1
|
Hibbert T, Krpetic Z, Latimer J, Leighton H, McHugh R, Pottenger S, Wragg C, James CE. Antimicrobials: An update on new strategies to diversify treatment for bacterial infections. Adv Microb Physiol 2024; 84:135-241. [PMID: 38821632 DOI: 10.1016/bs.ampbs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Ninety-five years after Fleming's discovery of penicillin, a bounty of antibiotic compounds have been discovered, modified, or synthesised. Diversification of target sites, improved stability and altered activity spectra have enabled continued antibiotic efficacy, but overwhelming reliance and misuse has fuelled the global spread of antimicrobial resistance (AMR). An estimated 1.27 million deaths were attributable to antibiotic resistant bacteria in 2019, representing a major threat to modern medicine. Although antibiotics remain at the heart of strategies for treatment and control of bacterial diseases, the threat of AMR has reached catastrophic proportions urgently calling for fresh innovation. The last decade has been peppered with ground-breaking developments in genome sequencing, high throughput screening technologies and machine learning. These advances have opened new doors for bioprospecting for novel antimicrobials. They have also enabled more thorough exploration of complex and polymicrobial infections and interactions with the healthy microbiome. Using models of infection that more closely resemble the infection state in vivo, we are now beginning to measure the impacts of antimicrobial therapy on host/microbiota/pathogen interactions. However new approaches are needed for developing and standardising appropriate methods to measure efficacy of novel antimicrobial combinations in these contexts. A battery of promising new antimicrobials is now in various stages of development including co-administered inhibitors, phages, nanoparticles, immunotherapy, anti-biofilm and anti-virulence agents. These novel therapeutics need multidisciplinary collaboration and new ways of thinking to bring them into large scale clinical use.
Collapse
Affiliation(s)
- Tegan Hibbert
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Zeljka Krpetic
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Joe Latimer
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Hollie Leighton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Rebecca McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Charlotte Wragg
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Chloë E James
- School of Science, Engineering, and Environment, University of Salford, Salford, UK.
| |
Collapse
|
2
|
Keri D, Walker M, Singh I, Nishikawa K, Garces F. Next generation of multispecific antibody engineering. Antib Ther 2024; 7:37-52. [PMID: 38235376 PMCID: PMC10791046 DOI: 10.1093/abt/tbad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Multispecific antibodies recognize two or more epitopes located on the same or distinct targets. This added capability through protein design allows these man-made molecules to address unmet medical needs that are no longer possible with single targeting such as with monoclonal antibodies or cytokines alone. However, the approach to the development of these multispecific molecules has been met with numerous road bumps, which suggests that a new workflow for multispecific molecules is required. The investigation of the molecular basis that mediates the successful assembly of the building blocks into non-native quaternary structures will lead to the writing of a playbook for multispecifics. This is a must do if we are to design workflows that we can control and in turn predict success. Here, we reflect on the current state-of-the-art of therapeutic biologics and look at the building blocks, in terms of proteins, and tools that can be used to build the foundations of such a next-generation workflow.
Collapse
Affiliation(s)
- Daniel Keri
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Matt Walker
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Isha Singh
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Kyle Nishikawa
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Fernando Garces
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| |
Collapse
|
3
|
El-Khoury C, Mansour E, Yuliandra Y, Lai F, Hawkins BA, Du JJ, Sundberg EJ, Sluis-Cremer N, Hibbs DE, Groundwater PW. The role of adjuvants in overcoming antibacterial resistance due to enzymatic drug modification. RSC Med Chem 2022; 13:1276-1299. [PMID: 36439977 PMCID: PMC9667779 DOI: 10.1039/d2md00263a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/16/2022] [Indexed: 02/03/2023] Open
Abstract
Antibacterial resistance is a prominent issue with monotherapy often leading to treatment failure in serious infections. Many mechanisms can lead to antibacterial resistance including deactivation of antibacterial agents by bacterial enzymes. Enzymatic drug modification confers resistance to β-lactams, aminoglycosides, chloramphenicol, macrolides, isoniazid, rifamycins, fosfomycin and lincosamides. Novel enzyme inhibitor adjuvants have been developed in an attempt to overcome resistance to these agents, only a few of which have so far reached the market. This review discusses the different enzymatic processes that lead to deactivation of antibacterial agents and provides an update on the current and potential enzyme inhibitors that may restore bacterial susceptibility.
Collapse
Affiliation(s)
- Christy El-Khoury
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Elissar Mansour
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Yori Yuliandra
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Felcia Lai
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Bryson A Hawkins
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Jonathan J Du
- Department of Biochemistry, Emory University School of Medicine Atlanta GA 30322 USA
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine Atlanta GA 30322 USA
| | - Nicolas Sluis-Cremer
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine Pittsburgh PA 15213 USA
| | - David E Hibbs
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| | - Paul W Groundwater
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
4
|
Pillai AS, Hochberg GK, Thornton JW. Simple mechanisms for the evolution of protein complexity. Protein Sci 2022; 31:e4449. [PMID: 36107026 PMCID: PMC9601886 DOI: 10.1002/pro.4449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 09/10/2022] [Indexed: 01/26/2023]
Abstract
Proteins are tiny models of biological complexity: specific interactions among their many amino acids cause proteins to fold into elaborate structures, assemble with other proteins into higher-order complexes, and change their functions and structures upon binding other molecules. These complex features are classically thought to evolve via long and gradual trajectories driven by persistent natural selection. But a growing body of evidence from biochemistry, protein engineering, and molecular evolution shows that naturally occurring proteins often exist at or near the genetic edge of multimerization, allostery, and even new folds, so just one or a few mutations can trigger acquisition of these properties. These sudden transitions can occur because many of the physical properties that underlie these features are present in simpler proteins as fortuitous by-products of their architecture. Moreover, complex features of proteins can be encoded by huge arrays of sequences, so they are accessible from many different starting points via many possible paths. Because the bridges to these features are both short and numerous, random chance can join selection as a key factor in explaining the evolution of molecular complexity.
Collapse
Affiliation(s)
- Arvind S. Pillai
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinoisUSA
- Institute for Protein DesignUniversity of WashingtonSeattleWAUSA
| | - Georg K.A. Hochberg
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Department of Chemistry, Center for Synthetic MicrobiologyPhilipps University MarburgMarburgGermany
| | - Joseph W. Thornton
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinoisUSA
- Departments of Human Genetics and Ecology and EvolutionUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
5
|
Folding and Stability of Ankyrin Repeats Control Biological Protein Function. Biomolecules 2021; 11:biom11060840. [PMID: 34198779 PMCID: PMC8229355 DOI: 10.3390/biom11060840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
Ankyrin repeat proteins are found in all three kingdoms of life. Fundamentally, these proteins are involved in protein-protein interaction in order to activate or suppress biological processes. The basic architecture of these proteins comprises repeating modules forming elongated structures. Due to the lack of long-range interactions, a graded stability among the repeats is the generic properties of this protein family determining both protein folding and biological function. Protein folding intermediates were frequently found to be key for the biological functions of repeat proteins. In this review, we discuss most recent findings addressing this close relation for ankyrin repeat proteins including DARPins, Notch receptor ankyrin repeat domain, IκBα inhibitor of NFκB, and CDK inhibitor p19INK4d. The role of local folding and unfolding and gradual stability of individual repeats will be discussed during protein folding, protein-protein interactions, and post-translational modifications. The conformational changes of these repeats function as molecular switches for biological regulation, a versatile property for modern drug discovery.
