1
|
Coimbra JTS, Neves RPP, Cunha AV, Ramos MJ, Fernandes PA. Different Enzyme Conformations Induce Different Mechanistic Traits in HIV‐1 Protease. Chemistry 2022; 28:e202201066. [DOI: 10.1002/chem.202201066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 11/06/2022]
Affiliation(s)
- João T. S. Coimbra
- LAQV/REQUIMTE Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Rui P. P. Neves
- LAQV/REQUIMTE Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Ana V. Cunha
- Scientific Computing Group Oak Ridge National Laboratory 1 Bethel Valley Rd 37831-6373 Oak Ridge TN USA
- Presnt address: Department of Chemistry University of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Maria J. Ramos
- LAQV/REQUIMTE Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| | - Pedro A. Fernandes
- LAQV/REQUIMTE Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
| |
Collapse
|
2
|
Celebi M, Inan T, Kurkcuoglu O, Akten ED. Potential allosteric sites captured in glycolytic enzymes via residue-based network models: Phosphofructokinase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase. Biophys Chem 2021; 280:106701. [PMID: 34736071 DOI: 10.1016/j.bpc.2021.106701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 01/05/2023]
Abstract
Likelihood of new allosteric sites for glycolytic enzymes, phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GADPH) and pyruvate kinase (PK) was evaluated for bacterial, parasitic and human species. Allosteric effect of a ligand binding at a site was revealed on the basis of low-frequency normal modes via Cα-harmonic residue network model. In bacterial PFK, perturbation of the proposed allosteric site outperformed the known allosteric one, producing a high amount of stabilization or reduced dynamics, on all catalytic regions. Another proposed allosteric spot at the dimer interface in parasitic PFK exhibited major stabilization effect on catalytic regions. In parasitic GADPH, the most desired allosteric response was observed upon perturbation of its tunnel region which incorporated key residues for functional regulation. Proposed allosteric site in bacterial PK produced a satisfactory allosteric response on all catalytic regions, whereas in human and parasitic PKs, a partial inhibition was observed. Residue network model based solely on contact topology identified the 'hub residues' with high betweenness tracing plausible allosteric communication pathways between distant functional sites. For both bacterial PFK and PK, proposed sites accommodated hub residues twice as much as the known allosteric site. Tunnel region in parasitic GADPH with the strongest allosteric effect among species, incorporated the highest number of hub residues. These results clearly suggest a one-to-one correspondence between the degree of allosteric effect and the number of hub residues in that perturbation site, which increases the likelihood of its allosteric nature.
Collapse
Affiliation(s)
- Metehan Celebi
- Graduate Program of Computational Biology and Bioinformatics, Graduate School of Science and Engineering, Kadir Has University, Istanbul, Turkey
| | - Tugce Inan
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ozge Kurkcuoglu
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ebru Demet Akten
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey.
| |
Collapse
|
3
|
Sherry D, Worth R, Sayed Y. Elasticity-Associated Functionality and Inhibition of the HIV Protease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:79-108. [PMID: 34351572 DOI: 10.1007/5584_2021_655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV protease plays a critical role in the life cycle of the virus through the generation of mature and infectious virions. Detailed knowledge of the structure of the enzyme and its substrate has led to the development of protease inhibitors. However, the development of resistance to all currently available protease inhibitors has contributed greatly to the decreased success of antiretroviral therapy. When therapy failure occurs, multiple mutations are found within the protease sequence starting with primary mutations, which directly impact inhibitor binding, which can also negatively impact viral fitness and replicative capacity by decreasing the binding affinity of the natural substrates to the protease. As such, secondary mutations which are located outside of the active site region accumulate to compensate for the recurrently deleterious effects of primary mutations. However, the resistance mechanism of these secondary mutations is not well understood, but what is known is that these secondary mutations contribute to resistance in one of two ways, either through increasing the energetic penalty associated with bringing the protease into the closed conformation, or, through decreasing the stability of the protein/drug complex in a manner that increases the dissociation rate of the drug, leading to diminished inhibition. As a result, the elasticity of the enzyme-substrate complex has been implicated in the successful recognition and catalysis of the substrates which may be inferred to suggest that the elasticity of the enzyme/drug complex plays a role in resistance. A realistic representation of the dynamic nature of the protease may provide a more powerful tool in structure-based drug design algorithms.
Collapse
Affiliation(s)
- Dean Sherry
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Roland Worth
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
4
|
The Picornavirus Precursor 3CD Has Different Conformational Dynamics Compared to 3C pro and 3D pol in Functionally Relevant Regions. Viruses 2021; 13:v13030442. [PMID: 33803479 PMCID: PMC8001691 DOI: 10.3390/v13030442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Viruses have evolved numerous strategies to maximize the use of their limited genetic material, including proteolytic cleavage of polyproteins to yield products with different functions. The poliovirus polyprotein 3CD is involved in important protein-protein, protein-RNA and protein-lipid interactions in viral replication and infection. It is a precursor to the 3C protease and 3D RNA-dependent RNA polymerase, but has different protease specificity, is not an active polymerase, and participates in other interactions differently than its processed products. These functional differences are poorly explained by the known X-ray crystal structures. It has been proposed that functional differences might be due to differences in conformational dynamics between 3C, 3D and 3CD. To address this possibility, we conducted nuclear magnetic resonance spectroscopy experiments, including multiple quantum relaxation dispersion, chemical exchange saturation transfer and methyl spin-spin relaxation, to probe conformational dynamics across multiple timescales. Indeed, these studies identified differences in conformational dynamics in functionally important regions, including enzyme active sites, and RNA and lipid binding sites. Expansion of the conformational ensemble available to 3CD may allow it to perform additional functions not observed in 3C and 3D alone despite having nearly identical lowest-energy structures.
Collapse
|
5
|
Sanusi ZK, Lawal MM, Gupta PL, Govender T, Baijnath S, Naicker T, Maguire GEM, Honarparvar B, Roitberg AE, Kruger HG. Exploring the concerted mechanistic pathway for HIV-1 PR-substrate revealed by umbrella sampling simulation. J Biomol Struct Dyn 2020; 40:1736-1747. [PMID: 33073714 DOI: 10.1080/07391102.2020.1832578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
HIV-1 protease (HIV-1 PR) is an essential enzyme for the replication process of its virus, and therefore considered an important target for the development of drugs against the acquired immunodeficiency syndrome (AIDS). Our previous study shows that the catalytic mechanism of subtype B/C-SA HIV-1 PR follows a one-step concerted acyclic hydrolysis reaction process using a two-layered ONIOM B3LYP/6-31++G(d,p) method. This present work is aimed at exploring the proposed mechanism of the proteolysis catalyzed by HIV-1 PR and to ensure our proposed mechanism is not an artefact of a single theoretical technique. Hence, we present umbrella sampling method that is suitable for calculating potential mean force (PMF) for non-covalent ligand/substrate-enzyme association/dissociation interactions which provide thermodynamic details for molecular recognition. The free activation energy results were computed in terms of PMF analysis within the hybrid QM(DFTB)/MM approach. The theoretical findings suggest that the proposed mechanism corresponds in principle with experimental data. Given our observations, we suggest that the QM/MM MD method can be used as a reliable computational technique to rationalize lead compounds against specific targets such as the HIV-1 protease.
