1
|
Salehi P, Shirazi-Adl A, Ghezelbash F. Biomechanics of the Human Knee Joint in Maximum Voluntary Isometric Flexion: Study of Changes in Applied Moment, Agonist-Antagonist Participations, Joint Center, and Flexion Angle. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024:e3874. [PMID: 39384188 DOI: 10.1002/cnm.3874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 10/11/2024]
Abstract
Estimation of the knee joint strength by maximum voluntary isometric contraction (MVIC) is a common practice to assess strength, coordination, safety to return to work or engage in sports after an injury, and to evaluate the efficacy of treatment modalities and rehabilitation strategies. In this study, we utilize a previously validated coupled finite element-musculoskeletal model of the lower extremity to explore the sensitivity of output measures (posterior cruciate ligament [PCL]/muscle/contact forces and passive moments) in knee MVIC flexion exercises at seated position. To do so, at three knee flexion angles (KFA), input measures (resistance moment and contribution moments of quadriceps and gastrocnemii) were varied at four levels each using the Taguchi design of experiment. Our findings reveal significant increases in PCL forces with KFA (p < 0.01), net MVIC moment (p < 0.01), and resistance moment of quadriceps (p < 0.01). In contrast, they drop at larger activity in gastrocnemii (p < 0.01). Tibiofemoral (TF) contact forces increase with the net MVIC moment (p < 0.01). The passive knee flexion moment, while highly dependent on the location at which computed, also increases with the net MVIC moment (p < 0.01). Changes in KFA, MVIC moment, and proportions thereof carried by quadriceps and/or gastrocnemii substantially affect biomechanics of the joint. Compared with level walking and stair ascent, slightly larger contact forces/stresses and much greater PCL forces are computed. This study improves our understanding of the knee joint behavior during MVIC in effective evaluation and rehabilitation interventions. Besides, it emphasizes the importance of positioning the joint center in model studies.
Collapse
Affiliation(s)
- Pooya Salehi
- Department of Mechanical Engineering, Polytechnique Montréal, Montreal, Quebec, Canada
| | - Aboulfazl Shirazi-Adl
- Department of Mechanical Engineering, Polytechnique Montréal, Montreal, Quebec, Canada
| | - Farshid Ghezelbash
- Department of Mechanical Engineering, Polytechnique Montréal, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Bajelan S, Sparrow WAT, Begg R. The ankle dorsiflexion kinetics demand to increase swing phase foot-ground clearance: implications for assistive device design and energy demands. J Neuroeng Rehabil 2024; 21:105. [PMID: 38907255 PMCID: PMC11191291 DOI: 10.1186/s12984-024-01394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/30/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND The ankle is usually highly effective in modulating the swing foot's trajectory to ensure safe ground clearance but there are few reports of ankle kinetics and mechanical energy exchange during the gait cycle swing phase. Previous work has investigated ankle swing mechanics during normal walking but with developments in devices providing dorsiflexion assistance, it is now essential to understand the minimal kinetic requirements for increasing ankle dorsiflexion, particularly for devices employing energy harvesting or utilizing lighter and lower power energy sources or actuators. METHODS Using a real-time treadmill-walking biofeedback technique, swing phase ankle dorsiflexion was experimentally controlled to increase foot-ground clearance by 4 cm achieved via increased ankle dorsiflexion. Swing phase ankle moments and dorsiflexor muscle forces were estimated using AnyBody modeling system. It was hypothesized that increasing foot-ground clearance by 4 cm, employing only the ankle joint, would require significantly higher dorsiflexion moments and muscle forces than a normal walking control condition. RESULTS Results did not confirm significantly increased ankle moments with augmented dorsiflexion, with 0.02 N.m/kg at toe-off reducing to zero by the end of swing. Tibialis Anterior muscle force incremented significantly from 2 to 4 N/kg after toe-off, due to coactivation with the Soleus. To ensure an additional 4 cm mid swing foot-ground clearance, an estimated additional 0.003 Joules/kg is required to be released immediately after toe-off. CONCLUSION This study highlights the interplay between ankle moments, muscle forces, and energy demands during swing phase ankle dorsiflexion, offering insights for the design of ankle assistive technologies. External devices do not need to deliver significantly greater ankle moments to increase ankle dorsiflexion but, they should offer higher mechanical power to provide rapid bursts of energy to facilitate quick dorsiflexion transitions before reaching Minimum Foot Clearance event. Additionally, for ankle-related bio-inspired devices incorporating artificial muscles or humanoid robots that aim to replicate natural ankle biomechanics, the inclusion of supplementary Tibialis Anterior forces is crucial due to Tibialis Anterior and Soleus co-activation. These design strategies ensures that ankle assistive technologies are both effective and aligned with the biomechanical realities of human movement.
Collapse
Affiliation(s)
- Soheil Bajelan
- Institute for Health and Sport, Victoria University, Melbourne, Australia.
| | - W A Tony Sparrow
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Rezaul Begg
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
3
|
Remus R, Selkmann S, Lipphaus A, Neumann M, Bender B. Muscle-driven forward dynamic active hybrid model of the lumbosacral spine: combined FEM and multibody simulation. Front Bioeng Biotechnol 2023; 11:1223007. [PMID: 37829567 PMCID: PMC10565495 DOI: 10.3389/fbioe.2023.1223007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023] Open
Abstract
Most spine models belong to either the musculoskeletal multibody (MB) or finite element (FE) method. Recently, coupling of MB and FE models has increasingly been used to combine advantages of both methods. Active hybrid FE-MB models, still rarely used in spine research, avoid the interface and convergence problems associated with model coupling. They provide the inherent ability to account for the full interplay of passive and active mechanisms for spinal stability. In this paper, we developed and validated a novel muscle-driven forward dynamic active hybrid FE-MB model of the lumbosacral spine (LSS) in ArtiSynth to simultaneously calculate muscle activation patterns, vertebral movements, and internal mechanical loads. The model consisted of the rigid vertebrae L1-S1 interconnected with hyperelastic fiber-reinforced FE intervertebral discs, ligaments, facet joints, and force actuators representing the muscles. Morphological muscle data were implemented via a semi-automated registration procedure. Four auxiliary bodies were utilized to describe non-linear muscle paths by wrapping and attaching the anterior abdominal muscles. This included an abdominal plate whose kinematics was optimized using motion capture data from upper body movements. Intra-abdominal pressure was calculated from the forces of the abdominal muscles compressing the abdominal cavity. For the muscle-driven approach, forward dynamics assisted data tracking was used to predict muscle activation patterns that generate spinal postures and balance the spine without prescribing accurate spinal kinematics. During calibration, the maximum specific muscle tension and spinal rhythms resulting from the model dynamics were evaluated. To validate the model, load cases were simulated from -10° extension to +30° flexion with weights up to 20 kg in both hands. The biomechanical model responses were compared with in vivo literature data of intradiscal pressures, intra-abdominal pressures, and muscle activities. The results demonstrated high agreement with this data and highlight the advantages of active hybrid modeling for the LSS. Overall, this new self-contained tool provides a robust and efficient estimation of LSS biomechanical responses under in vivo similar loads, for example, to improve pain treatment by spinal stabilization therapies.