Collapse
|
6
|
Abstract
The DARPin® drug platform was established with a vision to expand the medical use of biologics beyond what was possible with monoclonal antibodies. It is based on naturally occurring ankyrin repeat domains that are typically building blocks of multifunctional human proteins. The platform allows for the generation of diverse, well-behaved, multifunctional drug candidates. Recent clinical data illustrate the favorable safety profile of the first DARPin® molecules tested in patients. With the positive phase III results of the most advanced DARPin® drug candidate, abicipar, the DARPin® drug platform is potentially about to achieve its first marketing approval. This review highlights some of the key milestones and decisions encountered when transforming the DARPin® platform from an academic concept to a biotech drug pipeline engine.
Collapse
Affiliation(s)
- Michael T Stumpp
- Molecular Partners AG, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Keith M Dawson
- Molecular Partners AG, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - H Kaspar Binz
- Molecular Partners AG, Wagistrasse 14, 8952, Schlieren, Switzerland. .,Binz Biotech Consulting GmbH, Lüssirainstrasse 52, 6300, Zug, Switzerland.
| |
Collapse
|
7
|
Serapian SA, Colombo G. Designing Molecular Spanners to Throw in the Protein Networks. Chemistry 2020; 26:4656-4670. [DOI: 10.1002/chem.201904523] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/18/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Stefano A. Serapian
- Department of ChemistryUniversity of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Giorgio Colombo
- Department of ChemistryUniversity of Pavia Via Taramelli 12, 27 100 Pavia Italy
- SCITEC-CNR Via Mario Bianco 9 20131 Milano Italy
| |
Collapse
|
8
|
Computational Modeling of Designed Ankyrin Repeat Protein Complexes with Their Targets. J Mol Biol 2019; 431:2852-2868. [DOI: 10.1016/j.jmb.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 01/24/2023]
|
9
|
Parvaiz N, Abbasi SW, Uddin R, Azam SS. Targeting isoprenoid biosynthesis pathway in Staphylococcus lugdunensis: Comparative docking and simulation studies of conventional and allosteric sites. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Harmansa S, Affolter M. Protein binders and their applications in developmental biology. Development 2018; 145:145/2/dev148874. [PMID: 29374062 DOI: 10.1242/dev.148874] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Developmental biology research would benefit greatly from tools that enable protein function to be regulated, both systematically and in a precise spatial and temporal manner, in vivo In recent years, functionalized protein binders have emerged as versatile tools that can be used to target and manipulate proteins. Such protein binders can be based on various scaffolds, such as nanobodies, designed ankyrin repeat proteins (DARPins) and monobodies, and can be used to block or perturb protein function in living cells. In this Primer, we provide an overview of the protein binders that are currently available and highlight recent progress made in applying protein binder-based tools in developmental and synthetic biology.
Collapse
Affiliation(s)
- Stefan Harmansa
- Growth and Development, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Markus Affolter
- Growth and Development, Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
11
|
Islam Z, Nagampalli RSK, Fatima MT, Ashraf GM. New paradigm in ankyrin repeats: Beyond protein-protein interaction module. Int J Biol Macromol 2017; 109:1164-1173. [PMID: 29157912 DOI: 10.1016/j.ijbiomac.2017.11.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 01/06/2023]
Abstract
Classically, ankyrin repeat (ANK) proteins are built from tandems of two or more repeats and form curved solenoid structures that are associated with protein-protein interactions. These are short, widespread structural motif of around 33 amino acids repeats in tandem, having a canonical helix-loop-helix fold, found individually or in combination with other domains. The multiplicity of structural pattern enables it to form assemblies of diverse sizes, required for their abilities to confer multiple binding and structural roles of proteins. Three-dimensional structures of these repeats determined to date reveal a degree of structural variability that translates into the considerable functional versatility of this protein superfamily. Recent work on the ANK has proposed novel structural information, especially protein-lipid, protein-sugar and protein-protein interaction. Self-assembly of these repeats was also shown to prevent the associated protein in forming filaments. In this review, we summarize the latest findings and how the new structural information has increased our understanding of the structural determinants of ANK proteins. We discussed latest findings on how these proteins participate in various interactions to diversify the ANK roles in numerous biological processes, and explored the emerging and evolving field of designer ankyrins and its framework for protein engineering emphasizing on biotechnological applications.
Collapse
Affiliation(s)
- Zeyaul Islam
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, 13083-100, Brazil.
| | | | - Munazza Tamkeen Fatima
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
12
|
Kinetic characterization and molecular docking of novel allosteric inhibitors of aminoglycoside phosphotransferases. Biochim Biophys Acta Gen Subj 2017; 1861:3464-3473. [DOI: 10.1016/j.bbagen.2016.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/07/2016] [Accepted: 09/11/2016] [Indexed: 11/21/2022]
|
13
|
Glanville J, D'Angelo S, Khan TA, Reddy ST, Naranjo L, Ferrara F, Bradbury ARM. Deep sequencing in library selection projects: what insight does it bring? Curr Opin Struct Biol 2016; 33:146-60. [PMID: 26451649 DOI: 10.1016/j.sbi.2015.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/19/2015] [Accepted: 09/17/2015] [Indexed: 11/17/2022]
Abstract
High throughput sequencing is poised to change all aspects of the way antibodies and other binders are discovered and engineered. Millions of available sequence reads provide an unprecedented sampling depth able to guide the design and construction of effective, high quality naïve libraries containing tens of billions of unique molecules. Furthermore, during selections, high throughput sequencing enables quantitative tracing of enriched clones and position-specific guidance to amino acid variation under positive selection during antibody engineering. Successful application of the technologies relies on specific PCR reagent design, correct sequencing platform selection, and effective use of computational tools and statistical measures to remove error, identify antibodies, estimate diversity, and extract signatures of selection from the clone down to individual structural positions. Here we review these considerations and discuss some of the remaining challenges to the widespread adoption of the technology.