Collapse
Affiliation(s)
- Zainab K Sanusi
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Monsurat M Lawal
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Pancham Lal Gupta
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | | | - Sooraj Baijnath
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Sensing HIV Protease and Its Inhibitor Using "Helical Epitope"-Imprinted Polymers. SENSORS 2020; 20:s20123592. [PMID: 32630459 PMCID: PMC7348739 DOI: 10.3390/s20123592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
A helical epitope-peptide (lle85-Gly94) was selected from the α-helix structure of the HIV protease (PR) as the template, which represents an intricate interplay between structure conformation and dimerization. The peptide template was mixed with water, trifluoroethanol (TFE), and acetonitrile (ACN) at a certain ratio to enlarge the helical conformation in the solution for the fabrication of helical epitope-mediated molecularly imprinted polymers (HEMIPs) on a quartz crystal microbalance (QCM) chip. The template molecules were then removed under equilibrium batch rebinding conditions involving 5% acetic acid/water. The resulting HEMIPs chip exhibited a high affinity toward template peptide HIV PR85-94, His-tagged HIV PR, and HIV PR, with dissociation constants (Kd) as 160, 43.3, and 78.5 pM, respectively. The detection limit of the developed HIV PR85-94 QCM sensor is 0.1 ng/mL. The HEMIPs chip exhibited a high affinity and selectivity to bind HIV PR and subsequently to an inhibitor of HIV PR (nelfinavir). The HIV PR binding site was properly oriented on the HEMIPs-chip to develop a HIV PR/HEMIPs chip, which can effectively bind nelfinavir to establish a sandwich assay. The nelfinavir then attached to the HIV PR/HEMIPs chip, which can be easily removed involving 0.8% acetic acid/water. Therefore, HIV PR/HEMIPs chip can be useful to screen for other HIV PR inhibitors. This technique may improve drug targeting for HIV therapy and also strengthen investigations into other virus assays.
Collapse
|
7
|
Lawal MM, Sanusi ZK, Govender T, Maguire GE, Honarparvar B, Kruger HG. From Recognition to Reaction Mechanism: An Overview on the Interactions between HIV-1 Protease and its Natural Targets. Curr Med Chem 2020; 27:2514-2549. [DOI: 10.2174/0929867325666181113122900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 12/28/2022]
Abstract
Current investigations on the Human Immunodeficiency Virus Protease (HIV-1
PR) as a druggable target towards the treatment of AIDS require an update to facilitate further
development of promising inhibitors with improved inhibitory activities. For the past two
decades, up to 100 scholarly reports appeared annually on the inhibition and catalytic mechanism
of HIV-1 PR. A fundamental literature review on the prerequisite of HIV-1 PR action
leading to the release of the infectious virion is absent. Herein, recent advances (both computationally
and experimentally) on the recognition mode and reaction mechanism of HIV-1 PR
involving its natural targets are provided. This review features more than 80 articles from
reputable journals. Recognition of the natural Gag and Gag-Pol cleavage junctions by this
enzyme and its mutant analogs was first addressed. Thereafter, a comprehensive dissect of
the enzymatic mechanism of HIV-1 PR on its natural polypeptide sequences from literature
was put together. In addition, we highlighted ongoing research topics in which in silico
methods could be harnessed to provide deeper insights into the catalytic mechanism of the
HIV-1 protease in the presence of its natural substrates at the molecular level. Understanding
the recognition and catalytic mechanism of HIV-1 PR leading to the release of an infective
virion, which advertently affects the immune system, will assist in designing mechanismbased
inhibitors with improved bioactivity.
Collapse
Affiliation(s)
- Monsurat M. Lawal
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Zainab K. Sanusi
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Glenn E.M. Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
8
|
Kumar M, Mandal K, Blakeley MP, Wymore T, Kent SBH, Louis JM, Das A, Kovalevsky A. Visualizing Tetrahedral Oxyanion Bound in HIV-1 Protease Using Neutrons: Implications for the Catalytic Mechanism and Drug Design. ACS OMEGA 2020; 5:11605-11617. [PMID: 32478251 PMCID: PMC7254801 DOI: 10.1021/acsomega.0c00835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
HIV-1 protease is indispensable for virus propagation and an important therapeutic target for antiviral inhibitors to treat AIDS. As such inhibitors are transition-state mimics, a detailed understanding of the enzyme mechanism is crucial for the development of better anti-HIV drugs. Here, we used room-temperature joint X-ray/neutron crystallography to directly visualize hydrogen atoms and map hydrogen bonding interactions in a protease complex with peptidomimetic inhibitor KVS-1 containing a reactive nonhydrolyzable ketomethylene isostere, which, upon reacting with the catalytic water molecule, is converted into a tetrahedral intermediate state, KVS-1TI. We unambiguously determined that the resulting tetrahedral intermediate is an oxyanion, rather than the gem-diol, and both catalytic aspartic acid residues are protonated. The oxyanion tetrahedral intermediate appears to be unstable, even though the negative charge on the oxyanion is delocalized through a strong n → π* hyperconjugative interaction into the nearby peptidic carbonyl group of the inhibitor. To better understand the influence of the ketomethylene isostere as a protease inhibitor, we have also examined the protease structure and binding affinity with keto-darunavir (keto-DRV), which similar to KVS-1 includes the ketomethylene isostere. We show that keto-DRV is a significantly less potent protease inhibitor than DRV. These findings shed light on the reaction mechanism of peptide hydrolysis catalyzed by HIV-1 protease and provide valuable insights into further improvements in the design of protease inhibitors.
Collapse
Affiliation(s)
- Mukesh Kumar
- Protein Crystallography
Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Kalyaneswar Mandal
- Departments of Chemistry, and Biochemistry and Molecular Biology,
Institute for Biophysical Dynamics, University
of Chicago, Chicago, Illinois 60637, United States
| | - Matthew P. Blakeley
- Large Scale Structures Group, Institut Laue−Langevin, 38000 Grenoble, France
| | - Troy Wymore
- Department of Chemistry, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephen B. H. Kent
- Departments of Chemistry, and Biochemistry and Molecular Biology,
Institute for Biophysical Dynamics, University
of Chicago, Chicago, Illinois 60637, United States
| | - John M. Louis
- Laboratory of Chemical Physics, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892-0520, United States
| | - Amit Das
- Protein Crystallography
Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Andrey Kovalevsky
- Neutron Scattering
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
9
|
Enzymatic activity of human immunodeficiency virus type 1 protease in crowded solutions. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:685-689. [PMID: 31463540 PMCID: PMC6742607 DOI: 10.1007/s00249-019-01392-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/27/2019] [Accepted: 08/12/2019] [Indexed: 11/02/2022]
Abstract
Cells are crowded with various macromolecules and metabolites, which affect biochemical reactions in many ways, from the diffusion of substrates to catalytic activities of enzymes. We herein investigated the proteolytic activity of the human immunodeficiency virus type 1 protease (HIV-1 PR) under non-crowded and crowded conditions. The latter environment was mimicked with various (poly)ethylene glycol molecules as crowding agents. We found that these crowding agents affect the kinetic parameters of the HIV-1 PR catalyzed reaction by increasing the Michaelis-Menten constant and decreasing the maximum velocity. The influence of crowding was concentration dependent. We explain this effect by the dynamics of the HIV-1 PR flexible flaps that cover the peptide substrate binding site and are crucial for enzyme activity, and by a possibly slower substrate-enzyme association time in the crowded conditions.
Collapse
|
10
|
Calixto AR, Ramos MJ, Fernandes PA. Conformational diversity induces nanosecond-timescale chemical disorder in the HIV-1 protease reaction pathway. Chem Sci 2019; 10:7212-7221. [PMID: 31588289 PMCID: PMC6677113 DOI: 10.1039/c9sc01464k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/10/2019] [Indexed: 02/04/2023] Open
Abstract
The role of conformational diversity in enzyme catalysis has been a matter of analysis in recent studies. Pre-organization of the active site has been pointed out as the major source for enzymes' catalytic power. Following this line of thought, it is becoming clear that specific, instantaneous, non-rare enzyme conformations that make the active site perfectly pre-organized for the reaction lead to the lowest activation barriers that mostly contribute to the macroscopically observed reaction rate. The present work is focused on exploring the relationship between structure and catalysis in HIV-1 protease (PR) with an adiabatic mapping method, starting from different initial structures, collected from a classical MD simulation. The first, rate-limiting step of the HIV-1 PR catalytic mechanism was studied with the ONIOM QM/MM methodology (B3LYP/6-31G(d):ff99SB), with activation and reaction energies calculated at the M06-2X/6-311++G(2d,2p):ff99SB level of theory, in 19 different enzyme:substrate conformations. The results showed that the instantaneous enzyme conformations have two independent consequences on the enzyme's chemistry: they influence the barrier height, something also observed in the past in other enzymes, and they also influence the specific reaction pathway, which is something unusual and unexpected, challenging the "one enzyme-one substrate-one reaction mechanism" paradigm. Two different reaction mechanisms, with similar reactant probabilities and barrier heights, lead to the same gem-diol intermediate. Subtle nanosecond-timescale rearrangements in the active site hydrogen bonding network were shown to determine which reaction the enzyme follows. We named this phenomenon chemical disorder. The results make us realize the unexpected mechanistic consequences of conformational diversity in enzymatic reactivity.
