1
|
Kuravsky M, Kelly C, Redfield C, Shammas SL. The transition state for coupled folding and binding of a disordered DNA binding domain resembles the unbound state. Nucleic Acids Res 2024; 52:11822-11837. [PMID: 39315703 PMCID: PMC11514473 DOI: 10.1093/nar/gkae794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
The basic zippers (bZIPs) are one of two large eukaryotic families of transcription factors whose DNA binding domains are disordered in isolation but fold into stable α-helices upon target DNA binding. Here, we systematically disrupt pre-existing helical propensity within the DNA binding region of the homodimeric bZIP domain of cAMP-response element binding protein (CREB) using Ala-Gly scanning and examine the impact on target binding kinetics. We find that the secondary structure of the transition state strongly resembles that of the unbound state. The residue closest to the dimerization domain is largely folded within both unbound and transition states; dimerization apparently propagates additional helical propensity into the basic region. The results are consistent with electrostatically-enhanced DNA binding, followed by rapid folding from the folded zipper outwards. Fly-casting theory suggests that protein disorder can accelerate binding. Interestingly however, we did not observe higher association rate constants for mutants with lower levels of residual structure in the unbound state.
Collapse
Affiliation(s)
- Mikhail Kuravsky
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Conor Kelly
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Sarah L Shammas
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
2
|
Flores E, Camacho AR, Cuevas-Zepeda E, McCoy MB, Yu F, Staller MV, Sukenik S. Correlating Disordered Activation Domain Ensembles with Gene Expression Levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619222. [PMID: 39484498 PMCID: PMC11527027 DOI: 10.1101/2024.10.19.619222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Transcription factor proteins bind to specific DNA promoter sequences and initiate gene transcription. In eukaryotes, most transcription factors contain intrinsically disordered activation domains (ADs) that regulate their transcriptional activity. Like other disordered protein regions, ADs do not have a fixed three-dimensional structure and instead exist in an ensemble of conformations. Disordered ensembles contain sequence-encoded structural preferences which are often linked to their function. We hypothesize this link exists between the structural preferences of disordered AD ensembles and their ability to induce gene expression. To test this, we used FRET microscopy to measure the ensemble dimensions of two activation domains, HIF-1α and CITED2, in live cells, and correlate this structural information with transcriptional activity. We find that point mutations that expanded the HIF-1α ensemble increased transcriptional activity, while those that compacted it reduced activity. Conversely, CITED2 showed no correlation between ensemble dimensions and activity. Our results reveal a sequence-dependent relationship between AD ensemble dimensions and their transcriptional activity.
Collapse
Affiliation(s)
- Eduardo Flores
- Department of Chemistry and Biochemistry, University of California Merced, Merced, 95343
| | - Aleah R Camacho
- Department of Chemistry and Biochemistry, University of California Merced, Merced, 95343
| | | | - Mary B McCoy
- Department of Chemistry and Biochemistry, University of California Merced, Merced, 95343
| | - Feng Yu
- Department of Chemistry and Biochemistry, University of California Merced, Merced, 95343
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, 94720 Berkeley, CA, USA
| | - Max V Staller
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720
- Center for Computational Biology, University of California Berkeley, Berkeley, 94720
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 94158
| | - Shahar Sukenik
- Department of Chemistry and Biochemistry, University of California Merced, Merced, 95343
- Department of Chemistry, Syracuse University, Syracuse, 13244
| |
Collapse
|
3
|
Xu Q, Yang M, Ji J, Weng J, Wang W, Xu X. Impact of Nonnative Interactions on the Binding Kinetics of Intrinsically Disordered p53 with MDM2: Insights from All-Atom Simulation and Markov State Model Analysis. J Chem Inf Model 2024; 64:5219-5231. [PMID: 38916177 DOI: 10.1021/acs.jcim.3c01833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Intrinsically disordered proteins (IDPs) lack a well-defined tertiary structure but are essential players in various biological processes. Their ability to undergo a disorder-to-order transition upon binding to their partners, known as the folding-upon-binding process, is crucial for their function. One classical example is the intrinsically disordered transactivation domain (TAD) of the tumor suppressor protein p53, which quickly forms a structured α-helix after binding to its partner MDM2, with clinical significance for cancer treatment. However, the contribution of nonnative interactions between the IDP and its partner to the rapid binding kinetics, as well as their interplay with native interactions, is not well understood at the atomic level. Here, we used molecular dynamics simulation and Markov state model (MSM) analysis to study the folding-upon-binding mechanism between p53-TAD and MDM2. Our results suggest that the system progresses from the nascent encounter complex to the well-structured encounter complex and finally reaches the native complex, following an induced-fit mechanism. We found that nonnative hydrophobic and hydrogen bond interactions, combined with native interactions, effectively stabilize the nascent and well-structured encounter complexes. Among the nonnative interactions, Leu25p53-Leu54MDM2 and Leu25p53-Phe55MDM2 are particularly noteworthy, as their interaction strength is close to the optimum. Evidently, strengthening or weakening these interactions could both adversely affect the binding kinetics. Overall, our findings suggest that nonnative interactions are evolutionarily optimized to accelerate the binding kinetics of IDPs in conjunction with native interactions.
Collapse
Affiliation(s)
- Qianjun Xu
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Maohua Yang
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Jie Ji
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Jingwei Weng
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Wenning Wang
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Xin Xu
- Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| |
Collapse
|
4
|
Saikia B, Baruah A. Recent advances in de novo computational design and redesign of intrinsically disordered proteins and intrinsically disordered protein regions. Arch Biochem Biophys 2024; 752:109857. [PMID: 38097100 DOI: 10.1016/j.abb.2023.109857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
In the early 2000s, the concept of "unstructured biology" has emerged to be an important field in protein science by generating various new research directions. Many novel strategies and methods have been developed that are focused on effectively identifying/predicting intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs), identifying their potential functions, disorder based drug design etc. Due to the range of functions of IDPs/IDPRs and their involvement in various debilitating diseases they are of contemporary interest to the scientific community. Recent researches are focused on designing/redesigning specific IDPs/IDPRs de novo. These de novo design/redesigns of IDPs/IDPRs are carried out by altering compositional biases and specific sequence patterning parameters. The main focus of these researches is to influence specific molecular functions, phase behavior, cellular phenotypes etc. In this review, we first provide the differences of natively folded and natively unfolded or IDPs with respect to their potential energy landscapes. Here, we provide current understandings on the different computational design strategies and methods that have been utilized in de novo design and redesigns of IDPs and IDPRs. Finally, we conclude the review by discussing the challenges that have been faced during the computational design/design attempts of IDPs/IDPRs.
Collapse
Affiliation(s)
- Bondeepa Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India.
| |
Collapse
|
5
|
Gunasinghe KJ, Rahman T, Chee Wezen X. Unraveling the Behavior of Intrinsically Disordered Protein c-Myc: A Study Utilizing Gaussian-Accelerated Molecular Dynamics. ACS OMEGA 2024; 9:2250-2262. [PMID: 38250404 PMCID: PMC10795134 DOI: 10.1021/acsomega.3c05822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 01/23/2024]
Abstract
The protein c-Myc is a transcription factor that remains largely intrinsically disordered and is known to be involved in various biological processes and is overexpressed in various cancers, making it an attractive drug target. However, intrinsically disordered proteins such as c-Myc do not show funnel-like basins in their free-energy landscapes; this makes their druggability a challenge. For the first time, we propose a heterodimer model of c-Myc/Max in full length in this work. We used Gaussian-accelerated molecular dynamics (GaMD) simulations to explore the behavior of c-Myc and its various regions, including the transactivation domain (TAD) and the basic helix-loop-helix-leucine-zipper (bHLH-Zipper) motif in three different conformational states: (a) monomeric c-Myc, (b) c-Myc when bound to its partner protein, Max, and (c) when Max was removed after binding. We analyzed the GaMD trajectories using root-mean-square deviation (RMSD), radius of gyration, root-mean-square fluctuation, and free-energy landscape (FEL) calculations to elaborate the behaviors of these regions. The results showed that the monomeric c-Myc structure showed a higher RMSD fluctuation as compared with the c-Myc/Max heterodimer in the bHLH-Zipper motif. This indicated that the bHLH-Zipper motif of c-Myc is more stable when it is bound to Max. The TAD region in both monomeric and Max-bound states showed similar plasticity in terms of RMSD. We also conducted residue decomposition calculations and showed that the c-Myc and Max interaction could be driven mainly by electrostatic interactions and the residues Arg299, Ile403, and Leu420 seemed to play important roles in the interaction. Our work provides insights into the behavior of c-Myc and its regions that could support the development of drugs that target c-Myc and other intrinsically disordered proteins.
Collapse
Affiliation(s)
| | - Taufiq Rahman
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Xavier Chee Wezen
- Faculty
of Engineering, Computing and Science, Swinburne
University of Technology Sarawak, Kuching 93350, Malaysia
| |
Collapse
|
6
|
Asadollahi K, Rajput S, Jameson GNL, Scott DJ, Gooley PR. Encounter Complexes Between the N-terminal of Neurotensin with the Extracellular Loop 2 of the Neurotensin Receptor 1 Steer Neurotensin to the Orthosteric Binding Pocket. J Mol Biol 2023; 435:168244. [PMID: 37625583 DOI: 10.1016/j.jmb.2023.168244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Neurotensin (NT) is a linear disordered peptide that activates two different class A GPCRs, neurotensin receptor 1 (NTS1) and NTS2. Resolved structures of the complex of the C-terminal fragment of NT, NT8-13, with NTS1 shows the peptide takes a well-defined structure in the bound state. However, the mechanisms underlying NT recognition of NTS1, and the conformational transition of NT upon binding NTS1 is an open question that if answered may aid discovery of highly selective drugs and reveal potential secondary binding sites on the surface of the receptor. Herein we investigated the interactions guiding NT to the orthosteric binding pocket of NTS1 by combining NMR experiments with kinetic analysis of the binding pathway using stopped-flow fluorescence and mutagenesis on both NT and NTS1. We show the presence of transient structures in the middle part of NT that kinetically regulate the binding of NT to NTS1. Moreover, our results indicate that the binding pathway of NT onto NTS1 is mediated via electrostatic interactions between the N-terminal region of NT with the extracellular loop 2 of NTS1. These interactions induce backbone conformational changes in neurotensin similar to the bound-state neurotensin, suggesting that the N-terminal region of NT and these interactions should be considered for development of selective drugs against NTS1.