Collapse
Affiliation(s)
- J Glanville
- Program in Computational and Systems Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - S D'Angelo
- University of New Mexico Comprehensive Cancer Center, and Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - T A Khan
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - S T Reddy
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - L Naranjo
- Bioscience division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - F Ferrara
- University of New Mexico Comprehensive Cancer Center, and Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - A R M Bradbury
- Bioscience division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
14
|
Aβ-Immunotherapeutic strategies: a wide range of approaches for Alzheimer's disease treatment. Expert Rev Mol Med 2016; 18:e13. [PMID: 27357999 DOI: 10.1017/erm.2016.11] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Current therapies to treat Alzheimer's disease (AD) are focused on ameliorating symptoms instead of treating the underlying causes of AD. The accumulation of amyloid β (Aβ) oligomers, whether by an increase in production or by a decrease in clearance, has been described as the seed that initiates the pathological cascade in AD. Developing therapies to target these species is a vital step in improving AD treatment. Aβ-immunotherapy, especially passive immunotherapy, is a promising approach to reduce the Aβ burden. Up to now, several monoclonal antibodies (mAbs) have been tested in clinical trials on humans, but none of them have passed Phase III. In all likelihood, these trials failed mainly because patients with mild-to-moderate AD were recruited, and thus treatment may have been too late to be effective. Therefore, many ongoing clinical trials are being conducted in patients at the prodromal stage. New structures based on antibody fragments have been engineered intending to improve efficacy and safety. This review presents the properties of this variety of developing treatments and provides a perspective on state-of-the-art of passive Aβ-immunotherapy in AD.
Collapse
|
15
|
Structural characterization of the novel aminoglycoside phosphotransferase AphVIII from Streptomyces rimosus with enzymatic activity modulated by phosphorylation. Biochem Biophys Res Commun 2016; 477:595-601. [PMID: 27338640 DOI: 10.1016/j.bbrc.2016.06.097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/08/2016] [Accepted: 06/19/2016] [Indexed: 01/07/2023]
Abstract
Aminoglycoside phosphotransferases represent a broad class of enzymes that promote bacterial resistance to aminoglycoside antibiotics via the phosphorylation of hydroxyl groups in the latter. Here we report the spatial structure of the 3'-aminoglycoside phosphotransferase of novel VIII class (AphVIII) solved by X-ray diffraction method with a resolution of 2.15 Å. Deep analysis of APHVIII structure and its comparison with known structures of aminoglycoside phosphotransferases of various types reveals that AphVIII has a typical two-domain fold and, however, possesses some unique characteristics that distinguish the enzyme from its known homologues. The most important difference is the presence of the activation loop with unique Ser146 residue. We demonstrate that in the apo-state of the enzyme the activation loop does not interact with other parts of the enzyme and seems to adopt catalytically competent state only after substrate binding.
Collapse
|
16
|
Abstract
Allosteric transition, defined as conformational changes induced by ligand binding, is one of the fundamental properties of proteins. Allostery has been observed and characterized in many proteins, and has been recently utilized to control protein function via regulation of protein activity. Here, we review the physical and evolutionary origin of protein allostery, as well as its importance to protein regulation, drug discovery, and biological processes in living systems. We describe recently developed approaches to identify allosteric pathways, connected sets of pairwise interactions that are responsible for propagation of conformational change from the ligand-binding site to a distal functional site. We then present experimental and computational protein engineering approaches for control of protein function by modulation of allosteric sites. As an example of application of these approaches, we describe a synergistic computational and experimental approach to rescue the cystic-fibrosis-associated protein cystic fibrosis transmembrane conductance regulator, which upon deletion of a single residue misfolds and causes disease. This example demonstrates the power of allosteric manipulation in proteins to both elucidate mechanisms of molecular function and to develop therapeutic strategies that rescue those functions. Allosteric control of proteins provides a tool to shine a light on the complex cascades of cellular processes and facilitate unprecedented interrogation of biological systems.
Collapse
Affiliation(s)
- Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
17
|
Li JJ, Tu J, Cheng P, Zhai HL, Zhang XY. Insights into DFG-in and DFG-out JAK2 binding modes for a rational strategy of type II inhibitors combined computational study. RSC Adv 2016. [DOI: 10.1039/c6ra06266k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
(a) The superposition of the binding affinities between DFG-in JAK2 and type I inhibitors 22 and 25. (b) The superposition of the binding affinities between DFG-out JAK2 and type II inhibitors BBT594 and CHZ868.
Collapse
Affiliation(s)
- Jiao Jiao Li
- College of Chemistry & Chemical Engineering
- Lanzhou University
- Lanzhou
- PR China
| | - Jing Tu
- College of Chemistry & Chemical Engineering
- Lanzhou University
- Lanzhou
- PR China
| | - Peng Cheng
- College of Chemistry & Chemical Engineering
- Lanzhou University
- Lanzhou
- PR China
| | - Hong Lin Zhai
- College of Chemistry & Chemical Engineering
- Lanzhou University
- Lanzhou
- PR China
| | - Xiao Yun Zhang
- College of Chemistry & Chemical Engineering
- Lanzhou University
- Lanzhou
- PR China
| |
Collapse
|
18
|
Artificial affinity proteins as ligands of immunoglobulins. Biomolecules 2015; 5:60-75. [PMID: 25647098 PMCID: PMC4384111 DOI: 10.3390/biom5010060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/17/2014] [Accepted: 01/23/2015] [Indexed: 12/17/2022] Open
Abstract
A number of natural proteins are known to have affinity and specificity for immunoglobulins. Some of them are widely used as reagents for detection or capture applications, such as Protein G and Protein A. However, these natural proteins have a defined spectrum of recognition that may not fit specific needs. With the development of combinatorial protein engineering and selection techniques, it has become possible to design artificial affinity proteins with the desired properties. These proteins, termed alternative scaffold proteins, are most often chosen for their stability, ease of engineering and cost-efficient recombinant production in bacteria. In this review, we focus on alternative scaffold proteins for which immunoglobulin binders have been identified and characterized.