Collapse
Affiliation(s)
- Robin Remus
- Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Sascha Selkmann
- Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Andreas Lipphaus
- Biomechanics Research Group, Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Marc Neumann
- Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Beate Bender
- Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Wang W, Wang D, Li G. Towards improving the accuracy of musculoskeletal simulation of dynamic three-dimensional spine rotations with optimizing model and algorithm. Med Eng Phys 2022; 110:103916. [PMID: 36564141 DOI: 10.1016/j.medengphy.2022.103916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/02/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The accuracy of musculoskeletal simulations greatly relies on model structures and optimization algorithms. This study investigated the unclarified influence of accounting for several commonly-simplified different model components and optimization criteria on spinal musculoskeletal simulations. METHODS The study constructed a full-body musculoskeletal model with passive components of functional spinal units and spinal muscles subject-specifically refined. A muscle redundancy solver was built with 15 optimization criteria. Three-dimensional spine rotations and spinal muscle activities were measured using optical motion capture and electromyogram techniques when eight healthy volunteers performed standing, flexion/extension, lateral bending, and axial rotation. The effect of the model with four different conditions of the passive components and the sensitivity of the 15 optimization criteria on simulations were investigated. RESULTS Accounting for the refined passive components significantly improved the simulation accuracy. Different optimization criteria behaved distinctly for different motions. Generally minimizing the sum of squared muscle activations outperformed the others, with the highest averaged correlation coefficient (0.82) between the estimated erector spinae muscle activations and measured electromyography and with the estimated joint compression forces comparable to in vivo reference data. CONCLUSION This study highlights the importance of passive model components and proposes a suitable optimization framework for realistic spinal musculoskeletal simulations.
Collapse
Affiliation(s)
- Wei Wang
- The CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology (SIAT), and Guangdong-Hong Kong-Macau Joint Laboratory of Human-Machine Intelligence-Synergy Systems, SIAT, Chinese Academy of Sciences, Shenzhen 518055, China; The SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518055, China
| | - Dongmei Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanglin Li
- The CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology (SIAT), and Guangdong-Hong Kong-Macau Joint Laboratory of Human-Machine Intelligence-Synergy Systems, SIAT, Chinese Academy of Sciences, Shenzhen 518055, China; The SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518055, China.
| |
Collapse
|
5
|
Malakoutian M, Sanchez CA, Brown SHM, Street J, Fels S, Oxland TR. Biomechanical Properties of Paraspinal Muscles Influence Spinal Loading—A Musculoskeletal Simulation Study. Front Bioeng Biotechnol 2022; 10:852201. [PMID: 35721854 PMCID: PMC9201424 DOI: 10.3389/fbioe.2022.852201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Paraspinal muscles are vital to the functioning of the spine. Changes in muscle physiological cross-sectional area significantly affect spinal loading, but the importance of other muscle biomechanical properties remains unclear. This study explored the changes in spinal loading due to variation in five muscle biomechanical properties: passive stiffness, slack sarcomere length (SSL), in situ sarcomere length, specific tension, and pennation angle. An enhanced version of a musculoskeletal simulation model of the thoracolumbar spine with 210 muscle fascicles was used for this study and its predictions were validated for several tasks and multiple postures. Ranges of physiologically realistic values were selected for all five muscle parameters and their influence on L4-L5 intradiscal pressure (IDP) was investigated in standing and 36° flexion. We observed large changes in IDP due to changes in passive stiffness, SSL, in situ sarcomere length, and specific tension, often with interesting interplays between the parameters. For example, for upright standing, a change in stiffness value from one tenth to 10 times the baseline value increased the IDP only by 91% for the baseline model but by 945% when SSL was 0.4 μm shorter. Shorter SSL values and higher stiffnesses led to the largest increases in IDP. More changes were evident in flexion, as sarcomere lengths were longer in that posture and thus the passive curve is more influential. Our results highlight the importance of the muscle force-length curve and the parameters associated with it and motivate further experimental studies on in vivo measurement of those properties.
Collapse
Affiliation(s)
- Masoud Malakoutian
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
- ICORD, University of British Columbia, Vancouver, BC, Canada
| | - C. Antonio Sanchez
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Stephen H. M. Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - John Street
- ICORD, University of British Columbia, Vancouver, BC, Canada
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| | - Sidney Fels
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Thomas R. Oxland
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
- ICORD, University of British Columbia, Vancouver, BC, Canada
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Thomas R. Oxland,
| |
Collapse
|
6
|
Banks JJ, Umberger BR, Caldwell GE. EMG optimization in OpenSim: A model for estimating lower back kinetics in gait. Med Eng Phys 2022; 103:103790. [PMID: 35500997 DOI: 10.1016/j.medengphy.2022.103790] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/22/2021] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
Participant-specific musculoskeletal models are needed to accurately estimate lower back internal kinetic demands and injury risk. In this study we developed the framework for incorporating an electromyography optimization (EMGopt) approach within OpenSim (https://simtk.org/projects/emg_opt_tool) and evaluated lower back demands estimated from the model during gait. Kinematic, external kinetic, and EMG data were recorded from six participants as they performed walking and carrying tasks on a treadmill. For evaluation, predicted lumbar vertebral joint forces were compared to those from a generic static optimization approach (SOpt) and to previous studies. Further, model-estimated muscle activations were compared to recorded EMG, and model sensitivity to day-to-day EMG variability was evaluated. Results showed the vertebral joint forces from the model were qualitatively similar in pattern and magnitude to literature reports. Compared to SOpt, the EMGopt approach predicted larger joint loads (p<.01) with muscle activations better matching individual participant EMG patterns. L5/S1 vertebral joint forces from EMGopt were sensitive to the expected variability of recorded EMG, but the magnitude of these differences (±4%) did not impact between-task comparisons. Despite limitations inherent to such models, the proposed musculoskeletal model and EMGopt approach appears well-suited for evaluating internal lower back demands during gait tasks.
