1
|
Chen Y, Song K, Li Z, Su Y, Yu L, Chen B, Huang Q, Da L, Han Z, Zhou Y, Zhu X, Xu J, Dong R. Antifouling Asymmetric Block Copolymer Nanofilms via Freestanding Interfacial Polymerization for Efficient and Sustainable Water Purification. Angew Chem Int Ed Engl 2024; 63:e202408345. [PMID: 38888253 DOI: 10.1002/anie.202408345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Membrane materials that resist nonspecific or specific adsorption are urgently required in widespread practical applications, such as water purification, food processing, and life sciences. In water purification, inevitable membrane fouling not only limits membrane separation performance, leading to a decline in both permeance and selectivity, but also remarkably increases operation requirements, and augments extra maintenance costs and higher energy consumption. In this work, we report a freestanding interfacial polymerization (IP) fabrication strategy for in situ creation of asymmetric block copolymer (BCP) nanofilms with antifouling properties, greatly outperforming the conventional surface post-modification approaches. The resultant free-standing asymmetric BCP nanofilms with highly-dense, highly-hydrophilic polyethylene glycol (PEG) brushes on one side, can be readily formed via a typical IP process of a well-defined double-hydrophilic BCP composed of a highly-efficient antifouling PEG block and a membrane-forming multiamine block. The asymmetric BCP nanofilms have been applied for efficient and sustainable natural water purification, demonstrating extraordinary antifouling capabilities accompanied with superior separation performance far beyond commercial polyamide nanofiltration membranes. The antifouling behaviors of asymmetric BCP nanofilms derived from the combined effect of the hydration layer, electrostatic repulsion and steric hindrance were further elucidated by water flux and fouling resistance in combination with all-atom molecular dynamics (MD) simulation. This work opens up a new avenue for the large-scale and low-cost creation of broad-spectrum, asymmetric membrane materials with diverse functional "defect-free" surfaces in real-world applications.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education) College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Kaiyuan Song
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ziying Li
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yue Su
- School of Chemistry and Chemical Engineering Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Li Yu
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Baiyang Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qijing Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lintai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zeguang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jia Xu
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education) College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Ruijiao Dong
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
2
|
Han J, Xie N, Ju J, Zhang Y, Wang Y, Kang W. Developments of electrospinning technology in membrane bioreactor: A review. CHEMOSPHERE 2024; 364:143091. [PMID: 39151583 DOI: 10.1016/j.chemosphere.2024.143091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The necessity for effective wastewater treatment and purification has grown as a result of the increasing pollution issues brought on by industrial and municipal wastewater. Membrane bioreactor (MBR) technology stands out when compared to other treatment methods because of its high efficiency, environmental friendliness, small footprint, and ease of maintenance. However, the development and application of membrane bioreactors has been severely constrained by the higher cost and shorter service life of these devices brought on by membrane biofouling issues resulting from contaminants and bacteria in the water. The nanoscale size of the electrospinning products provides unique microstructure, and the technology facilitates the production of structurally different membranes, or the modification and functionalization of membranes, which makes it possible to solve the membrane fouling problem. Therefore, many current studies have attempted to use electrospinning in MBRs to address membrane fouling and ultimately improve treatment efficacy. Meanwhile, in addition to solving the problem of membrane fouling, the fabrication technology of electrospinning also shows great advantages in constructing thin porous fiber membrane materials with controllable surface wettability and layered structure, which is helpful for the performance enhancement of MBR and expanding innovation. This paper systematically reviews the application and research progress of electrospinning in MBRs. Firstly, the current status of the application of electrospinning technology in various MBRs is introduced, and the relevant measures to solve the membrane fouling based on electrospinning technology are analyzed. Subsequently, some new types of MBRs and new application areas developed with the help of electrospinning technology are introduced. Finally, the limitations and challenges of merging the two technologies are presented, and pertinent recommendations are provided for future research on the use of electrospinning technology in membrane bioreactors.
Collapse
Affiliation(s)
- Jiacheng Han
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Nan Xie
- ChinaTianjin Research Institute of Construction Machinery, No.91 Huashi Road, Beichen Technology Park, Tianjin, 300409, PR China
| | - Jingge Ju
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China.
| | - Yan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Yongcheng Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China.
| |
Collapse
|
3
|
Han J, Jia J, Hu X, Sun L, Ulbricht M, Lv L, Ren Z. Effect of magnetic field coupled magnetic biochar on membrane bioreactor efficiency, membrane fouling mitigation and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172549. [PMID: 38643881 DOI: 10.1016/j.scitotenv.2024.172549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The excitation by magnetic field was established to mitigate the membrane fouling of magnetic biochar (MB)-supplemented membrane bioreactor (MBR) in this study. The results showed that the transmembrane pressure (TMP) increase rates decreased by about 8 % after introducing the magnetic field compared with the magnetic biochar-MBR (MB-MBR). Membrane characterization suggested that the flocs in the magnetic field-magnetic biochar-MBR (MF-MB-MBR) formed a highly permeable developed cake layer, and a fluffier and more porous deposited layer on membrane surface, which minimized fouling clogging of the membrane pores. Further mechanistic investigation revealed that the decrease in contact angle of fouled membrane surface in MF-MB-MBR, i.e. an enhanced membrane hydrophilicity, is considered important for forming highly permeable layers. Additionally, the magnetic field was demonstrated to have a positive effect on the improvement of the magneto-biological effect, the enhancement of charge neutralization and adsorption bridging between sludge and magnetic biochar, and the reduction of formation of extracellular polymeric substances (EPSs), which all yielded sludge flocs with a large pore structure conducive to form a fluffy and porous deposited layer in the membrane surface. Furthermore, high-throughput sequencing analysis revealed that the magnetic field also led to a reduction in microbial diversity, and that it promoted the enrichment of specific functional microbial communities (e.g. Bacteroidetes and Firmicutes) playing an important role in mitigating membrane fouling. Taken together, this study of magnetic field-enhanced magnetic biochar for MBR membrane fouling mitigation provides insights important new ideas for more effective and sustainable operation strategies.
Collapse
Affiliation(s)
- Jinlong Han
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jianna Jia
- Tianjin Research Institute for Water Transport Engineering, M.O.T., China
| | - Xiangjia Hu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Wuqing District Environmental Protection Bureau, Tianjin, 301700, China
| | - Li Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II and Center for Envirommental Research (ZWU), Universität Duisburg-Essen, 45117 Essen, Germany
| | - Longyi Lv
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhijun Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
4
|
Sun L, Bai Z, Yang Q, Fu R, Li H, Li X. In situ assessment of the initial phase of wastewater biofilm formation: Effect of the presence of algae in an aerobic bacterial biofilm system. WATER RESEARCH 2024; 253:121283. [PMID: 38341973 DOI: 10.1016/j.watres.2024.121283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/05/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
The initial start-up attachment stage that dominates biofilm formation is an unstable process and is time-consuming. In the present study, Chlorella sp. was introduced into a general aerobic biofilm system to explore whether the addition of algae improved the initial attachment phase of biofilm. Compared with those of the bacterial biofilms, the initial algal-bacterial biofilms were more stable and had a thicker, denser, and rougher surface. Further investigation suggested that the concentration of extracellular polymeric substances (EPSs) in the algal-bacterial biofilm was 31.33 % greater than that in the bacterial biofilm. Additionally, the algal-bacterial flocs had greater free energies of absolute cohesion (ΔGcoh) and adhesion energy (∆Gadh) than did the bacterial flocs. These phenomena contribute to the speediness and stabilization of initial algal-bacterial start-up biofilms. Specifically, algae inoculation increased microbial community diversity and promoted the growth of bacterial members related to biofilm development. In conclusion, both physicochemical interactions and biological processes strongly influence microbial attachment during the initial biofilm formation process and further promote strengthening.
Collapse
Affiliation(s)
- Li Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China.
| | - Zijia Bai
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Quan Yang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruiyao Fu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Huixue Li
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
5
|
Wu Z, Cao X, Li M, Liu J, Li B. Treatment of volatile organic compounds and other waste gases using membrane biofilm reactors: A review on recent advancements and challenges. CHEMOSPHERE 2024; 349:140843. [PMID: 38043611 DOI: 10.1016/j.chemosphere.2023.140843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
This article provides a comprehensive review of membrane biofilm reactors for waste gas (MBRWG) treatment, focusing on studies conducted since 2000. The first section discusses the membrane materials, structure, and mass transfer mechanism employed in MBRWG. The concept of a partial counter-diffusion biofilm in MBRWG is introduced, with identification of the most metabolically active region. Subsequently, the effectiveness of these biofilm reactors in treating single and mixed pollutants is examined. The phenomenon of membrane fouling in MBRWG is characterized, alongside an analysis of contributory factors. Furthermore, a comparison is made between membrane biofilm reactors and conventional biological treatment technologies, highlighting their respective advantages and disadvantages. It is evident that the treatment of hydrophobic gases and their resistance to volatility warrant further investigation. In addition, the emergence of the smart industry and its integration with other processes have opened up new opportunities for the utilization of MBRWG. Overcoming membrane fouling and developing stable and cost-effective membrane materials are essential factors for successful engineering applications of MBRWG. Moreover, it is worth exploring the mechanisms of co-metabolism in MBRWG and the potential for altering biofilm community structures.