Collapse
|
19
|
Hanenberg M, McAfoose J, Kulic L, Welt T, Wirth F, Parizek P, Strobel L, Cattepoel S, Späni C, Derungs R, Maier M, Plückthun A, Nitsch RM. Amyloid-β peptide-specific DARPins as a novel class of potential therapeutics for Alzheimer disease. J Biol Chem 2014; 289:27080-27089. [PMID: 25118284 DOI: 10.1074/jbc.m114.564013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Passive immunization with anti-amyloid-β peptide (Aβ) antibodies is effective in animal models of Alzheimer disease. With the advent of efficient in vitro selection technologies, the novel class of designed ankyrin repeat proteins (DARPins) presents an attractive alternative to the immunoglobulin scaffold. DARPins are small and highly stable proteins with a compact modular architecture ideal for high affinity protein-protein interactions. In this report, we describe the selection, binding profile, and epitope analysis of Aβ-specific DARPins. We further showed their ability to delay Aβ aggregation and prevent Aβ-mediated neurotoxicity in vitro. To demonstrate their therapeutic potential in vivo, mono- and trivalent Aβ-specific DARPins (D23 and 3×D23) were infused intracerebroventricularly into the brains of 11-month-old Tg2576 mice over 4 weeks. Both D23 and 3×D23 treatments were shown to result in improved cognitive performance and reduced soluble Aβ levels. These findings demonstrate the therapeutic potential of Aβ-specific DARPins for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Michael Hanenberg
- Division of Psychiatry Research, University of Zurich, Wagistrasse 12, 8952 Schlieren
| | - Jordan McAfoose
- Division of Psychiatry Research, University of Zurich, Wagistrasse 12, 8952 Schlieren
| | - Luka Kulic
- Division of Psychiatry Research, University of Zurich, Wagistrasse 12, 8952 Schlieren,; Department of Neurology, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 26, 8091 Zurich,; Zurich Center for Integrative Human Physiology and University of Zurich, Winterthurerstrasse 190, 8057 Zurich
| | - Tobias Welt
- Division of Psychiatry Research, University of Zurich, Wagistrasse 12, 8952 Schlieren
| | - Fabian Wirth
- Division of Psychiatry Research, University of Zurich, Wagistrasse 12, 8952 Schlieren
| | - Petra Parizek
- Institute of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, and
| | - Lisa Strobel
- Division of Psychiatry Research, University of Zurich, Wagistrasse 12, 8952 Schlieren
| | - Susann Cattepoel
- Division of Psychiatry Research, University of Zurich, Wagistrasse 12, 8952 Schlieren
| | - Claudia Späni
- Division of Psychiatry Research, University of Zurich, Wagistrasse 12, 8952 Schlieren
| | - Rebecca Derungs
- Division of Psychiatry Research, University of Zurich, Wagistrasse 12, 8952 Schlieren
| | - Marcel Maier
- Neurimmune Holding AG, Wagistrasse 13, 8952 Schlieren, Switzerland
| | - Andreas Plückthun
- Institute of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, and
| | - Roger M Nitsch
- Division of Psychiatry Research, University of Zurich, Wagistrasse 12, 8952 Schlieren,.
| |
Collapse
|
20
|
Fosso MY, Li Y, Garneau-Tsodikova S. New trends in aminoglycosides use. MEDCHEMCOMM 2014; 5:1075-1091. [PMID: 25071928 PMCID: PMC4111210 DOI: 10.1039/c4md00163j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite their inherent toxicity and the acquired bacterial resistance that continuously threaten their long-term clinical use, aminoglycosides (AGs) still remain valuable components of the antibiotic armamentarium. Recent literature shows that the AGs' role has been further expanded as multi-tasking players in different areas of study. This review aims at presenting some of the new trends observed in the use of AGs in the past decade, along with the current understanding of their mechanisms of action in various bacterial and eukaryotic cellular processes.
Collapse
Affiliation(s)
- Marina Y. Fosso
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Yijia Li
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| |
Collapse
|
21
|
Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections. Future Med Chem 2014; 5:1285-309. [PMID: 23859208 DOI: 10.4155/fmc.13.80] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Shortly after the discovery of the first antibiotics, bacterial resistance began to emerge. Many mechanisms give rise to resistance; the most prevalent mechanism of resistance to the aminoglycoside (AG) family of antibiotics is the action of aminoglycoside-modifying enzymes (AMEs). Since the identification of these modifying enzymes, many efforts have been put forth to prevent their damaging alterations of AGs. These diverse strategies are discussed within this review, including: creating new AGs that are unaffected by AMEs; developing inhibitors of AMEs to be co-delivered with AGs; or regulating AME expression. Modern high-throughput methods as well as drug combinations and repurposing are highlighted as recent drug-discovery efforts towards fighting the increasing antibiotic resistance crisis.
Collapse
|
22
|
Seeger MA, Zbinden R, Flütsch A, Gutte PGM, Engeler S, Roschitzki-Voser H, Grütter MG. Design, construction, and characterization of a second-generation DARP in library with reduced hydrophobicity. Protein Sci 2013; 22:1239-57. [PMID: 23868333 DOI: 10.1002/pro.2312] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 12/18/2022]
Abstract
Designed ankyrin repeat proteins (DARPins) are well-established binding molecules based on a highly stable nonantibody scaffold. Building on 13 crystal structures of DARPin-target complexes and stability measurements of DARPin mutants, we have generated a new DARPin library containing an extended randomized surface. To counteract the enrichment of unspecific hydrophobic binders during selections against difficult targets containing hydrophobic surfaces such as membrane proteins, the frequency of apolar residues at diversified positions was drastically reduced and substituted by an increased number of tyrosines. Ribosome display selections against two human caspases and membrane transporter AcrB yielded highly enriched pools of unique and strong DARPin binders which were mainly monomeric. We noted a prominent enrichment of tryptophan residues during binder selections. A crystal structure of a representative of this library in complex with caspase-7 visualizes the key roles of both tryptophans and tyrosines in providing target contacts. These aromatic and polar side chains thus substitute the apolar residues valine, leucine, isoleucine, methionine, and phenylalanine of the original DARPins. Our work describes biophysical and structural analyses required to extend existing binder scaffolds and simplifies an existing protocol for the assembly of highly diverse synthetic binder libraries.
Collapse
Affiliation(s)
- Markus A Seeger
- Department of Biochemistry, University of Zurich, 8057, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
23
|
Tandem-repeat proteins: regularity plus modularity equals design-ability. Curr Opin Struct Biol 2013; 23:622-31. [PMID: 23831287 DOI: 10.1016/j.sbi.2013.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/16/2022]
Abstract
Researchers in the field of rational protein design face a significant challenge, which arises from the two defining and inter-related features of typical globular protein structures, namely topological complexity and cooperativity. In striking contrast to globular proteins, tandem repeat proteins, such as ankyrin, tetratricopeptide and leucine-rich repeats, have regular, modular, linearly arrayed structures which makes it especially straightforward to dissect and redesign their properties. Here we review what we have learnt about the biophysics of natural repeat proteins and recent progress in applying that knowledge to engineer the thermodynamics, folding pathways and molecular recognition properties of tandem repeat proteins, and we discuss the wealth of possibilities presented for the extension of this modular construction process to build new molecules for use in medicine and biotechnology.
Collapse
|
24
|
Panjkovich A, Daura X. Exploiting protein flexibility to predict the location of allosteric sites. BMC Bioinformatics 2012; 13:273. [PMID: 23095452 PMCID: PMC3562710 DOI: 10.1186/1471-2105-13-273] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 10/17/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. RESULTS By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse-grained methodology is able to capture the effects triggered by allosteric ligands already described in the literature. CONCLUSIONS We introduce a simple computational approach to predict the presence and position of allosteric sites in a protein based on the analysis of changes in protein normal modes upon the binding of a coarse-grained ligand at predicted cavities. Its performance has been demonstrated using a newly curated non-redundant set of 91 proteins with reported allosteric properties. The software developed in this work is available upon request from the authors.
