1
|
Dall'Ara M, Guo Y, Poli D, Gilmer D, Ratti C. Analysis of the relative frequencies of the multipartite BNYVV genomic RNAs in different plants and tissues. J Gen Virol 2024; 105. [PMID: 38197877 DOI: 10.1099/jgv.0.001950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Multipartite virus genomes are composed of two or more segments, each packaged into an independent viral particle. A potential advantage of multipartitism is the regulation of gene expression through changes in the segment copy number. Soil-borne beet necrotic yellow vein virus (BNYVV) is a typical example of multipartism, given its high number of genomic positive-sense RNAs (up to five). Here we analyse the relative frequencies of the four genomic RNAs of BNYVV type B during infection of different host plants (Chenopodium quinoa, Beta macrocarpa and Spinacia oleracea) and organs (leaves and roots). By successfully validating a two-step reverse-transcriptase digital droplet PCR protocol, we show that RNA1 and -2 genomic segments always replicate at low and comparable relative frequencies. In contrast, RNA3 and -4 accumulate with variable relative frequencies, resulting in distinct RNA1 : RNA2 : RNA3 : RNA4 ratios, depending on the infected host species and organ.
Collapse
Affiliation(s)
- M Dall'Ara
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - Y Guo
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - D Poli
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - D Gilmer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, France
| | - C Ratti
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| |
Collapse
|
2
|
Vassilieff H, Geering ADW, Choisne N, Teycheney PY, Maumus F. Endogenous Caulimovirids: Fossils, Zombies, and Living in Plant Genomes. Biomolecules 2023; 13:1069. [PMID: 37509105 PMCID: PMC10377300 DOI: 10.3390/biom13071069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The Caulimoviridae is a family of double-stranded DNA viruses that infect plants. The genomes of most vascular plants contain endogenous caulimovirids (ECVs), a class of repetitive DNA elements that is abundant in some plant genomes, resulting from the integration of viral DNA in the chromosomes of germline cells during episodes of infection that have sometimes occurred millions of years ago. In this review, we reflect on 25 years of research on ECVs that has shown that members of the Caulimoviridae have occupied an unprecedented range of ecological niches over time and shed light on their diversity and macroevolution. We highlight gaps in knowledge and prospects of future research fueled by increased access to plant genome sequence data and new tools for genome annotation for addressing the extent, impact, and role of ECVs on plant biology and the origin and evolutionary trajectories of the Caulimoviridae.
Collapse
Affiliation(s)
| | - Andrew D W Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Pierre-Yves Teycheney
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre de La Réunion, France
- UMR PVBMT, Université de la Réunion, F-97410 Saint-Pierre de La Réunion, France
| | - Florian Maumus
- INRAE, URGI, Université Paris-Saclay, 78026 Versailles, France
| |
Collapse
|
3
|
Otto M, Zheng Y, Wiehe T. Recombination, selection and the evolution of tandem gene arrays. Genetics 2022; 221:6572811. [PMID: 35460227 PMCID: PMC9252282 DOI: 10.1093/genetics/iyac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Multigene families—immunity genes or sensory receptors, for instance—are often subject to diversifying selection. Allelic diversity may be favored not only through balancing or frequency-dependent selection at individual loci but also by associating different alleles in multicopy gene families. Using a combination of analytical calculations and simulations, we explored a population genetic model of epistatic selection and unequal recombination, where a trade-off exists between the benefit of allelic diversity and the cost of copy abundance. Starting from the neutral case, where we showed that gene copy number is Gamma distributed at equilibrium, we derived also the mean and shape of the limiting distribution under selection. Considering a more general model, which includes variable population size and population substructure, we explored by simulations mean fitness and some summary statistics of the copy number distribution. We determined the relative effects of selection, recombination, and demographic parameters in maintaining allelic diversity and shaping the mean fitness of a population. One way to control the variance of copy number is by lowering the rate of unequal recombination. Indeed, when encoding recombination by a rate modifier locus, we observe exactly this prediction. Finally, we analyzed the empirical copy number distribution of 3 genes in human and estimated recombination and selection parameters of our model.