Collapse
Affiliation(s)
- Ziqing Wu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China
| | - Xiwei Cao
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China
| | - Ming Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China
| | - Jun Liu
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
| | - Baoan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
You X, Shen L, Zhao Y, Zhao DL, Teng J, Lin H, Li R, Xu Y, Zhang M. Quantifying interfacial interactions for improved membrane antifouling: A novel approach using triangulation and surface element integration method. J Colloid Interface Sci 2023; 650:775-783. [PMID: 37441970 DOI: 10.1016/j.jcis.2023.06.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/28/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023]
Abstract
To gain a thorough understanding of interfacial behaviors such as adhesion and flocculation controlling membrane fouling, it is necessary to simulate the actual membrane surface morphology and quantify interfacial interactions. In this work, a new method integrating the rough membrane morphology reconstruction technology (atomic force microscopy (AFM) combining with triangulation technique), the surface element integration (SEI) method, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, the compound Simpson's approach, and the computer programming was proposed. This new method can exactly mimic the real membrane surface in terms of roughness and shape, breaking the limitation of previous fractal theory and Gaussian method where the simulated membrane surface is only statistically similar to the real rough surface, thus achieving a precise description of the interfacial interactions between sludge foulants and the real membrane surface. This method was then applied to assess the antifouling propensity of a polyvinylidene fluoride (PVDF) membrane modified with Ni-ZnO particles (NZPs). The simulated results showed that the interfacial interactions between sludge foulants in a membrane bioreactor (MBR) and the modified PVDF-NZPs membrane transformed from an attractive force to a repulsive force. The phenomenon confirmed the significant antifouling propensity of the PVDF-NZPs membrane, which is highly consistent with the experimental findings and the interfacial interactions described in previous literature, suggesting the high feasibility and reliability of the proposed method. Meanwhile, the original programming code of the quantification was also developed, which further facilitates the widespread use of this method and enhances the value of this work.
Collapse
Affiliation(s)
- Xiujia You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ying Zhao
- Teachers' Colleges, Beijing Union University, 5 Waiguanxiejie Street, Chaoyang District, Beijing 100011, China.
| | - Die Ling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
7
|
Zeng Y, Wang Z, Pan Z, Shen L, Teng J, Lin H, Zhang J. Novel thermodynamic mechanisms of co-conditioning with polymeric aluminum chloride and polyacrylamide for improved sludge dewatering: A paradigm shift in the field. ENVIRONMENTAL RESEARCH 2023; 234:116420. [PMID: 37327838 DOI: 10.1016/j.envres.2023.116420] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the combined effects of polymeric aluminum chloride (PAC) and polyacrylamide (PAM) on sludge dewatering, aiming to unveil underlying mechanisms. Co-conditioning with 15 mg g-1 PAC and 1 mg g-1 PAM achieved optimal dewatering, reducing specific filtration resistance (SFR) of co-conditioned sludge to 4.38 × 1012 m-1kg-1, a mere 48.1% of raw sludge's SFR. Compared with the CST of raw sludge (36.45 s), sludge sample can be significantly reduced to 17.7 s. Characterization tests showed enhanced neutralization and agglomeration in co-conditioned sludge. Theoretical calculations revealed elimination of interaction energy barriers between sludge particles post co-conditioning, converting sludge surface from hydrophilic (3.03 mJ m-2) to hydrophobic (-46.20 mJ m-2), facilitating spontaneous agglomeration. Findings explain improved dewatering performance. Based on Flory-Huggins lattice theory, connection between polymer structure and SFR was established. Raw sludge formation triggered significant change in chemical potential, increasing bound water retention capacity and SFR. In contrast, co-conditioned sludge exhibited thinnest gel layer, reducing SFR and significantly improving dewatering. These findings represent a paradigm shift, shedding new light on fundamental thermodynamic mechanisms of sludge dewatering with different chemical conditioning.
Collapse
Affiliation(s)
- Yansha Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zhe Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jianzhen Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
8
|
Zhang B, Shen J, Mao X, Zhang B, Shen Y, Shi W. A novel membrane bioreactor inoculated with algal-bacterial granular sludge for sewage reuse and membrane fouling mitigation: Performance and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122194. [PMID: 37453682 DOI: 10.1016/j.envpol.2023.122194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
In this study, a novel membrane bioreactor (MBR) inoculated with algal-bacterial granular sludge (ABGMBR) was established to improve pollutant removal and alleviate membrane fouling. The ABGMBR system showed higher pollutant removal rate and longer operation time (152 day) compared to the control MBR (AGMBR). Moreover, the contents of the pollutants such as granular sludges, extracellular polymeric substances (EPS), and soluble microbial products on the membrane were remarkably reduced, leading to the formation of a porous and loose cake layer on the membrane and a slow increase in transmembrane pressure. Standard blocking was the main mechanism of membrane fouling; however, the membrane pore blockage was significantly reduced in ABGMBR. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory suggested that the aggregation and adhesion of foulants on the membrane were greatly inhibited in ABGMBR. Furthermore, correlation analysis showed significant differences in membrane fouling characteristics between AGMBR and ABGMBR. The ABGMBR system effectively retarded sludge disintegration and increased the repulsion between the sludge and membrane owing to the favorable mixed liquor characteristics. This study showcases the superior operational efficiency and anti-fouling performance of ABGMBR, offering a novel perspective on sewage reuse and membrane fouling mitigation.
Collapse
Affiliation(s)
- Bing Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing, 409003, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing, 400060, China.
| | - Jing Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xin Mao
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Bing Zhang
- School of Environmental and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing, 409003, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing, 400060, China
| | - Wenxin Shi
- School of Environmental and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
9
|
Shen L, Wu Q, Ye Q, Lin H, Zhang J, Chen C, Yue R, Teng J, Hong H, Liao BQ. Superior performance of a membrane bioreactor through innovative in-situ aeration and structural optimization using computational fluid dynamics. WATER RESEARCH 2023; 243:120353. [PMID: 37482001 DOI: 10.1016/j.watres.2023.120353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
The optimization of membrane bioreactors (MBRs) involves a critical challenge in structural design for mitigation of membrane fouling. To address this issue, a three-dimensional computational fluid dynamics (CFD) model was utilized in this study to simulate the hydrodynamic characteristics of a flat sheet (FS) MBR. The optimization of the membrane module configuration and operating conditions was performed by investigating key parameters that altered the shear stress and liquid velocity. The mixed liquor suspended solids (MLSS) concentration was found to increase the shear stress, leading to a more uniform distribution of shear stress. By optimizing the appropriate bubble diameter to 5 mm, the shear stress on the membrane surface was optimized with relatively uniform distribution. Additionally, extending the side baffle length dramatically improved the uniformity of the shear stress distribution on each membrane. A novel in-situ aeration method was also discovered to promote turbulent kinetic energy by 200 times compared with traditional aeration modes, leading to a more uniform bubble streamline. As a result, the novel in-situ aeration method demonstrated superior membrane antifouling potential in the MBR. This work provides a new approach for the structural design and optimization of MBRs. The innovative combination of the CFD model, optimization techniques, and novel in-situ aeration method has provided a substantial contribution to the advancement of membrane separation technology in wastewater treatment.
Collapse
Affiliation(s)
- Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, PR China
| | - Qihang Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, PR China
| | - Qunfeng Ye
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, PR China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Jianzhen Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, PR China
| | - Rong Yue
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, PR China
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, PR China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, PR China
| | - Bao-Qiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| |
Collapse
|
10
|
Feng J, Li X, Lu Z, Yang Y, Zhou Z, Liang H. Enhanced permeation performance of biofiltration-facilitated gravity-driven membrane (GDM) systems by in-situ application of UV and VUV: Comprehensive insights from thermodynamic and multi-omics perspectives. WATER RESEARCH 2023; 242:120254. [PMID: 37354843 DOI: 10.1016/j.watres.2023.120254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/22/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Biofouling is a major challenge limiting the practical application of biofiltration-facilitated gravity-driven membrane (GDM) systems in drinking water treatment. In this study, ultraviolet irradiation, including ultraviolet (UV) and vacuum ultraviolet (VUV) irradiation, was used for in-situ purification of membrane tanks to control membrane biofouling. After using UV and VUV, the permeate flux increased significantly by 26.1% and 78.3%, respectively, which was mainly due to the decreased cake layer resistance (Rc). The permeability of the biofouling layer improved after UV and VUV application, as evidenced by the increased surface porosity and decreased thickness. The contents of loosely bound extracellular proteins (LB-PN) and tightly bound extracellular proteins (TB-PN) in the biofouling layer were reduced after UV and VUV irradiation. The decreased LB-PN and TB-PN improved the interfacial free energy between the fouling itself and between the fouling and the membrane, which contributed to the reduction of interfacial cohesion and adhesion, resulting in a looser and thinner biofouling layer and a cleaner membrane. The concentration of protein-like material in the membrane tank decreased after UV and VUV irradiation, significantly altering the bacterial community structure on the membrane surface (Mantel's r > 0.7, p < 0.05). The changes in the metabolic state were responsible for the differences in the LB-PN and TB-PN contents. The inhibition of "Alanine, aspartate and glutamate metabolism" and "Glycine, serine and threonine metabolism" reduced amino acid biosynthesis, which restricted the secretion of LB-PN and TB-PN. Critical genera in the Proteobacteria phylum, such as Hirschia, Rhodobacter, Nordella, Candidatus_Berkiella, and Limnohabitans, were involved in metabolite transformation. Overall, the in-situ application of UV and VUV can be an effective alternative strategy to mitigate membrane biofouling, which would facilitate the practical application of biofiltration-facilitated GDM systems in drinking water treatment.