Collapse
Affiliation(s)
- Ana Rita Calixto
- UCIBIO@REQUIMTE , Departamento de Química e Bioquímica , Faculdade de Ciências Universidade do Porto , Rua do Campo Alegre s/n , 4169-007 Porto , Portugal .
| | - Maria João Ramos
- UCIBIO@REQUIMTE , Departamento de Química e Bioquímica , Faculdade de Ciências Universidade do Porto , Rua do Campo Alegre s/n , 4169-007 Porto , Portugal .
| | - Pedro Alexandrino Fernandes
- UCIBIO@REQUIMTE , Departamento de Química e Bioquímica , Faculdade de Ciências Universidade do Porto , Rua do Campo Alegre s/n , 4169-007 Porto , Portugal .
| |
Collapse
|
11
|
Ledwaba J, Sayed Y, Pillay V, Morris L, Hunt G. Low Frequency of Protease Inhibitor Resistance Mutations and Insertions in HIV-1 Subtype C Protease Inhibitor-Naïve Sequences. AIDS Res Hum Retroviruses 2019; 35:673-678. [PMID: 30793914 DOI: 10.1089/aid.2019.0012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) protease sequences from 2,225 protease inhibitor (PI)-naïve HIV-1 subtype C-infected individuals collected over a 14-year period were analyzed for polymorphisms. Over 50% of sequences differed from an HIV-1 subtype B consensus sequence at 8 of the 99 amino acids at residues 12, 15, 19, 36, 41, 69, 89, and 93, but not in the functionally important regions. The frequency of primary resistance and accessory mutations occurred in <1% of the sequences. Of note, 11 sequences (0.5%) harbored amino acid insertions between residues 36 and 39, located in the elbow of the flap region. The insertions were found throughout the 13-year period. Occurrence of insertions in subtype C viruses is rare and viruses remain sensitive to currently used PIs (lopinavir/r, atazanavir/r, and darunavir/r). However, ongoing characterization of isolates is required to identify changes that may impact PI treatment since PIs are part of standard SA regimens.
Collapse
Affiliation(s)
- Johanna Ledwaba
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Visva Pillay
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Virology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gillian Hunt
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Virology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Lawal MM, Sanusi ZK, Govender T, Tolufashe GF, Maguire GEM, Honarparvar B, Kruger HG. Unraveling the concerted catalytic mechanism of the human immunodeficiency virus type 1 (HIV-1) protease: a hybrid QM/MM study. Struct Chem 2018. [DOI: 10.1007/s11224-018-1251-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Santos-Martins D, Calixto AR, Fernandes PA, Ramos MJ. A Buried Water Molecule Influences Reactivity in α-Amylase on a Subnanosecond Time Scale. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04400] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Diogo Santos-Martins
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ana R. Calixto
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
14
|
van Keulen SC, Gianti E, Carnevale V, Klein ML, Rothlisberger U, Delemotte L. Does Proton Conduction in the Voltage-Gated H + Channel hHv1 Involve Grotthuss-Like Hopping via Acidic Residues? J Phys Chem B 2017; 121:3340-3351. [PMID: 27801578 PMCID: PMC6310143 DOI: 10.1021/acs.jpcb.6b08339] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hv1s are ubiquitous highly selective voltage-gated proton channels involved in male fertility, immunology, and the invasiveness of certain forms of breast cancer. The mechanism of proton extrusion in Hv1 is not yet understood, while it constitutes the first step toward the design of high-affinity drugs aimed at this important pharmacological target. In this contribution, we explore the details of the mechanism via an integrative approach, using classical and QM/MM molecular dynamics simulations of a monomeric hHv1 model. We propose that protons localize in three binding sites along the channel lumen, formed by three pairs of conserved negatively charged residues lining the pore: D174/E153, D112/D185, and E119/D123. Local rearrangements, involving notably a dihedral transition of F150, a conserved phenylalanine lining the permeation pathway, appear to allow protons to hop from one acidic residue to the next through a bridging water molecule. These results constitute a first attempt at rationalizing hHv1 selectivity for H+ and the role played by D112 in this process. They pave the way for further quantitative characterization of H+ transport in hHv1.
Collapse
Affiliation(s)
- Siri C. van Keulen
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Eleonora Gianti
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122
| | - Michael L. Klein
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lucie Delemotte
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Present address: Science for Life Laboratory, Department of Theoretical Physics, KTH, Box 1031, SE-171 21 Solna, Stockholm, Sweden
| |
Collapse
|
15
|
Krzemińska A, Moliner V, Świderek K. Dynamic and Electrostatic Effects on the Reaction Catalyzed by HIV-1 Protease. J Am Chem Soc 2016; 138:16283-16298. [PMID: 27935692 DOI: 10.1021/jacs.6b06856] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
HIV-1 Protease (HIV-1 PR) is one of the three enzymes essential for the replication process of HIV-1 virus, which explains why it has been the main target for design of drugs against acquired immunodeficiency syndrome (AIDS). This work is focused on exploring the proteolysis reaction catalyzed by HIV-1 PR, with special attention to the dynamic and electrostatic effects governing its catalytic power. Free energy surfaces for all possible mechanisms have been computed in terms of potentials of mean force (PMFs) within hybrid QM/MM potentials, with the QM subset of atoms described at semiempirical (AM1) and DFT (M06-2X) level. The results suggest that the most favorable reaction mechanism involves formation of a gem-diol intermediate, whose decomposition into the product complex would correspond to the rate-limiting step. The agreement between the activation free energy of this step with experimental data, as well as kinetic isotope effects (KIEs), supports this prediction. The role of the protein dynamic was studied by protein isotope labeling in the framework of the Variational Transition State Theory. The predicted enzyme KIEs, also very close to the values measured experimentally, reveal a measurable but small dynamic effect. Our calculations show how the contribution of dynamic effects to the effective activation free energy appears to be below 1 kcal·mol-1. On the contrary, the electric field created by the protein in the active site of the enzyme emerges as being critical for the electronic reorganization required during the reaction. These electrostatic properties of the active site could be used as a mold for future drug design.
Collapse
Affiliation(s)
- Agnieszka Krzemińska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology , Zeromskiego 116, 90-924 Lodz, Poland
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castelló, Spain
| | - Katarzyna Świderek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology , Zeromskiego 116, 90-924 Lodz, Poland.,Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castelló, Spain
| |
Collapse
|
16
|
Soares RO, Torres PHM, da Silva ML, Pascutti PG. Unraveling HIV protease flaps dynamics by Constant pH Molecular Dynamics simulations. J Struct Biol 2016; 195:216-226. [PMID: 27291071 DOI: 10.1016/j.jsb.2016.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 11/15/2022]
Abstract
The active site of HIV protease (HIV-PR) is covered by two flaps. These flaps are known to be essential for the catalytic activity of the HIV-PR, but their exact conformations at the different stages of the enzymatic pathway remain subject to debate. Understanding the correct functional dynamics of the flaps might aid the development of new HIV-PR inhibitors. It is known that, the HIV-PR catalytic efficiency is pH-dependent, likely due to the influence of processes such as charge transfer and protonation/deprotonation of ionizable residues. Several Molecular Dynamics (MD) simulations have reported information about the HIV-PR flaps. However, in MD simulations the protonation of a residue is fixed and thus it is not possible to study the correlation between conformation and protonation state. To address this shortcoming, this work attempts to capture, through Constant pH Molecular Dynamics (CpHMD), the conformations of the apo, substrate-bound and inhibitor-bound HIV-PR, which differ drastically in their flap arrangements. The results show that the HIV-PR flaps conformations are defined by the protonation of the catalytic residues Asp25/Asp25' and that these residues are sensitive to pH changes. This study suggests that the catalytic aspartates can modulate the opening of the active site and substrate binding.