Collapse
Affiliation(s)
- Kazem Asadollahi
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; The Florey, University of Melbourne, Parkville, VIC 3010, Australia. https://twitter.com/@KazemAsadollahi
| | - Sunnia Rajput
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Guy N L Jameson
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Daniel J Scott
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; The Florey, University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
7
|
Buhr J, Franz F, Gräter F. Intrinsically disordered region of talin's FERM domain functions as an initial PIP 2 recognition site. Biophys J 2023; 122:1277-1286. [PMID: 36814383 PMCID: PMC10111347 DOI: 10.1016/j.bpj.2023.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Focal adhesions (FAs) mediate the interaction of the cytoskeleton with the extracellular matrix in a highly dynamic fashion. Talin is a central regulator, adaptor protein, and mechano-sensor of FA complexes. For recruitment and firm attachment at FAs, talin's N-terminal FERM domain binds to phosphatidylinositol 4,5-bisphosphate (PIP2)-enriched membranes. A newly published autoinhibitory structure of talin-1, where the known PIP2 interaction sites are covered up, lead us to hypothesize that a hitherto less examined loop insertion of the FERM domain acts as an additional and initial site of contact. We evaluated direct interactions of talin-1 with a PIP2 membrane by means of atomistic molecular dynamics simulations. We show that this unstructured, 33-residue-long loop strongly interacts with PIP2 and can facilitate further membrane contacts, including the canonical PIP2 interactions, by serving as a flexible membrane anchor. Under force as present at FAs, the extensible FERM loop ensures talin maintains membrane contacts when pulled away from the membrane by up to 7 nm. We identify key basic residues of the anchor mediating the highly dynamic talin-membrane interaction. Our results put forward an intrinsically disordered loop as a key and highly adaptable PIP2 recognition site of talin and potentially other PIP2-binding mechano-proteins.
Collapse
Affiliation(s)
- Jannik Buhr
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Florian Franz
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
8
|
Foroutannejad S, Good LL, Lin C, Carter ZI, Tadesse MG, Lucius AL, Crane BR, Maillard RA. The cofactor-dependent folding mechanism of Drosophila cryptochrome revealed by single-molecule pulling experiments. Nat Commun 2023; 14:1057. [PMID: 36828841 PMCID: PMC9958137 DOI: 10.1038/s41467-023-36701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
The link between cofactor binding and protein activity is well-established. However, how cofactor interactions modulate folding of large proteins remains unknown. We use optical tweezers, clustering and global fitting to dissect the folding mechanism of Drosophila cryptochrome (dCRY), a 542-residue protein that binds FAD, one of the most chemically and structurally complex cofactors in nature. We show that the first dCRY parts to fold are independent of FAD, but later steps are FAD-driven as the remaining polypeptide folds around the cofactor. FAD binds to largely unfolded intermediates, yet with association kinetics above the diffusion-limit. Interestingly, not all FAD moieties are required for folding: whereas the isoalloxazine ring linked to ribitol and one phosphate is sufficient to drive complete folding, the adenosine ring with phosphates only leads to partial folding. Lastly, we propose a dCRY folding model where regions that undergo conformational transitions during signal transduction are the last to fold.
Collapse
Affiliation(s)
| | - Lydia L Good
- Department of Chemistry, Georgetown University, Washington, DC, USA
| | - Changfan Lin
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Zachariah I Carter
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mahlet G Tadesse
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, USA
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian R Crane
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
9
|
Zhang Y, Liu X, Chen J. Coupled binding and folding of disordered SPIN N-terminal region in myeloperoxidase inhibition. Front Mol Biosci 2023; 10:1130189. [PMID: 36845554 PMCID: PMC9948029 DOI: 10.3389/fmolb.2023.1130189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Gram-positive pathogenic bacteria Staphylococcus express and secret staphylococcal peroxidase inhibitor (SPIN) proteins to help evade neutrophil-mediated immunity by inhibiting the activity of the main oxidative-defense player myeloperoxidase (MPO) enzyme. SPIN contains a structured 3-helix bundle C-terminal domain, which can specifically bind to MPO with high affinity, and an intrinsically disordered N-terminal domain (NTD), which folds into a structured β-hairpin and inserts itself into the active site of MPO for inhibition. Mechanistic insights of the coupled folding and binding process are needed in order to better understand how residual structures and/or conformational flexibility of NTD contribute to the different strengths of inhibition of SPIN homologs. In this work, we applied atomistic molecular dynamics simulations on two SPIN homologs, from S. aureus and S. delphini, respectively, which share high sequence identity and similarity, to explore the possible mechanistic basis for their different inhibition efficacies on human MPO. Direct simulations of the unfolding and unbinding processes at 450 K reveal that these two SPIN/MPO complexes systems follow surprisingly different mechanisms of coupled binding and folding. While coupled binding and folding of SPIN-aureus NTD is highly cooperative, SPIN-delphini NTD appears to mainly utilize a conformational selection-like mechanism. These observations are in contrast to an overwhelming prevalence of induced folding-like mechanisms for intrinsically disordered proteins that fold into helical structures upon binding. Further simulations of unbound SPIN NTDs at room temperature reveal that SPIN-delphini NTD has a much stronger propensity of forming β-hairpin like structures, consistent with its preference to fold and then bind. These may help explain why the inhibition strength is not well correlated with binding affinity for different SPIN homologs. Altogether, our work establishes the relationship between the residual conformational stability of SPIN-NTD and their inhibitory function, which can help us develop new strategies towards treating Staphylococcal infections.
Collapse
Affiliation(s)
| | | | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
10
|
Lázár T, Tantos A, Tompa P, Schad E. Intrinsic protein disorder uncouples affinity from binding specificity. Protein Sci 2022; 31:e4455. [PMID: 36305763 PMCID: PMC9601785 DOI: 10.1002/pro.4455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) of proteins often function by molecular recognition, in which they undergo induced folding. Based on prior generalizations, the idea prevails in the IDP field that due to the entropic penalty of induced folding, the major functional advantage associated with this binding mode is "uncoupling" specificity from binding strength. Nevertheless, both weaker binding and high specificity of IDPs/IDRs rest on limited experimental observations, making these assumptions more speculations than evidence-supported facts. The issue is also complicated by the rather vague concept of specificity that lacks an exact measure, such as the Kd for binding strength. We addressed these issues by creating and analyzing a comprehensive dataset of well-characterized ID/globular protein complexes, for which both the atomic structure of the complex and free energy (ΔG, Kd ) of interaction is known. Through this analysis, we provide evidence that the affinity distributions of IDP/globular and globular/globular complexes show different trends, whereas specificity does not connote to weaker binding strength of IDPs/IDRs. Furthermore, protein disorder extends the spectrum in the direction of very weak interactions, which may have important regulatory consequences and suggest that, in a biological sense, strict correlation of specificity and binding strength are uncoupled by structural disorder.
Collapse
Affiliation(s)
- Tamas Lázár
- VIB‐VUB Center for Structural BiologyFlanders Institute for Biotechnology (VIB)BrusselsBelgium
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Agnes Tantos
- Institute of EnzymologyResearch Centre for Natural SciencesBudapestHungary
| | - Peter Tompa
- VIB‐VUB Center for Structural BiologyFlanders Institute for Biotechnology (VIB)BrusselsBelgium
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
- Institute of EnzymologyResearch Centre for Natural SciencesBudapestHungary
| | - Eva Schad
- Institute of EnzymologyResearch Centre for Natural SciencesBudapestHungary
| |
Collapse
|
11
|
Bizzarri AR. Conformational Heterogeneity and Frustration of the Tumor Suppressor p53 as Tuned by Punctual Mutations. Int J Mol Sci 2022; 23:12636. [PMID: 36293489 PMCID: PMC9604312 DOI: 10.3390/ijms232012636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 12/02/2022] Open
Abstract
The conformational heterogeneity of the p53 tumor suppressor, the wild-type (p53wt) and mutated forms, was investigated by a computational approach, including the modeling and all atoms of the molecular dynamics (MD) simulations. Four different punctual mutations (p53R175H, p53R248Q, p53R273H, and p53R282W) which are known to affect the DNA binding and belong to the most frequent hot-spot mutations in human cancers, were taken into consideration. The MD trajectories of the wild-type and mutated p53 forms were analyzed by essential dynamics to extract the relevant collective motions and by the frustration method to evaluate the degeneracy of the energy landscape. We found that p53 is characterized by wide collective motions and its energy landscape exhibits a rather high frustration level, especially in the regions involved in the binding to physiological ligands. Punctual mutations give rise to a modulation of both the collective motions and the frustration of p53, with different effects depending on the mutation. The regions of p53wt and of the mutated forms characterized by a high frustration level are also largely involved in the collective motions. Such a correlation is discussed also in connection with the intrinsic disordered character of p53 and with its central functional role.