Collapse
Affiliation(s)
- Jianyong Feng
- College of Architecture and Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China
| | - Xing Li
- College of Architecture and Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China
| | - Zedong Lu
- College of Architecture and Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China
| | - Yanling Yang
- College of Architecture and Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China
| | - Zhiwei Zhou
- College of Architecture and Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
11
|
Han Y, Cai T, Yin J, Li W, Li S, Qiu B, Lu X, Zhou Y, Zhen G. Impact of sandwich-type composite anodic membrane on membrane fouling and methane recovery from sewage sludge and food waste via electrochemical anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2023; 382:129222. [PMID: 37217144 DOI: 10.1016/j.biortech.2023.129222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Membrane fouling presents a big challenge for the real-world implementation of anaerobic membrane bioreactors (AnMBRs) in digesting high-solid biowastes. In this study, an electrochemical anaerobic membrane bioreactor (EC-AnMBR) with a novel sandwich-type composite anodic membrane was designed and constructed for controlling membrane fouling whilst improving the energy recovery. The results showed that EC-AnMBR produced a higher methane yield of 358.5 ± 74.8 mL/d, rising by 12.8% compared to the AnMBR without applied voltage. Integration of composite anodic membrane induced a stable membrane flux and low transmembrane pressure through forming an anodic biofilm while total coliforms removal reached 97.9%. The microbial community analysis further provided compelling evidence that EC-AnMBR enriched the relative abundance of hydrolyzing (Chryseobacterium 2.6%) bacteria and methane-producing (Methanobacterium 32.8%) archaea. These findings offered new insights into anti-biofouling performance and provided significant implications for municipal organic waste treatment and energy recovery in the new EC-AnMBR.
Collapse
Affiliation(s)
- Yule Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Yin
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wanjiang Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Siqin Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Boran Qiu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
12
|
Zeng B, Jiang Y, Pan Z, Shen L, Lin H. Feasibility and optimization of a novel upflow denitrification reactor using denitrifying granular sludge for nitric acid pickling wastewater treatment. BIORESOURCE TECHNOLOGY 2023:129271. [PMID: 37290711 DOI: 10.1016/j.biortech.2023.129271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Stainless steel is highly valued for its superior resistance to corrosion. However, the pickling process involved in stainless steel production generates abundant NO3--N, causing health and environmental risks. To address this issue, this study proposed a novel solution utilizing an up-flow denitrification reactor and denitrifying granular sludge for treating NO3--N pickling wastewater under high NO3--N loading. It was found that, the denitrifying granular sludge exhibited stable denitrification performance with the highest denitrification rate of 2.79 gN/(gVSS·d) and average removal rates of NO3--N and TN of 99.94% and 99.31%, respectively, under optimal operating conditions of pH 6-9, temperature 35 °C, C/N ratio 3.5, hydraulic retention time (HRT) 11.1 h and ascending flow rate 2.75 m/h. This process reduced carbon source usage by 12.5-41.7% as compared to traditional denitrification methods. These findings demonstrate the efficacy of combining granular sludge and an up-flow denitrification reactor for treating nitric acid pickling wastewater.
Collapse
Affiliation(s)
- Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Yanhong Jiang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
13
|
Ahmed MA, Amin S, Mohamed AA. Fouling in reverse osmosis membranes: monitoring, characterization, mitigation strategies and future directions. Heliyon 2023; 9:e14908. [PMID: 37064488 PMCID: PMC10102236 DOI: 10.1016/j.heliyon.2023.e14908] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Water scarcity has been a global challenge for many countries over the past decades, and as a result, reverse osmosis (RO) has emerged as a promising and cost-effective tool for water desalination and wastewater remediation. Currently, RO accounts for >65% of the worldwide desalination capacity; however, membrane fouling is a major issue in RO processes. Fouling reduces the membrane's lifespan and permeability, while also increases the operating pressure and chemical cleaning frequency. Overall, fouling reduces the quality and quantity of desalinated water, and thus hinders the sustainable application of RO membranes by disturbing its efficacy and economic aspects. Fouling arises from various physicochemical interactions between water pollutants and membrane materials leading to foulants' accumulation onto the membrane surfaces and/or inside the membrane pores. The current review illustrates the main types of particulates, organic, inorganic and biological foulants, along with the major factors affecting its formation and development. Moreover, the currently used monitoring methods, characterization techniques and the potential mitigation strategies of membrane fouling are reviewed. Further, the still-faced challenges and the future research on RO membrane fouling are addressed.
Collapse
Affiliation(s)
- Mahmoud A. Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sherif Amin
- Chemistry Department, Faculty of Science, Al Azhar University, Cairo, Egypt
| | - Ashraf A. Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
14
|
Wang Y, Zheng X, Xiao K, Xue J, Ulbricht M, Zhang Y. How and why does time matter - A comparison of fouling caused by organic substances on membranes over adsorption durations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:160655. [PMID: 36563756 DOI: 10.1016/j.scitotenv.2022.160655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/30/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the effect of time on the severity of adsorptive fouling on polyvinylidene fluoride (PVDF) membrane surface. Sodium alginate (SA), bovine serum albumin (BSA), and humic acid (HA) were selected as representative membrane foulants. We examined the fouling behavior of these three selected model foulants over different adsorption durations (i.e., ~2300 and ~20,000 s). The fouling experiments were performed under conditions with and without the presence of Ca2+. For the SA-Ca2+ system, a longer adsorption duration slightly increased adsorption amount of SA but sharply reduced the reversibility (from 86.8 % to 12.9 %). For BSA-Ca2+, extended time did not change the deposition amount of BSA on the membrane surface, but led to more residual BSA after cleaning (reversibility decreased from 11.3 % to 4.5 %). Similarly, in the HA-Ca2+ system, adsorption duration barely influenced the adsorption amount of HA, while reduced its reversibility from 39.4 to 32.2 %. Therefore, time duration significantly influenced the amount and reversibility of membrane fouling depending on their chemical property. Corresponding results can be well reflected by a selected mathematical model. Further investigation on relevant mechanisms was conducted, quartz crystal microbalance with dissipation (QCM-D) and atomic force microscope (AFM) measurements indicated that longer adsorption duration resulted in more compacted fouling layer and stronger foulant-membrane interaction force. Our results suggest that time (adsorption duration) plays an important role in determining the reversibility of membrane fouling, while the severity is related to the inherent characteristics of foulants.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Shaanxi, 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Shaanxi, 710048, China; National Supervision & Inspection Center of Environmental Protection Equipment Quality, Jiangsu, Yixing 214205, China.
| | - Kang Xiao
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jinkai Xue
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45117 Essen, Germany
| | - Yaozhong Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Shaanxi, 710048, China.
| |
Collapse
|
15
|
Microalgae enrichment for biomass harvesting and water reuse by ceramic microfiltration membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Shi S, Jia M, Li M, Zhou S, Zhao Y, Zhong J, Dai D, Qiu J. ZnO@g-C3N4 S-scheme photocatalytic membrane with visible-light response and enhanced water treatment performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
17
|
Protein-directed synthesis of fluorescent sulfur quantum dots for highly robust detection of pyrophosphate. Mikrochim Acta 2023; 190:104. [PMID: 36826596 DOI: 10.1007/s00604-023-05686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023]
Abstract
Inorganic pyrophosphate anions (PPi) play a key role in various biological processes and act as an essential indicator for physiological function evaluation and disease diagnosis. However, there is still a lack of available approaches for straightforward, robust, and convenient PPi detection. Herein, we design an on-off-on fluorescent switching nanoprobe employing Fe3+-mediated fluorescent sulfur quantum dots (SQDs) for highly robust detection of PPi. The bovine serum protein (BSA)-capped SQDs with fine water dispersibility and good optical stability are synthesized by an H2O2-assisted chemical etching reaction. Specifically, Fe3+ can strongly induce the aggregation of the SQDs into relatively larger sizes, resulting in aggregation-induced fluorescence quenching behavior. PPi can selectively bind with Fe3+ via emulative coordination and in preventing the aggregation of SQDs this is accompanied by recovery of fluorescence. The physicochemical properties of aggregated and disaggregated SQDs have been systematically investigated. Aggregation and disaggregation of the SQDs and the corresponding quenching and recovery of fluorescence occurs and guarantees the high-contrast sensing performance of the SQD system in complex and challenging aquatic environments. Our designed on-off-on nanoswitch holds great potential for the design of elemental quantum dot-based biosensors for the highly robust detection of analytes in the near future.
Collapse
|
18
|
Yang F, Zhao F. Mechanism of visible light enhances microbial degradation of Bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130214. [PMID: 36327837 DOI: 10.1016/j.jhazmat.2022.130214] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is a toxic endocrine disruptor detected in various environments. Microbial metabolic/enzymatic degradation has been thought to be the main pathway for BPA attenuation in natural environments. In this study, we found that under visible light conditions, superoxide produced by bacteria was the main reason for the rapid removal of BPA, accounting for 57 % of the total removal rate. With visible light, the bacteria degraded BPA at a rate of 0.22 mg/L/d, and the total removal within 8 days reached 85 %, which is 4.7 times compared with that of dark culture. The intermediate product 4-iso-propenylphenol, which was considered as an end-product of microbial degradation of BPA in previous reports, was detected in large quantities at 24 h in culture but gradually decreased in our experiment. Community analysis suggested bacteria with aromatic hydrocarbon degradation ability were more enriched under light incubation. Moreover, the bacteria showed well degradation ability to various pharmaceutically active but nonbiodegradable compounds including diclofenac and fluoxetine, with a removal rate of 88 % and 20 %, respectively. Our study revealed the organic pollutant transformation pathway under the combined action of light and microorganisms, providing new insights into the microbial treatment of aromatic hydrocarbon pollutants.