Collapse
Affiliation(s)
- Rosemberg O Soares
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Diretoria de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia Qualidade e Tecnologia (INMETRO), Xerém, Brazil.
| | - Pedro H M Torres
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Manuela L da Silva
- Diretoria de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia Qualidade e Tecnologia (INMETRO), Xerém, Brazil
| | - Pedro G Pascutti
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Diretoria de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia Qualidade e Tecnologia (INMETRO), Xerém, Brazil
| |
Collapse
|
17
|
Wiley AP, Williams SL, Essex JW. Conformational Motions of HIV-1 Protease Identified Using Reversible Digitally Filtered Molecular Dynamics. J Chem Theory Comput 2015; 5:1117-28. [PMID: 26609621 DOI: 10.1021/ct800152d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV-1 protease performs a vital step in the propagation of the HIV virus and is therefore an important drug target in the treatment of AIDS. It consists of a homodimer, with access to the active site limited by two protein flaps. NMR studies have identified two time scales of motions that occur in these flaps, and it is thought that the slower of these is responsible for a conformational change that makes the protein ligand-accessible. This motion occurs on a time scale outside that achievable using traditional molecular dynamics simulations. Reversible Digitally Filtered Molecular Dynamics (RDFMD) is a method that amplifies low frequency motions associated with conformational change and has recently been applied to, among others, E. coli dihydrofolate reductase, inducing a conformational change between known crystal structures. In this paper, the conformational motions of HIV-1 protease produced during MD and RDFMD simulations are presented, including movement between the known semiopen and closed conformations, and the opening and closing of the protein flaps.
Collapse
Affiliation(s)
- Adrian P Wiley
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K
| | - Sarah L Williams
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K
| | - Jonathan W Essex
- School of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K
| |
Collapse
|
18
|
Conformational variation of an extreme drug resistant mutant of HIV protease. J Mol Graph Model 2015; 62:87-96. [PMID: 26397743 DOI: 10.1016/j.jmgm.2015.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 09/03/2015] [Accepted: 09/05/2015] [Indexed: 11/24/2022]
Abstract
Molecular mechanisms leading to high level drug resistance have been analyzed for the clinical variant of HIV-1 protease bearing 20 mutations (PR20); which has several orders of magnitude worse affinity for tested drugs. Two crystal structures of ligand-free PR20 with the D25N mutation of the catalytic aspartate (PR20D25N) revealed three dimers with different flap conformations. The diverse conformations of PR20D25N included a dimer with one flap in a unique "tucked" conformation; directed into the active site. Analysis of molecular dynamics (MD) simulations of the ligand-free PR20 and wild-type enzymes showed that the mutations in PR20 alter the correlated interactions between two monomers in the dimer. The two flaps tend to fluctuate more independently in PR20 than in the wild type enzyme. Combining the results of structural analysis by X-ray crystallography and MD simulations; unusual flap conformations and weakly correlated inter-subunit motions may contribute to the high level resistance of PR20.
Collapse
|
19
|
Ribeiro AJM, Santos-Martins D, Russo N, Ramos MJ, Fernandes PA. Enzymatic Flexibility and Reaction Rate: A QM/MM Study of HIV-1 Protease. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00759] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- António J. M. Ribeiro
- UCBIO,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Dipartimento
di Chimica, Università della Calabria, 87036 Arcavacata
di Rende, Italia
| | - Diogo Santos-Martins
- UCBIO,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Nino Russo
- Dipartimento
di Chimica, Università della Calabria, 87036 Arcavacata
di Rende, Italia
| | - Maria J. Ramos
- UCBIO,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- UCBIO,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
20
|
McGillewie L, Soliman ME. Flap flexibility amongst plasmepsins I, II, III, IV, and V: Sequence, structural, and molecular dynamics analyses. Proteins 2015; 83:1693-705. [PMID: 26146842 DOI: 10.1002/prot.24855] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 06/09/2015] [Accepted: 06/22/2015] [Indexed: 11/05/2022]
Abstract
Herein, for the first time, we comparatively report the opening and closing of apo plasmepsin I - V. Plasmepsins belong the aspartic protease family of enzymes, and are expressed during the various stages of the P. falciparum lifecycle, the species responsible for the most lethal and virulent malaria to infect humans. Plasmepsin I, II, IV and HAP degrade hemoglobin from infected red blood cells, whereas plasmepsin V transport proteins crucial to the survival of the malaria parasite across the endoplasmic reticulum. Flap-structures covering the active site of aspartic proteases (such as HIV protease) are crucial to the conformational flexibility and dynamics of the protein, and ultimately control the binding landscape. The flap-structure in plasmepsins is made up of a flip tip in the N-terminal lying perpendicular to the active site, adjacent to the flexible loop region in the C-terminal. Using molecular dynamics, we propose three parameters to better describe the opening and closing of the flap-structure in apo plasmepsins. Namely, the distance, d1, between the flap tip and the flexible region; the dihedral angle, ϕ, to account for the twisting motion; and the TriCα angle, θ1. Simulations have shown that as the flap-structure twists, the flap and flexible region move apart opening the active site, or move toward each other closing the active site. The data from our study indicate that of all the plasmepsins investigated in the present study, Plm IV and V display the highest conformational flexibility and are more dynamic structures versus Plm I, II, and HAP.
Collapse
Affiliation(s)
- Lara McGillewie
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Mahmoud E Soliman
- Molecular Modelling & Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| |
Collapse
|
21
|
De Conto V, Braz ASK, Perahia D, Scott LPB. Recovery of the wild type atomic flexibility in the HIV-1 protease double mutants. J Mol Graph Model 2015; 59:107-16. [PMID: 25948548 DOI: 10.1016/j.jmgm.2015.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/09/2015] [Accepted: 04/17/2015] [Indexed: 02/04/2023]
Abstract
The emergence of drug resistant mutations due to the selective pressure exerted by antiretrovirals, including protease inhibitors (PIs), remains a major problem in the treatment of AIDS. During PIs therapy, the occurrence of primary mutations in the wild type HIV-1 protease reduces both the affinity for the inhibitors and the viral replicative capacity compared to the wild type (WT) protein, but additional mutations compensate for this reduced viral fitness. To investigate this phenomenon from the structural point of view, we combined Molecular Dynamics and Normal Mode Analysis to analyze and compare the variations of the flexibility of C-alpha atoms and the differences in hydrogen bond (h-bond) network between the WT and double mutants. In most cases, the flexibility profile of the double mutants was more often similar to that of the WT than to that of the related single base mutants. All single mutants showed a significant alteration in h-bond formation compared to WT. Most of the significant changes occur in the border between the flap and cantilever regions. We found that all the considered double mutants have their h-bond pattern significantly altered in comparison to the respective single base mutants affecting their flexibility profile that becomes more similar to that of WT. This WT flexibility restoration in the double mutants appears as an important factor for the HIV-1 fitness recovery observed in patients.