Collapse
Affiliation(s)
- Jacob J Banks
- University of Massachusetts Amherst, Department of Kinesiology, 110 Totman Building, 30 Eastman Lane, Amherst, MA 01003, United States; Beth Israel Deaconess Medical Center, Center for Advanced Orthopaedic Studies, 330 Brookline Avenue, RN 115, Boston, MA 02215, United States; Harvard Medical School, Department of Orthopaedic Surgery, Boston, MA 02115, United States.
| | - Brian R Umberger
- University of Michigan, School of Kinesiology, 830 North University Avenue, Ann Arbor, MI 48109, United States.
| | - Graham E Caldwell
- University of Massachusetts Amherst, Department of Kinesiology, 110 Totman Building, 30 Eastman Lane, Amherst, MA 01003, United States.
| |
Collapse
|
7
|
Mousavi SJ, Lynch AC, Allaire BT, White AP, Anderson DE. Walking Biomechanics and Spine Loading in Patients With Symptomatic Lumbar Spinal Stenosis. Front Bioeng Biotechnol 2021; 9:751155. [PMID: 34869263 PMCID: PMC8636982 DOI: 10.3389/fbioe.2021.751155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/06/2021] [Indexed: 12/05/2022] Open
Abstract
Symptomatic lumbar spinal stenosis is a leading cause of pain and mobility limitation in older adults. It is clinically believed that patients with lumbar spinal stenosis adopt a flexed trunk posture or bend forward and alter their gait pattern to improve tolerance for walking. However, a biomechanical assessment of spine posture and motion during walking is broadly lacking in these patients. The purpose of this study was to evaluate lumbar spine and pelvic sagittal angles and lumbar spine compressive loads in standing and walking and to determine the effect of pain and neurogenic claudication symptoms in patients with symptomatic lumbar spinal stenosis. Seven participants with symptomatic lumbar spinal stenosis, aged 44–82, underwent a 3D opto-electronic motion analysis during standing and walking trials in asymptomatic and symptomatic states. Passive reflective marker clusters (four markers each) were attached to participants at T1, L1, and S2 levels of the spine, with additional reflective markers at other spinal levels, as well as the head, pelvis, and extremities. Whole-body motion data was collected during standing and walking trials in asymptomatic and symptomatic states. The results showed that the spine was slightly flexed during walking, but this was not affected by symptoms. Pelvic tilt was not different when symptoms were present, but suggests a possible effect of more forward tilt in both standing (p = 0.052) and walking (p = 0.075). Lumbar spine loading during symptomatic walking was increased by an average of 7% over asymptomatic walking (p = 0.001). Our results did not show increased spine flexion (adopting a trunk-flexed posture) and only indicate a trend for a small forward shift of the pelvis during both symptomatic walking and standing. This suggests that provocation of symptoms in these patients does not markedly affect their normal gait kinematics. The finding of increased spine loading with provocation of symptoms supports our hypothesis that spine loading plays a role in limiting walking function in patients with lumbar spinal stenosis, but additional work is needed to understand the biomechanical cause of this increase.
Collapse
Affiliation(s)
- Seyed Javad Mousavi
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, United States
| | - Andrew C Lynch
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Brett T Allaire
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Andrew P White
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, United States
| | - Dennis E Anderson
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Firouzabadi A, Arjmand N, Pan F, Zander T, Schmidt H. Sex-Dependent Estimation of Spinal Loads During Static Manual Material Handling Activities-Combined in vivo and in silico Analyses. Front Bioeng Biotechnol 2021; 9:750862. [PMID: 34796167 PMCID: PMC8592996 DOI: 10.3389/fbioe.2021.750862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Manual material handling (MMH) is considered as one of the main contributors to low back pain. While males traditionally perform MMH tasks, recently the number of females who undertake these physically-demanding activities is also increasing. To evaluate the risk of mechanical injuries, the majority of previous studies have estimated spinal forces using different modeling approaches that mostly focus on male individuals. Notable sex-dependent differences have, however, been reported in torso muscle strength and anatomy, segmental mass distribution, as well as lifting strategy during MMH. Therefore, this study aimed to use sex-specific models to estimate lumbar spinal and muscle forces during static MHH tasks in 10 healthy males and 10 females. Motion-capture, surface electromyographic from select trunk muscles, and ground reaction force data were simultaneously collected while subjects performed twelve symmetric and asymmetric static lifting (10 kg) tasks. AnyBody Modeling System was used to develop base-models (subject-specific segmental length, muscle architecture, and kinematics data) for both sexes. For females, female-specific models were also developed by taking into account for the female’s muscle physiological cross-sectional areas, segmental mass distributions, and body fat percentage. Males showed higher absolute L5-S1 compressive and shear loads as compared to both female base-models (25.3% compressive and 14% shear) and female-specific models (41% compressive and 23.6% shear). When the predicted spine loads were normalized to subjects’ body weight, however, female base-models showed larger loads (9% compressive and 16.2% shear on average), and female-specific models showed 2.4% smaller and 9.4% larger loads than males. Females showed larger forces in oblique abdominal muscles during both symmetric and asymmetric lifting tasks, while males had larger back extensor muscle forces during symmetric lifting tasks. A stronger correlation between measured and predicted muscle activities was found in females than males. Results indicate that female-specific characteristics affect the predicted spinal loads and must be considered in musculoskeletal models. Neglecting sex-specific parameters in these models could lead to the overestimation of spinal loads in females.
Collapse
Affiliation(s)
- Ali Firouzabadi
- Julius Wolff Institute, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Navid Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Fumin Pan
- Julius Wolff Institute, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Zander
- Julius Wolff Institute, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hendrik Schmidt
- Julius Wolff Institute, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Sharifi M, Shirazi-Adl A. Knee flexion angle and muscle activations control the stability of an anterior cruciate ligament deficient joint in gait. J Biomech 2021; 117:110258. [PMID: 33493713 DOI: 10.1016/j.jbiomech.2021.110258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/03/2021] [Accepted: 01/10/2021] [Indexed: 01/14/2023]
Abstract
Anterior cruciate ligament (ACL) is a primary structure and a commonly injured ligament of the knee joint. Some patients with ACL deficiency (ACLD) experience joint instability and require a reconstructive surgery to return to daily routines, some can adapt by limiting their activities while others, called copers, can return to high-level activities with no instability. We investigated the effects of alterations in the knee flexion angle (KFA) and muscle force activations on the stability and biomechanics of ACLD joints at 25, 50, and 75% periods of gait stance. ACLD joint stability is controlled by variations in both KFA and knee muscle forces. For the latter, a parameter called activity index is defined as the ratio of forces in ACL antagonists (quadriceps and gastrocnemii) to those in ACL agonists (hamstrings). Under a greater KFA (2-6° beyond the mean of reported values in healthy subjects), an ACLD joint regains its pre-injury stability levels. The ACLD joint stability also markedly improves at smaller quadriceps and larger hamstrings forces (activity indices of 2.0-3.6 at 25%) at the first half of stance and smaller gastrocnemii and larger hamstrings forces (activity indices of 0.1-1.1 at 50% and 0.1-1.2 at 75%) at the second half of stance. Activity index and KFA are both crucial when assessing the dynamic stability of an ACLD joint. These results are helpful in our understanding of the biomechanics and stability of ACLD joints towards improved prevention and treatment strategies.
