds anti-arrhythmic medication propafenone shows the best anti-amyloidogenic activity. The in vitro experiment further revealed that it can inhibit Aβ aggregation and protect cells against Aβ induced cytotoxicity to almost the same extent as curcumin. Our results suggest that propafenone may be a potent drug for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Son Tung Ngo
- Institute for Computational Science and Technology , Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam.,Institute of Physics, Polish Academy of Sciences , Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | | | | | - Chao-Liang Chou
- Department of Neurology, Mackay Memorial Hospital , New Taipei City, 252 Taiwan
| | - Pham Dinh Quoc Huy
- Institute for Computational Science and Technology , Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam.,Institute of Physics, Polish Academy of Sciences , Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences , Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | | |
Collapse
|
20
|
Marciani DJ. A retrospective analysis of the Alzheimer's disease vaccine progress - The critical need for new development strategies. J Neurochem 2016; 137:687-700. [PMID: 26990863 DOI: 10.1111/jnc.13608] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/16/2022]
Abstract
The promising results obtained with aducanumab and solanezumab against Alzheimer's disease (AD) strengthen the vaccine approach to prevent AD, despite of the many clinical setbacks. It has been problematic to use conjugated peptides with Th1/Th2 adjuvants to induce immune responses against conformational epitopes formed by Aβ oligomers, which is critical to induce protective antibodies. Hence, vaccination should mimic natural immunity by using whole or if possible conjugated antigens, but biasing the response to Th2 with anti-inflammatory adjuvants. Also, selection of the carrier and cross-linking agents is important to prevent suppression of the immune response against the antigen. That certain compounds having phosphorylcholine or fucose induce a sole Th2 immunity would allow antigens with T-cell epitopes without inflammatory autoimmune reactions to be used. Another immunization method is DNA vaccines combined with antigenic ones, which favors the clonal selection and expansion of high affinity antibodies needed for immune protection, but this also requires Th2 immunity. Since AD transgenic mouse models have limited value for immunogen selection as shown by the clinical studies, screening may require the use of validated antibodies and biophysical methods to identify the antigens that would be most likely recognized by the human immune system and thus capable to stimulate a protective antibody response. To induce an anti-Alzheimer's disease protective immunity and prevent possible damage triggered by antigens having B-cell epitopes-only, whole antigens might be used; while inducing Th2 immunity with sole anti-inflammatory fucose-based adjuvants. This approach would avert a damaging systemic inflammatory immunity and the suppression of immunoresponse against the antigen because of carrier and cross-linkers; immune requirements that extend to DNA vaccines.
Collapse
|
21
|
Zhang X, Liu J, Huang L, Yang X, Petersen RB, Sun Y, Gong H, Zheng L, Huang K. How the imidazole ring modulates amyloid formation of islet amyloid polypeptide: A chemical modification study. Biochim Biophys Acta Gen Subj 2016; 1860:719-26. [DOI: 10.1016/j.bbagen.2016.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/18/2015] [Accepted: 01/13/2016] [Indexed: 11/25/2022]
|
22
|
Eftekharzadeh B, Hyman BT, Wegmann S. Structural studies on the mechanism of protein aggregation in age related neurodegenerative diseases. Mech Ageing Dev 2016; 156:1-13. [PMID: 27005270 DOI: 10.1016/j.mad.2016.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/12/2016] [Accepted: 03/03/2016] [Indexed: 01/09/2023]
Abstract
The progression of many neurodegenerative diseases is assumed to be caused by misfolding of specific characteristic diseases related proteins, resulting in aggregation and fibril formation of these proteins. Protein misfolding associated age related diseases, although different in disease manifestations, share striking similarities. In all cases, one disease protein aggregates and loses its function or additionally shows a toxic gain of function. However, the clear link between these individual amyloid-like protein aggregates and cellular toxicity is often still uncertain. The similar features of protein misfolding and aggregation in this group of proteins, all involved in age related neurodegenerative diseases, results in high interest in characterization of their structural properties. We review here recent findings on structural properties of some age related disease proteins, in the context of their biological importance in disease.
Collapse
Affiliation(s)
- Bahareh Eftekharzadeh
- Department of Neurology, Massachusetts General Hospital and Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA.
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital and Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Susanne Wegmann
- Department of Neurology, Massachusetts General Hospital and Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
| |
Collapse
|
23
|
Zheng X, Wu C, Liu D, Li H, Bitan G, Shea JE, Bowers MT. Mechanism of C-Terminal Fragments of Amyloid β-Protein as Aβ Inhibitors: Do C-Terminal Interactions Play a Key Role in Their Inhibitory Activity? J Phys Chem B 2015; 120:1615-23. [PMID: 26439281 DOI: 10.1021/acs.jpcb.5b08177] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeting the early oligomerization of amyloid β protein (Aβ) is a promising therapeutic strategy for Alzheimer's disease (AD). Recently, certain C-terminal fragments (CTFs) derived from Aβ42 were shown to be potent inhibitors of Aβ-induced toxicity. The shortest peptide studied, Aβ(39-42), has been shown to modulate Aβ oligomerization and inhibit Aβ toxicity. Understanding the mechanism of these CTFs, especially Aβ(39-42), is of significance for future therapeutic development of AD and peptidomimetic-based drug development. Here we used ion mobility spectrometry-mass spectrometry to investigate the interactions between two modified Aβ(39-42) derivatives, VVIA-NH2 and Ac-VVIA, and full-length Aβ42. VVIA-NH2 was previously shown to inhibit Aβ toxicity, whereas Ac-VVIA did not. Our mass spectrometry analysis revealed that VVIA-NH2 binds directly to Aβ42 monomer and small oligomers while Ac-VVIA binds only to Aβ42 monomer. Ion mobility studies showed that VVIA-NH2 modulates Aβ42 oligomerization by not only inhibiting the dodecamer formation but also disaggregating preformed Aβ42 dodecamer. Ac-VVIA also inhibits and removes preformed Aβ42 dodecamer. However, the Aβ42 sample with the addition of Ac-VVIA clogged the nanospray tip easily, indicating that larger aggregates are formed in the solution in the presence of Ac-VVIA. Molecular dynamics simulations suggested that VVIA-NH2 binds specifically to the C-terminal region of Aβ42 while Ac-VVIA binds dispersedly to multiple regions of Aβ42. This work implies that C-terminal interactions and binding to Aβ oligomers are important for C-terminal fragment inhibitors.