Collapse
Affiliation(s)
- Valderes De Conto
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Antônio S K Braz
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), Ecole Normale Supérieure de Cachan, Cachan, France
| | - Luis P B Scott
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil; Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), Ecole Normale Supérieure de Cachan, Cachan, France.
| |
Collapse
|
22
|
Sadiq SK, Coveney PV. Computing the Role of Near Attack Conformations in an Enzyme-Catalyzed Nucleophilic Bimolecular Reaction. J Chem Theory Comput 2014; 11:316-24. [DOI: 10.1021/ct5008845] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- S. Kashif Sadiq
- Infection
Biology Unit, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Peter V. Coveney
- Centre
for Computational Science, Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| |
Collapse
|
23
|
Masterson JE, Schwartz SD. The enzymatic reaction catalyzed by lactate dehydrogenase exhibits one dominant reaction path. Chem Phys 2014; 442:132-136. [PMID: 25368440 DOI: 10.1016/j.chemphys.2014.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enzymes are the most efficient chemical catalysts known, but the exact nature of chemical barrier crossing in enzymes is not fully understood. Application of transition state theory to enzymatic reactions indicates that the rates of all possible reaction paths, weighted by their relative probabilities, must be considered in order to achieve an accurate calculation of the overall rate. Previous studies in our group have shown a single mechanism for enzymatic barrier passage in human heart lactate dehydrogenase (LDH). To ensure that this result was not due to our methodology insufficiently sampling reactive phase space, we implement high-perturbation transition path sampling in both microcanonical and canonical regimes for the reaction catalyzed by human heart LDH. We find that, although multiple, distinct paths through reactive phase space are possible for this enzymatic reaction, one specific reaction path is dominant. Since the frequency of these paths in a canonical ensemble is inversely proportional to the free energy barriers separating them from other regions of phase space, we conclude that the rarer reaction paths are likely to have a negligible contribution. Furthermore, the non-dominate reaction paths correspond to altered reactive conformations and only occur after multiple steps of high perturbation, suggesting that these paths may be the result of non-biologically significant changes to the structure of the enzymatic active site.
Collapse
Affiliation(s)
- Jean E Masterson
- Department of Chemistry and Biochemistry, University of Arizona, P.O. Box 210041, 1306 East University Blvd., Tucson, AZ 85721, USA ; Department of Biophysics, Albert Einstein College of Medicine, Ullmann Room 325, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, P.O. Box 210041, 1306 East University Blvd., Tucson, AZ 85721, USA
| |
Collapse
|
24
|
Brut M, Estève A, Landa G, Djafari Rouhani M. Toward in silico biomolecular manipulation through static modes: atomic scale characterization of HIV-1 protease flexibility. J Phys Chem B 2014; 118:2821-30. [PMID: 24568689 DOI: 10.1021/jp4113156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Probing biomolecular flexibility with atomic-scale resolution is a challenging task in current computational biology for fundamental understanding and prediction of biomolecular interactions and associated functions. This paper makes use of the static mode method to study HIV-1 protease considered as a model system to investigate the full biomolecular flexibility at the atomic scale, the screening of active site biomechanical properties, the blind prediction of allosteric sites, and the design of multisite strategies to target deformations of interest. Relying on this single calculation run of static modes, we demonstrate that in silico predictive design of an infinite set of complex excitation fields is reachable, thanks to the storage of the static modes in a data bank that can be used to mimic single or multiatom contact and efficiently anticipate conformational changes arising from external stimuli. All along this article, we compare our results to data previously published and propose a guideline for efficient, predictive, and custom in silico experiments.
Collapse
Affiliation(s)
- Marie Brut
- CNRS , LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
| | | | | | | |
Collapse
|
25
|
Antunes DA, Rigo MM, Sinigaglia M, de Medeiros RM, Junqueira DM, Almeida SEM, Vieira GF. New insights into the in silico prediction of HIV protease resistance to nelfinavir. PLoS One 2014; 9:e87520. [PMID: 24498124 PMCID: PMC3909182 DOI: 10.1371/journal.pone.0087520] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/22/2013] [Indexed: 11/24/2022] Open
Abstract
The Human Immunodeficiency Virus type 1 protease enzyme (HIV-1 PR) is one of the most important targets of antiretroviral therapy used in the treatment of AIDS patients. The success of protease-inhibitors (PIs), however, is often limited by the emergence of protease mutations that can confer resistance to a specific drug, or even to multiple PIs. In the present study, we used bioinformatics tools to evaluate the impact of the unusual mutations D30V and V32E over the dynamics of the PR-Nelfinavir complex, considering that codons involved in these mutations were previously related to major drug resistance to Nelfinavir. Both studied mutations presented structural features that indicate resistance to Nelfinavir, each one with a different impact over the interaction with the drug. The D30V mutation triggered a subtle change in the PR structure, which was also observed for the well-known Nelfinavir resistance mutation D30N, while the V32E exchange presented a much more dramatic impact over the PR flap dynamics. Moreover, our in silico approach was also able to describe different binding modes of the drug when bound to different proteases, identifying specific features of HIV-1 subtype B and subtype C proteases.
Collapse
Affiliation(s)
- Dinler A. Antunes
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Departamento de Genética, Universidade Federal do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Maurício M. Rigo
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Departamento de Genética, Universidade Federal do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Marialva Sinigaglia
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Departamento de Genética, Universidade Federal do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rúbia M. de Medeiros
- Technological and Scientific Development Center (CDCT), State Foundation in Production and Health Research (FEPPS), Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Dennis M. Junqueira
- Technological and Scientific Development Center (CDCT), State Foundation in Production and Health Research (FEPPS), Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Sabrina E. M. Almeida
- Technological and Scientific Development Center (CDCT), State Foundation in Production and Health Research (FEPPS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Gustavo F. Vieira
- Núcleo de Bioinformática do Laboratório de Imunogenética (NBLI), Departamento de Genética, Universidade Federal do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
26
|
Meher BR, Kumar MVS, Bandyopadhyay P. Interchain hydrophobic clustering promotes rigidity in HIV-1 protease flap dynamics: new insights from molecular dynamics. J Biomol Struct Dyn 2013; 32:899-915. [PMID: 23782135 DOI: 10.1080/07391102.2013.795873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The dynamics of HIV-1 protease (HIV-pr), a drug target for HIV infection, has been studied extensively by both computational and experimental methods. The flap dynamics of HIV-pr is considered to be more important for better ligand binding and enzymatic actions. Moreover, it has been demonstrated that the drug-induced mutations can change the flap dynamics of HIV-pr affecting the binding affinity of the ligands. Therefore, detailed understanding of flap dynamics is essential for designing better inhibitors. Previous computational investigations observed significant variation in the flap opening in nanosecond time scale indicating that the dynamics is highly sensitive to the simulation protocols. To understand the sensitivity of the flap dynamics on the force field and simulation protocol, molecular dynamics simulations of HIV-pr have been performed with two different AMBER force fields, ff99 and ff02. Two different trajectories (20 ns each) were obtained using the ff99 and ff02 force field. The results showed polarizable force field (ff02) make the flap tighter than the nonpolarizable force field (ff99). Some polar interactions and hydrogen bonds involving flap residues were found to be stronger with ff02 force field. The formation of interchain hydrophobic cluster (between flap tip of one chain and active site wall of another chain) was found to be dominant in the semi-open structures obtained from the simulations irrespective of the force field. It is proposed that an inhibitor, which will promote this interchain hydrophobic clustering, may make the flaps more rigid, and presumably the effect of mutation would be small on ligand binding.
Collapse
Affiliation(s)
- Biswa Ranjan Meher
- a Computational Biology Research Laboratory, Department of Biotechnology , Indian Institute of Technology , Guwahati , Assam , 781 039 , India
| | | | | |
Collapse
|
27
|
Rovira C. The description of electronic processes inside proteins from Car-Parrinello molecular dynamics: chemical transformations. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2013. [DOI: 10.1002/wcms.1153] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Barman A, Prabhakar R. Elucidating the catalytic mechanism of β-secretase (BACE1): a quantum mechanics/molecular mechanics (QM/MM) approach. J Mol Graph Model 2013; 40:1-9. [PMID: 23337572 DOI: 10.1016/j.jmgm.2012.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/04/2012] [Accepted: 12/17/2012] [Indexed: 12/18/2022]
Abstract
In this quantum mechanics/molecular mechanics (QM/MM) study, the mechanisms of the hydrolytic cleavage of the Met2-Asp3 and Leu2-Asp3 peptide bonds of the amyloid precursor protein (WT-substrate) and its Swedish mutant (SW) respectively catalyzed by β-secretase (BACE1) have been investigated by explicitly including the electrostatic and steric effects of the protein environment in the calculations. BACE1 catalyzes the rate-determining step in the generation of Alzheimer amyloid beta peptides and is widely acknowledged as a promising therapeutic target. The general acid-base mechanism followed by the enzyme proceeds through the following two steps: (1) formation of the gem-diol intermediate and (2) cleavage of the peptide bond. The formation of the gem-diol intermediate occurs with the barriers of 19.6 and 16.1 kcal/mol for the WT- and SW-substrate respectively. The QM/MM energetics predict that with the barriers of 21.9 and 17.2 kcal/mol for the WT- and SW-substrate respectively the cleavage of the peptide bond occurs in the rate-determining step. The computed barriers are in excellent agreement with the measured barrier of ∼18.0 kcal/mol for the SW-substrate and in line with the experimental observation that the cleavage of this substrate is sixty times more efficient than the WT-substrate.