Collapse
Affiliation(s)
- M Sharifi
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Québec, Canada
| | - A Shirazi-Adl
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique Montréal, Québec, Canada.
| |
Collapse
|
10
|
Mörl F, Günther M, Riede JM, Hammer M, Schmitt S. Loads distributed in vivo among vertebrae, muscles, spinal ligaments, and intervertebral discs in a passively flexed lumbar spine. Biomech Model Mechanobiol 2020; 19:2015-2047. [DOI: 10.1007/s10237-020-01322-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/18/2020] [Indexed: 01/09/2023]
|
11
|
Ghezelbash F, Shirazi-Adl A, El Ouaaid Z, Plamondon A, Arjmand N. Subject-specific regression equations to estimate lower spinal loads during symmetric and asymmetric static lifting. J Biomech 2020; 102:109550. [DOI: 10.1016/j.jbiomech.2019.109550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 01/11/2023]
|
12
|
Sharifi M, Shirazi-Adl A, Marouane H. Sensitivity of the knee joint response, muscle forces and stability to variations in gait kinematics-kinetics. J Biomech 2020; 99:109472. [DOI: 10.1016/j.jbiomech.2019.109472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 10/25/2022]
|
13
|
Byrne RM, Aiyangar AK, Zhang X. A Dynamic Radiographic Imaging Study of Lumbar Intervertebral Disc Morphometry and Deformation In Vivo. Sci Rep 2019; 9:15490. [PMID: 31664074 PMCID: PMC6820767 DOI: 10.1038/s41598-019-51871-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
Intervertebral discs are important structural components of the spine but also are significant sources of morbidity, especially for the “low back” lumbar region. Mechanical damage to, or degeneration of, the lumbar discs can diminish their structural integrity and elicit debilitating low back pain. Advancement of reparative or regenerative means to treat damaged or degenerated discs is hindered by a lack of basic understanding of the disc load-deformation characteristics in vivo. The current study presents an in vivo analysis of the morphometry and deformation of lumbar (L2-S1) intervertebral discs in 10 healthy participants while performing a common lifting act, using novel dynamic radiographic imaging of the lumbar vertebral body motion. Data analyses show uniquely different (p < 0.05) characteristics in morphometry, normal and shear strain patterns of the L5S1 discs, while the rest of lumbar discs exhibit great similarity. In particular shear strains in L2-L5 discs exhibited stronger linear correlations (R2 ≥ 0.80) between strain changes and amount of lumbar flexion-extension motion compared to L5S1 (R2 ≤ 0.5). The study therefore advances the state of knowledge on in vivo mechanical responses of the lumbar intervertebral discs during functional tasks.
Collapse
Affiliation(s)
- Ryan M Byrne
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15203, USA
| | - Ameet K Aiyangar
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, 15203, USA.,Mechanical Systems Engineering, EMPA (Swiss Federal Laboratories for Materials Science and Technology), 8600, Duebendorf, Switzerland
| | - Xudong Zhang
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX, 77843, USA. .,Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA. .,Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
14
|
Squat Lifting Imposes Higher Peak Joint and Muscle Loading Compared to Stoop Lifting. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
(1) Background: Yearly, more than 40% of the European employees suffer from work-related musculoskeletal disorders. Still, ergonomic guidelines defining optimal lifting techniques to decrease work-related musculoskeletal disorders (WMSDs) has not been unambiguously defined. Therefore, this study investigates if recommended squat lifting imposes lower musculoskeletal loading than stoop lifting while using a complex full body musculoskeletal OpenSim model. (2) Methods: Ten healthy participants lifted two different weights using both lifting techniques. 3D marker trajectories and ground reaction forces were used as input to calculate joint angles, moments and power using a full body musculoskeletal model with articulated lumbar spine. In addition, the muscle activity of nine different muscles was measured to investigate muscle effort when lifting. (3) Results: Peak moments and peak joint power in L5S1 were not different between the squat and the stoop, but higher peak moments and peak power in the hip, knee, elbow and shoulder were found during squat lifting. Moment impulses in L5S1 were higher during stoop lifting. This is reflected in higher peak electromyography (EMG) but lower muscle effort in prior described muscles during the squat. (4) Conclusions: Squat lifting imposes higher peak full body musculoskeletal loading but similar low back loading compared to stoop lifting, as reflected in peak moments, peak power, and peak EMG.
Collapse
|
15
|
Eskandari A, Arjmand N, Shirazi-Adl A, Farahmand F. Hypersensitivity of trunk biomechanical model predictions to errors in image-based kinematics when using fully displacement-control techniques. J Biomech 2019; 84:161-171. [DOI: 10.1016/j.jbiomech.2018.12.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/16/2018] [Accepted: 12/28/2018] [Indexed: 12/24/2022]
|
16
|
Predicting the influence of hip and lumbar flexibility on lifting motions using optimal control. J Biomech 2018; 78:118-125. [PMID: 30104053 DOI: 10.1016/j.jbiomech.2018.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 11/21/2022]
Abstract
Computational models of the human body coupled with optimization can be used to predict the influence of variables that cannot be experimentally manipulated. Here, we present a study that predicts the motion of the human body while lifting a box, as a function of flexibility of the hip and lumbar joints in the sagittal plane. We modeled the human body in the sagittal plane with joints actuated by pairs of agonist-antagonist muscle torque generators, and a passive hamstring muscle. The characteristics of a stiff, average and flexible person were represented by co-varying the lumbar range-of-motion, lumbar passive extensor-torque and the hamstring passive muscle-force. We used optimal control to solve for motions that simulated lifting a 10 kg box from a 0.3 m height. The solution minimized the total sum of the normalized squared active and passive muscle torques and the normalized passive hamstring muscle forces, over the duration of the motion. The predicted motion of the average lifter agreed well with experimental data in the literature. The change in model flexibility affected the predicted joint angles, with the stiffer models flexing more at the hip and knee, and less at the lumbar joint, to complete the lift. Stiffer models produced similar passive lumbar torque and higher hamstring muscle force components than the more flexible models. The variation between the motion characteristics of the models suggest that flexibility may play an important role in determining lifting technique.