Collapse
Affiliation(s)
- Xueyun Zheng
- Department of Chemistry and Biochemistry and ∥Department of Physics, University of California , Santa Barbara, California 93106, United States.,Department of Neurology, David Geffen School of Medicine, §Brain Research Institute, and Molecular Biology Institute, University of California at Los Angeles , Los Angeles, California 90095, United States
| | - Chun Wu
- Department of Chemistry and Biochemistry and ∥Department of Physics, University of California , Santa Barbara, California 93106, United States.,Department of Neurology, David Geffen School of Medicine, §Brain Research Institute, and Molecular Biology Institute, University of California at Los Angeles , Los Angeles, California 90095, United States
| | - Deyu Liu
- Department of Chemistry and Biochemistry and ∥Department of Physics, University of California , Santa Barbara, California 93106, United States.,Department of Neurology, David Geffen School of Medicine, §Brain Research Institute, and Molecular Biology Institute, University of California at Los Angeles , Los Angeles, California 90095, United States
| | - Huiyuan Li
- Department of Chemistry and Biochemistry and ∥Department of Physics, University of California , Santa Barbara, California 93106, United States.,Department of Neurology, David Geffen School of Medicine, §Brain Research Institute, and Molecular Biology Institute, University of California at Los Angeles , Los Angeles, California 90095, United States
| | - Gal Bitan
- Department of Chemistry and Biochemistry and ∥Department of Physics, University of California , Santa Barbara, California 93106, United States.,Department of Neurology, David Geffen School of Medicine, §Brain Research Institute, and Molecular Biology Institute, University of California at Los Angeles , Los Angeles, California 90095, United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry and ∥Department of Physics, University of California , Santa Barbara, California 93106, United States.,Department of Neurology, David Geffen School of Medicine, §Brain Research Institute, and Molecular Biology Institute, University of California at Los Angeles , Los Angeles, California 90095, United States
| | - Michael T Bowers
- Department of Chemistry and Biochemistry and ∥Department of Physics, University of California , Santa Barbara, California 93106, United States.,Department of Neurology, David Geffen School of Medicine, §Brain Research Institute, and Molecular Biology Institute, University of California at Los Angeles , Los Angeles, California 90095, United States
| |
Collapse
|
24
|
Tran L, Ha-Duong T. Exploring the Alzheimer amyloid-β peptide conformational ensemble: A review of molecular dynamics approaches. Peptides 2015; 69:86-91. [PMID: 25908410 DOI: 10.1016/j.peptides.2015.04.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease is one of the most common dementia among elderly worldwide. There is no therapeutic drugs until now to treat effectively this disease. One main reason is due to the poorly understood mechanism of Aβ peptide aggregation, which plays a crucial role in the development of Alzheimer's disease. It remains challenging to experimentally or theoretically characterize the secondary and tertiary structures of the Aβ monomer because of its high flexibility and aggregation propensity, and its conformations that lead to the aggregation are not fully identified. In this review, we highlight various structural ensembles of Aβ peptide revealed and characterized by computational approaches in order to find converging structures of Aβ monomer. Understanding how Aβ peptide forms transiently stable structures prior to aggregation will contribute to the design of new therapeutic molecules against the Alzheimer's disease.