Collapse
Affiliation(s)
- Fan Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
19
|
Wang K, Ye Q, Shen Y, Wang Y, Hong Q, Zhang C, Liu M, Wang H. Biochar Addition in Membrane Bioreactor Enables Membrane Fouling Alleviation and Nitrogen Removal Improvement for Low C/N Municipal Wastewater Treatment. MEMBRANES 2023; 13:194. [PMID: 36837697 PMCID: PMC9960794 DOI: 10.3390/membranes13020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Membrane bioreactors (MBRs) are frequently used to treat municipal wastewater, but membrane fouling is still the main weakness of this technology. Additionally, the low carbon-nitrogen (C/N) ratio influent has been shown to not only increase the membrane fouling, but also introduce challenges to meet the effluent discharge standard for nitrogen removal. Herein, the authors addressed the challenges by adding cost-effective biochar. The results suggested that the biochar addition can enable membrane fouling alleviation and nitrogen removal improvement. The reduced membrane fouling can be ascribed to the biochar adsorption capacity, which facilitates to form bigger flocs with carbon skeleton in biochar as a core. As a result, the biochar addition significantly altered the mixed liquor suspension with soluble microbial product (SMP) concentration reduction of approximately 14%, lower SMP protein/polysaccharide ratio from 0.28 ± 0.02 to 0.22 ± 0.03, smaller SMP molecular weight and bigger sludge particle size from 67.68 ± 6.9 μm to 113.47 ± 4.8 μm. The nitrogen removal is also dramatically improved after biochar addition, which can be due to the initial carbon source release from biochar, and formation of aerobic-anaerobic microstructures. Microbial diversity analysis results suggested more accumulation of denitrification microbes including norank_f__JG30-KF-CM45 and Plasticicumulans. Less relative abundance of Aeromonas after biochar addition suggested less extracellular polymer substance (EPS) secretion and lower membrane fouling rate.
Collapse
Affiliation(s)
- Kanming Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiaoqiao Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuxiang Shen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yajing Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiankun Hong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenlong Zhang
- Ningbo Communications Planning Institute Co., Ltd., Ningbo 315100, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Hongyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
20
|
Cui C, Wang W, Lv X, Jiao S, Pang G. Fabrication of superwetting non-woven fabric by grafting one-dimensional inorganic nanostructure for efficient separation of surfactant-stabilized organic solvent/water emulsions. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Wu M, Zhang M, Shen L, Wang X, Ying D, Lin H, Li R, Xu Y, Hong H. High propensity of membrane fouling and the underlying mechanisms in a membrane bioreactor during occurrence of sludge bulking. WATER RESEARCH 2023; 229:119456. [PMID: 36495854 DOI: 10.1016/j.watres.2022.119456] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/19/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
While sludge bulking often occurring in activated sludge processes generally leads to serious membrane fouling in membrane bioreactors (MBR), the underlying causes are still unclear. In this study, fouling behaviors of a MBR operated at stages of normal and sludge bulking were compared, and the fouling mechanisms of the different behaviors were explored. It was found that, the MBR could be stably operated in normal stage without membrane cleaning for about 60 days, whereas, daily membrane cleaning had to be carried out when operated in sludge bulking stage. The bulking sludge possessed a rather high specific filtration resistance (SFR) of about 1.36×1014 m·kg-1, which is over 5.33 times than that of the normal sludge. A series of characterizations demonstrated that the bulking sludge had rather lower dewaterability, smaller particle size, higher fractal dimension, higher viscosity, abundant filamentous bacteria and different functional groups of extracellular polymer sustains (EPS). It was suggested that microbial community transition was responsible for the occurrence of sludge bulking, further affecting membrane fouling. Based on these characterizations, it was reported that adhesion propensity (indicated by the thermodynamic interaction) of the bulking sludge to the membrane surface is about 3.6 times than that of the normal sludge. It was proposed that, extra force should be provided to offset a chemical potential gap caused by foulant layer structure transition during sludge bulking in order to sustain filtration of the bulking sludge, resulting in extremely high SFR. This study offered deep thermodynamic mechanisms of MBR fouling during occurrence of sludge bulking.
Collapse
Affiliation(s)
- Mengfei Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Deng Ying
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
22
|
Hu J, Yuan S, Zhao W, Li C, Liu P, Shen X. Fabrication of a Superhydrophilic/Underwater Superoleophobic PVDF Membrane via Thiol–Ene Photochemistry for the Oil/Water Separation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
23
|
Amin NAAM, Mokhter MA, Salamun N, Mohamad MFB, Mahmood WMAW. ANTI-FOULING ELECTROSPUN ORGANIC AND INORGANIC NANOFIBER MEMBRANES FOR WASTEWATER TREATMENT. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
24
|
Zou H, Huang J, Zhang M, Lin H, Teng J, Huang Z. Mitigation of protein fouling by magnesium ions and the related mechanisms in ultrafiltration process. CHEMOSPHERE 2023; 310:136817. [PMID: 36241107 DOI: 10.1016/j.chemosphere.2022.136817] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Although protein is an important membrane foulant in the water body that may be significantly affected by the coexisting common cation magnesium (Mg2+), the effect of Mg2+ on protein fouling is rarely reported. In this context, this study selected bovine serum albumin (BSA) as the model foulant, and investigated its fouling characteristics at different Mg2+ concentrations (0-100 mM). Filtration tests showed that the protein fouling can be significantly mitigated by adding Mg2+, and the specific filtration resistance (SFR) of pure BSA (3.56 × 1014 m kg-1) was at least 5 times that of BSA-Mg2+ solutions (0.5-100 mM). In addition, an optimal Mg2+ concentration exists, which can achieve the lowest BSA SFR. A series of characterizations indicated that the main contributors to the differences in BSA SFR were the changes in BSA adhesion capacity and the thickness and structure of the foulant layer. Basically, the above results were attributed to the hydration repulsion effect of Mg2+, which prevented tight adhesion of foulants to the membrane. Moreover, the lowest BSR SFR at 1 mM Mg2+ was achieved not only by the hydration repulsion effect but also by the particle size compression due to the conformational change of BSA molecules. This combined effect led to the lowest foulant retention on the membrane surface and delivered to the lowest SFR. This study conducts a thorough inspection into the specific effect of Mg2+ on protein fouling and provides a fresh insight into protein fouling control in the UF process.
Collapse
Affiliation(s)
- Hui Zou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiahui Huang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zhengyi Huang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
25
|
Wang W, Li R, Bu F, Gao Y, Gao B, Yue Q, Yang M, Li Y. Coagulation and membrane fouling mechanism of Al species in removing humic acid: Effect of pH and a dynamics process analysis. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Pan Z, Zeng B, Yu G, Lin H, Hu L, Teng J, Zhang H, Yang L. Molecular insights into impacts of EDTMPA on membrane fouling caused by transparent exopolymer particles (TEP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158650. [PMID: 36089022 DOI: 10.1016/j.scitotenv.2022.158650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
While ethylenediamine tetramethylenephosphonic acid (EDTMPA) has been emerged as a stronger chelating agent than ethylene diamine tetraacetic acid (EDTA) for fouling mitigation, and transparent exopolymer particles (TEP) is a major foulant in membrane-based water treatment process, effects of EDTMPA on TEP fouling and the underlying mechanism have been not yet studied. In this study, Flory-Huggins lattice theory was combined with density functional theory (DFT) technology to explore this subject at molecular level. Filtration experiments showed a unimodal pattern of specific filtration resistance (SFR) of TEP sample with Ca2+ concentration in range of 0-3 mM. For the TEP sample with the peak SFR value at 1.5 mM Ca2+, continuous addition of EDTMPA (from 0 to 100 mg·L-1) resulted in a sustained decrease in SFR. Energy dispersive spectroscopy (EDS) mapping characterization showed the continuing decline of calcium content in the TEP layer with increase of EDTMPA addition, indicating that EDTMPA successfully captured Ca2+ from alginate‑calcium ligation (TEP), and then disintegrated the TEP structure. DFT simulation showed that Ca2+ preferentially coordinated with the terminal carboxyl groups of alginate chains to form a coordination configuration that is conducive to stretch the three-dimensional polymer network. Such a network corresponded to an extremely high SFR according to Flory-Huggins theory. EDTMPA addition caused disintegration of the coordination configuration of Ca2+ binding to terminal carboxyl groups, which further resulted in collapse and flocculation of TEP gel network structure, thus leading to a continuous SFR decrease. This work provided deep thermodynamic insights into effects of EDTMPA on TEP-associated fouling at molecular level, facilitating to better understanding and mitigation of membrane fouling.