Collapse
|
17
|
Computation of the role of kinetics, kinematics, posterior tibial slope and muscle cocontraction on the stability of ACL-deficient knee joint at heel strike – Towards identification of copers from non-copers. J Biomech 2018; 77:171-182. [DOI: 10.1016/j.jbiomech.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/21/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023]
|
18
|
Khoddam-Khorasani P, Arjmand N, Shirazi-Adl A. Trunk Hybrid Passive–Active Musculoskeletal Modeling to Determine the Detailed T12–S1 Response Under In Vivo Loads. Ann Biomed Eng 2018; 46:1830-1843. [DOI: 10.1007/s10439-018-2078-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 06/18/2018] [Indexed: 12/28/2022]
|
19
|
Load-sharing in the lumbosacral spine in neutral standing & flexed postures – A combined finite element and inverse static study. J Biomech 2018; 70:43-50. [DOI: 10.1016/j.jbiomech.2017.10.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/18/2017] [Accepted: 10/27/2017] [Indexed: 12/22/2022]
|
20
|
Akhavanfar M, Kazemi H, Eskandari A, Arjmand N. Obesity and spinal loads; a combined MR imaging and subject-specific modeling investigation. J Biomech 2018; 70:102-112. [DOI: 10.1016/j.jbiomech.2017.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/03/2017] [Accepted: 08/05/2017] [Indexed: 12/14/2022]
|
21
|
Azari F, Arjmand N, Shirazi-Adl A, Rahimi-Moghaddam T. A combined passive and active musculoskeletal model study to estimate L4-L5 load sharing. J Biomech 2018; 70:157-165. [DOI: 10.1016/j.jbiomech.2017.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
|
22
|
A model-based approach for estimation of changes in lumbar segmental kinematics associated with alterations in trunk muscle forces. J Biomech 2017; 70:82-87. [PMID: 29029957 DOI: 10.1016/j.jbiomech.2017.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/15/2017] [Accepted: 09/25/2017] [Indexed: 11/20/2022]
Abstract
The kinematics information from imaging, if combined with optimization-based biomechanical models, may provide a unique platform for personalized assessment of trunk muscle forces (TMFs). Such a method, however, is feasible only if differences in lumbar spine kinematics due to differences in TMFs can be captured by the current imaging techniques. A finite element model of the spine within an optimization procedure was used to estimate segmental kinematics of lumbar spine associated with five different sets of TMFs. Each set of TMFs was associated with a hypothetical trunk neuromuscular strategy that optimized one aspect of lower back biomechanics. For each set of TMFs, the segmental kinematics of lumbar spine was estimated for a single static trunk flexed posture involving, respectively, 40° and 10° of thoracic and pelvic rotations. Minimum changes in the angular and translational deformations of a motion segment with alterations in TMFs ranged from 0° to 0.7° and 0 mm to 0.04 mm, respectively. Maximum changes in the angular and translational deformations of a motion segment with alterations in TMFs ranged from 2.4° to 7.6° and 0.11 mm to 0.39 mm, respectively. The differences in kinematics of lumbar segments between each combination of two sets of TMFs in 97% of cases for angular deformation and 55% of cases for translational deformation were within the reported accuracy of current imaging techniques. Therefore, it might be possible to use image-based kinematics of lumbar segments along with computational modeling for personalized assessment of TMFs.
Collapse
|
23
|
Sharifi M, Shirazi-Adl A, Marouane H. Computational stability of human knee joint at early stance in Gait: Effects of muscle coactivity and anterior cruciate ligament deficiency. J Biomech 2017; 63:110-116. [DOI: 10.1016/j.jbiomech.2017.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/21/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
|
24
|
Obesity and Obesity Shape Markedly Influence Spine Biomechanics: A Subject-Specific Risk Assessment Model. Ann Biomed Eng 2017; 45:2373-2382. [DOI: 10.1007/s10439-017-1868-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/03/2017] [Indexed: 12/15/2022]
|
25
|
Eskandari A, Arjmand N, Shirazi-Adl A, Farahmand F. Subject-specific 2D/3D image registration and kinematics-driven musculoskeletal model of the spine. J Biomech 2017; 57:18-26. [DOI: 10.1016/j.jbiomech.2017.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 11/26/2022]
|
26
|
Kim HK, Zhang Y. Estimation of lumbar spinal loading and trunk muscle forces during asymmetric lifting tasks: application of whole-body musculoskeletal modelling in OpenSim. ERGONOMICS 2017; 60:563-576. [PMID: 27194401 DOI: 10.1080/00140139.2016.1191679] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Large spinal compressive force combined with axial torsional shear force during asymmetric lifting tasks is highly associated with lower back injury (LBI). The aim of this study was to estimate lumbar spinal loading and muscle forces during symmetric lifting (SL) and asymmetric lifting (AL) tasks using a whole-body musculoskeletal modelling approach. Thirteen healthy males lifted loads of 7 and 12 kg under two lifting conditions (SL and AL). Kinematic data and ground reaction force data were collected and then processed by a whole-body musculoskeletal model. The results show AL produced a significantly higher peak lateral shear force as well as greater peak force of psoas major, quadratus lumborum, multifidus, iliocostalis lumborum pars lumborum, longissimus thoracis pars lumborum and external oblique than SL. The greater lateral shear forces combined with higher muscle force and asymmetrical muscle contractions may have the biomechanical mechanism responsible for the increased risk of LBI during AL. Practitioner Summary: Estimating lumbar spinal loading and muscle forces during free-dynamic asymmetric lifting tasks with a whole-body musculoskeletal modelling in OpenSim is the core value of this research. The results show that certain muscle groups are fundamentally responsible for asymmetric movement, thereby producing high lumbar spinal loading and muscle forces, which may increase risks of LBI during asymmetric lifting tasks.
Collapse
Affiliation(s)
- Hyun-Kyung Kim
- a Biomechanics Laboratory, Department of Exercise Sciences , University of Auckland , Auckland , New Zealand
| | - Yanxin Zhang
- a Biomechanics Laboratory, Department of Exercise Sciences , University of Auckland , Auckland , New Zealand
| |
Collapse
|
27
|
Abdollahi M, Nikkhoo M, Ashouri S, Asghari M, Parnianpour M, Khalaf K. A model for flexi-bar to evaluate intervertebral disc and muscle forces in exercises. Med Eng Phys 2016; 38:1076-82. [DOI: 10.1016/j.medengphy.2016.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/06/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022]
|
28
|
FLORIO CS. MUSCLE FORCE MAGNITUDES IN THE HUMAN LEG FOR ISOMETRIC EXERCISES WITH VARIOUS RESULTANT FORCE DIRECTIONS AND JOINT ANGLES. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519416500834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using a gradient-based numerical optimization routine, the force magnitudes required of 10 major sagittal plane leg muscles to create a constant magnitude isometric resultant force against a fixed surface at the toe directed anteriorly, posteriorly, superiorly, and inferiorly were quantitatively predicted for three sets of joint angles: a straight leg configuration, with the knee flexed, and with both the hip and knee flexed. Comparisons over the conditions studied for each individual system muscle found that the maximum variation occurred in knee and hip extensor forces (up to two orders of magnitude). Comparisons within the set of active muscles for each studied condition identified dominant muscles and muscle functions. All anteriorly-directed and posteriorly-directed resultants required a small number of muscles with common functions (mainly knee or hip extensors) and large force magnitudes (O(1000[Formula: see text]N)). In contrast, a large number of muscles, with wide-ranging synergistic and antagonistic functions, acting across multiple joints with relatively small magnitudes (O(100[Formula: see text]N)) were needed to create the superiorly-directed resultant with flexed hip and knee. With good correlation to experimentally measured trends in the interrelationships between leg joint angles and isometric forces, the systematic muscle force prediction and analysis presented in this work can be used to guide the design of targeted muscle strengthening exercises and study of muscle-specific injury.