Collapse
Affiliation(s)
- Linh Tran
- BioCIS, UMR CNRS 8076, LabEx LERMIT, Faculty of Pharmacy, University Paris Sud, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Tâp Ha-Duong
- BioCIS, UMR CNRS 8076, LabEx LERMIT, Faculty of Pharmacy, University Paris Sud, 5 Rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
25
|
Viet MH, Siposova K, Bednarikova Z, Antosova A, Nguyen TT, Gazova Z, Li MS. In Silico and in Vitro Study of Binding Affinity of Tripeptides to Amyloid β Fibrils: Implications for Alzheimer’s Disease. J Phys Chem B 2015; 119:5145-55. [DOI: 10.1021/acs.jpcb.5b00006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Man Hoang Viet
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Katarina Siposova
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
- Department
of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Safarik University, Srobarova 2, 041
54 Kosice, Slovakia
| | - Zuzana Bednarikova
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
- Department
of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Safarik University, Srobarova 2, 041
54 Kosice, Slovakia
| | - Andrea Antosova
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
- Department
of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Safarik University, Srobarova 2, 041
54 Kosice, Slovakia
| | - Truc Trang Nguyen
- Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward,
District 12, Ho Chi Minh City, Vietnam
| | - Zuzana Gazova
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| | - Mai Suan Li
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
26
|
Morriss-Andrews A, Shea JE. Computational Studies of Protein Aggregation: Methods and Applications. Annu Rev Phys Chem 2015; 66:643-66. [DOI: 10.1146/annurev-physchem-040513-103738] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Joan-Emma Shea
- Department of Physics and
- Department of Chemistry, University of California, Santa Barbara, California 93106;
| |
Collapse
|
27
|
Dickinson ER, Jurneczko E, Pacholarz KJ, Clarke DJ, Reeves M, Ball KL, Hupp T, Campopiano D, Nikolova PV, Barran PE. Insights into the conformations of three structurally diverse proteins: cytochrome c, p53, and MDM2, provided by variable-temperature ion mobility mass spectrometry. Anal Chem 2015; 87:3231-8. [PMID: 25629302 DOI: 10.1021/ac503720v] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thermally induced conformational transitions of three proteins of increasing intrinsic disorder-cytochrome c, the tumor suppressor protein p53 DNA binding domain (p53 DBD), and the N-terminus of the oncoprotein murine double minute 2 (NT-MDM2)-have been studied by native mass spectrometry and variable-temperature drift time ion mobility mass spectrometry (VT-DT-IM-MS). Ion mobility measurements were carried out at temperatures ranging from 200 to 571 K. Multiple conformations are observable over several charge states for all three monomeric proteins, and for cytochrome c, dimers of significant intensity are also observed. Cytochrome c [M + 5H](5+) ions present in one conformer of CCS ∼1200 Å(2), undergoing compaction in line with the reported Tmelt = 360.15 K before slight unfolding at 571 K. The more extended [M + 7H](7+) cytochrome c monomer presents as two conformers undergoing similar compaction and structural rearrangements, prior to thermally induced unfolding. The [D + 11H](11+) dimer presents as two conformers, which undergo slight structural compaction or annealing before dissociation. p53 DBD follows a trend of structural collapse before an increase in the observed collision cross section (CCS), akin to that observed for cytochrome c but proceeding more smoothly. At 300 K, the monomeric charge states present in two conformational families, which compact to one conformer of CCS ∼1750 Å(2) at 365 K, in line with the low solution Tmelt = 315-317 K. The protein then extends to produce either a broad unresolved CCS distribution or, for z > 9, two conformers. NT-MDM2 exhibits a greater number of structural rearrangements, displaying charge-state-dependent unfolding pathways. DT-IM-MS experiments at 200 K resolve multiple conformers. Low charge state species of NT-MDM2 present as a single compact conformational family centered on CCS ∼1250 Å(2) at 300 K. This undergoes conformational tightening in line with the solution Tmelt = 348 K before unfolding at the highest temperatures. The more extended charge states present in two or more conformers at room temperature, undergoing thermally induced unfolding before significant structural collapse or annealing at high temperatures. Variable-temperature IM-MS is here shown to be an exciting approach to discern protein unfolding pathways for conformationally diverse proteins.
Collapse
Affiliation(s)
- Eleanor R Dickinson
- †Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Ewa Jurneczko
- ‡School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Kamila J Pacholarz
- †Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| | - David J Clarke
- ‡School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Matthew Reeves
- ‡School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Kathryn L Ball
- §Institute of Genetics and Molecular Medicine, CRUK Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom
| | - Ted Hupp
- §Institute of Genetics and Molecular Medicine, CRUK Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom
| | - Dominic Campopiano
- ‡School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | - Penka V Nikolova
- ∥School of Biomedical Science, Institute of Pharmaceutical Sciences, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Perdita E Barran
- †Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
28
|
Pouplana R, Campanera JM. Energetic contributions of residues to the formation of early amyloid-β oligomers. Phys Chem Chem Phys 2014; 17:2823-37. [PMID: 25503571 DOI: 10.1039/c4cp04544k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-weight amyloid-β (Aβ) oligomers formed at early stages of oligomerization rather than fibril assemblies seem to be the toxic components that drive neurodegeneration in Alzheimer's disease. Unfortunately, detailed knowledge of the structure of these early oligomers at the residue level is not yet available. In this study, we performed all-atom explicit solvent molecular dynamics simulations to examine the oligomerization process of Aβ10-35 monomers when forming dimers, trimers, tetramers and octamers, with four independent simulations of a total simulated time of 3 μs for each oligomer system. The decomposition of the stability free energy by MM-GBSA methodology allowed us to unravel the network of energetic interactions that stabilize such oligomers. The contribution of the intermonomeric van der Waals term is the most significant energy feature of the oligomerization process, consistent with the so-called hydrophobic effect. Furthermore, the decomposition of the stability free energy into residues and residue-pairwise terms revealed that it is mainly apolar interactions between the three specific hydrophobic fragments 31-35 (C-terminal region), 17-20 (central hydrophobic core) and 12-14 (N-terminal region) that are responsible for such a favourable effect. The conformation in which the hydrophobic cthr-chc interaction is oriented perpendicularly is particularly important. We propose three other model substructures that favour the oligomerization process and can thus be considered as molecular targets for future inhibitors. Understanding Aβ oligomerization at the residue level could lead to more efficient design of inhibitors of this process.