Collapse
Affiliation(s)
- Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Genying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Lijiang Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Lining Yang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
27
|
Wang Q, Miao Q, Wang X, Wang T, Xu Q. Role of surface physicochemical properties of pipe materials on bio-clogging in leachate collection systems from a thermodynamic perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158263. [PMID: 36030876 DOI: 10.1016/j.scitotenv.2022.158263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Bio-clogging in pipes poses a significant threat to the operation of leachate collection systems. Bio-clogging formation is influenced by the pipe materials. However, the relationship between bio-clogging and the physicochemical properties of different pipe materials has not been clarified yet, especially from a thermodynamic aspect. In this study, the dynamic bio-clogging processes in pipes of different materials (high-density polyethylene (HDPE), polyvinyl chloride (PVC), polypropylene (PP), and polyethylene (PE)) were compared, and their correlation with the physicochemical properties was investigated. Results showed that the bio-clogging in HDPE and PVC pipes was more severe than that in PP and PE pipes. In bio-clogging development, the predominant factor changed from the surface roughness to the electron donator parameter (γ-). In the initial phase, the most severe bio-clogging was observed in the HDPE pipe, which exhibited the highest roughness (432 ± 76 nm). In the later phase, the highest γ- (2.2 mJ/m2) and protein content (2623.1 ± 33.2 μg/cm2) were observed in the PVC simultaneously. Moreover, the interaction energy indicated that the bacteria could irreversibly and reversibly adhere to the HDPE, whereas irreversible adhesion was observed in the PVC, PP, and PE cases. The findings clarify the thermodynamic mechanism underlying bio-clogging behaviors and provide novel insights into the bio-clogging behaviors in pipes of different materials, which can facilitate the development of effective bio-clogging control strategies.
Collapse
Affiliation(s)
- Qian Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Qianming Miao
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Xinwei Wang
- School of Advanced Materials, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Tong Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Qiyong Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China.
| |
Collapse
|
28
|
Mahdavi H, Hosseini F, Ghanbari R. Incorporation of MIL-101(Fe)/Tannic acid-PEG to PES-TPU blend membrane to modify a membrane with riveting mechanical stability and separation performance. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Enriching Fe3O4@MoS2 composites in surface layer to fabricate polyethersulfone (PES) composite membrane: The improved performance and mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Segredo-Morales E, González-Martín C, Vera L, González E. Performance of a novel rotating membrane photobioreactor based on indigenous microalgae-bacteria consortia for wastewater reclamation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Li K, Xu W, Wen G, Zhou Z, Han M, Zhang S, Huang T. Aging of polyvinylidene fluoride (PVDF) ultrafiltration membrane due to ozone exposure in water treatment: Evolution of membrane properties and performance. CHEMOSPHERE 2022; 308:136520. [PMID: 36152832 DOI: 10.1016/j.chemosphere.2022.136520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Pre-ozonation is an effective pretreatment tactic for mitigating fouling of ultrafiltration (UF) membrane in water and wastewater treatment, but the compatibility of polymeric UF membranes with residual ozone remains unclear. In this study, effects of long-term ozone exposure on properties and performance of polyvinylidene fluoride (PVDF) UF membrane reinforced by polyethylene terephthalate (PET) layer were systematically investigated. The exposure intensities were designed to simulate ozone exposure at 0.1 mg/L for 0.5-5 years. Chemical composition analysis suggested that the hydrophilic additives, such as possibly polyvinyl pyrrolidone (PVP), was gradually degraded and released from the membrane, whereas the PVDF matrix exhibited fairly good ozone resistance. Ozonation resulted in increase of pore size and decrease of surface hydrophilicity, which can be attributed to oxidation and dislodgement of hydrophilic additives. Accordingly, long-term ozonation led to moderate changes in performance factors, including increase of membrane permeability by 34%, decrease of retention ability by 21.8%, increase of organic fouling propensity. It is worth noting that membrane tensile strength suffered substantial decrease after ozonation, probably due to ozonation of the PET support layer. Overall, it seems that the PVDF functional layer exhibited good ozone resistance, but the PET support layer was the Achilles' heel of the reinforced PVDF membrane for integrating with pre-ozonation.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Weihua Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Zhipeng Zhou
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Min Han
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Shujia Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
32
|
Zou H, Chen S, Zhang M, Lin H, Teng J, Zhang H, Shen L, Hong H. Molecular-level insights into the mitigation of magnesium-natural organic matter induced ultrafiltration membrane fouling by high-dose calcium based on DFT calculation. CHEMOSPHERE 2022; 309:136734. [PMID: 36209866 DOI: 10.1016/j.chemosphere.2022.136734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
While magnesium cation (Mg2+) universally coexists with natural organic matter (NOM) in the water environment, influence of Mg2+ on NOM fouling in membrane filtration process is still unclear. This work was therefore performed to investigate effects of Mg2+ on NOM (sodium alginate (SA) as a model substance) fouling and role of Ca2+ in mitigating fouling from Mg2+ in the ultrafiltration (UF) water treatment process. Filtration tests showed two interesting fouling phenomena: (1) membrane fouling caused by combination of Mg2+ and SA maintained at a high value with the increased Mg2+ concentration; (2) the high fouling property of Mg2+ can be significantly improved by the prominent addition of calcium cation (Ca2+). It was found that changes of foulant morphology played essential roles through thermodynamic mechanisms represented by the Flory-Huggins lattice theory. Density functional theory (DFT) calculation showed that the combination of SA and Mg2+ tends to coordinate two terminal carboxyl groups in SA, beneficial to stretching alginate chains and forming a stable gel network at low doses. In addition, intramolecular coordination is difficult to occur between SA and Mg2+ due to the high hydration repulsion radius of Mg2+. Therefore, a dense and thick gel network remained even under high Mg2+concentration. Furthermore, due to the higher binding affinity of Ca2+ over Mg2+, high doses of Ca2+ trigger a transition of the stable SA-Mg2+ gel network to other configurations where flocculation and aggregation occur, thereby reducing the specific filtration resistance. The proposed thermodynamic mechanism satisfactorily explained the above interesting fouling behaviors, facilitating to development of new solutions to control membrane fouling.
Collapse
Affiliation(s)
- Hui Zou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Shilei Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
33
|
Chen Y, Ping Q, Li D, Dai X, Li Y. Comprehensive insights into the impact of pretreatment on anaerobic digestion of waste active sludge from perspectives of organic matter composition, thermodynamics, and multi-omics. WATER RESEARCH 2022; 226:119240. [PMID: 36272197 DOI: 10.1016/j.watres.2022.119240] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Although various pretreatments have been applied to promote the anaerobic digestion of waste active sludge (WAS), the mechanisms regarding the impact of pretreatment on anaerobic digestion have not been well addressed. In this study, the effects of acid, alkali, and thermal pretreatments on anaerobic digestion of WAS were comprehensively investigated from the perspectives of organic matter composition, thermodynamics, and multi-omics. Results showed acid, alkali, and thermal pretreatments increased the methane production potential of WAS by 53.7%, 98.2%, and 101.8%, respectively, compared with the control. The protein secondary structure was disrupted after pretreatment, with a shift from α-helix and β-sheet to random coil and antiparallel β-sheet/aggregated strands. Thermodynamically, the WAS flocculation process was controlled by the short-range interfacial interactions described by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, which was positively correlated (R = 0.97, p < 0.05) with the organic matter solubilization of the WAS. After pretreatment, the flocculation energy barrier of pretreated WAS was 4.1 (acid), 7.0 (alkali) and 7.1 (thermal) times higher than that of the control group, respectively. Multi-omics analysis confirmed that pretreatment promoted amino acids (tryptophan, tyrosine, phenylalanine, aspartate, glutamate) metabolism, energy metabolism (ABC transporters) and vitamin metabolism. Moreover, the comparison of upregulated differentially expressed proteins (DEPs) revealed that for amino acid metabolism, thermal treatment had the best promotion effect; for carbohydrate metabolism, alkali treatment had the best promotion effect; and for lipid metabolism, acid treatment was more advantageous, resulting in different anaerobic digestion efficiencies. This study provides an in-depth understanding of the impact of different pretreatments on WAS anaerobic digestion and has practical implication for the choice of proper pretreatment technology for biosolids.
Collapse
Affiliation(s)
- Yifeng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Dunjie Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
34
|
Zeng B, Pan Z, Xu Y, Long Y, Lin H, Zhang J, Shen L, Li R, Hong H, Zhang H. Molecular insights into membrane fouling caused by polysaccharides with different structures in polyaluminum chloride coagulation-ultrafiltration process. CHEMOSPHERE 2022; 307:135849. [PMID: 35948096 DOI: 10.1016/j.chemosphere.2022.135849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/02/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
In this study, mechanisms of membrane fouling caused by polysaccharides with different molecular structures in polyaluminum chloride (PACl) coagulation-ultrafiltration (C-UF) process were explored. Carrageenan and xanthan gum were chosen for model foulants of straight chain and branched chain polysaccharides, respectively. Filtration experiments showed that, with PACl dosage of 0-5 mM, specific filtration resistance (SFR) of carrageenan and xanthan solution showed a unimodal pattern and a continuous decrease pattern, respectively. A series of experimental characterizations indicated that the different SFR pattern was closely related to structure of foulants layer. Density functional theory (DFT) calculation suggested that Al3+ preferentially coordinating with the terminal sulfonyl groups of carrageenan chains to promote gel layer formation at low PACl concentration (0.15 mM). There existed a chemical potential gap between bound water in gel layer and free water in the permeate, so that, filtration through gel layer corresponded to rather high SFR for overcoming this gap. In contrast, Al3+ coordinating with the non-terminal sulfonyl groups of carrageenan at high PACl concentration caused transition from gel layer to cake layer, leading to SFR decrease. However, xanthan gum itself can form a dense gel layer with a complex polymer network by virtue of the interlacing of main chains and branches. Al3+ coordinating with the carboxyl groups on branched chains of xanthan gum resulted in clusters of polymer chains and flocculation, corresponding to the reduced SFR. This proposed molecular-level mechanism well explained membrane fouling behaviors of polysaccharides with different molecular structure, and also facilitated to optimize C-UF process for water treatment.