Collapse
Affiliation(s)
- C. S. FLORIO
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
29
|
Malakoutian M, Street J, Wilke HJ, Stavness I, Fels S, Oxland T. A musculoskeletal model of the lumbar spine using ArtiSynth – development and validation. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION 2016. [DOI: 10.1080/21681163.2016.1187087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Masoud Malakoutian
- Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
| | - John Street
- Department of Orthopaedics, University of British Columbia, Vancouver, Canada
| | - Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, Ulm, Germany
| | - Ian Stavness
- Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
| | - Sidney Fels
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada
| | - Thomas Oxland
- Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
- Department of Orthopaedics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
30
|
Subject-specific biomechanics of trunk: musculoskeletal scaling, internal loads and intradiscal pressure estimation. Biomech Model Mechanobiol 2016; 15:1699-1712. [DOI: 10.1007/s10237-016-0792-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
|
31
|
Shahvarpour A, Shirazi-Adl A, Larivière C. Active–passive biodynamics of the human trunk when seated on a wobble chair. J Biomech 2016; 49:939-945. [DOI: 10.1016/j.jbiomech.2016.01.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
32
|
El Ouaaid Z, Shirazi-Adl A, Plamondon A. Effects of variation in external pulling force magnitude, elevation, and orientation on trunk muscle forces, spinal loads and stability. J Biomech 2016; 49:946-952. [DOI: 10.1016/j.jbiomech.2015.09.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 11/30/2022]
|
33
|
Dreischarf M, Shirazi-Adl A, Arjmand N, Rohlmann A, Schmidt H. Estimation of loads on human lumbar spine: A review of in vivo and computational model studies. J Biomech 2016; 49:833-845. [DOI: 10.1016/j.jbiomech.2015.12.038] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 01/09/2023]
|
34
|
Shojaei I, Hendershot BD, Wolf EJ, Bazrgari B. Persons with unilateral transfemoral amputation experience larger spinal loads during level-ground walking compared to able-bodied individuals. Clin Biomech (Bristol, Avon) 2016; 32:157-63. [PMID: 26682630 PMCID: PMC4779428 DOI: 10.1016/j.clinbiomech.2015.11.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 10/30/2015] [Accepted: 11/27/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Persons with lower limb amputation walk with increased and asymmetric trunk motion; a characteristic that is likely to impose distinct demands on trunk muscles to maintain equilibrium and stability of the spine. However, trunk muscle responses to such changes in net mechanical demands, and the resultant effects on spinal loads, have yet to be determined in this population. METHODS Building on a prior study, trunk and pelvic kinematics collected during level-ground walking from 40 males (20 with unilateral transfemoral amputation and 20 matched controls) were used as inputs to a kinematics-driven, nonlinear finite element model of the lower back to estimate forces in 10 global (attached to thorax) and 46 local (attached to lumbar vertebrae) trunk muscles, as well as compression, lateral, and antero-posterior shear forces at all spinal levels. FINDINGS Trunk muscle force and spinal load maxima corresponded with heel strike and toe off events, and among persons with amputation, were respectively 10-40% and 17-95% larger during intact vs. prosthetic stance, as well as 6-80% and 26-60% larger during intact stance relative to controls. INTERPRETATION During gait, larger spinal loads with transfemoral amputation appear to be the result of a complex pattern of trunk muscle recruitment, particularly involving co-activation of antagonistic muscles during intact limb stance; a period when these individuals are confident and likely to use the trunk to assist with forward progression. Given the repetitive nature of walking, repeated exposure to such elevated loading likely increases the risk for low back pain in this population.
Collapse
Affiliation(s)
- Iman Shojaei
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Brad D. Hendershot
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA,Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Erik J. Wolf
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA,DOD — VA Extremity Trauma and Amputation Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Babak Bazrgari
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
35
|
Eskandari AH, Sedaghat-Nejad E, Rashedi E, Sedighi A, Arjmand N, Parnianpour M. The effect of parameters of equilibrium-based 3-D biomechanical models on extracted muscle synergies during isometric lumbar exertion. J Biomech 2015; 49:967-973. [PMID: 26747515 DOI: 10.1016/j.jbiomech.2015.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 11/24/2022]
Abstract
A hallmark of more advanced models is their higher details of trunk muscles represented by a larger number of muscles. The question is if in reality we control these muscles individually as independent agents or we control groups of them called "synergy". To address this, we employed a 3-D biomechanical model of the spine with 18 trunk muscles that satisfied equilibrium conditions at L4/5, with different cost functions. The solutions of several 2-D and 3-D tasks were arranged in a data matrix and the synergies were computed by using non-negative matrix factorization (NMF) algorithms. Variance accounted for (VAF) was used to evaluate the number of synergies that emerged by the analysis, which were used to reconstruct the original muscle activations. It was showed that four and six muscle synergies were adequate to reconstruct the input data of 2-D and 3-D torque space analysis. The synergies were different by choosing alternative cost functions as expected. The constraints affected the extracted muscle synergies, particularly muscles that participated in more than one functional tasks were influenced substantially. The compositions of extracted muscle synergies were in agreement with experimental studies on healthy participants. The following computational methods show that the synergies can reduce the complexity of load distributions and allow reduced dimensional space to be used in clinical settings.