Collapse
Affiliation(s)
- Moritz Otto
- Institut für Genetik, Universität zu Köln, Zülpicher Straße 47a, 50674 Köln, Germany
| | - Yichen Zheng
- Institut für Genetik, Universität zu Köln, Zülpicher Straße 47a, 50674 Köln, Germany
| | - Thomas Wiehe
- Institut für Genetik, Universität zu Köln, Zülpicher Straße 47a, 50674 Köln, Germany
| |
Collapse
|
4
|
Abstract
Multipartite virus genomes are composed of several segments, each packaged in a distinct viral particle. Although this puzzling genome architecture is found in ∼17% of known viral species, its distribution among hosts or among distinct types of genome-composing nucleic acid remains poorly understood. No convincing advantage of multipartitism has been identified, yet the maintenance of genomic integrity appears problematic. Here we review recent studies shedding light on these issues. Multipartite viruses rapidly modify the copy number of each segment/gene from one host species to another, a putative benefit if host switches are common. One multipartite virus functions in a multicellular way: The segments do not all need to be present in the same cell and can functionally complement across cells, maintaining genome integrity within hosts. The genomic integrity maintenance during host-to-host transmission needs further elucidation. These features challenge several virology foundations and could apply to other multicomponent viral systems.
Collapse
Affiliation(s)
- Yannis Michalakis
- Maladies Infectieuses et Vecteurs Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Montpellier, 34394 Montpellier, France;
| | - Stéphane Blanc
- Unité Mixte de Recherche-Biologie et Génétique des Interactions Plante-Parasite (UMR BGPI), Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier SupAgro, Université Montpellier, 34398 Montpellier, France;
| |
Collapse
|
5
|
Lal A, Vo TTB, Sanjaya IGNPW, Ho PT, Kim JK, Kil EJ, Lee S. Nanovirus Disease Complexes: An Emerging Threat in the Modern Era. FRONTIERS IN PLANT SCIENCE 2020; 11:558403. [PMID: 33329624 PMCID: PMC7710663 DOI: 10.3389/fpls.2020.558403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Multipartite viruses package their genomic segments independently and mainly infect plants; few target animals. Nanoviridae is a family of multipartite single-stranded DNA plant viruses that individually encapsidate single-stranded DNAs of approximately 1 kb and transmit them through aphids without replication in the aphid vectors, thereby causing important diseases of leguminous crops and banana. Significant findings regarding nanoviruses have recently been made on important features, such as their multicellular way of life, the transmission of distinct encapsidated genome segments through the vector body, evolutionary ambiguities, mode of infection, host range and geographical distribution. This review deals with all the above-mentioned features in view of recent advances with special emphasis on the emergence of new species and recognition of new host range of nanoviruses and aims to shed light on the evolutionary linkages, the potentially devastating impact on the world economy, and the future challenges imposed by nanoviruses.
Collapse
Affiliation(s)
- Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Ji-Kwang Kim
- Research and Development Bureau, Chungcheongnam-do Agricultural Research and Extension Services, Yesan, South Korea
| | - Eui-Joon Kil
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
6
|
Abstract
Genetic variation is a necessity of all biological systems. Viruses use all known mechanisms of variation; mutation, several forms of recombination, and segment reassortment in the case of viruses with a segmented genome. These processes are intimately connected with the replicative machineries of viruses, as well as with fundamental physical-chemical properties of nucleotides when acting as template or substrate residues. Recombination has been viewed as a means to rescue viable genomes from unfit parents or to produce large modifications for the exploration of phenotypic novelty. All types of genetic variation can act conjointly as blind processes to provide the raw materials for adaptation to the changing environments in which viruses must replicate. A distinction is made between mechanistically unavoidable and evolutionarily relevant mutation and recombination.
Collapse
|
7
|
Varsani A, Lefeuvre P, Roumagnac P, Martin D. Notes on recombination and reassortment in multipartite/segmented viruses. Curr Opin Virol 2018; 33:156-166. [PMID: 30237098 DOI: 10.1016/j.coviro.2018.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/07/2018] [Accepted: 08/28/2018] [Indexed: 11/29/2022]
Abstract
Besides evolving through nucleotide substitution, viruses frequently also evolve by genetic recombination which can occur when related viral variants co-infect the same cells. Viruses with segmented or multipartite genomes can additionally evolve via the reassortment of genomic components. Various computational techniques are now available for identifying and characterizing recombination and reassortment. While these techniques have revealed both that all well studied segmented and multipartite virus species show some capacity for reassortment, and that recombination is common in many multipartite species, they have indicated that recombination is either rare or does not occur in species with segmented genomes. Reassortment and recombination can make it very difficult to study segmented/multipartite viruses using metagenomics-based approaches. Notable challenges include, both the accurate identification and assignment of genomic components to individual genomes, and the differentiation between natural 'real' recombination events and artifactual 'fake' recombination events arising from the inaccurate de novo assembly of genome component sequences determined using short read sequencing.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| | | | - Philippe Roumagnac
- CIRAD, BGPI, Montpellier, France; BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Darren Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine. University of Cape Town, Observatory, 7925, South Africa
| |
Collapse
|
8
|
Lyons DM, Lauring AS. Mutation and Epistasis in Influenza Virus Evolution. Viruses 2018; 10:E407. [PMID: 30081492 PMCID: PMC6115771 DOI: 10.3390/v10080407] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022] Open
Abstract
Influenza remains a persistent public health challenge, because the rapid evolution of influenza viruses has led to marginal vaccine efficacy, antiviral resistance, and the annual emergence of novel strains. This evolvability is driven, in part, by the virus's capacity to generate diversity through mutation and reassortment. Because many new traits require multiple mutations and mutations are frequently combined by reassortment, epistatic interactions between mutations play an important role in influenza virus evolution. While mutation and epistasis are fundamental to the adaptability of influenza viruses, they also constrain the evolutionary process in important ways. Here, we review recent work on mutational effects and epistasis in influenza viruses.