Collapse
Affiliation(s)
- Alejandro Panjkovich
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | |
Collapse
|
25
|
Parizek P, Kummer L, Rube P, Prinz A, Herberg FW, Plückthun A. Designed ankyrin repeat proteins (DARPins) as novel isoform-specific intracellular inhibitors of c-Jun N-terminal kinases. ACS Chem Biol 2012; 7:1356-66. [PMID: 22568706 DOI: 10.1021/cb3001167] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The c-Jun N-terminal kinases (JNKs) are involved in many biological processes such as proliferation, differentiation, apoptosis, and inflammation and occur in highly similar isoforms in eukaryotic cells. Isoform-specific functions and diseases have been reported for individual JNK isoforms mainly from gene-knockout studies in mice. There is, however, a high demand for intracellular inhibitors with high selectivity to improve the understanding of isoform-specific mechanisms and for use as therapeutic tools. The commonly used JNK inhibitors are based on small molecules or peptides that often target the conserved ATP binding site or docking sites and thus show only moderate selectivity. To target novel binding epitopes, we used designed ankyrin repeat proteins (DARPins) to generate alternative intracellular JNK inhibitors that discriminate two very similar isoforms, JNK1 and JNK2. DARPins are small binding proteins that are well expressed, stable, and cysteine-free, which makes them ideal candidates for applications in the reducing intracellular environment. We performed ribosome display selections against JNK1α1 and JNK2α1 using highly diverse combinatorial libraries of DARPins. The selected binders specifically recognize either JNK1 or JNK2 or both isoforms in vitro and in mammalian cells. All analyzed DARPins show affinities in the low nanomolar range and isoform-specific inhibition of JNK activation in vitro at physiological ATP concentrations. Importantly, DARPins that selectively inhibit JNK activation in human cells were also identified. These results emphasize the great potential of DARPins as a novel class of highly specific intracellular inhibitors of distinct enzyme isoforms for use in biological studies and as possible therapeutic leads.
Collapse
Affiliation(s)
- Petra Parizek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Lutz Kummer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Peter Rube
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Anke Prinz
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Friedrich W. Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
26
|
Structural and functional analysis of phosphorylation-specific binders of the kinase ERK from designed ankyrin repeat protein libraries. Proc Natl Acad Sci U S A 2012; 109:E2248-57. [PMID: 22843676 DOI: 10.1073/pnas.1205399109] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have selected designed ankyrin repeat proteins (DARPins) from a synthetic library by using ribosome display that selectively bind to the mitogen-activated protein kinase ERK2 (extracellular signal-regulated kinase 2) in either its nonphosphorylated (inactive) or doubly phosphorylated (active) form. They do not bind to other kinases tested. Crystal structures of complexes with two DARPins, each specific for one of the kinase forms, were obtained. The two DARPins bind to essentially the same region of the kinase, but recognize the conformational change within the activation loop and an adjacent area, which is the key structural difference that occurs upon activation. Whereas the rigid phosphorylated activation loop remains in the same form when bound by the DARPin, the more mobile unphosphorylated loop is pushed to a new position. The DARPins can be used to selectively precipitate the cognate form of the kinases from cell lysates. They can also specifically recognize the modification status of the kinase inside the cell. By fusing the kinase with Renilla luciferase and the DARPin to GFP, an energy transfer from luciferase to GFP can be observed in COS-7 cells upon intracellular complex formation. Phosphorylated ERK2 is seen to increase by incubation of the COS-7 cells with FBS and to decrease upon adding the ERK pathway inhibitor PD98509. Furthermore, the anti-ERK2 DARPin is seen to inhibit ERK phosphorylation as it blocks the target inside the cell. This strategy of creating activation-state-specific sensors and kinase-specific inhibitors may add to the repertoire to investigate intracellular signaling in real time.
Collapse
|
27
|
Gilbreth RN, Koide S. Structural insights for engineering binding proteins based on non-antibody scaffolds. Curr Opin Struct Biol 2012; 22:413-20. [PMID: 22749196 DOI: 10.1016/j.sbi.2012.06.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/25/2012] [Accepted: 06/01/2012] [Indexed: 11/18/2022]
Abstract
Engineered binding proteins derived from non-antibody scaffolds constitute an increasingly prominent class of reagents in both research and therapeutic applications. The growing number of crystal structures of these 'alternative' scaffold-based binding proteins in complex with their targets illustrate the mechanisms of molecular recognition that are common among these systems and those unique to each. This information is useful for critically assessing and improving/expanding engineering strategies. Furthermore, the structural features of these synthetic proteins produced under tightly controlled, directed evolution deepen our understanding of the underlying principles governing molecular recognition.
Collapse
Affiliation(s)
- Ryan N Gilbreth
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
28
|
Vong K, Auclair K. Understanding and overcoming aminoglycoside resistance caused by N-6'-acetyltransferase. MEDCHEMCOMM 2012; 3:397-407. [PMID: 28018574 PMCID: PMC5179255 DOI: 10.1039/c2md00253a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aminoglycosides occupy a special niche amongst antibiotics in part because of their broad spectrum of action. Bacterial resistance is however menacing to render these drugs obsolete. A significant amount of work has been devoted to understand and overcome aminoglycoside resistance. This mini-review will discuss aminoglycoside-modifying enzymes (AMEs), with a special emphasis on the efforts to comprehend and block resistance caused by aminoglycoside 6'-N-acetyltransferase (AAC(6')).
Collapse
Affiliation(s)
- Kenward Vong
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| |
Collapse
|
29
|
Cheung LSL, Kanwar M, Ostermeier M, Konstantopoulos K. A hot-spot motif characterizes the interface between a designed ankyrin-repeat protein and its target ligand. Biophys J 2012; 102:407-16. [PMID: 22325262 DOI: 10.1016/j.bpj.2012.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/08/2011] [Accepted: 01/03/2012] [Indexed: 11/29/2022] Open
Abstract
Nonantibody scaffolds such as designed ankyrin repeat proteins (DARPins) can be rapidly engineered to detect diverse target proteins with high specificity and offer an attractive alternative to antibodies. Using molecular simulations, we predicted that the binding interface between DARPin off7 and its ligand (maltose binding protein; MBP) is characterized by a hot-spot motif in which binding energy is largely concentrated on a few amino acids. To experimentally test this prediction, we fused MBP to a transmembrane domain to properly orient the protein into a polymer-cushioned lipid bilayer, and characterized its interaction with off7 using force spectroscopy. Using this, to our knowledge, novel technique along with surface plasmon resonance, we validated the simulation predictions and characterized the effects of select mutations on the kinetics of the off7-MBP interaction. Our integrated approach offers scientific insights on how the engineered protein interacts with the target molecule.
Collapse
Affiliation(s)
- Luthur Siu-Lun Cheung
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
30
|
Petrovskaya LE, Shingarova LN, Dolgikh DA, Kirpichnikov MP. Alternative scaffold proteins. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:581-91. [DOI: 10.1134/s1068162011050141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Abstract
While antibody-based therapeutics have become firmly established as front-line drugs, the use of antibodies as research tools in small molecule drug discovery is still in its infancy. In this review we focus on the use of antibody fragments as crystallization chaperones to aid the structural determination of otherwise 'uncrystallizable' or 'undruggable' target proteins. We also highlight a potential application for this technology, in which antibody-mediated structures may be used to inform the design of new chemical entities.