Collapse
Affiliation(s)
- Arghya Barman
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | | |
Collapse
|
29
|
Meher BR, Patel S. Structural and dynamical aspects of HIV-1 protease and its role in drug resistance. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 92:299-324. [PMID: 23954105 DOI: 10.1016/b978-0-12-411636-8.00008-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS) caused by the retrovirus human immunodeficiency virus (HIV) has become a major epidemic afflicting mankind. The Joint United Nations Program on HIV/AIDS (UNAIDS) projection shows the existence of millions of AIDS patients at the end of 2012. All the Food and Drug Administration (FDA)-approved drugs are getting ineffective due to resistance offered by the mutation-prone HIV. Hence, there is an urgent need for developing new drugs with greater potential. HIV life cycle is controlled by the activities of its essential proteins like glycoproteins (gp41 and gp120), HIV reverse transcriptase (HIV-RT), HIV integrase (HIV-IN), and HIV-1 protease (HIV-pr). This chapter focuses on the protein HIV-pr, which is important for the cleavage of Gag and Gag-Pol polyproteins to form mature, structural, and functional virions. The conformation and dynamics of the protein HIV-pr play a pivotal role in ligand binding and the catalytic process, which is affected by the rapid point mutations and various physiological parameters. The effect of the mutations and the varied simulation protocols on conformational dynamics and drug resistance of HIV-pr is discussed.
Collapse
Affiliation(s)
- Biswa Ranjan Meher
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia, USA.
| | | |
Collapse
|
30
|
Micheletti C. Comparing proteins by their internal dynamics: exploring structure-function relationships beyond static structural alignments. Phys Life Rev 2012. [PMID: 23199577 DOI: 10.1016/j.plrev.2012.10.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The growing interest for comparing protein internal dynamics owes much to the realisation that protein function can be accompanied or assisted by structural fluctuations and conformational changes. Analogously to the case of functional structural elements, those aspects of protein flexibility and dynamics that are functionally oriented should be subject to evolutionary conservation. Accordingly, dynamics-based protein comparisons or alignments could be used to detect protein relationships that are more elusive to sequence and structural alignments. Here we provide an account of the progress that has been made in recent years towards developing and applying general methods for comparing proteins in terms of their internal dynamics and advance the understanding of the structure-function relationship.
Collapse
Affiliation(s)
- Cristian Micheletti
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, Trieste, Italy.
| |
Collapse
|
31
|
MEHER BISWARANJAN, SATISH KUMAR MATTAPARTHIVENKATA, SHARMA SMRITI, BANDYOPADHYAY PRADIPTA. CONFORMATIONAL DYNAMICS OF HIV-1 PROTEASE: A COMPARATIVE MOLECULAR DYNAMICS SIMULATION STUDY WITH MULTIPLE AMBER FORCE FIELDS. J Bioinform Comput Biol 2012; 10:1250018. [DOI: 10.1142/s0219720012500187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Flap dynamics of HIV-1 protease (HIV-pr) controls the entry of inhibitors and substrates to the active site. Dynamical models from previous simulations are not all consistent with each other and not all are supported by the NMR results. In the present work, the effect of force field on the dynamics of HIV-pr is investigated by MD simulations using three AMBER force fields ff99, ff99SB, and ff03. The generalized order parameters for amide backbone are calculated from the three force fields and compared with the NMR S2 values. We found that the ff99SB and ff03 force field calculated order parameters agree reasonably well with the NMR S2 values, whereas ff99 calculated values deviate most from the NMR order parameters. Stereochemical geometry of protein models from each force field also agrees well with the remarks from NMR S2 values. However, between ff99SB and ff03, there are several differences, most notably in the loop regions. It is found that these loops are, in general, more flexible in the ff03 force field. This results in a larger active site cavity in the simulation with the ff03 force field. The effect of this difference in computer-aided drug design against flexible receptors is discussed.
Collapse
Affiliation(s)
- BISWA RANJAN MEHER
- Computational Biology Research Laboratory, Department of Biotechnology, Indian Institute of Technology, Guwahati, Assam 781039, India
- Computational Chemistry Laboratory, Department of Natural Sciences, Albany State University, Albany, Georgia 31705, USA
| | - MATTAPARTHI VENKATA SATISH KUMAR
- Computational Biology Research Laboratory, Department of Biotechnology, Indian Institute of Technology, Guwahati, Assam 781039, India
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - SMRITI SHARMA
- Centre for Computational Biology and Bioinformatics, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - PRADIPTA BANDYOPADHYAY
- Centre for Computational Biology and Bioinformatics, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
32
|
Meher BR, Wang Y. Binding of single walled carbon nanotube to WT and mutant HIV-1 proteases: analysis of flap dynamics and binding mechanism. J Mol Graph Model 2012; 38:430-45. [PMID: 23142620 DOI: 10.1016/j.jmgm.2012.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/31/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
Abstract
Most of the currently treated HIV-1 protease (HIV-PR) inhibitors have been prone to suffer from the mutations associated drug resistance. Therefore, it is necessary to search for potent alternatives against the drug resistance. In the current study we have tested the single-walled carbon nanotube (SWCNT) as an inhibitor in wild type (WT) as well as in three primary mutants (I50V(PR), V82A(PR) and I84V(PR)) of the HIV-1-PR through docking the SWCNT in the active site region, and then performed all-atom MD simulations for the complexes. The conformational dynamics of HIV-PR with a 20 ns trajectory reveals that the SWCNT can effectively bind to the HIV-1-PR active site and regulate the flap dynamics such as maintaining the flap-flap closed. To gain an insight into the binding affinity, we also performed the MM-PBSA based binding free energy calculations for the four HIV-PR/SWCNT complexes. It was observed that, although the binding between the SWCNT and the HIV-PR decreases due to the mutations, the SWCNTs bind to the HIV-PRs 3-5 folds stronger than the most potent HIV-1-PR inhibitor, TMC114. Remarkably, the significant interactions with binding energy higher than 1kcal/mol focus on the flap and active regions, which favors closing flap-flap and deactivating the active residues of the HIV-PR. The flap dynamics and binding strength information for HIV-PR and SWCNTs can help design SWCNT-based HIV-1-PR inhibitors.
Collapse
Affiliation(s)
- Biswa Ranjan Meher
- Computational Chemistry Laboratory, Department of Natural Sciences, Albany State University, Albany, GA 31705, USA
| | | |
Collapse
|
33
|
Braz ASK, Tufanetto P, Perahia D, Scott LPB. Relation between flexibility and positively selected HIV-1 protease mutants against inhibitors. Proteins 2012; 80:2680-91. [DOI: 10.1002/prot.24151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/31/2012] [Accepted: 07/11/2012] [Indexed: 11/09/2022]
|
34
|
HORI TAKUMI, TAKAHASHI HIDEAKI, NITTA TOMOSHIGE. HYBRID QUANTUM MECHANICAL/MOLECULAR MECHANICAL APPROACH TO ENZYMATIC REACTIONS BY UTILIZING THE REAL-SPACE GRID TECHNIQUE. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633605001799] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have developed a novel quantum mechanical/molecular mechanical (QM/MM) code based on the real-space grids in order to realize high parallel efficiency. The details of the methodology and its parallel implementation have been presented. We have computed the electronic state of the QM subsystem using the Kohn–Sham density functional theory, where the one-electron wave functions have been expressed by the real-space grids distributed over a cubic cell. We have performed QM/MM simulations for the peptide hydrolysis in human immunodeficiency virus type-1 aspartyl protease in order to examine the reliability of the present QM/MM approach. The activation energy obtained by the present calculations shows a good agreement with the experimental results and that of the other QM/MM method. Finally, we have parallelized the whole code and found that the grid approach can afford high parallel efficiency (~80%) in such a large scale electronic structure calculation. We conclude that the QM/MM approach utilizing real-space grids is adequate and efficient for the study of the enzymatic reactions.