Collapse
Affiliation(s)
- R Pouplana
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, s/n, Diagonal Sud, 08028, Barcelona, Catalonia, Spain.
| | | |
Collapse
|
29
|
Fu Z, Aucoin D, Ahmed M, Ziliox M, Van Nostrand WE, Smith SO. Capping of aβ42 oligomers by small molecule inhibitors. Biochemistry 2014; 53:7893-903. [PMID: 25422864 PMCID: PMC4278677 DOI: 10.1021/bi500910b] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aβ42 peptides associate into soluble oligomers and protofibrils in the process of forming the amyloid fibrils associated with Alzheimer's disease. The oligomers have been reported to be more toxic to neurons than fibrils, and have been targeted by a wide range of small molecule and peptide inhibitors. With single touch atomic force microscopy (AFM), we show that monomeric Aβ42 forms two distinct types of oligomers, low molecular weight (MW) oligomers with heights of 1-2 nm and high MW oligomers with heights of 3-5 nm. In both cases, the oligomers are disc-shaped with diameters of ~10-15 nm. The similar diameters suggest that the low MW species stack to form the high MW oligomers. The ability of Aβ42 inhibitors to interact with these oligomers is probed using atomic force microscopy and NMR spectroscopy. We show that curcumin and resveratrol bind to the N-terminus (residues 5-20) of Aβ42 monomers and cap the height of the oligomers that are formed at 1-2 nm. A second class of inhibitors, which includes sulindac sulfide and indomethacin, exhibit very weak interactions across the Aβ42 sequence and do not block the formation of the high MW oligomers. The correlation between N-terminal interactions and capping of the height of the Aβ oligomers provides insights into the mechanism of inhibition and the pathway of Aβ aggregation.
Collapse
Affiliation(s)
- Ziao Fu
- Department of Biochemistry and Cell Biology, Stony Brook University , Stony Brook, New York 11794-5215, United States
| | | | | | | | | | | |
Collapse
|
30
|
Xu L, Chen Y, Wang X. Dual effects of familial Alzheimer's disease mutations (D7H, D7N, and H6R) on amyloid β peptide: Correlation dynamics and zinc binding. Proteins 2014; 82:3286-97. [DOI: 10.1002/prot.24669] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/17/2014] [Accepted: 08/11/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Liang Xu
- School of Chemistry; Dalian University of Technology; Dalian China
| | - Yonggang Chen
- Network and Information Center, Dalian University of Technology; Dalian China
| | - Xiaojuan Wang
- School of Chemical Machinery, Dalian University of Technology; Dalian China
| |
Collapse
|
31
|
Huy PDQ, Li MS. Binding of fullerenes to amyloid beta fibrils: size matters. Phys Chem Chem Phys 2014; 16:20030-40. [DOI: 10.1039/c4cp02348j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Yang YI, Gao YQ. Computer Simulation Studies of Aβ37–42 Aggregation Thermodynamics and Kinetics in Water and Salt Solution. J Phys Chem B 2014; 119:662-70. [DOI: 10.1021/jp502169b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Y. Isaac Yang
- Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Qin Gao
- Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
33
|
Zhong Y, Feng J, Ruotolo BT. Robotically assisted titration coupled to ion mobility-mass spectrometry reveals the interface structures and analysis parameters critical for multiprotein topology mapping. Anal Chem 2013; 85:11360-8. [PMID: 24164205 DOI: 10.1021/ac402276k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Multiprotein complexes have three-dimensional shapes and dynamic functions that impact almost every aspect of biochemistry. Despite this, our ability to rapidly assess the structures of such macromolecules lags significantly behind high-throughput efforts to identify their function, especially in the context of human disease. Here, we describe results obtained by coupling ion mobility-mass spectrometry with automated robotic sampling of different solvent compositions. This combination of technologies has allowed us to explore an extensive set of solution conditions for a group of eight protein homotetramers, representing a broad sample of protein structure and stability space. We find that altering solution ionic strength in concert with dimethylsulfoxide content is sufficient to disrupt the protein-protein interfaces of all of the complexes studied here. Ion mobility measurements captured for both intact assemblies and subcomplexes match expected values from available X-ray structures in all cases save two. For these exceptions, we find that distorted subcomplexes result from extreme disruption conditions, and are accompanied by small shifts in intact tetramers size, thus enabling the removal of distorted subcomplex data in downstream models. Furthermore, we find strong correlations between the relative intensities of disrupted protein tetramers and the relative number and type of interactions present at interfaces as a function of disrupting agent added. In most cases, this correlation appears strong enough to quantify various types of protein interfacial interactions within unknown proteins following appropriate calibration.
Collapse
Affiliation(s)
- Yueyang Zhong
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
34
|
Niu S, Rabuck JN, Ruotolo BT. Ion mobility-mass spectrometry of intact protein–ligand complexes for pharmaceutical drug discovery and development. Curr Opin Chem Biol 2013; 17:809-17. [DOI: 10.1016/j.cbpa.2013.06.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 11/30/2022]
|
35
|
He C, Han Y, Zhu L, Deng M, Wang Y. Modulation of Aβ(1–40) Peptide Fibrillar Architectures by Aβ-Based Peptide Amphiphiles. J Phys Chem B 2013; 117:10475-83. [DOI: 10.1021/jp4044286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chengqian He
- Key Laboratory of Colloid
and Interface Science, Beijing National Laboratory for Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuchun Han
- Key Laboratory of Colloid
and Interface Science, Beijing National Laboratory for Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Linyi Zhu
- Key Laboratory of Colloid
and Interface Science, Beijing National Laboratory for Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Manli Deng
- Key Laboratory of Colloid