Collapse
Affiliation(s)
- Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| |
Collapse
|
12
|
Selvaraj C, Pravin MA, Alhoqail WA, Nayarisseri A, Singh SK. Intrinsically disordered proteins in viral pathogenesis and infections. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:221-242. [PMID: 36088077 DOI: 10.1016/bs.apcsb.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Disordered proteins serve a crucial part in many biological processes that go beyond the capabilities of ordered proteins. A large number of virus-encoded proteins have extremely condensed proteomes and genomes, which results in highly disordered proteins. The presence of these IDPs allows them to rapidly adapt to changes in their biological environment and play a significant role in viral replication and down-regulation of host defense mechanisms. Since viruses undergo rapid evolution and have a high rate of mutation and accumulation in their proteome, IDPs' insights into viruses are critical for understanding how viruses hijack cells and cause disease. There are many conformational changes that IDPs can adopt in order to interact with different protein partners and thus stabilize the particular fold and withstand high mutation rates. This chapter explains the molecular mechanism behind viral IDPs, as well as the significance of recent research in the field of IDPs, with the goal of gaining a deeper comprehension of the essential roles and functions played by viral proteins.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Muthuraja Arun Pravin
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Wardah A Alhoqail
- Department of Biology, College of Education, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Anuraj Nayarisseri
- In Silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
13
|
Imran A, Moyer BS, Wolfe AJ, Cosgrove MS, Makarov DE, Movileanu L. Interplay of Affinity and Surface Tethering in Protein Recognition. J Phys Chem Lett 2022; 13:4021-4028. [PMID: 35485934 PMCID: PMC9106920 DOI: 10.1021/acs.jpclett.2c00621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/27/2022] [Indexed: 05/10/2023]
Abstract
Surface-tethered ligand-receptor complexes are key components in biological signaling and adhesion. They also find increasing utility in single-molecule assays and biotechnological applications. Here, we study the real-time binding kinetics between various surface-immobilized peptide ligands and their unrestrained receptors. A long peptide tether increases the association of ligand-receptor complexes, experimentally proving the fly casting mechanism where the disorder accelerates protein recognition. On the other hand, a short peptide tether enhances the complex dissociation. Notably, the rate constants measured for the same receptor, but under different spatial constraints, are strongly correlated to one another. Furthermore, this correlation can be used to predict how surface tethering on a ligand-receptor complex alters its binding kinetics. Our results have immediate implications in the broad areas of biomolecular recognition, intrinsically disordered proteins, and biosensor technology.
Collapse
Affiliation(s)
- Ali Imran
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Brandon S. Moyer
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Lewis
School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Aaron J. Wolfe
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Lewis
School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
- Department
of Chemistry, State University of New York
College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, United States
| | - Michael S. Cosgrove
- Department
of Biochemistry and Molecular Biology, State
University of New York Upstate Medical University, 4249 Weiskotten Hall, 766 Irving
Avenue, Syracuse, New York 13210, United States
| | - Dmitrii E. Makarov
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Oden
Institute
for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United
States
- The BioInspired
Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
14
|
Chakrabarti P, Chakravarty D. Intrinsically disordered proteins/regions and insight into their biomolecular interactions. Biophys Chem 2022; 283:106769. [DOI: 10.1016/j.bpc.2022.106769] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
|
15
|
Molecular Simulations of Intrinsically Disordered Proteins and Their Binding Mechanisms. Methods Mol Biol 2022; 2376:343-362. [PMID: 34845619 DOI: 10.1007/978-1-0716-1716-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) lack well-defined secondary or tertiary structures in solution but are found to be involved in a wide range of critical cellular processes that highlight their functional importance. IDPs usually undergo folding upon binding to their targets. Such binding coupled to folding behavior has widened our perspective on the protein structure-dynamics-function paradigm in molecular biology. However, characterizing the folding upon binding mechanism of IDPs experimentally remains quite challenging. Molecular simulations emerge as a potentially powerful tool that offers information complementary to experiments. Here we present a general computational framework for the molecular simulations of IDP folding upon binding processes that combines all-atom molecular dynamics (MD) and coarse-grained simulations. The classical all-atom molecular dynamics approach using GPU acceleration allows the researcher to explore the properties of the IDP conformational ensemble, whereas coarse-grained structure-based models implemented with parameters carefully calibrated to available experimental measurements can be used to simulate the entire folding upon binding process. We also discuss a set of tools for the analysis of MD trajectories and describe the details of the computational protocol to follow so that it can be adapted by the user to study any IDP in isolation and in complex with partners.
Collapse
|
16
|
Chu WT, Yan Z, Chu X, Zheng X, Liu Z, Xu L, Zhang K, Wang J. Physics of biomolecular recognition and conformational dynamics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:126601. [PMID: 34753115 DOI: 10.1088/1361-6633/ac3800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Biomolecular recognition usually leads to the formation of binding complexes, often accompanied by large-scale conformational changes. This process is fundamental to biological functions at the molecular and cellular levels. Uncovering the physical mechanisms of biomolecular recognition and quantifying the key biomolecular interactions are vital to understand these functions. The recently developed energy landscape theory has been successful in quantifying recognition processes and revealing the underlying mechanisms. Recent studies have shown that in addition to affinity, specificity is also crucial for biomolecular recognition. The proposed physical concept of intrinsic specificity based on the underlying energy landscape theory provides a practical way to quantify the specificity. Optimization of affinity and specificity can be adopted as a principle to guide the evolution and design of molecular recognition. This approach can also be used in practice for drug discovery using multidimensional screening to identify lead compounds. The energy landscape topography of molecular recognition is important for revealing the underlying flexible binding or binding-folding mechanisms. In this review, we first introduce the energy landscape theory for molecular recognition and then address four critical issues related to biomolecular recognition and conformational dynamics: (1) specificity quantification of molecular recognition; (2) evolution and design in molecular recognition; (3) flexible molecular recognition; (4) chromosome structural dynamics. The results described here and the discussions of the insights gained from the energy landscape topography can provide valuable guidance for further computational and experimental investigations of biomolecular recognition and conformational dynamics.
Collapse
Affiliation(s)
- Wen-Ting Chu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Zhiqiang Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Xiakun Chu
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, NY 11794, United States of America
| | - Xiliang Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Li Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Kun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jin Wang
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, NY 11794, United States of America
| |
Collapse
|
17
|
Nie QM, Sun LZ, Li HB, Chu X, Wang J. Effects of electrostatic interactions on global folding and local conformational dynamics of a multidomain Y-family DNA polymerase. Phys Chem Chem Phys 2021; 23:20841-20847. [PMID: 34533560 DOI: 10.1039/d1cp02832d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Y-family DNA polymerases specialize in translesion DNA synthesis, which is essential for replicating damaged DNA. The Y-family polymerases, which are made up of four stable domains, exhibit extensive distributions of charged residues, and are responsible for the tight formation of the protein-DNA complex. However, it is still unclear how the electrostatic interactions influence the conformational dynamics of the polymerases. Here, we focus on the case of a prototype Y-family DNA polymerase, Dpo4. Using coarse-grained models including a salt-dependent electrostatic potential, we investigate the effects of the electrostatic interactions on the folding process of Dpo4. Our simulations show that strong electrostatic interactions result in a three-state folding of Dpo4, consistent with the experimental observations. This folding process exhibits low cooperativity led by low salt concentration, where the individual domains fold one by one through one single pathway. Since the refined folding order of domains in multidomain proteins can shrink the configurational space, we suggest that the electrostatic interactions facilitate the Dpo4 folding. In addition, we study the local conformational dynamics of Dpo4 in terms of fluctuation and frustration analyses. We show that the electrostatic interactions can exaggerate the local conformational properties, which are in favor of the large-scale conformational transition of Dpo4 during the functional DNA binding. Our results underline the importance of electrostatic interactions in the conformational dynamics of Dpo4 at both the global and local scale, providing useful guidance in protein engineering at the multidomain level.
Collapse
Affiliation(s)
- Qing-Miao Nie
- Department of Applied Physics, Zhejiang University of Technology, 288, Liuhe Road, Hangzhou 310023, P. R. China
| | - Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, 288, Liuhe Road, Hangzhou 310023, P. R. China
| | - Hai-Bin Li
- Department of Applied Physics, Zhejiang University of Technology, 288, Liuhe Road, Hangzhou 310023, P. R. China
| | - Xiakun Chu
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.
| | - Jin Wang
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.
| |
Collapse
|
18
|
The disordered regions of the methyltransferase SETD2 govern its function by regulating its proteolysis and phase separation. J Biol Chem 2021; 297:101075. [PMID: 34391778 PMCID: PMC8405934 DOI: 10.1016/j.jbc.2021.101075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
SETD2 is an important methyltransferase that methylates crucial substrates such as histone H3, tubulin, and STAT1 and also physically interacts with transcription and splicing regulators such as Pol II and various hnRNPs. Of note, SETD2 has a functionally uncharacterized extended N-terminal region, the removal of which leads to its stabilization. How this region regulates SETD2 half-life is unclear. Here we show that SETD2 consists of multiple long disordered regions across its length that cumulatively destabilize the protein by facilitating its proteasomal degradation. SETD2 disordered regions can reduce the half-life of the yeast homolog Set2 in mammalian cells as well as in yeast, demonstrating the importance of intrinsic structural features in regulating protein half-life. In addition to the shortened half-life, by performing fluorescence recovery after photobleaching assay we found that SETD2 forms liquid droplets in vivo, another property associated with proteins that contain disordered regions. The phase-separation behavior of SETD2 is exacerbated upon the removal of its N-terminal segment and results in activator-independent histone H3K36 methylation. Our findings reveal that disordered region-facilitated proteolysis is an important mechanism governing SETD2 function.