Collapse
Affiliation(s)
- TAKUMI HORI
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Machikaneyama-cho 1-3, Toyonaka, Osaka 560-8531, Japan
| | - HIDEAKI TAKAHASHI
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Machikaneyama-cho 1-3, Toyonaka, Osaka 560-8531, Japan
| | - TOMOSHIGE NITTA
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Machikaneyama-cho 1-3, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
35
|
Lee J, Goodey NM. Catalytic contributions from remote regions of enzyme structure. Chem Rev 2011; 111:7595-624. [PMID: 21923192 DOI: 10.1021/cr100042n] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jeeyeon Lee
- Department of Chemistry, 413 Wartik Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
36
|
Purohit R, Rajendran V, Sethumadhavan R. Studies on Adaptability of Binding Residues Flap Region of TMC-114 Resistance HIV-1 Protease Mutants. J Biomol Struct Dyn 2011; 29:137-52. [DOI: 10.1080/07391102.2011.10507379] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
37
|
Garrec J, Sautet P, Fleurat-Lessard P. Understanding the HIV-1 Protease Reactivity with DFT: What Do We Gain from Recent Functionals? J Phys Chem B 2011; 115:8545-58. [DOI: 10.1021/jp200565w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- J. Garrec
- Université de Lyon,CNRS, École Normale Supérieure de Lyon, Laboratoire de Chimie, 46 alléed’Italie, F-69364 Lyon Cedex 07
| | - P. Sautet
- Université de Lyon,CNRS, École Normale Supérieure de Lyon, Laboratoire de Chimie, 46 alléed’Italie, F-69364 Lyon Cedex 07
| | - P. Fleurat-Lessard
- Université de Lyon,CNRS, École Normale Supérieure de Lyon, Laboratoire de Chimie, 46 alléed’Italie, F-69364 Lyon Cedex 07
| |
Collapse
|
38
|
Barman A, Schürer S, Prabhakar R. Computational modeling of substrate specificity and catalysis of the β-secretase (BACE1) enzyme. Biochemistry 2011; 50:4337-49. [PMID: 21500768 DOI: 10.1021/bi200081h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this combined MD simulation and DFT study, interactions of the wild-type (WT) amyloid precursor protein (APP) and its Swedish variant (SW), Lys670 → Asn and Met671 → Leu, with the beta-secretase (BACE1) enzyme and their cleavage mechanisms have been investigated. BACE1 catalyzes the rate-limiting step in the generation of 40-42 amino acid long Alzheimer amyloid beta (Aβ) peptides. All key structural parameters such as position of the flap, volume of the active site, electrostatic binding energy, structures, and positions of the inserts A, D, and F and 10s loop obtained from the MD simulations show that, in comparison to the WT-substrate, BACE1 exhibits greater affinity for the SW-substrate and orients it in a more reactive conformation. The enzyme-substrate models derived from the MD simulations were further utilized to investigate the general acid/base mechanism used by BACE1 to hydrolytically cleave these substrates. This mechanism proceeds through the following two steps: (1) formation of the gem-diol intermediate and (2) cleavage of the peptide bond. For the WT-substrate, the overall barrier of 22.4 kcal/mol for formation of the gem-diol intermediate is 3.3 kcal/mol higher than for the SW-substrate (19.1 kcal/mol). This process is found to be the rate-limiting in the entire mechanism. The computed barrier is in agreement with the measured barrier of ca. 18.00 kcal/mol for the WT-substrate and supports the experimental observation that the cleavage of the SW-substrate is 60 times more efficient than the WT-substrate.
Collapse
Affiliation(s)
- Arghya Barman
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | | | | |
Collapse
|
39
|
Bonomi M, Barducci A, Gervasio FL, Parrinello M. Multiple routes and milestones in the folding of HIV-1 protease monomer. PLoS One 2010; 5:e13208. [PMID: 20967249 PMCID: PMC2954147 DOI: 10.1371/journal.pone.0013208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/11/2010] [Indexed: 11/25/2022] Open
Abstract
Proteins fold on a time scale incompatible with a mechanism of random search in conformational space thus indicating that somehow they are guided to the native state through a funneled energetic landscape. At the same time the heterogeneous kinetics suggests the existence of several different folding routes. Here we propose a scenario for the folding mechanism of the monomer of HIV–1 protease in which multiple pathways and milestone events coexist. A variety of computational approaches supports this picture. These include very long all-atom molecular dynamics simulations in explicit solvent, an analysis of the network of clusters found in multiple high-temperature unfolding simulations and a complete characterization of free-energy surfaces carried out using a structure-based potential at atomistic resolution and a combination of metadynamics and parallel tempering. Our results confirm that the monomer in solution is stable toward unfolding and show that at least two unfolding pathways exist. In our scenario, the formation of a hydrophobic core is a milestone in the folding process which must occur along all the routes that lead this protein towards its native state. Furthermore, the ensemble of folding pathways proposed here substantiates a rational drug design strategy based on inhibiting the folding of HIV–1 protease.
Collapse
Affiliation(s)
- Massimiliano Bonomi
- Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, Lugano, Switzerland.
| | | | | | | |
Collapse
|
40
|
N-terminal myristoylation alters the calcium binding pathways in neuronal calcium sensor-1. J Biol Inorg Chem 2010; 16:81-95. [DOI: 10.1007/s00775-010-0705-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Accepted: 08/27/2010] [Indexed: 11/25/2022]
|
41
|
Pandey RB, Farmer BL. Globular structure of a human immunodeficiency virus-1 protease (1DIFA dimer) in an effective solvent medium by a Monte Carlo simulation. J Chem Phys 2010; 132:125101. [PMID: 20370150 DOI: 10.1063/1.3358340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A coarse-grained model is used to study the structure and dynamics of a human immunodeficiency virus-1 protease (1DIFA dimer) consisting of 198 residues in an effective solvent medium on a cubic lattice by Monte Carlo simulations for a range of interaction strengths. Energy and mobility profiles of residues are found to depend on the interaction strength and exhibit remarkable segmental symmetries in two monomers. Lowest energy residues such as Arg(41) and Arg(140) (most electrostatic and polar) are not the least mobile; despite the higher energy, the hydrophobic residues (Ile, Leu, and Val) are least mobile and form the core by pinning down the local segments for the globular structure. Variations in the gyration radius (R(g)) and energy (E(c)) of the protein show nonmonotonic dependence on the interaction strength with the smallest R(g) around the largest value of E(c). Pinning of the conformations by the hydrophobic residues at high interaction strength seems to provide seed for the protein chain to collapse.
Collapse
Affiliation(s)
- R B Pandey
- Department of Physics and Astronomy, University of Southern Mississippi, Hattiesburg, Mississippi 39406-5046, USA.
| | | |
Collapse
|
42
|
Brouillet S, Valere T, Ollivier E, Marsan L, Vanet A. Co-lethality studied as an asset against viral drug escape: the HIV protease case. Biol Direct 2010; 5:40. [PMID: 20565756 PMCID: PMC2898770 DOI: 10.1186/1745-6150-5-40] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 06/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Co-lethality, or synthetic lethality is the documented genetic situation where two, separately non-lethal mutations, become lethal when combined in one genome. Each mutation is called a "synthetic lethal" (SL) or a co-lethal. Like invariant positions, SL sets (SL linked couples) are choice targets for drug design against fast-escaping RNA viruses: mutational viral escape by loss of affinity to the drug may induce (synthetic) lethality. RESULTS From an amino acid sequence alignment of the HIV protease, we detected the potential SL couples, potential SL sets, and invariant positions. From the 3D structure of the same protein we focused on the ones that were close to each other and accessible on the protein surface, to possibly bind putative drugs. We aligned 24,155 HIV protease amino acid sequences and identified 290 potential SL couples and 25 invariant positions. After applying the distance and accessibility filter, three candidate drug design targets of respectively 7 (under the flap), 4 (in the cantilever) and 5 (in the fulcrum) amino acid positions were found. CONCLUSIONS These three replication-critical targets, located outside of the active site, are key to our anti-escape strategy. Indeed, biological evidence shows that 2/3 of those target positions perform essential biological functions. Their mutational variations to escape antiviral medication could be lethal, thus limiting the apparition of drug-resistant strains. REVIEWERS This article was reviewed by Arcady Mushegian, Shamil Sunyaev and Claus Wilke.