Collapse
Affiliation(s)
- A H Eskandari
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - E Sedaghat-Nejad
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, USA.
| | - E Rashedi
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, USA
| | - A Sedighi
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, USA
| | - N Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - M Parnianpour
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Department of Industrial and Manufacturing Engineering, University of Wisconsin-Milwaukee, USA
| |
Collapse
|
36
|
Jamshidnejad S, Arjmand N. Variations in trunk muscle activities and spinal loads following posterior lumbar surgery: A combined in vivo and modeling investigation. Clin Biomech (Bristol, Avon) 2015; 30:1036-42. [PMID: 26432416 DOI: 10.1016/j.clinbiomech.2015.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Iatrogenic injuries to paraspinal muscles during posterior lumbar surgery cause a reduction in their contractile cross-sectional area and thus presumably their postoperative activation. This study investigates the effect of such intraoperative injuries on postoperative patterns of muscle activations and spinal loads during various activities using a combined modeling and in vivo MR imaging approach. METHODS A three-dimensional, multi-joint, musculoskeletal model was used to estimate pre- and postoperative muscle forces and spinal loads under various activities in upright and flexed postures. According to our in vivo pre- and postoperative (~6 months) measurements in six patients using a 3-Tesla-MR scanner, physiological cross-sectional areas of multifidus and erector spinae were reduced in the postoperative model by 26 and 11%, respectively. FINDINGS Postoperative trunk extension strength was predicted to decrease by ~23% from 215 Nm in the intact model to 165 Nm in the postoperative model. Postoperative force in multifidus fascicles decreased by ~21-40% in flexion tasks and by ~14-35% in upright tasks. In contrast, the sum of the forces in all other intact and less injured extensor muscles slightly increased (by <6%) in the postoperative model. Postoperative L5-S1 compressive and shear loads varied slightly (by ~3%). INTERPRETATION Intraoperative injuries induced a shift in load-sharing from the most injured muscle (multifidus) toward other less injured and intact muscles during all simulated activities. Postoperative rehabilitation programs should therefore strengthen and facilitate (while avoiding muscle imbalance) not only the injured multifidus but also other intact and less injured trunk muscles that play a compensatory role after the operation.
Collapse
Affiliation(s)
- Saman Jamshidnejad
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Navid Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
37
|
Shojaei I, Arjmand N, Bazrgari B. An optimization-based method for prediction of lumbar spine segmental kinematics from the measurements of thorax and pelvic kinematics. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2015; 31:e02729. [PMID: 26037214 DOI: 10.1002/cnm.2729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/28/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Given measurement difficulties, earlier modeling studies have often used some constant ratios to predict lumbar segmental kinematics from measurements of total lumbar kinematics. Recent imaging studies suggested distribution of lumbar kinematics across its vertebrae changes with trunk rotation, lumbar posture, and presence of load. An optimization-based method is presented and validated in this study to predict segmental kinematics from measured total lumbar kinematics. Specifically, a kinematics-driven biomechanical model of the spine is used in a heuristic optimization procedure to obtain a set of segmental kinematics that, when prescribed to the model, were associated with the minimum value for the sum of squared predicted muscle stresses across all the lower back muscles. Furthermore, spinal loads estimated using the predicted kinematics by the present method were compared with those estimated using constant ratios. Predicted segmental kinematics were in good agreement with those obtained by imaging with an average error of ~10%. Compared with those obtained using constant ratios, predicted spinal loads using segmental kinematics obtained here were in general smaller. In conclusion, the proposed method offers an alternative tool for improving model-based estimates of spinal loads where image-based measurement of lumbar kinematics is not feasible.
Collapse
Affiliation(s)
- I Shojaei
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - N Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - B Bazrgari
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
38
|
Mohammadi Y, Arjmand N, Shirazi-Adl A. Comparison of trunk muscle forces, spinal loads and stability estimated by one stability- and three EMG-assisted optimization approaches. Med Eng Phys 2015; 37:792-800. [DOI: 10.1016/j.medengphy.2015.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 05/12/2015] [Accepted: 05/31/2015] [Indexed: 10/23/2022]
|
39
|
Adouni M, Shirazi-Adl A, Marouane H. Role of gastrocnemius activation in knee joint biomechanics: gastrocnemius acts as an ACL antagonist. Comput Methods Biomech Biomed Engin 2015; 19:376-85. [DOI: 10.1080/10255842.2015.1032943] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
Florio CS. Development and implementation of a coupled computational muscle force optimization bone shape adaptation modeling method. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2015; 31:e02699. [PMID: 25645885 DOI: 10.1002/cnm.2699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
Improved methods to analyze and compare the muscle-based influences that drive bone strength adaptation can aid in the understanding of the wide array of experimental observations about the effectiveness of various mechanical countermeasures to losses in bone strength that result from age, disuse, and reduced gravity environments. The coupling of gradient-based and gradientless numerical optimization routines with finite element methods in this work results in a modeling technique that determines the individual magnitudes of the muscle forces acting in a multisegment musculoskeletal system and predicts the improvement in the stress state uniformity and, therefore, strength, of a targeted bone through simulated local cortical material accretion and resorption. With a performance-based stopping criteria, no experimentally based or system-based parameters, and designed to include the direct and indirect effects of muscles attached to the targeted bone as well as to its neighbors, shape and strength alterations resulting from a wide range of boundary conditions can be consistently quantified. As demonstrated in a representative parametric study, the developed technique effectively provides a clearer foundation for the study of the relationships between muscle forces and the induced changes in bone strength. Its use can lead to the better control of such adaptive phenomena.
Collapse
Affiliation(s)
- C S Florio
- Department of Mechanical and Industrial Engineering, Newark College of Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, U.S.A
| |
Collapse
|
41
|
Shahvarpour A, Shirazi-Adl A, Larivière C, Bazrgari B. Computation of trunk stability in forward perturbations—Effects of preload, perturbation load, initial flexion and abdominal preactivation. J Biomech 2015; 48:716-720. [DOI: 10.1016/j.jbiomech.2015.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/08/2015] [Accepted: 01/13/2015] [Indexed: 11/25/2022]
|
42
|
Trunk active response and spinal forces in sudden forward loading – analysis of the role of perturbation load and pre-perturbation conditions by a kinematics-driven model. J Biomech 2015; 48:44-52. [DOI: 10.1016/j.jbiomech.2014.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 10/11/2014] [Accepted: 11/05/2014] [Indexed: 11/21/2022]
|
43
|
Ouaaid ZE, Shirazi-Adl A, Plamondon A, Arjmand N. Elevation and orientation of external loads influence trunk neuromuscular response and spinal forces despite identical moments at the L5–S1 level. J Biomech 2014; 47:3035-42. [DOI: 10.1016/j.jbiomech.2014.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/10/2014] [Accepted: 06/27/2014] [Indexed: 11/16/2022]
|
44
|
Adouni M, Shirazi-Adl A. Partitioning of knee joint internal forces in gait is dictated by the knee adduction angle and not by the knee adduction moment. J Biomech 2014; 47:1696-703. [PMID: 24636718 DOI: 10.1016/j.jbiomech.2014.02.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 11/26/2022]
Abstract
Medial knee osteoarthritis is a debilitating disease. Surgical and conservative interventions are performed to manage its progression via reduction of load on the medial compartment or equivalently its surrogate measure, the external adduction moment. However, some studies have questioned a correlation between the medial load and adduction moment. Using a musculoskeletal model of the lower extremity driven by kinematics-kinetics of asymptomatic subjects at gait midstance, we aim here to quantify the relative effects of changes in the knee adduction angle versus changes in the adduction moment on the joint response and medial/lateral load partitioning. The reference adduction rotation of 1.6° is altered by ±1.5° to 3.1° and 0.1° or the knee reference adduction moment of 17Nm is varied by ±50% to 25.5Nm and 8.5Nm. Quadriceps, hamstrings and tibiofemoral contact forces substantially increased as adduction angle dropped and diminished as it increased. The medial/lateral ratio of contact forces slightly altered by changes in the adduction moment but a larger adduction rotation hugely increased this ratio from 8.8 to a 90 while in contrast a smaller adduction rotation yielded a more uniform distribution. If the aim in an intervention is to diminish the medial contact force and medial/lateral load ratio, a drop of 1.5° in adduction angle is much more effective (causing respectively 12% and 80% decreases) than a reduction of 50% in the adduction moment (causing respectively 4% and 13% decreases). Substantial role of changes in adduction angle is due to the associated alterations in joint nonlinear passive resistance. These findings explain the poor correlation between knee adduction moment and tibiofemoral compartment loading during gait suggesting that the internal load partitioning is dictated by the joint adduction angle.