Collapse
|
19
|
Intrinsically disordered proteins and membranes: a marriage of convenience for cell signalling? Biochem Soc Trans 2021; 48:2669-2689. [PMID: 33155649 PMCID: PMC7752083 DOI: 10.1042/bst20200467] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The structure-function paradigm has guided investigations into the molecules involved in cellular signalling for decades. The peripheries of this paradigm, however, start to unravel when considering the co-operation between proteins and the membrane in signalling processes. Intrinsically disordered regions hold distinct advantages over folded domains in terms of their binding promiscuity, sensitivity to their particular environment and their ease of modulation through post-translational modifications. Low sequence complexity and bias towards charged residues are also favourable for the multivalent electrostatic interactions that occur at the surfaces of lipid bilayers. This review looks at the principles behind the successful marriage between protein disorder and membranes in addition to the role of this partnership in modifying and regulating signalling in cellular processes. The HVR (hypervariable region) of small GTPases is highlighted as a well-studied example of the nuanced role a short intrinsically disordered region can play in the fine-tuning of signalling pathways.
Collapse
|
20
|
Schrag LG, Liu X, Thevarajan I, Prakash O, Zolkiewski M, Chen J. Cancer-Associated Mutations Perturb the Disordered Ensemble and Interactions of the Intrinsically Disordered p53 Transactivation Domain. J Mol Biol 2021; 433:167048. [PMID: 33984364 PMCID: PMC8286338 DOI: 10.1016/j.jmb.2021.167048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023]
Abstract
Intrinsically disordered proteins (IDPs) are key components of regulatory networks that control crucial aspects of cell decision making. The intrinsically disordered transactivation domain (TAD) of tumor suppressor p53 mediates its interactions with multiple regulatory pathways to control the p53 homeostasis during the cellular response to genotoxic stress. Many cancer-associated mutations have been discovered in p53-TAD, but their structural and functional consequences are poorly understood. Here, by combining atomistic simulations, NMR spectroscopy, and binding assays, we demonstrate that cancer-associated mutations can significantly perturb the balance of p53 interactions with key activation and degradation regulators. Importantly, the four mutations studied in this work do not all directly disrupt the known interaction interfaces. Instead, at least three of these mutations likely modulate the disordered state of p53-TAD to perturb its interactions with regulators. Specifically, NMR and simulation analysis together suggest that these mutations can modulate the level of conformational expansion as well as rigidity of the disordered state. Our work suggests that the disordered conformational ensemble of p53-TAD can serve as a central conduit in regulating the response to various cellular stimuli at the protein-protein interaction level. Understanding how the disordered state of IDPs may be modulated by regulatory signals and/or disease associated perturbations will be essential in the studies on the role of IDPs in biology and diseases.
Collapse
Affiliation(s)
- Lynn G Schrag
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66505, USA
| | - Xiaorong Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Indhujah Thevarajan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66505, USA
| | - Om Prakash
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66505, USA.
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66505, USA.
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
21
|
Gao M, Han Y, Zeng Y, Su Z, Huang Y. Introducing intrinsic disorder reduces electrostatic steering in protein-protein interactions. Biophys J 2021; 120:2998-3007. [PMID: 34214536 DOI: 10.1016/j.bpj.2021.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/03/2021] [Accepted: 06/17/2021] [Indexed: 02/05/2023] Open
Abstract
Protein-protein interactions underlie many critical biology functions, such as cellular signaling and gene expression, in which electrostatic interactions can play a critical role in mediating the specificity and stability of protein complexes. A substantial portion of proteins are intrinsically disordered, and the influences of structural disorder on binding kinetics and thermodynamics have been widely investigated. However, whether the effect of electrostatic steering depends on structural disorder remains unexplored. In this work, we addressed the consequence of introducing intrinsic disorder in the electrostatic steering of the E3/Im3 complex using molecular dynamics simulation. Our results recapitulated the experimental observations that the responses of stability and kinetics to salt concentration for the ordered E3/Im3 complex were larger than those for the disordered E3/Im3 complex. Mechanistic analysis revealed that the native contact interactions involved in the encounter state and the transition state were essentially identical for both ordered and disordered E3. Therefore, the observed difference in electrostatic steering between ordered E3 and disordered E3 may result from their difference in conformation rather than their difference in binding mechanism. Because charged residues are frequently involved in protein-protein interactions, our results suggest that increasing structural disorder is expected to generally modulate the effect of electrostatic steering.
Collapse
Affiliation(s)
- Meng Gao
- Key Laboratory of Industrial Fermentation, Ministry of Education, Wuhan, China; Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Wuhan, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Yue Han
- Key Laboratory of Industrial Fermentation, Ministry of Education, Wuhan, China; Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Wuhan, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Yifan Zeng
- Key Laboratory of Industrial Fermentation, Ministry of Education, Wuhan, China; Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Wuhan, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation, Ministry of Education, Wuhan, China; Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Wuhan, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation, Ministry of Education, Wuhan, China; Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Wuhan, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
22
|
Cantini F, Gianni' P, Savarin P, Bizzarri AR, Sette M. Solution structure of the anticancer p28 peptide in biomimetic medium. J Pept Sci 2021; 27:e3357. [PMID: 34151482 DOI: 10.1002/psc.3357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
The p28 peptide derived from Pseudomonas aeruginosa azurin shows an anticancer activity after binding to p53 protein and is currently in Phase I of clinical trials. We have studied its structure in water and in a biomimetic media and show that the peptide is unstructured in water but when studied in a biomimetic medium assumes a structure very similar to the one observed in azurin, suggesting a high propensity of this peptide to maintain this secondary structure. Analysis of p28 sequences from different bacterial species indicates conservation of the secondary structure despite amino acid replacement in different positions, suggesting that others, similar peptides could be tested for binding to p53.
Collapse
Affiliation(s)
- Francesca Cantini
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Paola Gianni'
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy
| | - Philippe Savarin
- Sorbonne Paris Cité, CSPBAT Laboratory, University of Paris 13, UMR 7244, CNRS, Bobigny, France
| | - Anna Rita Bizzarri
- Biophysics & Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy
| | - Marco Sette
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy.,Sorbonne Paris Cité, CSPBAT Laboratory, University of Paris 13, UMR 7244, CNRS, Bobigny, France
| |
Collapse
|
23
|
Song J, Li J, Chan HS. Small-Angle X-ray Scattering Signatures of Conformational Heterogeneity and Homogeneity of Disordered Protein Ensembles. J Phys Chem B 2021; 125:6451-6478. [PMID: 34115515 DOI: 10.1021/acs.jpcb.1c02453] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An accurate account of disordered protein conformations is of central importance to deciphering the physicochemical basis of biological functions of intrinsically disordered proteins and the folding-unfolding energetics of globular proteins. Physically, disordered ensembles of nonhomopolymeric polypeptides are expected to be heterogeneous, i.e., they should differ from those homogeneous ensembles of homopolymers that harbor an essentially unique relationship between average values of end-to-end distance REE and radius of gyration Rg. It was posited recently, however, that small-angle X-ray scattering (SAXS) data on conformational dimensions of disordered proteins can be rationalized almost exclusively by homopolymer ensembles. Assessing this perspective, chain-model simulations are used to evaluate the discriminatory power of SAXS-determined molecular form factors (MFFs) with regard to homogeneous versus heterogeneous ensembles. The general approach adopted here is not bound by any assumption about ensemble encodability, in that the postulated heterogeneous ensembles we evaluated are not restricted to those entailed by simple interaction schemes. Our analysis of MFFs for certain heterogeneous ensembles with more narrowly distributed REE and Rg indicates that while they deviate from MFFs of homogeneous ensembles, the differences can be rather small. Remarkably, some heterogeneous ensembles with asphericity and REE drastically different from those of homogeneous ensembles can nonetheless exhibit practically identical MFFs, demonstrating that SAXS MFFs do not afford unique characterizations of basic properties of conformational ensembles in general. In other words, the ensemble to MFF mapping is practically many-to-one and likely nonsmooth. Heteropolymeric variations of the REE-Rg relationship were further showcased using an analytical perturbation theory developed here for flexible heteropolymers. Ramifications of our findings for interpretation of experimental data are discussed.
Collapse
Affiliation(s)
- Jianhui Song
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Jichen Li
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto Faculty of Medicine, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
24
|
Covaceuszach S, Peche L, Konarev P, Lamba D. A combined evolutionary and structural approach to disclose the primary structural determinants essential for proneurotrophins biological functions. Comput Struct Biotechnol J 2021; 19:2891-2904. [PMID: 34094000 PMCID: PMC8144349 DOI: 10.1016/j.csbj.2021.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022] Open
Abstract
The neurotrophins, i.e., Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin 3 (NT3) and Neurotrophin 4 (NT4), are known to play a range of crucial functions in the developing and adult peripheral and central nervous systems. Initially synthesized as precursors, i.e., proneurotrophins (proNTs), that are cleaved to release C-terminal mature forms, they act through two types of receptors, the specific Trk receptors (Tropomyosin-related kinases) and the pan-neurotrophin receptor p75NTR, to initiate survival and differentiative responses. Recently, all the proNTs but proNT4 have been demonstrated to be not just inactive precursors, but signaling ligands that mediate opposing actions in fundamental aspects of the nervous system with respect to the mature counterparts through dual-receptor complexes formation with a member of the VPS10 family and p75NTR. Despite the functional relevance, the molecular determinants underpinning the interactions between the pro-domains and their receptors are still elusive probably due to their intrinsically disordered nature. Here we present an evolutionary approach coupled to an experimental study aiming to uncover the structural and dynamical basis of the biological function displayed by proNGF, proBDNF and proNT3 but missing in proNT4. A bioinformatic analysis allowed to elucidate the functional adaptability of the proNTs family in vertebrates, identifying conserved key structural features. The combined biochemical and SAXS experiments shed lights on the structure and dynamic behavior of the human proNTs in solution, giving insights on the evolutionary conserved structural motifs, essential for the multifaceted roles of proNTs in physiological as well as in pathological contexts.