and Interface Science, Beijing National Laboratory for Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid
and Interface Science, Beijing National Laboratory for Molecular Sciences,
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
36
|
Structural similarities and differences between amyloidogenic and non-amyloidogenic islet amyloid polypeptide (IAPP) sequences and implications for the dual physiological and pathological activities of these peptides. PLoS Comput Biol 2013; 9:e1003211. [PMID: 24009497 PMCID: PMC3757079 DOI: 10.1371/journal.pcbi.1003211] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/20/2013] [Indexed: 12/22/2022] Open
Abstract
IAPP, a 37 amino-acid peptide hormone belonging to the calcitonin family, is an intrinsically disordered protein that is coexpressed and cosecreted along with insulin by pancreatic islet β-cells in response to meals. IAPP plays a physiological role in glucose regulation; however, in certain species, IAPP can aggregate and this process is linked to β-cell death and Type II Diabetes. Using replica exchange molecular dynamics with extensive sampling (16 replicas per sequence and 600 ns per replica), we investigate the structure of the monomeric state of two species of aggregating peptides (human and cat IAPP) and two species of non-aggregating peptides (pig and rat IAPP). Our simulations reveal that the pig and rat conformations are very similar, and consist of helix-coil and helix-hairpin conformations. The aggregating sequences, on the other hand, populate the same helix-coil and helix-hairpin conformations as the non-aggregating sequence, but, in addition, populate a hairpin structure. Our exhaustive simulations, coupled with available peptide-activity data, leads us to a structure-activity relationship (SAR) in which we propose that the functional role of IAPP is carried out by the helix-coil conformation, a structure common to both aggregating and non-aggregating species. The pathological role of this peptide may have multiple origins, including the interaction of the helical elements with membranes. Nonetheless, our simulations suggest that the hairpin structure, only observed in the aggregating species, might be linked to the pathological role of this peptide, either as a direct precursor to amyloid fibrils, or as part of a cylindrin type of toxic oligomer. We further propose that the helix-hairpin fold is also a possible aggregation prone conformation that would lead normally non-aggregating variants of IAPP to form fibrils under conditions where an external perturbation is applied. The SAR relationship is used to suggest the rational design of therapeutics for treating diabetes. IAPP, a 37 amino-acid peptide hormone belonging to the calcitonin family, is an intrinsically disordered peptide produced along with insulin by pancreatic islet β-cells in response to meals. In its functional form, IAPP acts as a synergic partner of insulin to reduce blood glucose. IAPP can, however, also play a pathological role, contributing to Type II diabetes (T2D). Knowledge of the structural nature of the physiological and pathological forms of IAPP will facilitate the rational design of novel drugs for therapeutic treatment of T2D. However, because IAPP does not fold to a single structure, but rather co-exists between multiple functional (and toxic) structures, it is extremely challenging for experimental methods to gain detailed structural information. Using a computational approach, we were able to obtain detailed structures of four IAPP variants and propose a novel structural hypothesis for the two opposing roles of this peptide.
Collapse
|
37
|
Characterization of the polymorphic states of copper(II)-bound Aβ(1-16) peptides by computational simulations. J Comput Chem 2013; 34:2524-36. [DOI: 10.1002/jcc.23416] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/23/2013] [Accepted: 08/01/2013] [Indexed: 01/07/2023]
|
38
|
Rosenman DJ, Connors CR, Chen W, Wang C, García AE. Aβ monomers transiently sample oligomer and fibril-like configurations: ensemble characterization using a combined MD/NMR approach. J Mol Biol 2013; 425:3338-59. [PMID: 23811057 DOI: 10.1016/j.jmb.2013.06.021] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/15/2013] [Accepted: 06/12/2013] [Indexed: 12/24/2022]
Abstract
Amyloid β (Aβ) peptides are a primary component of fibrils and oligomers implicated in the etiology of Alzheimer's disease (AD). However, the intrinsic flexibility of these peptides has frustrated efforts to investigate the secondary and tertiary structure of Aβ monomers, whose conformational landscapes directly contribute to the kinetics and thermodynamics of Aβ aggregation. In this work, de novo replica exchange molecular dynamics (REMD) simulations on the microseconds-per-replica timescale are used to characterize the structural ensembles of Aβ42, Aβ40, and M35-oxidized Aβ42, three physiologically relevant isoforms with substantially different aggregation properties. J-coupling data calculated from the REMD trajectories were compared to corresponding NMR-derived values acquired through two different pulse sequences, revealing that all simulations converge on the order of hundreds of nanoseconds-per-replica toward ensembles that yield good agreement with experiment. Though all three Aβ species adopt highly heterogeneous ensembles, these are considerably more structured compared to simulations on shorter timescales. Prominent in the C-terminus are antiparallel β-hairpins between L17-A21, A30-L36, and V39-I41, similar to oligomer and fibril intrapeptide models that expose these hydrophobic side chains to solvent and may serve as hotspots for self-association. Compared to reduced Aβ42, the absence of a second β-hairpin in Aβ40 and the sampling of alternate β topologies by M35-oxidized Aβ42 may explain the reduced aggregation rates of these forms. A persistent V24-K28 bend motif, observed in all three species, is stabilized by buried backbone to side-chain hydrogen bonds with D23 and a cross-region salt bridge between E22 and K28, highlighting the role of the familial AD-linked E22 and D23 residues in Aβ monomer folding. These characterizations help illustrate the conformational landscapes of Aβ monomers at atomic resolution and provide insight into the early stages of Aβ aggregation pathways.