Collapse
Affiliation(s)
- M Adouni
- Division of Applied Mechanics, Department of Mechanical Engineering, École Polytechnique, P.O. Box 6079, Station "centre-ville", Montréal, Québec, Canada H3C 3A7
| | - A Shirazi-Adl
- Division of Applied Mechanics, Department of Mechanical Engineering, École Polytechnique, P.O. Box 6079, Station "centre-ville", Montréal, Québec, Canada H3C 3A7.
| |
Collapse
|
45
|
Adouni M, Shirazi-Adl A. Evaluation of knee joint muscle forces and tissue stresses-strains during gait in severe OA versus normal subjects. J Orthop Res 2014; 32:69-78. [PMID: 24038150 DOI: 10.1002/jor.22472] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 07/30/2013] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is the leading cause of pain and disability in the elderly with the knee being the most affected weight bearing joint. We used a musculoskeletal biomechanical model of the lower extremity including a detailed validated knee joint finite element model to compute lower extremity muscle forces and knee joint stresses-strains during the stance phase of gait. The model was driven by gait data on OA patients, and results were compared with those of the same model driven by data on normal controls. Additional analyses were performed with altered cartilage-menisci properties to evaluate the effects of deterioration during OA. In OA patients compared to normal subjects, muscle forces dropped at nearly all stance periods except mid-stance. Force in the anterior cruciate ligament remained overall the same. Total contact forces-stresses deceased by about 25%. Alterations in properties due to OA had negligible effects on muscle forces, but increased contact areas and cartilage strains and reduced contact pressures. Reductions in contact stresses and increases in tissue strains and transfer of load via menisci are partly due to the altered kinetics-kinematics of gait and partly due to deterioration in cartilage-menisci properties in OA patients.
Collapse
Affiliation(s)
- M Adouni
- Division of Applied Mechanics, Department of Mechanical Engineering, École Polytechnique, P.O. Box 6079, Station, Montréal, Québec, Canada, H3C 3A7
| | | |
Collapse
|
46
|
El Ouaaid Z, Shirazi-Adl A, Plamondon A, Larivière C. Trunk strength, muscle activity and spinal loads in maximum isometric flexion and extension exertions: A combined in vivo-computational study. J Biomech 2013; 46:2228-35. [DOI: 10.1016/j.jbiomech.2013.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 11/28/2022]
|
47
|
Adouni M, Shirazi-Adl A. Consideration of equilibrium equations at the hip joint alongside those at the knee and ankle joints has mixed effects on knee joint response during gait. J Biomech 2013; 46:619-24. [DOI: 10.1016/j.jbiomech.2012.09.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/25/2012] [Accepted: 09/29/2012] [Indexed: 11/15/2022]
|
48
|
El Ouaaid Z, Shirazi-Adl A, Arjmand N, Plamondon A. Coupled objective function to study the role of abdominal muscle forces in lifting using the kinematics-driven model. Comput Methods Biomech Biomed Engin 2013; 16:54-65. [DOI: 10.1080/10255842.2011.607441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
49
|
Computational biodynamics of human knee joint in gait: From muscle forces to cartilage stresses. J Biomech 2012; 45:2149-56. [DOI: 10.1016/j.jbiomech.2012.05.040] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/17/2012] [Accepted: 05/19/2012] [Indexed: 11/22/2022]
|
50
|
Arjmand N, Plamondon A, Shirazi-Adl A, Parnianpour M, Larivière C. Predictive equations for lumbar spine loads in load-dependent asymmetric one- and two-handed lifting activities. Clin Biomech (Bristol, Avon) 2012; 27:537-44. [PMID: 22265249 DOI: 10.1016/j.clinbiomech.2011.12.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/13/2011] [Accepted: 12/20/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND Asymmetric lifting activities are associated with low back pain. METHODS A finite element biomechanical model is used to estimate spinal loads during one- and two-handed asymmetric static lifting activities. Model input variables are thorax flexion angle, load magnitude as well as load sagittal and lateral positions while response variables are L4-L5 and L5-S1 disc compression and shear forces. A number of levels are considered for each input variable and all their possible combinations are introduced into the model. Robust yet user-friendly predictive equations that relate model responses to its inputs are established. FINDINGS Predictive equations with adequate goodness-of-fit (R(2) ranged from ~94% to 99%, P≤0.001) that relate spinal loads to task (input) variables are established. Contour plots are used to identify combinations of task variable levels that yield spine loads beyond the recommended limits. The effect of uncertainties in the measurements of asymmetry-related inputs on spinal loads is studied. INTERPRETATION A number of issues regarding the NIOSH asymmetry multiplier are discussed and it is concluded that this multiplier should depend on the trunk posture and be defined in terms of the load vertical and horizontal positions. Due to an imprecise adjustment of the handled load magnitude this multiplier inadequately controls the biomechanical loading of the spine. Ergonomists and bioengineers, faced with the dilemma of using either complex but more accurate models on one hand or less accurate but simple models on the other hand, have hereby easy-to-use predictive equations that quantify spinal loads under various occupational tasks.
Collapse
Affiliation(s)
- N Arjmand
- Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Québec, Canada.
| | | | | | | | | |
Collapse
|