Collapse
Affiliation(s)
- S. Covaceuszach
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - L.Y. Peche
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - P.V. Konarev
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, Russia
| | - D. Lamba
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Trieste, Italy
- Interuniversity Consortium “Biostructures and Biosystems National Institute”, Roma, Italy
| |
Collapse
|
25
|
Pinet L, Wang YH, Deville C, Lescop E, Guerlesquin F, Badache A, Bontems F, Morellet N, Durand D, Assrir N, van Heijenoort C. Structural and dynamic characterization of the C-terminal tail of ErbB2: Disordered but not random. Biophys J 2021; 120:1869-1882. [PMID: 33741354 DOI: 10.1016/j.bpj.2021.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/23/2023] Open
Abstract
ErbB2 (or HER2) is a receptor tyrosine kinase overexpressed in some breast cancers and associated with poor prognosis. Treatments targeting the receptor extracellular and kinase domains have greatly improved disease outcome in the last 20 years. In parallel, the structures of these domains have been described, enabling better mechanistic understanding of the receptor function and targeted inhibition. However, the ErbB2 disordered C-terminal cytoplasmic tail (CtErbB2) remains very poorly characterized in terms of structure, dynamics, and detailed functional mechanism. Yet, it is where signal transduction is triggered via phosphorylation of tyrosine residues and carried out via interaction with adaptor proteins. Here, we report the first description, to our knowledge, of the ErbB2 disordered tail at atomic resolution using NMR, complemented by small-angle x-ray scattering. We show that although no part of CtErbB2 has any fully populated secondary or tertiary structure, it contains several transient α-helices and numerous transient polyproline II helices, populated up to 20 and 40%, respectively, and low but significant compaction. The presence of some structural elements suggests, along the lines of the results obtained for EGFR (ErbB1), that they may have a functional role in ErbB2's autoregulation processes. In addition, the transient formation of polyproline II helices is compliant with previously suggested interactions with SH3 domains. All in all, our in-depth structural study opens perspectives in the mechanistic understanding of ErbB2.
Collapse
Affiliation(s)
- Louise Pinet
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France; Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Ying-Hui Wang
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France; SGS Taiwan LTD, New Taipei City, Taiwan
| | - Célia Deville
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France; IGBMC, University of Strasbourg, CNRS UMR, Illkirch, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Françoise Guerlesquin
- LISM, Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille University, Marseille, France
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France
| | - François Bontems
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France; Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Nelly Morellet
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Dominique Durand
- I2BC, Université Paris-Saclay, CNRS UMR 9198, Gif-sur-Yvette, France
| | - Nadine Assrir
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Carine van Heijenoort
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
26
|
Chu WT, Wang J. Influence of sequence length and charged residues on Swc5 binding with histone H2A-H2B. Proteins 2020; 89:512-520. [PMID: 33320380 DOI: 10.1002/prot.26035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/25/2020] [Accepted: 12/12/2020] [Indexed: 01/23/2023]
Abstract
SWR is a member of chromatin remodeler family and participates the replacement of histone H2A with H2A.Z. One of the SWR subunits, Swc5, has an intrinsically disordered region and binds to H2A-H2B dimer. Though the binding structure of Swc5 and H2A-H2B has been resolved recently, it is still challenging to investigate the binding mechanism as well as the role of the charge interactions between Swc5 and H2A-H2B. Here we developed a coarse-grained structure-based model and performed molecular dynamics simulations to investigate the binding processes of two Swc5 regions with different lengths (swc5-a and swc5-b) to H2A-H2B. The simulation results suggest a different role of electrostatic interactions between swc5-a/swc5-b and H2A-H2B on binding. The electrostatic interactions between swc5-a/swc5-b and H2A-H2B can not only accelerate the initial capture step of binding, but can also trap the swc5-a/swc5-b at the wrong binding site on H2A. Besides, the conserved DEF/Y-2 motif of Swc5 is important for the binding affinity and the recognition with H2A-H2B at the initial step. Both swc5-a and swc5-b undergo a structural shift before reaching the final bound state. This theoretical study provides important details and the underlying physical mechanisms of the binding processes of swc5-a/swc5-b and H2A-H2B.
Collapse
Affiliation(s)
- Wen-Ting Chu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
27
|
Regmi R, Srinivasan S, Latham AP, Kukshal V, Cui W, Zhang B, Bose R, Schlau-Cohen GS. Phosphorylation-Dependent Conformations of the Disordered Carboxyl-Terminus Domain in the Epidermal Growth Factor Receptor. J Phys Chem Lett 2020; 11:10037-10044. [PMID: 33179922 PMCID: PMC8063277 DOI: 10.1021/acs.jpclett.0c02327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, regulates basic cellular functions and is a major target for anticancer therapeutics. The carboxyl-terminus domain is a disordered region of EGFR that contains the tyrosine residues, which undergo autophosphorylation followed by docking of signaling proteins. Local phosphorylation-dependent secondary structure has been identified and is thought to be associated with the signaling cascade. Deciphering and distinguishing the overall conformations, however, have been challenging because of the disordered nature of the carboxyl-terminus domain and resultant lack of well-defined three-dimensional structure for most of the domain. We investigated the overall conformational states of the isolated EGFR carboxyl-terminus domain using single-molecule Förster resonance energy transfer and coarse-grained simulations. Our results suggest that electrostatic interactions between charged residues emerge within the disordered domain upon phosphorylation, producing a looplike conformation. This conformation may enable binding of downstream signaling proteins and potentially reflect a general mechanism in which electrostatics transiently generate functional architectures in disordered regions of a well-folded protein.
Collapse
Affiliation(s)
- Raju Regmi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shwetha Srinivasan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Vandna Kukshal
- Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Weidong Cui
- Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ron Bose
- Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
28
|
Uversky VN. Functions of short lifetime biological structures at large: the case of intrinsically disordered proteins. Brief Funct Genomics 2020; 19:60-68. [PMID: 29982297 DOI: 10.1093/bfgp/ely023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although for more than a century a protein function was intimately associated with the presence of unique structure in a protein molecule, recent years witnessed a skyrocket rise of the appreciation of protein intrinsic disorder concept that emphasizes the importance of the biologically active proteins without ordered structures. In different proteins, the depth and breadth of disorder penetrance are different, generating an amusing spatiotemporal heterogeneity of intrinsically disordered proteins (IDPs) and intrinsically disordered protein region regions (IDPRs), which are typically described as highly dynamic ensembles of rapidly interconverting conformations (or a multitude of short lifetime structures). IDPs/IDPRs constitute a substantial part of protein kingdom and have unique functions complementary to functional repertoires of ordered proteins. They are recognized as interaction specialists and global controllers that play crucial roles in regulation of functions of their binding partners and in controlling large biological networks. IDPs/IDPRs are characterized by immense binding promiscuity and are able to use a broad spectrum of binding modes, often resulting in the formation of short lifetime complexes. In their turn, functions of IDPs and IDPRs are controlled by various means, such as numerous posttranslational modifications and alternative splicing. Some of the functions of IDPs/IDPRs are briefly considered in this review to shed some light on the biological roles of short-lived structures at large.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA and Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
29
|
Sicoli G, Kress T, Vezin H, Ledolter K, Kurzbach D. A Switch between Two Intrinsically Disordered Conformational Ensembles Modulates the Active Site of a Basic-Helix-Loop-Helix Transcription Factor. J Phys Chem Lett 2020; 11:8944-8951. [PMID: 33030907 PMCID: PMC7649839 DOI: 10.1021/acs.jpclett.0c02242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We report a conformational switch between two distinct intrinsically disordered subensembles within the active site of a transcription factor. This switch highlights an evolutionary benefit conferred by the high plasticity of intrinsically disordered domains, namely, their potential to dynamically sample a heterogeneous conformational space housing multiple states with tailored properties. We focus on proto-oncogenic basic-helix-loop-helix (bHLH)-type transcription factors, as these play key roles in cell regulation and function. Despite intense research efforts, the understanding of structure-function relations of these transcription factors remains incomplete as they feature intrinsically disordered DNA-interaction domains that are difficult to characterize, theoretically as well as experimentally. Here we characterize the structural dynamics of the intrinsically disordered region DNA-binding site of the vital MYC-associated transcription factor X (MAX). Integrating nuclear magnetic resonance (NMR) measurements, molecular dynamics (MD) simulations, and electron paramagnetic resonance (EPR) measurements, we show that, in the absence of DNA, the binding site of the free MAX2 homodimer samples two intrinsically disordered conformational subensembles. These feature distinct structural properties: one subensemble consists of a set of highly flexible and spatially extended conformers, while the second features a set of "hinged" conformations. In this latter ensemble, the disordered N-terminal tails of MAX2 fold back along the dimer, forming transient long-range contacts with the HLH-region and thereby exposing the DNA binding site to the solvent. The features of these divergent substates suggest two mechanisms by which protein conformational dynamics in MAX2 might modulate DNA-complex formation: by enhanced initial recruitment of free DNA ligands, as a result of the wider conformational space sampled by the extended ensemble, and by direct exposure of the binding site and the corresponding strong electrostatic attractions presented while in the hinged conformations.