Collapse
Affiliation(s)
- Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Ying Long
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jianzhen Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| |
Collapse
|
35
|
Zou H, Long Y, Shen L, He Y, Zhang M, Lin H. Impacts of Calcium Addition on Humic Acid Fouling and the Related Mechanism in Ultrafiltration Process for Water Treatment. MEMBRANES 2022; 12:1033. [PMID: 36363588 PMCID: PMC9692280 DOI: 10.3390/membranes12111033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Humic acid (HA) is a major natural organic pollutant widely coexisting with calcium ions (Ca2+) in natural water and wastewater bodies, and the coagulation-ultrafiltration process is the most typical solution for surface water treatment. However, little is known about the influences of Ca2+ on HA fouling in the ultrafiltration process. This study explored the roles of Ca2+ addition in HA fouling and the potential of Ca2+ addition for fouling mitigation in the coagulation-ultrafiltration process. It was found that the filtration flux of HA solution rose when Ca2+ concentration increased from 0 to 5.0 mM, corresponding to the reduction of the hydraulic filtration resistance. However, the proportion and contribution of each resistance component in the total hydraulic filtration resistance have different variation trends with Ca2+ concentration. An increase in Ca2+ addition (0 to 5.0 mM) weakened the role of internal blocking resistance (9.02% to 4.81%) and concentration polarization resistance (50.73% to 32.17%) in the total hydraulic resistance but enhanced membrane surface deposit resistance (33.93% to 44.32%). A series of characterizations and thermodynamic analyses consistently suggest that the enlarged particle size caused by the Ca2+ bridging effect was the main reason for the decreased filtration resistance of the HA solution. This work revealed the impacts of Ca2+ on HA fouling and demonstrated the feasibility to mitigate fouling by adding Ca2+ in the ultrafiltration process to treat HA pollutants.
Collapse
Affiliation(s)
- Hui Zou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ying Long
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yiming He
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua 321004, China
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
36
|
Oberoi AS, Surendra KC, Wu D, Lu H, Wong JWC, Kumar Khanal S. Anaerobic membrane bioreactors for pharmaceutical-laden wastewater treatment: A critical review. BIORESOURCE TECHNOLOGY 2022; 361:127667. [PMID: 35878778 DOI: 10.1016/j.biortech.2022.127667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceuticalsare a diverse group of chemical compounds widely used for prevention and treatment of infectious diseases in both humans and animals. Pharmaceuticals, either in their original or metabolite form, find way into the wastewater treatment plants (WWTPs) from different sources. Recently, anaerobic membrane bioreactors (AnMBR) has received significant research attention for the treatment of pharmaceuticals in various wastewater streams. This review critically examines the behaviour and removal of a wide array of pharmaceuticals in AnMBR with primary focus on their removal efficiencies and mechanisms, critical influencing factors, and the microbial community structures. Subsequently, the inhibitory effects of pharmaceuticals on the performance of AnMBR and membrane fouling are critically discussed. Furthermore, the imperative role of membrane biofouling layer and its components in pharmaceuticals removal is highlighted. Finally, recent advancements in AnMBR configurations for membrane fouling control and enhanced pharmaceuticals removal are systemically discussed.
Collapse
Affiliation(s)
- Akashdeep Singh Oberoi
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawaì'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA; Global Institute for Interdisciplinary Studies, 44600 Kathmandu, Nepal.
| | - Di Wu
- Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon, Republic of Korea.
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China.
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaì'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
37
|
Baranlouie S, Aroujalian A, Salimi P. Effect of corona discharge treatment on the polyethersulfone microfiltration membrane surfaces to reduce fouling phenomenon during tomato juice clarification. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2119138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Saba Baranlouie
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Abdolreza Aroujalian
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Parisa Salimi
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
38
|
Xu Y, Han B, Xiao K, Yu J, Zheng J, Liang S, Wang X, Xu G, Huang X. Revisiting the Surface Energy Parameters of Standard Test Liquids with a Corrected Contact Angle Method over Rough Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10760-10767. [PMID: 35998607 DOI: 10.1021/acs.langmuir.2c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Interfacial free energy is a quantitative basis for explaining and predicting interfacial behavior that is ubiquitous in nature. The contact angle (CA) method can determine the surface free energy (γ) as well as Lifshitz-van der Waals (γLW) and Lewis acid/base (γ+/γ-) components of a solid material from its CAs with a set of known test liquids according to the extended Young-Dupré equation. However, the reliability of the "known" parameters of the test liquids is questioned due to the long-neglected surface roughness effect during calibration of the liquids. This study proposed a simple and practicable two-step approach to correct the energy parameters of several test liquids by incorporating Wenzel's surface roughness relationship into CA measurement. Step 1: water and two apolar liquids (diiodomethane and α-bromonaphthalene) were used as benchmarks to calibrate the surface roughness and energy parameters of two reference solids [apolar poly(tetrafluoroethylene) and monopolar poly(methyl methacrylate)], and step 2: the reference solids were used to calibrate any other test liquids by solving the energy parameters from their CAs in the extended Young-Dupré-Wenzel model. Monte Carlo simulation was used to evaluate error transmission and robustness of the model solutions. The obtained energy parameters (γLW/γ+/γ-) of four test liquids (dimethyl sulfoxide, formamide, ethylene glycol, and glycerol) are 28.01/13.68/4.67, 34.95/3.53/37.62, 26.26/7.51/15.74, and 32.99/9.24/26.02 mJ/m2, respectively, and different from the literature values. The liquids were applied to characterize an example solid surface with true γLW/γ+/γ- values of 28.00/1.00/8.00 mJ/m2 and a roughness index (r) of 1.60. Without correction of the liquid parameters, the calculated surface energy, hydration energy, and hydrophobic attraction energy of the solid sample can deviate by 50, 13, and 27%, respectively. This proves the necessity of correcting parameters of the test liquids before they can be used in CA and interfacial energy studies in the presence of surface roughness.
Collapse
Affiliation(s)
- Yirong Xu
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing 101408, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bingjun Han
- College of Urban and Environmental Sciences, Peking University, Beijing 100084, China
| | - Kang Xiao
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing 101408, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jinlan Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianzhong Zheng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shuai Liang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guoren Xu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
39
|
Xue M, Gao H, Dong X, Zhan M, Yang G, Yu R. Promotion and mechanisms of Bdellovibrio sp. Y38 on membrane fouling alleviation in membrane bioreactor. ENVIRONMENTAL RESEARCH 2022; 212:113593. [PMID: 35660406 DOI: 10.1016/j.envres.2022.113593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/17/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Membrane fouling is a major bottleneck limiting the widespread application of membrane bioreactors (MBR). In this study, Bdellovibrio sp. Y38, an obligate bacteriophage bacterium of Bdellovibrio-and-like organisms (BALOs), was enriched into highly concentrated culture medium (106-107 PFU/mL), and daily dosed into the MBR to investigate its effects on membrane fouling mitigation. The strain Y38 prolonged the membrane fouling cycle from 73 days to 90 days, indicating its membrane fouling alleviation potentials. The concentration of BALOs was increased 625 times higher than the control group after the whole operation, resulting in the concentration of chemical oxygen demand and nucleic acids in the liquid phase of the MBR system being significantly increased by 169.8 ± 1.5% and 126.7 ± 2.2%, respectively. The biomass growth rate was reduced by 27.2 ± 0.7% from day 0 to day 54. These results indicated the predation potential of Bdellovibrio sp. Y38 on the microorganisms in the sludge. The improvement of homogenized sludge and filtration and settling performance by the strain Y38 alleviated the membrane fouling. Compared with the control group, the macromolecular proteins in SMP and EPS were partially declined, and the polysaccharide in EPS decreased by 14.0 ± 3.9%, and the ratios of protein content to polysaccharide content (PN/PS) in SMP and EPS significantly increased by 35.6 ± 16.8% and 57.8 ± 6.1% at the middle stage, respectively, indicating the strain Y38 could alleviate membrane fouling by reducing and modifying SMP and EPS. Furthermore, the relative abundance of γ-proteobacteria decreased from 13.2% to 5.1% at the pre-middle stage, and Planctomycetes decreased from 1.5% to 0.8% at the end-stage, which were probably responsible for the membrane fouling mitigation. In addition, the strain Y38 had few impacts on the water treatment performance of MBR. There findings provide a promising strategy for in situ membrane pollution mitigation via exogenous additions of BALOs.