Collapse
Affiliation(s)
- L Griffin
- Department of Structural Biology, UCB, Slough, UK
| | | |
Collapse
|
32
|
Karanicolas J, Corn JE, Chen I, Joachimiak LA, Dym O, Peck SH, Albeck S, Unger T, Hu W, Liu G, Delbecq S, Montelione G, Spiegel C, Liu DR, Baker D. A de novo protein binding pair by computational design and directed evolution. Mol Cell 2011; 42:250-60. [PMID: 21458342 PMCID: PMC3102007 DOI: 10.1016/j.molcel.2011.03.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/19/2010] [Accepted: 02/07/2011] [Indexed: 12/25/2022]
Abstract
The de novo design of protein-protein interfaces is a stringent test of our understanding of the principles underlying protein-protein interactions and would enable unique approaches to biological and medical challenges. Here we describe a motif-based method to computationally design protein-protein complexes with native-like interface composition and interaction density. Using this method we designed a pair of proteins, Prb and Pdar, that heterodimerize with a Kd of 130 nM, 1000-fold tighter than any previously designed de novo protein-protein complex. Directed evolution identified two point mutations that improve affinity to 180 pM. Crystal structures of an affinity-matured complex reveal binding is entirely through the designed interface residues. Surprisingly, in the in vitro evolved complex one of the partners is rotated 180° relative to the original design model, yet still maintains the central computationally designed hotspot interaction and preserves the character of many peripheral interactions. This work demonstrates that high-affinity protein interfaces can be created by designing complementary interaction surfaces on two noninteracting partners and underscores remaining challenges.
Collapse
Affiliation(s)
- John Karanicolas
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350
- Center for Bioinformatics and Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045-7534
| | - Jacob E. Corn
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-7350
| | - Irwin Chen
- Department of Chemistry and Chemical Biology and the Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | | | - Orly Dym
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, Israel
| | - Sun H. Peck
- Department of Chemistry and Chemical Biology and the Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Shira Albeck
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Unger
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, Israel
| | - Wenxin Hu
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-7350
| | - Gaohua Liu
- Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, and Robert Wood Johnson Medical School, Piscataway, NJ
| | - Scott Delbecq
- Department of Chemistry, Western Washington University, Bellingham, WA
| | - Gaetano Montelione
- Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, and Robert Wood Johnson Medical School, Piscataway, NJ
| | - Clint Spiegel
- Department of Chemistry, Western Washington University, Bellingham, WA
| | - David R. Liu
- Department of Chemistry and Chemical Biology and the Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-7350
| |
Collapse
|
33
|
Bradbury ARM, Sidhu S, Dübel S, McCafferty J. Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 2011; 29:245-54. [PMID: 21390033 PMCID: PMC3057417 DOI: 10.1038/nbt.1791] [Citation(s) in RCA: 420] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In vitro display technologies, best exemplified by phage and yeast display, were first described for the selection of antibodies some 20 years ago. Since then, many antibodies have been selected and improved upon using these methods. Although it is not widely recognized, many of the antibodies derived using in vitro display methods have properties that would be extremely difficult, if not impossible, to obtain by immunizing animals. The first antibodies derived using in vitro display methods are now in the clinic, with many more waiting in the wings. Unlike immunization, in vitro display permits the use of defined selection conditions and provides immediate availability of the sequence encoding the antibody. The amenability of in vitro display to high-throughput applications broadens the prospects for their wider use in basic and applied research.
Collapse
|
34
|
Designed ankyrin repeat protein binders for the crystallization of AcrB: plasticity of the dominant interface. J Struct Biol 2011; 174:269-81. [PMID: 21296164 DOI: 10.1016/j.jsb.2011.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 01/12/2011] [Accepted: 01/31/2011] [Indexed: 11/23/2022]
Abstract
The formation of well-diffracting crystals is a major bottleneck in structural analysis of membrane proteins by X-ray crystallography. One approach to improve crystal quality is the use of DARPins as crystallization chaperones. Here, we present a detailed analysis of the interaction between DARPins and the integral membrane protein AcrB. We find that binders selected in vitro by ribosome display share a common epitope. The comparative analysis of three crystal structures of AcrB-DARPin complexes allowed us to study the plasticity of the interaction with this dominant binding site. Seemingly redundant AcrB-DARPin crystals show substantially different diffraction quality as a result of subtle differences in the binding geometry. This work exemplifies the importance to screen a number of crystallization chaperones to obtain optimal diffraction data. Crystallographic analysis is complemented by biophysical characterization of nine AcrB binders. We observe that small variations in the interface can lead to differing behavior of the DARPins with regards to affinity, stoichiometry of the complexes and specificity for their target.
Collapse
|
35
|
Kramer MA, Wetzel SK, Plückthun A, Mittl PR, Grütter MG. Structural Determinants for Improved Stability of Designed Ankyrin Repeat Proteins with a Redesigned C-Capping Module. J Mol Biol 2010; 404:381-91. [DOI: 10.1016/j.jmb.2010.09.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/06/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
|
36
|
De Pascale G, Wright GD. Antibiotic resistance by enzyme inactivation: from mechanisms to solutions. Chembiochem 2010; 11:1325-34. [PMID: 20564281 DOI: 10.1002/cbic.201000067] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gianfranco De Pascale
- DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street W, Hamilton, ON L8N 3Z5 Canada
| | | |
Collapse
|
37
|
Abstract
Aminoglycosides have been an essential component of the armamentarium in the treatment of life-threatening infections. Unfortunately, their efficacy has been reduced by the surge and dissemination of resistance. In some cases the levels of resistance reached the point that rendered them virtually useless. Among many known mechanisms of resistance to aminoglycosides, enzymatic modification is the most prevalent in the clinical setting. Aminoglycoside modifying enzymes catalyze the modification at different -OH or -NH₂ groups of the 2-deoxystreptamine nucleus or the sugar moieties and can be nucleotidyltransferases, phosphotransferases, or acetyltransferases. The number of aminoglycoside modifying enzymes identified to date as well as the genetic environments where the coding genes are located is impressive and there is virtually no bacteria that is unable to support enzymatic resistance to aminoglycosides. Aside from the development of new aminoglycosides refractory to as many as possible modifying enzymes there are currently two main strategies being pursued to overcome the action of aminoglycoside modifying enzymes. Their successful development would extend the useful life of existing antibiotics that have proven effective in the treatment of infections. These strategies consist of the development of inhibitors of the enzymatic action or of the expression of the modifying enzymes.