Collapse
Affiliation(s)
- Giuseppe Sicoli
- Laboratoire
Avancé de Spectroscopie pour les Interactions, la Réactivité
et l’Environnement (LASIRE), UMR CNRS 8516, Université de Lille, Avenue Paul Langevin − C4, F-59655 Villeneuve d’Ascq, France
| | - Thomas Kress
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Hervé Vezin
- Laboratoire
Avancé de Spectroscopie pour les Interactions, la Réactivité
et l’Environnement (LASIRE), UMR CNRS 8516, Université de Lille, Avenue Paul Langevin − C4, F-59655 Villeneuve d’Ascq, France
| | - Karin Ledolter
- Department
for Structural and Computational Biology, Max F. Perutz Laboratories, University Vienna, Campus Vienna BioCenter 5, 1030 Vienna, Austria
| | - Dennis Kurzbach
- Faculty
of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| |
Collapse
|
30
|
Bizzarri AR, Cannistraro S. Time-Resolved Fluorescence and Essential Dynamics Study on the Structural Heterogeneity of p53DBD Bound to the Anticancer p28 Peptide. J Phys Chem B 2020; 124:9820-9828. [PMID: 33103427 DOI: 10.1021/acs.jpcb.0c06778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Time-resolved fluorescence emission was combined with molecular dynamics (MD) simulations to investigate the DNA-binding domain (DBD) of the tumor suppressor p53 alone and its complex with the anticancer peptide p28 (DBD/p28). The fluorescence emission decay of the lone Trp residue, from both DBD and DBD/p28, was well-described by a stretched exponential function. Such a behavior was ascribed to heterogeneity in the Trp relaxation behavior, likely due to the coexistence of different conformational states. The increase of the stretching parameter, on passing from DBD to DBD/p28, indicates a reduced heterogeneity in the Trp146 environment for DBD/p28. Moreover, the effects of p28 on the global dynamics of DBD were analyzed by the essential dynamics method on 30 ns long MD trajectories of both DBD and DBD/p28. We found the establishment of wide-amplitude anharmonic modes throughout the DBD molecule, with a particularly high amplitude being detected in the DNA-binding region. These modes are significantly reduced when DBD is bound to p28, consistently with a structure stabilization. In summary, the results indicate that p28 binding has a strong effect on both the local and global heterogeneity of DBD, thus providing some hints to the understanding of its anticancer activity.
Collapse
Affiliation(s)
- Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| |
Collapse
|
31
|
Chu X, Suo Z, Wang J. Investigating the trade-off between folding and function in a multidomain Y-family DNA polymerase. eLife 2020; 9:60434. [PMID: 33079059 PMCID: PMC7641590 DOI: 10.7554/elife.60434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/16/2020] [Indexed: 01/01/2023] Open
Abstract
The way in which multidomain proteins fold has been a puzzling question for decades. Until now, the mechanisms and functions of domain interactions involved in multidomain protein folding have been obscure. Here, we develop structure-based models to investigate the folding and DNA-binding processes of the multidomain Y-family DNA polymerase IV (DPO4). We uncover shifts in the folding mechanism among ordered domain-wise folding, backtracking folding, and cooperative folding, modulated by interdomain interactions. These lead to ‘U-shaped’ DPO4 folding kinetics. We characterize the effects of interdomain flexibility on the promotion of DPO4–DNA (un)binding, which probably contributes to the ability of DPO4 to bypass DNA lesions, which is a known biological role of Y-family polymerases. We suggest that the native topology of DPO4 leads to a trade-off between fast, stable folding and tight functional DNA binding. Our approach provides an effective way to quantitatively correlate the roles of protein interactions in conformational dynamics at the multidomain level.
Collapse
Affiliation(s)
- Xiakun Chu
- Department of Chemistry, State University of New York at Stony Brook, New York, United States
| | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, United States
| | - Jin Wang
- Department of Chemistry, State University of New York at Stony Brook, New York, United States
| |
Collapse
|
32
|
Presence of intrinsically disordered proteins can inhibit the nucleation phase of amyloid fibril formation of Aβ(1-42) in amino acid sequence independent manner. Sci Rep 2020; 10:12334. [PMID: 32703978 PMCID: PMC7378830 DOI: 10.1038/s41598-020-69129-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/19/2020] [Indexed: 11/27/2022] Open
Abstract
The molecular shield effect was studied for intrinsically disordered proteins (IDPs) that do not adopt compact and stable protein folds. IDPs are found among many stress-responsive gene products and cryoprotective- and drought-protective proteins. We recently reported that some fragments of human genome-derived IDPs are cryoprotective for cellular enzymes, despite a lack of relevant amino acid sequence motifs. This sequence-independent IDP function may reflect their molecular shield effect. This study examined the inhibitory activity of IDPs against fibril formation in an amyloid beta peptide (Aβ(1–42)) model system. Four of five human genome-derived IDPs (size range 20 to 44 amino acids) showed concentration-dependent inhibition of amyloid formation (IC50 range between 60 and 130 μM against 20 μM Aβ(1–42)). The IC50 value was two orders of magnitude lower than that of polyethylene-glycol and dextran, used as neutral hydrophilic polymer controls. Nuclear magnetic resonance with 15 N-labeled Aβ(1–42) revealed no relevant molecular interactions between Aβ(1–42) and IDPs. The inhibitory activities were abolished by adding external amyloid-formation seeds. Therefore, IDPs seemed to act only at the amyloid nucleation phase but not at the elongation phase. These results suggest that IDPs (0.1 mM or less) have a molecular shield effect that prevents aggregation of susceptible molecules.
Collapse
|
33
|
Chu WT, Shammas SL, Wang J. Charge Interactions Modulate the Encounter Complex Ensemble of Two Differently Charged Disordered Protein Partners of KIX. J Chem Theory Comput 2020; 16:3856-3868. [PMID: 32325001 DOI: 10.1021/acs.jctc.9b01264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Disordered proteins play important roles in cell signaling and are frequently involved in protein-protein interactions. They also have a larger proportion of charged and polar residues than their folded counterparts. Here, we developed a structure-based model and applied molecular dynamics simulations to examine the presence and importance of electrostatic interactions in the binding processes of two differently charged intrinsically disordered ligands of the KIX domain of CBP. We observed non-native opposite-charged contacts in the encounter complexes for both ligands with KIX, and this may be a general feature of coupled folding and binding reactions. The ensemble of successful encounter complexes is a diverse set of structures, and in the case of the highly charged ligand, this ensemble was found to be malleable with respect to ionic strength. There are only minor differences between encounter complex ensembles for successful and unsuccessful collisions with no key interactions that appear to make the process far more productive. The energy landscape at this early stage in the process does not appear highly funneled. Strikingly we observed many native interactions that appear to reduce chances of an encounter complex being productive. Instead it appears that collectively non-native electrostatic interactions in the encounter complex increase the likelihood of productivity by holding the proteins together long enough for folding to take place. This mechanism is more effective for the more highly charged ligand.
Collapse
Affiliation(s)
- Wen-Ting Chu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R.China
| | - Sarah L Shammas
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Jin Wang
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| |
Collapse
|
34
|
Robustelli P, Piana S, Shaw DE. Mechanism of Coupled Folding-upon-Binding of an Intrinsically Disordered Protein. J Am Chem Soc 2020; 142:11092-11101. [DOI: 10.1021/jacs.0c03217] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Paul Robustelli
- D. E. Shaw Research, New York, New York 10036, United States
| | - Stefano Piana
- D. E. Shaw Research, New York, New York 10036, United States
| | - David E. Shaw
- D. E. Shaw Research, New York, New York 10036, United States
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
35
|
Abstract
The specific interaction of importins with nuclear localization signals (NLSs) of cargo proteins not only mediates nuclear import but also, prevents their aberrant phase separation and stress granule recruitment in the cytoplasm. The importin Transportin-1 (TNPO1) plays a key role in the (patho-)physiology of both processes. Here, we report that both TNPO1 and Transportin-3 (TNPO3) recognize two nonclassical NLSs within the cold-inducible RNA-binding protein (CIRBP). Our biophysical investigations show that TNPO1 recognizes an arginine-glycine(-glycine) (RG/RGG)-rich region, whereas TNPO3 recognizes a region rich in arginine-serine-tyrosine (RSY) residues. These interactions regulate nuclear localization, phase separation, and stress granule recruitment of CIRBP in cells. The presence of both RG/RGG and RSY regions in numerous other RNA-binding proteins suggests that the interaction of TNPO1 and TNPO3 with these nonclassical NLSs may regulate the formation of membraneless organelles and subcellular localization of numerous proteins.
Collapse
|
36
|
Misiura MM, Kolomeisky AB. Role of Intrinsically Disordered Regions in Acceleration of Protein–Protein Association. J Phys Chem B 2019; 124:20-27. [DOI: 10.1021/acs.jpcb.9b08793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Tan PS, Aramburu IV, Mercadante D, Tyagi S, Chowdhury A, Spitz D, Shammas SL, Gräter F, Lemke EA. Two Differential Binding Mechanisms of FG-Nucleoporins and Nuclear Transport Receptors. Cell Rep 2019; 22:3660-3671. [PMID: 29590630 PMCID: PMC5898484 DOI: 10.1016/j.celrep.2018.03.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/30/2018] [Accepted: 03/06/2018] [Indexed: 01/12/2023] Open
Abstract
Phenylalanine-glycine-rich nucleoporins (FG-Nups) are intrinsically disordered proteins, constituting the selective barrier of the nuclear pore complex (NPC). Previous studies showed that nuclear transport receptors (NTRs) were found to interact with FG-Nups by forming an “archetypal-fuzzy” complex through the rapid formation and breakage of interactions with many individual FG motifs. Here, we use single-molecule studies combined with atomistic simulations to show that, in sharp contrast, FG-Nup214 undergoes a coupled reconfiguration-binding mechanism when interacting with the export receptor CRM1. Association and dissociation rate constants are more than an order of magnitude lower than in the archetypal-fuzzy complex between FG-Nup153 and NTRs. Unexpectedly, this behavior appears not to be encoded selectively into CRM1 but rather into the FG-Nup214 sequence. The same distinct binding mechanisms are unperturbed in O-linked β-N-acetylglucosamine-modified FG-Nups. Our results have implications for differential roles of distinctly spatially distributed FG-Nup⋅NTR interactions in the cell. Identification of two differential binding mechanisms in the nuclear transport pathway FG-Nup214 does not bind CRM1 via an archetypal-fuzzy complex Glycosylated FG-Nups maintain their NTR-binding mechanisms Linker regions of FG-Nups may have functional relevance to the binding mechanism
Collapse
Affiliation(s)
- Piau Siong Tan
- Structural and Computational Biology Unit & Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Iker Valle Aramburu
- Structural and Computational Biology Unit & Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Davide Mercadante
- Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, Mathematikon, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Swati Tyagi
- Structural and Computational Biology Unit & Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Aritra Chowdhury
- Structural and Computational Biology Unit & Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Daniel Spitz
- Structural and Computational Biology Unit & Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sarah L Shammas
- Department of New Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, Mathematikon, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany.