Collapse
Affiliation(s)
- David J Rosenman
- Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
39
|
Ngo ST, Li MS. Top-leads from natural products for treatment of Alzheimer's disease: docking and molecular dynamics study. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2012.718769] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Ahyayauch H, Raab M, Busto JV, Andraka N, Arrondo JLR, Masserini M, Tvaroska I, Goñi FM. Binding of β-amyloid (1-42) peptide to negatively charged phospholipid membranes in the liquid-ordered state: modeling and experimental studies. Biophys J 2013; 103:453-463. [PMID: 22947861 DOI: 10.1016/j.bpj.2012.06.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 06/22/2012] [Accepted: 06/27/2012] [Indexed: 12/12/2022] Open
Abstract
To explore the initial stages of amyloid β peptide (Aβ42) deposition on membranes, we have studied the interaction of Aβ42 in the monomeric form with lipid monolayers and with bilayers in either the liquid-disordered or the liquid-ordered (L(o)) state, containing negatively charged phospholipids. Molecular dynamics (MD) simulations of the system have been performed, as well as experimental measurements. For bilayers in the L(o) state, in the absence of the negatively charged lipids, interaction is weak and it cannot be detected by isothermal calorimetry. However, in the presence of phosphatidic acid, or of cardiolipin, interaction is detected by different methods and in all cases interaction is strongest with lower (2.5-5 mol%) than higher (10-20 mol%) proportions of negatively charged phospholipids. Liquid-disordered bilayers consistently allowed a higher Aβ42 binding than L(o) ones. Thioflavin T assays and infrared spectroscopy confirmed a higher proportion of β-sheet formation under conditions when higher peptide binding was measured. The experimental results were supported by MD simulations. We used 100 ns MD to examine interactions between Aβ42 and three different 512 lipid bilayers consisting of palmitoylsphingomyelin, dimyristoyl phosphatidic acid, and cholesterol in three different proportions. MD pictures are different for the low- and high-charge bilayers, in the former case the peptide is bound through many contact points to the bilayer, whereas for the bilayer containing 20 mol% anionic phospholipid only a small fragment of the peptide appears to be bound. The MD results indicate that the binding and fibril formation on the membrane surface depends on the composition of the bilayer, and is the result of a subtle balance of many inter- and intramolecular interactions between the Aβ42 and membrane.
Collapse
Affiliation(s)
- Hasna Ahyayauch
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Michal Raab
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jon V Busto
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Nagore Andraka
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - José-Luis R Arrondo
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | - Massimo Masserini
- Department of Experimental Medicine, University of Milano Bicocca, Monza, Italy
| | - Igor Tvaroska
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Félix M Goñi
- Unidad de Biofísica (CSIC, UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain.
| |
Collapse
|
41
|
Harvey SR, Porrini M, Stachl C, MacMillan D, Zinzalla G, Barran PE. Small-molecule inhibition of c-MYC:MAX leucine zipper formation is revealed by ion mobility mass spectrometry. J Am Chem Soc 2012; 134:19384-92. [PMID: 23106332 DOI: 10.1021/ja306519h] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The leucine zipper interaction between MAX and c-MYC has been studied using mass spectrometry and drift time ion mobility mass spectrometry (DT IM-MS) in addition to circular dichroism spectroscopy. Peptides comprising the leucine zipper sequence with (c-MYC-Zip residues 402-434) and without a postulated small-molecule binding region (c-MYC-ZipΔDT residues 406-434) have been synthesized, along with the corresponding MAX leucine zipper (MAX-Zip residues 74-102). c-MYC-Zip:MAX-Zip complexes are observed both in the absence and in the presence of the reported small-molecule inhibitor 10058-F4 for both forms of c-MYC-Zip. DT IM-MS, in combination with molecular dynamics (MD), shows that the c-MYC-Zip:MAX-Zip complex [M+5H](5+) exists in two conformations, one extended with a collision cross section (CCS) of 1164 ± 9.3 Å(2) and one compact with a CCS of 982 ± 6.6 Å(2); similar values are observed for the two forms of c-MYC-ZipΔDT:MAX-Zip. Candidate geometries for the complexes have been evaluated with MD simulations. The helical leucine zipper structure previously determined from NMR measurements (Lavigne, P.; et al. J. Mol. Biol. 1998, 281, 165), altered to include the DT region and subjected to a gas-phase minimization, yields a CCS of 1247 Å(2), which agrees with the extended conformation we observe experimentally. More extensive MD simulations provide compact complexes which are found to be highly disordered, with CCSs that correspond to the compact form from experiment. In the presence of the ligand, the leucine zipper conformation is completely inhibited and only the more disordered species is observed, providing a novel method to study the effect of interactions of disordered systems and subsequent inhibition of the formation of an ordered helical complex.
Collapse
Affiliation(s)
- Sophie R Harvey
- EastChem School of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK
| | | | | | | | | | | |
Collapse
|
42
|
Ngo ST, Li MS. Curcumin binds to Aβ1-40 peptides and fibrils stronger than ibuprofen and naproxen. J Phys Chem B 2012; 116:10165-75. [PMID: 22877239 DOI: 10.1021/jp302506a] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Binding of curcumin, naproxen, and ibuprofen to Aβ1-40 peptide and its fibrils is studied by docking method and all-atom molecular dynamics simulations. The Gromos96 43a1 force field and simple point charge model of water have been used for molecular dynamics simulations. It is shown that if the receptor is a monomer then naproxen and ibuprofen are bound to the same place that is different from the binding position of curcumin. However all of three ligands have the same binding pocket in fibrillar structures. The binding mechanism is studied in detail showing that the van der Waals interaction between ligand and receptor dominates over the electrostatic interaction. The binding free energies obtained by the molecular mechanic-Poisson-Boltzmann surface area method indicate that curcumin displays higher binding affinity than nonsteroidal anti-inflammatory drugs. Our results are in good agreement with the experiments.