Collapse
Affiliation(s)
- Mengting Xue
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xiaona Dong
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Manjun Zhan
- Nanjing Research Institute of Environmental Protection, Nanjing Environmental Protection Bureau, Nanjing, Jiangsu, 210013, China
| | - Guangping Yang
- Nanjing Chinair Envir Sci-Tech Co., Ltd., Nanjing, Jiangsu, 210019, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
40
|
Zeng B, Pan Z, Shen L, Zhao D, Teng J, Hong H, Lin H. Effects of polysaccharides' molecular structure on membrane fouling and the related mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155579. [PMID: 35508249 DOI: 10.1016/j.scitotenv.2022.155579] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Fouling behaviors of polysaccharides vary with their structure, while the mechanisms underlying this phenomenon remain unexplored. This work was carried out to explore the thermodynamic fouling mechanisms of polysaccharides with different structure. Carrageenan and xanthan gum were selected as the model polysaccharides with structure of straight and branch chains, respectively. Batch filtration experiments showed that xanthan gum solution corresponded to a more rapid flux decline trend, and specific filtration resistance (SFR) of xanthan gum (2.32 × 1015 m-1 kg-1) was over 10 times than that of carrageenan (2.21 × 1014 m-1 kg-1). It was found that, xanthan gum possessed a more disordered structure and a rather higher viscosity (15.03 mPa·s V.S. 1.98 mPa·s for carrageenan). Calculation of extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory showed higher adhesion energy of xanthan gum (-42.82 my m-2 V.S. -23.26 mJ m-2 for carrageenan). Scanning electron microscopy (SEM) analyses showed that xanthan gum gel layer had a more homogenous structure and rigid polymer backbone, indicating better mixing with water to form a gel. As verified by heating experiments, such a structure tended to contain more bound water. According to this information, Flory-Huggins lattice theory was introduced to build a bridge between polymeric structure and SFR. It was revealed that branch structure corresponded to higher chemical potential change during gel layer formation, and higher ability to carry bound water, resulting in higher filtration resistance during filtration process. This work revealed the fundamental thermodynamic mechanism of membrane fouling caused by polysaccharides with different structure, deepening understanding of membrane fouling.
Collapse
Affiliation(s)
- Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Dieling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiaheng Teng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
41
|
Zhu J, You H, Ng HY, Li Z, Xie B, Chen H, Ding Y, Tan H, Liu F, Zhang C. Impacts of bio-carriers on the characteristics of cake layer and membrane fouling in a novel hybrid membrane bioreactor for treating mariculture wastewater. CHEMOSPHERE 2022; 300:134593. [PMID: 35427670 DOI: 10.1016/j.chemosphere.2022.134593] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/25/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Membrane fouling is generally considered as a major bottleneck to the wide application of membrane bioreactor (MBR) for high saline mariculture wastewater treatment. Though numerous researches have investigated the membrane fouling of MBR combined with bio-carriers, few studies reveal the impacts of bio-carriers on the characteristics of cake layer and the mechanism of bio-carriers alleviating membrane fouling. In this study, two systems, namely carriers-enhanced MBR (R1) and conventional MBR (R2) were parallel operated, drawing a conclusion that bio-carriers effectively improved the characteristics of cake layer, thus mitigating membrane fouling. Fluorescence excitation emission matrix (EEM) analysis indicated that bio-carriers reduced the adhesion of proteins and humic acid-like materials on membrane surface. Molecular weight (Mw) distribution suggested that soluble microbial products (SMP) with small Mw (6-20 kDa) and biopolymers in extracellular polymeric substances (EPS) (50-300 kDa) was easier to accumulate on membrane surface in R2. The above results indicated that the presence of bio-carriers could effectively reduce the attachment of these organics on membrane surface, contributing to a larger porosity of cake layer and thus mitigating membrane fouling. Meanwhile, gas chromatography-mass spectrometry (GC-MS) clarified that more components were present in R2 than R1. Moreover, the majority of compounds in the SMP were present in both systems, while only 14 compounds in the EPS were the same between R1 and R2. Noticeably, certain aromatics only existed in R2, suggesting that bio-carriers effectively reduced the accumulation of recalcitrant materials, especially aromatics. These results revealed that bio-carriers shifted the precise composition of cake layers.
Collapse
Affiliation(s)
- Jing Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China
| | - How Yong Ng
- Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Zhipeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China.
| | - Binghan Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China
| | - Hongying Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yi Ding
- Marine College, Shandong University at Weihai, Weihai, 264209, China
| | - Haili Tan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China
| | - Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, China
| | - Chunpeng Zhang
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), Jilin University, Changchun, 130021, China
| |
Collapse
|
42
|
Zou H, Rutta NC, Chen S, Zhang M, Lin H, Liao B. Membrane Photobioreactor Applied for Municipal Wastewater Treatment at a High Solids Retention Time: Effects of Microalgae Decay on Treatment Performance and Biomass Properties. MEMBRANES 2022; 12:membranes12060564. [PMID: 35736271 PMCID: PMC9227378 DOI: 10.3390/membranes12060564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Membrane photobioreactor (MPBR) technology is a microalgae-based system that can simultaneously realize nutrient recovery and microalgae cultivation in a single step. Current research is mainly focused on the operation of MPBR at a medium SRT. The operation of MPBR at a high SRT is rarely reported in MPBR studies. Therefore, this study conducted a submerged MPBR to treat synthetic municipal wastewater at a long solids retention time of 50 d. It was found that serious microalgae decay occurred on day 23. A series of characterizations, including the biomass concentration, chlorophyll-a content, nutrients removal, and physical-chemical properties of the microalgae, were conducted to evaluate how microalgae decay affects the treatment performance and biomass properties. The results showed that the biomass concentration and chlorophyll-a/MLSS dropped rapidly from 3.48 to 1.94 g/L and 34.56 to 10.71 mg/g, respectively, after the occurrence of decay. The effluent quality significantly deteriorated, corresponding to the total effluent nitrogen and total phosphorus concentration sharply rising and exceeding that of the feed. In addition, the particle became larger, the content of the extracellular polymeric substances (EPSs) decreased, and the soluble microbial products (SMPs) increased instantaneously. However, the filtration resistance had no significant increase because of the comprehensive interactions of the floc size, EPSs, and SMPs. The above results suggest that the MPBR system cannot maintain long-term operation under a high SRT for municipal wastewater treatment. In addition, the biological treatment performance of the MPBR deteriorated while the antifouling performance of the microalgae flocs improved after the occurrence of decay. The occurrence of microalgae decay was attributed to the double stresses from the light shading and intraspecific competition under high biomass concentration. Therefore, to avoid microalgae decay, periodic biomass removal is required to control the environmental stress within the tolerance range of the microalgae. Further studies are required to explore the underlying mechanism of the occurrence of decay.
Collapse
Affiliation(s)
- Hui Zou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; (H.Z.); (N.C.R.); (S.C.)
| | - Neema Christopher Rutta
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; (H.Z.); (N.C.R.); (S.C.)
| | - Shilei Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; (H.Z.); (N.C.R.); (S.C.)
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; (H.Z.); (N.C.R.); (S.C.)
- Correspondence: (M.Z.); (H.L.)
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; (H.Z.); (N.C.R.); (S.C.)
- Correspondence: (M.Z.); (H.L.)
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada;
| |
Collapse
|
43
|
Pan Z, Zeng B, Lin H, Teng J, Zhang H, Hong H, Zhang M. Fundamental thermodynamic mechanisms of membrane fouling caused by transparent exopolymer particles (TEP) in water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153252. [PMID: 35066039 DOI: 10.1016/j.scitotenv.2022.153252] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
While transparent exopolymer particles (TEP) has high fouling potential, its underlying fouling mechanisms have not yet been well revealed. In current work, fouling characteristics of TEP under different Ca2+ concentrations (0 to 1.5 mM) were investigated. TEP quantification and filtration tests showed that TEP contents increased with Ca2+ concentration, while TEP's specific filtration resistance (SFR) under the influence of Ca2+ concentration presented a unimodal pattern. The peak of TEP's SFR reached at Ca2+ concentration of 1 mM when SA concentration was 0.3 g·L-1. A series of characterizations suggested that microstructure transformation of TEP particles was the main contributor to the resistance variations of TEP solution. The optical microscope observation showed that above and below the critical Ca2+ concentration (1 mM when SA concentration is 0.3 g·L-1 in this study), the formed TEP existed in the form of c-TEP (average particle size is 0.24 μm) and p-TEP (average particle size is 1.05 μm), respectively. Thermodynamic analysis showed that the adhesion ability of c-TEP (-249,989 and - 303,692 kT) was more than 19 times than that of p-TEP (-12,905 kT), which would accelerate foulant layer formation. In addition, below the critical value, the increased SFR with Ca2+ concentration could be explained by integrating Flory-Huggins lattice theory with the preferential intermolecular coordination. Above the critical value, the decreased SFR can be attributed to the formation of a "large-size crack structure" cake layer from the p-TEP. This study revealed fundamental mechanisms of membrane fouling caused by TEP, greatly deepening understanding of TEP fouling, and facilitating to development of effective fouling control strategies.