| | - Edward A Lemke
- Departments of Biology and Chemistry, Pharmacy and Geosciences, Johannes Gutenberg-University Mainz, Johannes-von-Mullerweg 6, 55128 Mainz, Germany; Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany; Structural and Computational Biology Unit & Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
38
|
Yang J, Gao M, Xiong J, Su Z, Huang Y. Features of molecular recognition of intrinsically disordered proteins via coupled folding and binding. Protein Sci 2019; 28:1952-1965. [PMID: 31441158 PMCID: PMC6798136 DOI: 10.1002/pro.3718] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
The sequence-structure-function paradigm of proteins has been revolutionized by the discovery of intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs). In contrast to traditional ordered proteins, IDPs/IDRs are unstructured under physiological conditions. The absence of well-defined three-dimensional structures in the free state of IDPs/IDRs is fundamental to their function. Folding upon binding is an important mode of molecular recognition for IDPs/IDRs. While great efforts have been devoted to investigating the complex structures and binding kinetics and affinities, our knowledge on the binding mechanisms of IDPs/IDRs remains very limited. Here, we review recent advances on the binding mechanisms of IDPs/IDRs. The structures and kinetic parameters of IDPs/IDRs can vary greatly, and the binding mechanisms can be highly dependent on the structural properties of IDPs/IDRs. IDPs/IDRs can employ various combinations of conformational selection and induced fit in a binding process, which can be templated by the target and/or encoded by the IDP/IDR. Further studies should provide deeper insights into the molecular recognition of IDPs/IDRs and enable the rational design of IDP/IDR binding mechanisms in the future.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Meng Gao
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Junwen Xiong
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Zhengding Su
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Yongqi Huang
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| |
Collapse
|
39
|
Gao M, Yang J, Liu S, Su Z, Huang Y. Intrinsically Disordered Transactivation Domains Bind to TAZ1 Domain of CBP via Diverse Mechanisms. Biophys J 2019; 117:1301-1310. [PMID: 31521329 DOI: 10.1016/j.bpj.2019.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
CREB-binding protein is a multidomain transcriptional coactivator whose transcriptional adaptor zinc-binding 1 (TAZ1) domain mediates interactions with a number of intrinsically disordered transactivation domains (TADs), including the CREB-binding protein/p300-interacting transactivator with ED-rich tail, the hypoxia inducible factor 1α, p53, the signal transducer and activator of transcription 2, and the NF-κB p65 subunit. These five disordered TADs undergo partial disorder-to-order transitions upon binding TAZ1, forming fuzzy complexes with helical segments. Interestingly, they wrap around TAZ1 with different orientations and occupy the binding sites with various orders. To elucidate the microscopic molecular details of the binding processes of TADs with TAZ1, in this work, we carried out extensive molecular dynamics simulations using a coarse-grained topology-based model. After careful calibration of the models to reproduce the residual helical contents and binding affinities, our simulations were able to recapitulate the experimentally observed flexibility profiles. Although great differences exist in the complex structures, we found similarities between hypoxia inducible factor 1α and signal transducer and activator of transcription 2 as well as between CREB-binding protein/p300-interacting transactivator with ED-rich tail and NF-κB p65 subunit in the binding kinetics and binding thermodynamics. Although the origins of similarities and differences in the binding mechanisms remain unclear, our results provide some clues that indicate that binding of TADs to TAZ1 could be templated by the target as well as encoded by the TADs.
Collapse
Affiliation(s)
- Meng Gao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Jing Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Sen Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Yongqi Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China.
| |
Collapse
|
40
|
Toto A, Troilo F, Visconti L, Malagrinò F, Bignon C, Longhi S, Gianni S. Binding induced folding: Lessons from the kinetics of interaction between N TAIL and XD. Arch Biochem Biophys 2019; 671:255-261. [PMID: 31326517 DOI: 10.1016/j.abb.2019.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/28/2019] [Accepted: 07/14/2019] [Indexed: 10/26/2022]
Abstract
Intrinsically Disordered Proteins (IDPs) are a class of protein that exert their function despite lacking a well-defined three-dimensional structure, which is sometimes achieved only upon binding to their natural ligands. This feature implies the folding of IDPs to be generally coupled with a binding event, representing an interesting challenge for kinetic studies. In this review, we recapitulate some of the most important findings of IDPs binding-induced folding mechanisms obtained by analyzing their binding kinetics. Furthermore, by focusing on the interaction between the Measles virus NTAIL protein, a prototypical IDP, and its physiological partner, the X domain, we recapitulate the major theoretical and experimental approaches that were used to describe binding induced folding.
Collapse
Affiliation(s)
- Angelo Toto
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Troilo
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Christophe Bignon
- Aix-Marseille University, CNRS, Architecture et Fonction des Macromolećules Biologiques (AFMB), UMR7257, Marseille, France
| | - Sonia Longhi
- Aix-Marseille University, CNRS, Architecture et Fonction des Macromolećules Biologiques (AFMB), UMR7257, Marseille, France.
| | - Stefano Gianni
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
41
|
Zhao L, Ouyang Y, Li Q, Zhang Z. Modulation of p53 N-terminal transactivation domain 2 conformation ensemble and kinetics by phosphorylation. J Biomol Struct Dyn 2019; 38:2613-2623. [DOI: 10.1080/07391102.2019.1637784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Likun Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhua Ouyang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuqing Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Li M, Cao H, Lai L, Liu Z. Disordered linkers in multidomain allosteric proteins: Entropic effect to favor the open state or enhanced local concentration to favor the closed state? Protein Sci 2019; 27:1600-1610. [PMID: 30019371 DOI: 10.1002/pro.3475] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022]
Abstract
There are many multidomain allosteric proteins where an allosteric signal at the allosteric domain modifies the activity of the functional domain. Intrinsically disordered regions (linkers) are widely involved in this kind of regulation process, but the essential role they play therein is not well understood. Here, we investigated the effect of linkers in stabilizing the open or the closed states of multidomain proteins using combined thermodynamic deduction and coarse-grained molecular dynamics simulations. We revealed that the influence of linker can be fully characterized by an effective local concentration [B]0 . When Kd is smaller than [B]0 , the closed state would be favored; while the open state would be preferred when Kd is larger than [B]0 . We used four protein systems with markedly different domain-domain binding affinity and structural order/disorder as model systems to understand the relationship between [B]0 and the linker length as well as its flexibility. The linker length is the main practical determinant of [B]0 . [B]0 of a flexible linker with 40-60 residues was determined to be in a narrow range of 0.2-0.6 mM, while a too short or too long length would dramatically decrease [B]0 . With the revealed [B]0 range, the introduction of a flexible linker makes the regulation of weakly interacting partners possible.
Collapse
Affiliation(s)
- Maodong Li
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Huaiqing Cao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Luhua Lai
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing, 100871, China
| | - Zhirong Liu
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing, 100871, China
| |
Collapse
|
43
|
Wu D, Zhou HX. Designed Mutations Alter the Binding Pathways of an Intrinsically Disordered Protein. Sci Rep 2019; 9:6172. [PMID: 30992509 PMCID: PMC6467919 DOI: 10.1038/s41598-019-42717-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/03/2019] [Indexed: 11/17/2022] Open
Abstract
Many cellular functions, including signaling and regulation, are carried out by intrinsically disordered proteins (IDPs) binding to their targets. Experimental and computational studies have now significantly advanced our understanding of these binding processes. In particular, IDPs that become structured upon binding typically follow a dock-and-coalesce mechanism, whereby the docking of one IDP segment initiates the process, followed by on-target coalescence of remaining IDP segments. Multiple dock-and-coalesce pathways may exist, but one may dominate, by relying on electrostatic attraction and molecular flexibility for fast docking and fast coalescing, respectively. Here we critically test this mechanistic understanding by designing mutations that alter the dominant pathway. This achievement marks an important step toward precisely manipulating IDP functions.
Collapse
Affiliation(s)
- Di Wu
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
44
|
Sharma R, Demény M, Ambrus V, Király SB, Kurtán T, Gatti-Lafranconi P, Fuxreiter M. Specific and Fuzzy Interactions Cooperate in Modulating Protein Half-Life. J Mol Biol 2019; 431:1700-1707. [PMID: 30790629 DOI: 10.1016/j.jmb.2019.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/24/2019] [Accepted: 02/03/2019] [Indexed: 11/29/2022]
Abstract
Protein degradation is critical for maintaining cellular homeostasis. The 20S proteasome is selective for unfolded, extended polypeptide chains without ubiquitin tags. Sequestration of such segments by protein partners, however, may provide a regulatory mechanism. Here we used the AP-1 complex to study how c-Fos turnover is controlled by interactions with c-Jun. We show that heterodimerization with c-Jun increases c-Fos half-life. Mutations affecting specific contact sites (L165V, L172V) or charge separation (E175D, E189D, K190R) with c-Jun both modulate c-Fos turnover, proportionally to their impact on binding affinity. The fuzzy tail beyond the structured b-HLH/ZIP domain (~165 residues) also contributes to the stabilization of the AP-1 complex, removal of which decreases c-Fos half-life. Thus, protein turnover by 20S proteasome is fine-tuned by both specific and fuzzy interactions, consistently with the previously proposed "nanny" model.