Collapse
Affiliation(s)
- Son Tung Ngo
- Institute for Computational Science and Technology , 6 Quarter, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam, and
| | | |
Collapse
|
43
|
Lin YS, Bowman GR, Beauchamp KA, Pande VS. Investigating how peptide length and a pathogenic mutation modify the structural ensemble of amyloid beta monomer. Biophys J 2012; 102:315-24. [PMID: 22339868 DOI: 10.1016/j.bpj.2011.12.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/12/2011] [Accepted: 12/01/2011] [Indexed: 12/21/2022] Open
Abstract
The aggregation of amyloid beta (Aβ) peptides plays an important role in the development of Alzheimer's disease. Despite extensive effort, it has been difficult to characterize the secondary and tertiary structure of the Aβ monomer, the starting point for aggregation, due to its hydrophobicity and high aggregation propensity. Here, we employ extensive molecular dynamics simulations with atomistic protein and water models to determine structural ensembles for Aβ(42), Aβ(40), and Aβ(42)-E22K (the Italian mutant) monomers in solution. Sampling of a total of >700 microseconds in all-atom detail with explicit solvent enables us to observe the effects of peptide length and a pathogenic mutation on the disordered Aβ monomer structural ensemble. Aβ(42) and Aβ(40) have crudely similar characteristics but reducing the peptide length from 42 to 40 residues reduces β-hairpin formation near the C-terminus. The pathogenic Italian E22K mutation induces helix formation in the region of residues 20-24. This structural alteration may increase helix-helix interactions between monomers, resulting in altered mechanism and kinetics of Aβ oligomerization.
Collapse
Affiliation(s)
- Yu-Shan Lin
- Department of Chemistry, Stanford University, Stanford, California, USA
| | | | | | | |
Collapse
|
44
|
Masters CL, Selkoe DJ. Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2:a006262. [PMID: 22675658 PMCID: PMC3367542 DOI: 10.1101/cshperspect.a006262] [Citation(s) in RCA: 395] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Progressive cerebral deposition of the amyloid β-protein (Aβ) in brain regions serving memory and cognition is an invariant and defining feature of Alzheimer disease. A highly similar but less robust process accompanies brain aging in many nondemented humans, lower primates, and some other mammals. The discovery of Aβ as the subunit of the amyloid fibrils in meningocerebral blood vessels and parenchymal plaques has led to innumerable studies of its biochemistry and potential cytotoxic properties. Here we will review the discovery of Aβ, numerous aspects of its complex biochemistry, and current attempts to understand how a range of Aβ assemblies, including soluble oligomers and insoluble fibrils, may precipitate and promote neuronal and glial alterations that underlie the development of dementia. Although the role of Aβ as a key molecular factor in the etiology of Alzheimer disease remains controversial, clinical trials of amyloid-lowering agents, reviewed elsewhere in this book, are poised to resolve the question of its pathogenic primacy.
Collapse
Affiliation(s)
- Colin L Masters
- The Mental Health Research Institute, The University of Melbourne, Parkville 3010, Australia.
| | | |
Collapse
|
45
|
Cernescu M, Stark T, Kalden E, Kurz C, Leuner K, Deller T, Göbel M, Eckert GP, Brutschy B. Laser-Induced Liquid Bead Ion Desorption Mass Spectrometry: An Approach to Precisely Monitor the Oligomerization of the β-Amyloid Peptide. Anal Chem 2012; 84:5276-84. [DOI: 10.1021/ac300258m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mihaela Cernescu
- Institute for Physical and Theoretical
Chemistry, Goethe-University, Frankfurt/M,
Germany, 60438
| | - Tina Stark
- Institute
for Organic Chemistry
and Chemical Biology, Goethe-University, Frankfurt/M, Germany, 60438
| | - Elisabeth Kalden
- Institute
for Organic Chemistry
and Chemical Biology, Goethe-University, Frankfurt/M, Germany, 60438
| | - Christopher Kurz
- Department of Pharmacology, Biocentre, Goethe-University, Frankfurt/M, Germany, 60438
| | - Kristina Leuner
- Department of Pharmacology, Biocentre, Goethe-University, Frankfurt/M, Germany, 60438
| | - Thomas Deller
- Institute of Clinical Neuroanatomy,
Dr. Senckenberg Anatomy, Goethe-University, Neuroscience Center, Frankfurt/M, Germany, 60590
| | - Michael Göbel
- Institute
for Organic Chemistry
and Chemical Biology, Goethe-University, Frankfurt/M, Germany, 60438
| | - Gunter P. Eckert
- Department of Pharmacology, Biocentre, Goethe-University, Frankfurt/M, Germany, 60438
| | - Bernhard Brutschy
- Institute for Physical and Theoretical
Chemistry, Goethe-University, Frankfurt/M,
Germany, 60438
| |
Collapse
|
46
|
Wise-Scira O, Xu L, Kitahara T, Perry G, Coskuner O. Amyloid-β peptide structure in aqueous solution varies with fragment size. J Chem Phys 2012; 135:205101. [PMID: 22128957 DOI: 10.1063/1.3662490] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Various fragment sizes of the amyloid-β (Aβ) peptide have been utilized to mimic the properties of the full-length Aβ peptide in solution. Among these smaller fragments, Aβ16 and Aβ28 have been investigated extensively. In this work, we report the structural and thermodynamic properties of the Aβ16, Aβ28, and Aβ42 peptides in an aqueous solution environment. We performed replica exchange molecular dynamics simulations along with thermodynamic calculations for investigating the conformational free energies, secondary and tertiary structures of the Aβ16, Aβ28, and Aβ42 peptides. The results show that the thermodynamic properties vary from each other for these peptides. Furthermore, the secondary structures in the Asp1-Lys16 and Asp1-Lys28 regions of Aβ42 cannot be completely captured by the Aβ16 and Aβ28 fragments. For example, the β-sheet structures in the N-terminal region of Aβ16 and Aβ28 are either not present or the abundance is significantly decreased in Aβ42. The α-helix and β-sheet abundances in Aβ28 and Aβ42 show trends--to some extent--with the potential of mean forces but no such trend could be obtained for Aβ16. Interestingly, Arg5 forms salt bridges with large abundances in all three peptides. The formation of a salt bridge between Asp23-Lys28 is more preferred over the Glu22-Lys28 salt bridge in Aβ28 but this trend is vice versa for Aβ42. This study shows that the Asp1-Lys16 and Asp1-Lys28 regions of the full length Aβ42 peptide cannot be completely mimicked by studying the Aβ16 and Aβ28 peptides.