Collapse
|
43
|
Truhlar DG. Tunneling in enzymatic and nonenzymatic hydrogen transfer reactions. J PHYS ORG CHEM 2010. [DOI: 10.1002/poc.1676] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Pietrucci F, Marinelli F, Carloni P, Laio A. Substrate binding mechanism of HIV-1 protease from explicit-solvent atomistic simulations. J Am Chem Soc 2009; 131:11811-8. [PMID: 19645490 DOI: 10.1021/ja903045y] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The binding mechanism of a peptide substrate (Thr-Ile-Met-Met-Gln-Arg, cleavage site p2-NC of the viral polyprotein) to wild-type HIV-1 protease has been investigated by 1.6 micros biased all-atom molecular dynamics simulations in explicit water. The configuration space has been explored biasing seven reaction coordinates by the bias-exchange metadynamics technique. The structure of the Michaelis complex is obtained starting from the substrate outside the enzyme within a backbone rmsd of 0.9 A. The calculated free energy of binding is -6 kcal/mol, and the kinetic constants for association and dissociation are 1.3 x 10(6) M(-1) s(-1) and 57 s(-1), respectively, consistent with experiments. In the main binding pathway, the flaps of the protease do not open sizably. The substrate slides inside the enzyme cavity from the tight lateral channel. This may contrast with the natural polyprotein substrate which is expected to bind by opening the flaps. Thus, mutations might influence differently the binding kinetics of peptidomimetic ligands and of the natural substrate.
Collapse
Affiliation(s)
- Fabio Pietrucci
- International School for Advanced Studies (SISSA-ISAS), via Beirut 2-4, I-34014 Trieste, Italy
| | | | | | | |
Collapse
|
45
|
Krishna Mohan PM, Hosur RV. Structure-function-folding relationships and native energy landscape of dynein light chain protein: nuclear magnetic resonance insights. J Biosci 2009; 34:465-79. [DOI: 10.1007/s12038-009-0052-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Potestio R, Pontiggia F, Micheletti C. Coarse-grained description of protein internal dynamics: an optimal strategy for decomposing proteins in rigid subunits. Biophys J 2009; 96:4993-5002. [PMID: 19527659 DOI: 10.1016/j.bpj.2009.03.051] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/24/2009] [Accepted: 03/25/2009] [Indexed: 12/19/2022] Open
Abstract
The possibility of accurately describing the internal dynamics of proteins, in terms of movements of a few approximately-rigid subparts, is an appealing biophysical problem with important implications for the analysis and interpretation of data from experiments or numerical simulations. The problem is tackled here by means of a novel variational approach that exploits information about equilibrium fluctuations of interresidues distances, provided, e.g., by atomistic molecular dynamics simulations or coarse-grained models. No contiguity in primary sequence or in space is enforced a priori for amino acids grouped in the same rigid unit. The identification of the rigid protein moduli, or dynamical domains, provides valuable insight into functionally oriented aspects of protein internal dynamics. To illustrate this point, we first discuss the decomposition of adenylate kinase and HIV-1 protease and then extend the investigation to several representatives of the hydrolase enzymatic class. The known catalytic site of these enzymes is found to be preferentially located close to the boundary separating the two primary dynamical subdomains.
Collapse
Affiliation(s)
- R Potestio
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | | | | |
Collapse
|
47
|
Li D, Liu MS, Ji B, Hwang K, Huang Y. Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors. J Chem Phys 2009; 130:215102. [DOI: 10.1063/1.3148022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Pandey RB, Farmer BL. Residue energy and mobility in sequence to global structure and dynamics of a HIV-1 protease (1DIFA) by a coarse-grained Monte Carlo simulation. J Chem Phys 2009; 130:044906. [PMID: 19191412 DOI: 10.1063/1.3050106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Energy, mobility, and structural profiles of residues in a specific sequence of human immunodeficiency virus (HIV)-1 protease chain and its global conformation and dynamics are studied by a coarse-grained computer simulation model on a cubic lattice. HIV-1 protease is described by a chain of 99 residues (nodes) in a specific sequence (1DIFA) with N- and C-terminals on the lattice, where empty lattice sites represent an effective solvent medium. Internal structures of the residues are ignored but their specificities are captured via an interaction (epsilon(ij)) matrix (residue-residue, residue-solvent) of the coefficient (fepsilon(ij)) of the Lennard-Jones potential. Simulations are performed for a range of interaction strength (f) with the solvent-residue interaction describing the quality of the solvent. Snapshots of the protein show considerable changes in the conformation of the protein on varying the interaction. From the mobility and energy profiles of the residues, it is possible to identify the active (and not so active) segments of the protein and consequently their role in proteolysis. Contrary to interaction thermodynamics, the hydrophobic residues possess higher configurational energy and lower mobility while the electrostatic and polar residues are more mobile despite their lower interaction energy. Segments of hydrophobic core residues, crucial for the structural evolution of the protein are identified-some of which are consistent with recent molecular dynamics simulation in context to possible clinical observations. Global energy and radius of gyration of the protein exhibit nonmonotonic dependence on the interaction strength (f) with opposite trends, e.g., rapid transition into globular structure with higher energy. Variations of the rms displacement of the protein and that of a tracer residue, Gly(49), with the time steps show how they slow down on increasing the interaction strength.
Collapse
Affiliation(s)
- R B Pandey
- Department of Physics and Astronomy, University of Southern Mississippi, Hattiesburg, Mississippi 39406-5046, USA.
| | | |
Collapse
|
49
|
Beveridge A. An ab initio study of the first stage of catalysis in the monomeric aspartic proteinases. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2008.11.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Fanfrlík J, Brynda J, Rezác J, Hobza P, Lepsík M. Interpretation of protein/ligand crystal structure using QM/MM calculations: case of HIV-1 protease/metallacarborane complex. J Phys Chem B 2009; 112:15094-102. [PMID: 18975888 DOI: 10.1021/jp803528w] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Deltahedral metallacarborane compounds have recently been discovered as potent, specific, stable, and nontoxic inhibitors of HIV-1 protease (PR), the major target for AIDS therapy. The 2.15 A-resolution X-ray structure has exhibited a nonsymmetrical binding of the parental compound [Co(3+)-(C2B9H11)2](-) (GB-18) into PR dimer and a symmetrical arrangement in the crystal of two PR dimer complexes into a tetramer. In order to explore structural and energetic details of the inhibitor binding, quantum mechanics coupled with molecular mechanics approach was utilized. Realizing the close positioning of anionic inhibitors in the active site cavity, the possibility of an exchange of structural water molecules Wat50 and Wat128 by Na+ counterions was studied. The energy profiles for the rotation of the GB-18 molecules along their longitudinal axes in complex with PR were calculated. The results show that two Na+ counterions are present in the active site cavity and provide energetically favorable and unfavorable positions for carbon atoms within the carborane cages. Eighty-one rotamer combinations of four molecules of GB-18 bound to PR out of 4 x 10(5) are predicted to be highly populated. These results lay ground for further calculations of interaction energies between GB-18 and amino acids of PR active site and will make it possible to interpret computationally the binding of similar metallacarborane molecules to PR as well as to resistant PR variants. Moreover, this computational tool will allow the design of new, more potent metallacarborane-based HIV-1 protease inhibitors.
Collapse
Affiliation(s)
- Jindrich Fanfrlík
- Gilead Sciences and IOCB Research Center Prague, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | |
Collapse
|