Collapse
Affiliation(s)
- Rashmi Sharma
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Máté Demény
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Viktor Ambrus
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | | | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| | | | - Monika Fuxreiter
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
45
|
Chu X, Wang J. Position-, disorder-, and salt-dependent diffusion in binding-coupled-folding of intrinsically disordered proteins. Phys Chem Chem Phys 2019; 21:5634-5645. [PMID: 30793144 PMCID: PMC6589441 DOI: 10.1039/c8cp06803h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Successful extensions of protein-folding energy landscape theory to intrinsically disordered proteins' (IDPs') binding-coupled-folding transition can enormously simplify this biomolecular process into diffusion along a limited number of reaction coordinates, and the dynamics subsequently is described by Kramers' rate theory. As the critical pre-factor, the diffusion coefficient D has direct implications on the binding kinetics. Here, we employ a structure-based model (SBM) to calculate D in the binding-folding of an IDP prototype. We identify a strong position-dependent D during binding by applying a reaction coordinate that directly measures the fluctuations in a Cartesian configuration space. Using the malleability of the SBM, we modulate the degree of conformational disorder in an isolated IDP and determine complex effects of intrinsic disorder on D varying for different binding stages. Here, D tends to increase with disorder during initial binding but shows a non-monotonic relationship with disorder in terms of a decrease-followed-by-increase in D during the late binding stage. The salt concentration, which correlates with electrostatic interactions via Debye-Hückel theory in our SBM, also modulates D in a stepwise way. The speeding up of diffusion by electrostatic interactions is observed during the formation of the encounter complex at the beginning of binding, while the last diffusive binding dynamics is hindered by non-native salt bridges. Because D describes the diffusive speed locally, which implicitly reflects the roughness of the energy landscape, we are eventually able to portray the binding energy landscape, including that from IDPs' binding, then to binding with partial folding, and finally to rigid docking, as well as that under different environmental salt concentrations. Our theoretical results provide key mechanistic insights into IDPs' binding-folding, which is internally conformation- and externally salt-controlled with respect to diffusion.
Collapse
Affiliation(s)
- Xiakun Chu
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Jin Wang
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
46
|
Yu Z, Liu Y, Zhu J, Han J, Tian X, Han W, Zhao L. Insights from molecular dynamics simulations and steered molecular dynamics simulations to exploit new trends of the interaction between HIF-1α and p300. J Biomol Struct Dyn 2019; 38:1-12. [DOI: 10.1080/07391102.2019.1580616] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Zhengfei Yu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Ye Liu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Jingxuan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Jiarui Han
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Xiaopian Tian
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, China
| | - Li Zhao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, China
| |
Collapse
|
47
|
Zhao L, Suarez IP, Gauto DF, Rasia RM, Wang J. The key role of electrostatic interactions in the induced folding in RNA recognition by DCL1-A. Phys Chem Chem Phys 2019; 20:9376-9388. [PMID: 29565070 DOI: 10.1039/c7cp07889g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The intrinsically disordered protein domain DCL1-A is the first report of a complete double stranded RNA binding domain folding upon binding. DCL1-A recognizes the dsRNA by acquiring a well-folded structure after engagement with its interaction partner. Despite the structural characterization of the interaction complex underlying the recognition of dsRNA has been established, the dynamics of disorder-to-order transitions in the binding process remains elusive. Here we have developed a coarse-grained structure-based model with consideration of electrostatic interactions to explore the mechanism of the coupled folding and binding. Our approach led to remarkable agreements with both experimental and theoretical results. We quantified the global binding-folding landscape, which indicates a synergistic binding induced folding mechanism. We further investigated the effect of electrostatic interactions in this coupled folding and binding process. It reveals that non-native electrostatic interactions dominate the initial stage of the recognition. Our results help improve our understanding of the induced folding of the IDP DCL1-A upon binding to dsRNA. Such methods developed here can be applied for further explorations of the dynamics of coupled folding and binding systems.
Collapse
Affiliation(s)
- Lingci Zhao
- College of Physics, Jilin University, Changchun, Jilin 130012, People's Republic of China and State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Irina P Suarez
- Instituto de Biología Molecular y Celular de Rosario, 27 de Febrero 210 bis, predio CCT, 2000 Rosario, Argentina
| | - Diego F Gauto
- Instituto de Biología Molecular y Celular de Rosario, 27 de Febrero 210 bis, predio CCT, 2000 Rosario, Argentina
| | - Rodolfo M Rasia
- Instituto de Biología Molecular y Celular de Rosario, 27 de Febrero 210 bis, predio CCT, 2000 Rosario, Argentina
| | - Jin Wang
- College of Physics, Jilin University, Changchun, Jilin 130012, People's Republic of China and State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China and Department of Chemistry and Physics, State University of New York, Stony Brook, NY 11794-3400, USA.
| |
Collapse
|
48
|
Okamoto K, Sako Y. Single-Molecule Förster Resonance Energy Transfer Measurement Reveals the Dynamic Partially Ordered Structure of the Epidermal Growth Factor Receptor C-Tail Domain. J Phys Chem B 2019; 123:571-581. [PMID: 30571124 DOI: 10.1021/acs.jpcb.8b10066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intrinsically disordered proteins (IDPs) or regions (IDRs) are thought to exhibit unique functionalities without forming ordered structures. However, these molecular mechanisms are not easily elucidated, partly because of the difficultly of measuring structural information. In this study, we applied the alternative laser excitation (ALEX) method and circular dichroism (CD) spectroscopy to investigate the structure of the C-terminal tail (CTT) domain of the human epidermal growth factor receptor (EGFR). The single-molecule distributions of Förster resonance energy transfer (FRET) obtained by ALEX under solution conditions modified by the addition of potassium chloride (KCl), urea, or guanidinium chloride (GdmCl) allowed us to separately examine the influences of charge interactions and secondary structure formation. The CD spectrum analyses indicated the types of included secondary structure. The results suggested that the structure of the CTT is influenced by secondary structure formation, which is a principally antiparallel β-sheet, rather than by charge interactions and that phosphorylation of the major Grb2-binding sites partially denatures that secondary structure. Our findings suggest that the EGFR CTT might regulate ligand binding kinetics by local β-sheet formation or by the disruption associated with phosphorylation states.
Collapse
Affiliation(s)
- Kenji Okamoto
- Cellular Informatics Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 Japan
| |
Collapse
|
49
|
Residual Structure Accelerates Binding of Intrinsically Disordered ACTR by Promoting Efficient Folding upon Encounter. J Mol Biol 2018; 431:422-432. [PMID: 30528464 DOI: 10.1016/j.jmb.2018.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/10/2018] [Accepted: 12/03/2018] [Indexed: 11/21/2022]
Abstract
Intrinsically disordered proteins (IDPs) often fold into stable structures upon specific binding. The roles of residual structure of unbound IDPs in coupling binding and folding have been under much debate. While many studies emphasize the importance of conformational flexibility for IDP recognition, it was recently demonstrated that stabilization the N-terminal helix of intrinsically disordered ACTR accelerated its binding to another IDP, NCBD of the CREB-binding protein. To understand how enhancing ACTR helicity accelerates binding, we derived a series of topology-based coarse-grained models that mimicked various ACTR mutants with increasing helical contents and reproduced their NCBD binding affinities. Molecular dynamics simulations were then performed to sample hundreds of reversible coupled binding and folding transitions. The results show that increasing ACTR helicity does not alter the baseline mechanism of synergistic folding, which continues to follow "extended conformational selection" with multiple stages of selection and induced folding. Importantly, these coarse-grained models, while only calibrated based on binding thermodynamics, recapitulate the observed kinetic acceleration with increasing ACTR helicity. However, the residual helices do not enhance the association kinetics via more efficient seeding of productive collisions. Instead, they allow the nonspecific collision complexes to evolve more efficiently into the final bound and folded state, which is the primary source of accelerated association kinetics. Meanwhile, reduced dissociation kinetics with increasing ACTR helicity can be directly attributed to smaller entropic cost of forming the bound state. Altogether, this study provides important mechanistic insights into how residual structure may modulate thermodynamics and kinetics of IDP interactions.
Collapse
|
50
|
Xiong J, Gao M, Zhou J, Liu S, Su Z, Liu Z, Huang Y. The influence of intrinsic folding mechanism of an unfolded protein on the coupled folding-binding process during target recognition. Proteins 2018; 87:265-275. [PMID: 30520528 DOI: 10.1002/prot.25646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/28/2018] [Accepted: 11/29/2018] [Indexed: 11/11/2022]
Abstract
Intrinsically disordered proteins (IDPs) are extensively involved in dynamic signaling processes which require a high association rate and a high dissociation rate for rapid binding/unbinding events and at the same time a sufficient high affinity for specific recognition. Although the coupled folding-binding processes of IDPs have been extensively studied, it is still impossible to predict whether an unfolded protein is suitable for molecular signaling via coupled folding-binding. In this work, we studied the interplay between intrinsic folding mechanisms and coupled folding-binding process for unfolded proteins through molecular dynamics simulations. We first studied the folding process of three representative IDPs with different folded structures, that is, c-Myb, AF9, and E3 rRNase. We found the folding free energy landscapes of IDPs are downhill or show low barriers. To further study the influence of intrinsic folding mechanism on the binding process, we modulated the folding mechanism of barnase via circular permutation and simulated the coupled folding-binding process between unfolded barnase permutant and folded barstar. Although folding of barnase was coupled to target binding, the binding kinetics was significantly affected by the intrinsic folding free energy barrier, where reducing the folding free energy barrier enhances binding rate up to two orders of magnitude. This accelerating effect is different from previous results which reflect the effect of structure flexibility on binding kinetics. Our results suggest that coupling the folding of an unfolded protein with no/low folding free energy barrier with its target binding may provide a way to achieve high specificity and rapid binding/unbinding kinetics simultaneously.
Collapse
Affiliation(s)
- Junwen Xiong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Meng Gao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Jingjing Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Sen Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Zhengding Su
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, and Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing, China
| | - Yongqi Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Hubei University of Technology, Institute of Biomedical and Pharmaceutical Sciences, Key Laboratory of Industrial Fermentation (Ministry of Education), Wuhan, China
| |
Collapse
|