Collapse
Affiliation(s)
- Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiaheng Teng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
44
|
Zhang B, Tang H, Gu X, Li X, Zhang B, Shen Y, Shi W. Discrepant effects of monovalent cations on membrane fouling induced by colloidal polymer: Evaluation and mechanism investigation. CHEMOSPHERE 2022; 295:133939. [PMID: 35149021 DOI: 10.1016/j.chemosphere.2022.133939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Understanding how ionic conditions affect membrane fouling induced by anionic polyacrylamide (APAM) is important for achieving long-term and stable operation of a polymer flooding produced wastewater (PFPW) membrane separation process. However, there is lack of studies on the effects of monovalent cations (Na+ and K+) on APAM-based membrane fouling. In this work, the effects of Na+ and K+ on filtration efficiency, flux decline behavior, fouling resistance, and cleaning efficiency were studied through a series of microfiltration tests. Moreover, the influencing mechanism of membrane fouling was further comprehensively revealed from the aspects of the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, the hydration force, and the microstructure characterizations. The XDLVO theory agreed well with membrane fouling behavior at various ionic strengths. The increase in ionic strength (0-10,000 mg/L) of Na+ and K+ exacerbated the reduction of relative flux (J/J0) and the accumulation of fouling resistance, as well as made the porous APAM-induced fouling layer denser and more compact, boosting removal efficiency. Furthermore, K+ had a stronger aggravating effect on membrane fouling than Na+. Specifically, the final value of J/J0 for APAM+K+ (0.08) was lower than that for APAM + Na+ (0.12), and the fouling resistance for APAM+K+ (12.25 × 1011 m-1) was higher than that for APAM + Na+ (12.01 × 1011 m-1) at an ionic strength of 10,000 mg/L, which was owing to the larger hydration force caused by Na+ with a smaller ionic radius. This research offers practical guidance for the PFPW membrane filtering process.
Collapse
Affiliation(s)
- Bing Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Heli Tang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xiaolong Gu
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xiaohong Li
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Bing Zhang
- School of Environmental and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co.Ltd., Chongqing, 400060, China.
| | - Wenxin Shi
- School of Environmental and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
45
|
Permeation Increases Biofilm Development in Nanofiltration Membranes Operated with Varying Feed Water Phosphorous Concentrations. MEMBRANES 2022; 12:membranes12030335. [PMID: 35323810 PMCID: PMC8950030 DOI: 10.3390/membranes12030335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023]
Abstract
Nutrient limitation has been proposed as a biofouling control strategy for membrane systems. However, the impact of permeation on biofilm development under phosphorus-limited and enriched conditions is poorly understood. This study analyzed biofilm development in membrane fouling simulators (MFSs) with and without permeation supplied with water varying dosed phosphorus concentrations (0 and 25 μg P·L−1). The MFSs operated under permeation conditions were run at a constant flux of 15.6 L·m2·h−1 for 4.7 days. Feed channel pressure drop, transmembrane pressure, and flux were used as performance indicators. Optical coherence tomography (OCT) images and biomass quantification were used to analyze the developed biofilms. The total phosphorus concentration that accumulated on the membrane and spacer was quantified by using microwave digestion and inductively coupled plasma atomic emission spectroscopy (ICP-OES). Results show that permeation impacts biofilm development depending on nutrient condition with a stronger impact at low P concentration (pressure drop increase: 282%; flux decline: 11%) compared to a higher P condition (pressure drop increase: 206%; flux decline: 2%). The biofilm that developed at 0 μg P·L−1 under permeation conditions resulted in a higher performance decline due to biofilm localization and spread in the MFS. A thicker biofilm developed on the membrane for biofilms grown at 0 μg P·L−1 under permeation conditions, causing a stronger effect on flux decline (11%) compared to non-permeation conditions (5%). The difference in the biofilm thickness on the membrane was attributed to a higher phosphorus concentration in the membrane biofilm under permeation conditions. Permeation has an impact on biofilm development and, therefore, should not be excluded in biofouling studies.
Collapse
|
46
|
Zhang M, Gu J, Wang S, Liu Y. A mainstream anammox fixed-film membrane bioreactor with novel sandwich-structured carriers for fast start-up, effective sludge retention and membrane fouling mitigation. BIORESOURCE TECHNOLOGY 2022; 347:126370. [PMID: 34801720 DOI: 10.1016/j.biortech.2021.126370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Novel sandwich-structured carriers were developed for fast immobilizing anammox sludge, with which a fixed-film membrane bioreactor was further established for treating municipal wastewater. Results showed that fast start-up of the fixed-film reactor with anammox bacteria could be achieved without lag phase, indicated by the respective nitrogen removal efficiency and rate of 70.58 ± 0.66% and 0.12 g N/(L·d). Meanwhile, low membrane fouling 0.0017 bar/hour was also observed. The activity of anammox sludge fixed in the novel carriers gradually stabilized at the level of 6.59 mg N/(g VSS·h), while Candidatus Kuenenia as the dominant anammox bacteria were enriched from the initial abundance of 15.16% to 39.12% after a long-term operation. Consequently, it was demonstrated that the sandwich-structured carriers developed in this study could offer a promising alternative for fast immobilization and start-up of mainstream anammox process.
Collapse
Affiliation(s)
- Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Jun Gu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Siyu Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
47
|
Chen H, Tian Y, Hu Z, Wang C, Xie P, Chen L, Yang F, Liang Y, Mu C, Wei C, Ting YP, Qiu G, Song Y. Bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) mediated membrane fouling in membrane bioreactor. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Multivariable identification of membrane fouling based on compacted cascade neural network. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Chang M, Liang B, Zhang K, Wang Y, Jin D, Zhang Q, Hao L, Zhu T. Simultaneous shortcut nitrification and denitrification in a hybrid membrane aerated biofilms reactor (H-MBfR) for nitrogen removal from low COD/N wastewater. WATER RESEARCH 2022; 211:118027. [PMID: 35026548 DOI: 10.1016/j.watres.2021.118027] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The residues of nitrogen contaminants due to insufficient organic carbon sources in sewage has always been the main problem faced by wastewater treatment plants in the process of nitrogen removal. In this study, simultaneous shortcut nitrification and denitrification (SND) was achieved in the hybrid membrane aerated biofilm reactor (H-MBfR) for treating low COD/N ratio (∼x223C 4: 1) wastewater. The effects of the aeration pressure and the influent COD/N ratio in H-MBfR were investigated and further optimized by the response surface methodology (RSM). By controlling the dissolved oxygen to achieve SND, the removal efficiencies of NH4+-N, COD and TN of low COD/N ratio wastewater reached maximum values of 95.52%, 96.61% and 72.23%, respectively. Microbial community analysis showed that the influent COD/N ratio had an obvious influence on the microbial community structure. In particular, ammonia oxidizing bacteria (AOB) and denitrifying bacteria had a good commensalism when the COD/N ratio was 4.3. Compared to control reactor, the analysis of membrane bio-fouling showed that H-MBfR has a lower amount of extracellular polymeric substance (EPS) on membrane and a low concentration of MLSS in bulk liquid, which is helpful for the longer-term operation of H-MBfR.
Collapse
Affiliation(s)
- Mingdong Chang
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang 110819, China
| | - Baorui Liang
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang 110819, China
| | - Kuo Zhang
- College of Environmental Sciences and Engineering, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, P.R. China
| | - Youzhao Wang
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang 110819, China; DongYuan Environment S&T, 400-19, Zhihui 2 Road, Hunnan District, Shenyang 110004, China.
| | - Dongtian Jin
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang 110819, China
| | - Qingjun Zhang
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang 110819, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110112, China.
| | - Tong Zhu
- School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang 110819, China.
| |
Collapse
|
50
|
Sengar A, Vijayanandan A. Effects of pharmaceuticals on membrane bioreactor: Review on membrane fouling mechanisms and fouling control strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152132. [PMID: 34863739 DOI: 10.1016/j.scitotenv.2021.152132] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 05/27/2023]
Abstract
Pharmaceuticals have become contaminants of emerging concern due to their toxicity towards aquatic life and pseudo persistent nature in the environment. Membrane bioreactor (MBR) is one such technology that has the potential to act as a barrier against the release of pharmaceuticals into the environment. Fouling is the deposition of the constituents of the mixed liquor on the membrane surface and it limit the world-wide applicability of MBRs. To remove foulant layer, aggressive chemicals and extra cost consideration in terms of energy are required. Extracellular polymeric substances (EPS) and soluble microbial products (SMP) are recognized as principal foulants. Presence of pharmaceuticals has been found to increase the fouling in MBRs. Fouling aggravates in proportion to the concentration of pharmaceuticals. Pharmaceuticals exert chemical stress in microbes, hence forcing them to secrete more EPS/SMP. Pharmaceuticals alter the composition of the foulants and affect microbial metabolism, thereby inflicting direct/indirect effects on fouling. Pharmaceuticals have been found to increase or decrease the size of sludge flocs, however the exact mechanism that govern the floc size change is yet to be understood. Different techniques such as coupling advanced oxidation processes with MBR, adding activated carbon, bioaugmenting MBR with quorum quenching strains have shown to reduce fouling in MBRs treating pharmaceutical wastewater. These fouling mitigation techniques work on reducing the EPS/SMP concentration, thereby alleviating fouling. The present review provides a comprehensive understanding of the effects induced by pharmaceuticals in the activated sludge characteristics and identifying the fouling mechanism. Furthermore, significant knowledge gaps and recent advances in fouling mitigation strategies are discussed. This review has also made an effort to highlight the positive aspect of the foulant layer in retaining pharmaceuticals and antibiotic resistance genes, thereby suggesting a possible delicate trade-off between the flux decline and enhanced removal of pharmaceuticals.
Collapse
Affiliation(s)
- Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|