Collapse
|
38
|
Skottrup PD. Small biomolecular scaffolds for improved biosensor performance. Anal Biochem 2010; 406:1-7. [PMID: 20599637 DOI: 10.1016/j.ab.2010.06.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/18/2010] [Accepted: 06/26/2010] [Indexed: 12/18/2022]
|
39
|
Jha RK, Leaver-Fay A, Yin S, Wu Y, Butterfoss GL, Szyperski T, Dokholyan NV, Kuhlman B. Computational design of a PAK1 binding protein. J Mol Biol 2010; 400:257-70. [PMID: 20460129 DOI: 10.1016/j.jmb.2010.05.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/28/2010] [Accepted: 05/03/2010] [Indexed: 11/17/2022]
Abstract
We describe a computational protocol, called DDMI, for redesigning scaffold proteins to bind to a specified region on a target protein. The DDMI protocol is implemented within the Rosetta molecular modeling program and uses rigid-body docking, sequence design, and gradient-based minimization of backbone and side-chain torsion angles to design low-energy interfaces between the scaffold and target protein. Iterative rounds of sequence design and conformational optimization were needed to produce models that have calculated binding energies that are similar to binding energies calculated for native complexes. We also show that additional conformation sampling with molecular dynamics can be iterated with sequence design to further lower the computed energy of the designed complexes. To experimentally test the DDMI protocol, we redesigned the human hyperplastic discs protein to bind to the kinase domain of p21-activated kinase 1 (PAK1). Six designs were experimentally characterized. Two of the designs aggregated and were not characterized further. Of the remaining four designs, three bound to the PAK1 with affinities tighter than 350 muM. The tightest binding design, named Spider Roll, bound with an affinity of 100 muM. NMR-based structure prediction of Spider Roll based on backbone and (13)C(beta) chemical shifts using the program CS-ROSETTA indicated that the architecture of human hyperplastic discs protein is preserved. Mutagenesis studies confirmed that Spider Roll binds the target patch on PAK1. Additionally, Spider Roll binds to full-length PAK1 in its activated state but does not bind PAK1 when it forms an auto-inhibited conformation that blocks the Spider Roll target site. Subsequent NMR characterization of the binding of Spider Roll to PAK1 revealed a comparably small binding 'on-rate' constant (<<10(5) M(-1) s(-1)). The ability to rationally design the site of novel protein-protein interactions is an important step towards creating new proteins that are useful as therapeutics or molecular probes.
Collapse
Affiliation(s)
- Ramesh K Jha
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Guo Y, Yuan C, Tian F, Huang K, Weghorst CM, Tsai MD, Li J. Contributions of conserved TPLH tetrapeptides to the conformational stability of ankyrin repeat proteins. J Mol Biol 2010; 399:168-81. [PMID: 20398677 DOI: 10.1016/j.jmb.2010.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 03/27/2010] [Accepted: 04/06/2010] [Indexed: 01/11/2023]
Abstract
Ankyrin repeat (AR) proteins are one of the most abundant classes of repeat proteins and are involved in numerous physiological processes. These proteins are composed of various numbers of AR motifs stacked in a nearly linear fashion to adopt an elongated and nonglobular architecture. One salient feature prevalent in such a structural unit is the TPLH tetrapeptide or a close variant, T/SxxH, which initiates the helix-turn-helix conformation and presumably contributes to conformational stability through a hydrogen-bonding network. In the present study, we investigated the roles of T/SxxH motif in the stability, structure, and function of AR proteins by a systematic and rationalized mutagenic study on, followed by biochemical and biophysical characterization of, gankyrin, an oncogenic protein composed of seven ARs and six T/SxxH tetrapeptides, and P16, a tumor suppressor with four ARs but no TPLH tetrapeptide. Our results showed that this tetrapeptide is ineffectual on global structure and function, but contributes significantly to conformational stability when its stabilizing potentials are fully realized in the local conformation, including (1) the intra-AR hydrogen bonding involving the hydroxyl group; (2) the intra-AR and inter-AR hydrogen bonds involving the imidazole ring; and (3) the hydrophobic interaction associated with the Thr-methyl group. Considering that the capping and close-to-capping units tend to have more sequence diversity and more conformational variation, it could be also generally true that a T/SxxH motif close to the terminal repeats contributes little or even negatively to stability with respect to Ala substitution, but substantially stabilizes the global conformation when located in the middle of a long stretch of ARs.
Collapse
Affiliation(s)
- Yi Guo
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Gankyrin, a newly defined oncoprotein also known as PSMD10 and P28, functions as a dual-negative regulator of the two most prominent tumor suppressor pathways, the CDK/pRb and HDM2/P53 pathways. Its aberrant expression has been prevalently found in human hepatocellular carcinomas (HCC) and esophagus squamous cell carcinomas (ESCC), indicative of the potential of gankyrin as a rational diagnostic and therapeutic target in cancers. Here, we review the unique structural features and functional diversity of gankyrin, and discuss its implication in cancer diagnostics and therapeutics from the perspective of chemical biology.
Collapse
Affiliation(s)
- Junan Li
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Yi Guo
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
42
|
Veesler D, Dreier B, Blangy S, Lichière J, Tremblay D, Moineau S, Spinelli S, Tegoni M, Plückthun A, Campanacci V, Cambillau C. Crystal structure and function of a DARPin neutralizing inhibitor of lactococcal phage TP901-1: comparison of DARPin and camelid VHH binding mode. J Biol Chem 2009; 284:30718-26. [PMID: 19740746 DOI: 10.1074/jbc.m109.037812] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Combinatorial libraries of designed ankyrin repeat proteins (DARPins) have been proven to be a valuable source of specific binding proteins, as they can be expressed at very high levels and are very stable. We report here the selection of DARPins directed against a macromolecular multiprotein complex, the baseplate BppUxBppL complex of the lactococcal phage TP901-1. Using ribosome display, we selected several DARPins that bound specifically to the tip of the receptor-binding protein (RBP, the BppL trimer). The three selected DARPins display high specificity and affinity in the low nanomolar range and bind with a stoichiometry of one DARPin per BppL trimer. The crystal structure of a DARPin complexed with the RBP was solved at 2.1 A resolution. The DARPinxRBP interface is of the concave (DARPin)-convex (RBP) type, typical of other DARPin protein complexes and different from what is observed with a camelid VHH domain, which penetrates the phage p2 RBP inter-monomer interface. Finally, phage infection assays demonstrated that TP901-1 infection of Lactococcus lactis cells was inhibited by each of the three selected DARPins. This study provides proof of concept for the possible use of DARPins to circumvent viral infection. It also provides support for the use of DARPins in co-crystallization, due to their rigidity and their ability to provide multiple crystal contacts.