Collapse
Affiliation(s)
- Olivia Wise-Scira
- The University of Texas at San Antonio, Department of Chemistry, One UTSA Circle, San Antonio, Texas 78249, USA
| | | | | | | | | |
Collapse
|
47
|
Li H, Zemel R, Lopes DHJ, Monien BH, Bitan G. A two-step strategy for structure-activity relationship studies of N-methylated aβ42 C-terminal fragments as aβ42 toxicity inhibitors. ChemMedChem 2012; 7:515-22. [PMID: 22307963 DOI: 10.1002/cmdc.201100584] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Indexed: 01/10/2023]
Abstract
Neurotoxic Aβ42 oligomers are believed to be the main cause of Alzheimer's disease. Previously, we found that the C-terminal fragments (CTFs), Aβ(30-42) and Aβ(31-42) were the most potent inhibitors of Aβ42 oligomerization and toxicity in a series of Aβ(x-42) peptides (x=28-39). Therefore, we chose these peptides as leads for further development. These CTFs are short (12-13 amino acids) hydrophobic peptides with limited aqueous solubility. Our first attempt to attach hydrophilic groups to the N terminus resulted in toxic peptides. Therefore, we next incorporated N-methyl amino acids, which are known to increase the solubility of such peptides by disrupting the β-sheet formation. Focusing on Aβ(31-42), we used a two-step N-methyl amino acid substitution strategy to study the structural factors controlling inhibition of Aβ42-induced toxicity. First, each residue was substituted by N-Me-alanine (N-Me-A). In the next step, in positions where substitution produced a significant effect, we restored the original side chain. This strategy allowed exploring the role of both side chain structure and N-Me substitution in inhibitory activity. We found that the introduction of an N-Me amino acid was an effective way to increase both the aqueous solubility and the inhibitory activity of Aβ(31-42). In particular, N-Me amino acid substitution at position 9 or 11 increased the inhibitory activity relative to the parent peptide. The data suggest that inhibition of Aβ42 toxicity by short peptides is highly structure-specific, providing a basis for the design of new peptidomimetic inhibitors with improved activity, physicochemical properties, and metabolic stability.
Collapse
Affiliation(s)
- Huiyuan Li
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (UCLA), 635 Charles E. Young Drive S., Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
48
|
Chong SH, Park M, Ham S. Structural and Thermodynamic Characteristics That Seed Aggregation of Amyloid-β Protein in Water. J Chem Theory Comput 2012; 8:724-34. [DOI: 10.1021/ct200757a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Song-Ho Chong
- Department
of Chemistry, Sookmyung Women’s University,
Hyochangwon-gil 52, Yongsan-gu, Seoul, 140-742, Korea
| | - Mirae Park
- Department
of Chemistry, Sookmyung Women’s University,
Hyochangwon-gil 52, Yongsan-gu, Seoul, 140-742, Korea
| | - Sihyun Ham
- Department
of Chemistry, Sookmyung Women’s University,
Hyochangwon-gil 52, Yongsan-gu, Seoul, 140-742, Korea
| |
Collapse
|
49
|
The Structure of Intrinsically Disordered Peptides Implicated in Amyloid Diseases: Insights from Fully Atomistic Simulations. COMPUTATIONAL MODELING OF BIOLOGICAL SYSTEMS 2012. [DOI: 10.1007/978-1-4614-2146-7_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Gessel MM, Wu C, Li H, Bitan G, Shea JE, Bowers MT. Aβ(39-42) modulates Aβ oligomerization but not fibril formation. Biochemistry 2011; 51:108-17. [PMID: 22129303 DOI: 10.1021/bi201520b] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, certain C-terminal fragments (CTFs) of Aβ42 have been shown to be effective inhibitors of Aβ42 toxicity. Here, we examine the interactions between the shortest CTF in the original series, Aβ(39-42), and full-length Aβ. Mass spectrometry results indicate that Aβ(39-42) binds directly to Aβ monomers and to the n = 2, 4, and 6 oligomers. The Aβ42:Aβ(39-42) complex is further probed using molecular dynamics simulations. Although the CTF was expected to bind to the hydrophobic C-terminus of Aβ42, the simulations show that Aβ(39-42) binds at several locations on Aβ42, including the C-terminus, other hydrophobic regions, and preferentially in the N-terminus. Ion mobility-mass spectrometry (IM-MS) and electron microscopy experiments indicate that Aβ(39-42) disrupts the early assembly of full-length Aβ. Specifically, the ion-mobility results show that Aβ(39-42) prevents the formation of large decamer/dodecamer Aβ42 species and, moreover, can remove these structures from solution. At the same time, thioflavin T fluorescence and electron microscopy results show that the CTF does not inhibit fibril formation, lending strong support to the hypothesis that oligomers and not amyloid fibrils are the Aβ form responsible for toxicity. The results emphasize the role of small, soluble assemblies in Aβ-induced toxicity and suggest that Aβ(39-42) inhibits Aβ-induced toxicity by a unique mechanism, modulating early assembly into nontoxic hetero-oligomers, without preventing fibril formation.
Collapse
Affiliation(s)
- Megan Murray Gessel
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | | | | | | | | | | |
Collapse
|