Collapse
Affiliation(s)
- David Veesler
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and the Universités Aix-Marseille I and II, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 2009; 13:245-55. [DOI: 10.1016/j.cbpa.2009.04.627] [Citation(s) in RCA: 269] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 04/20/2009] [Indexed: 12/26/2022]
|
44
|
Koide S. Engineering of recombinant crystallization chaperones. Curr Opin Struct Biol 2009; 19:449-57. [PMID: 19477632 DOI: 10.1016/j.sbi.2009.04.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 04/20/2009] [Indexed: 10/20/2022]
Abstract
The preparation of diffraction quality crystals remains the major bottleneck in macromolecular X-ray crystallography. A crystallization chaperone is an auxiliary protein, such as fragments of monoclonal antibodies, that binds to and increases the crystallization probability of a target molecule of interest. Such chaperones reduce conformational heterogeneity, mask counterproductive surfaces while extending surfaces predisposed to forming crystal contacts, and provide phasing information. Crystallization chaperones generated using recombinant technologies have emerged as superior alternatives that increase the throughput and eliminate inherent limitations associated with antibody production by animal immunization and the hybridoma technology.
Collapse
Affiliation(s)
- Shohei Koide
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
45
|
Structural basis of APH(3')-IIIa-mediated resistance to N1-substituted aminoglycoside antibiotics. Antimicrob Agents Chemother 2009; 53:3049-55. [PMID: 19433564 DOI: 10.1128/aac.00062-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Butirosin is unique among the naturally occurring aminoglycosides, having a substituted amino group at position 1 (N1) of the 2-deoxystreptamine ring with an (S)-4-amino-2-hydroxybutyrate (AHB) group. While bacterial resistance to aminoglycosides can be ascribed chiefly to drug inactivation by plasmid-encoded aminoglycoside-modifying enzymes, the presence of an AHB group protects the aminoglycoside from binding to many resistance enzymes, and hence, the antibiotic retains its bactericidal properties. Consequently, several semisynthetic N1-substituted aminoglycosides, such as amikacin, isepamicin, and netilmicin, were developed. Unfortunately, butirosin, amikacin, and isepamicin are not resistant to inactivation by 3'-aminoglycoside O-phosphotransferase type IIIa [APH(3')-IIIa]. We report here the crystal structure of APH(3')-IIIa in complex with an ATP analog, AMPPNP [adenosine 5'-(beta,gamma-imido)triphosphate], and butirosin A to 2.4-A resolution. The structure shows that butirosin A binds to the enzyme in a manner analogous to other 4,5-disubstituted aminoglycosides, and the flexible antibiotic-binding loop is key to the accommodation of structurally diverse substrates. Based on the crystal structure, we have also constructed a model of APH(3')-IIIa in complex with amikacin, a commonly used semisynthetic N1-substituted 4,6-disubstituted aminoglycoside. Together, these results suggest a strategy to further derivatize the AHB group in order to generate new aminoglycoside derivatives that can elude inactivation by resistance enzymes while maintaining their ability to bind to the ribosomal A site.
Collapse
|
46
|
Milovnik P, Ferrari D, Sarkar CA, Plückthun A. Selection and characterization of DARPins specific for the neurotensin receptor 1. Protein Eng Des Sel 2009; 22:357-66. [PMID: 19389717 DOI: 10.1093/protein/gzp011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We describe here the selection and characterization of designed ankyrin repeat proteins (DARPins) that bind specifically to the rat neurotensin receptor 1 (NTR1), a G-protein coupled receptor (GPCR). The selection procedure using ribosome display and the initial clone analysis required <10 microg of detergent-solubilized, purified NTR1. Complex formation with solubilized GPCR was demonstrated by ELISA and size-exclusion chromatography; additionally, the GPCR could be detected in native membranes of mammalian cells using fluorescence microscopy. The main binding epitope in the GPCR lies within the 33 amino acids following the seventh transmembrane segment, which comprise the putative helix 8, and additional binding interactions are possibly contributed by the cytoplasmic loop 3, thus constituting a discontinuous epitope. Since the selected binders recognize the GPCR both in detergent-solubilized and in membrane-embedded forms, they will be potentially useful both in co-crystallization trials and for signal transduction experiments.
Collapse
Affiliation(s)
- Peter Milovnik
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
47
|
Grönwall C, Ståhl S. Engineered affinity proteins—Generation and applications. J Biotechnol 2009; 140:254-69. [DOI: 10.1016/j.jbiotec.2009.01.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 12/05/2008] [Accepted: 01/26/2009] [Indexed: 12/11/2022]
|
48
|
Sennhauser G, Grütter MG. Chaperone-assisted crystallography with DARPins. Structure 2008; 16:1443-53. [PMID: 18940601 DOI: 10.1016/j.str.2008.08.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/14/2008] [Accepted: 08/18/2008] [Indexed: 11/29/2022]
Abstract
The structure of proteins that are difficult to crystallize can often be solved by forming a noncovalent complex with a helper protein--a crystallization "chaperone." Although several such applications have been described to date, their handling usually is still very laborious. A valuable addition to the present repertoire of binding proteins is the recently developed designed ankyrin repeat protein (DARPin) technology. DARPins are built based on the natural ankyrin repeat protein fold with randomized surface residue positions allowing specific binding to virtually any target protein. The broad potential of these binding proteins for X-ray crystallography is illustrated by five cocrystal structures that have been determined recently comprising target proteins from distinct families, namely a sugar binding protein, two kinases, a caspase, and a membrane protein. This article reviews the opportunities of this technology for structural biology and the structural aspects of the DARPin-protein complexes.
Collapse
Affiliation(s)
- Gaby Sennhauser
- Department of Biochemistry, University of Zürich, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
49
|
Stumpp MT, Binz HK, Amstutz P. DARPins: a new generation of protein therapeutics. Drug Discov Today 2008; 13:695-701. [PMID: 18621567 DOI: 10.1016/j.drudis.2008.04.013] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 04/25/2008] [Accepted: 04/30/2008] [Indexed: 11/26/2022]
Abstract
DARPins (designed ankyrin repeat proteins) are a novel class of binding molecules with the potential to overcome limitations of monoclonal antibodies, hence allowing novel therapeutic approaches. DARPins are small, single domain proteins (14 kDa) which can be selected to bind any given target protein with high affinity and specificity. These characteristics make them ideal agonistic, antagonistic or inhibitory drug candidates. Furthermore, DARPins can be engineered to carry various effector functions or combine multiple binding specificities, enabling completely new drug formats. Taken together, DARPins are a prominent member of the next generation of protein therapeutics with the potential to surpass existing antibody drugs.
Collapse
Affiliation(s)
- Michael T Stumpp
- Molecular Partners AG, Grabenstrasse 11a, 8952 Zürich-Schlieren, Switzerland
| | | | | |
Collapse
|
50
|
Merz T, Wetzel SK, Firbank S, Plückthun A, Grütter MG, Mittl PR. Stabilizing Ionic Interactions in a Full-consensus Ankyrin Repeat Protein. J Mol Biol 2008; 376:232-40. [DOI: 10.1016/j.jmb.2007.11.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 09/28/2007] [Accepted: 11/16/2007] [Indexed: 11/26/2022]
|