Collapse
Affiliation(s)
- Daniel M Lyons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Adam S Lauring
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Abstract
Multicomponent viruses are common in plants and fungi. In this issue of Cell Host & Microbe, Ladner et al. (2016) describe a multicomponent virus from animals. This supports an emerging view that invertebrates harbor a remarkable viral diversity and highlights how little of the virosphere has been explored.
Collapse
Affiliation(s)
- Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, the University of Sydney, Sydney NSW 2006, Australia.
| |
Collapse
|
10
|
Wu B, Zwart MP, Sánchez-Navarro JA, Elena SF. Within-host Evolution of Segments Ratio for the Tripartite Genome of Alfalfa Mosaic Virus. Sci Rep 2017; 7:5004. [PMID: 28694514 PMCID: PMC5504059 DOI: 10.1038/s41598-017-05335-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/25/2017] [Indexed: 12/19/2022] Open
Abstract
The existence of multipartite viruses is an intriguing mystery in evolutionary virology. Several hypotheses suggest benefits that should outweigh the costs of a reduced transmission efficiency and of segregation of coadapted genes associated with encapsidating each segment into a different particle. Advantages range from increasing genome size despite high mutation rates, faster replication, more efficient selection resulting from reassortment during mixed infections, better regulation of gene expression, or enhanced virion stability and cell-to-cell movement. However, support for these hypotheses is scarce. Here we report experiments testing whether an evolutionary stable equilibrium exists for the three genomic RNAs of Alfalfa mosaic virus (AMV). Starting infections with different segment combinations, we found that the relative abundance of each segment evolves towards a constant ratio. Population genetic analyses show that the segment ratio at this equilibrium is determined by frequency-dependent selection. Replication of RNAs 1 and 2 was coupled and collaborative, whereas the replication of RNA 3 interfered with the replication of the other two. We found that the equilibrium solution is slightly different for the total amounts of RNA produced and encapsidated, suggesting that competition exists between all RNAs during encapsidation. Finally, we found that the observed equilibrium appears to be host-species dependent.
Collapse
Affiliation(s)
- Beilei Wu
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
- Institute of Theoretical Physics, University of Cologne, Cologne, Germany
| | - Jesús A Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain.
- Instituto de Biología Integrativa de Sistemas (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Valencia, Spain.
- The Santa Fe Institute, New Mexico, USA.
| |
Collapse
|
11
|
Chao L, Tran T, Matthews C. MULLER'S RATCHET AND THE ADVANTAGE OF SEX IN THE RNA VIRUSϟ6. Evolution 2017; 46:289-299. [DOI: 10.1111/j.1558-5646.1992.tb02038.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/1991] [Accepted: 08/28/1991] [Indexed: 11/29/2022]
Affiliation(s)
- Lin Chao
- Department of Zoology; University of Maryland; College Park MD 20742 USA
| | - Thutrang Tran
- Department of Zoology; University of Maryland; College Park MD 20742 USA
| | - Crystal Matthews
- Department of Zoology; University of Maryland; College Park MD 20742 USA
| |
Collapse
|
12
|
Lynch M, Blanchard J, Houle D, Kibota T, Schultz S, Vassilieva L, Willis J. PERSPECTIVE: SPONTANEOUS DELETERIOUS MUTATION. Evolution 2017; 53:645-663. [PMID: 28565627 DOI: 10.1111/j.1558-5646.1999.tb05361.x] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/1998] [Accepted: 01/25/1999] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Lynch
- Department of Biology; University of Oregon; Eugene Oregon 97403
| | - Jeff Blanchard
- Department of Biology; University of Oregon; Eugene Oregon 97403
| | - David Houle
- Department of Zoology; University of Toronto; Toronto Ontario M5S 1A1 Canada
| | - Travis Kibota
- Biology Department; Clark College; Vancouver Washington 98663
| | - Stewart Schultz
- Department of Biology; University of Miami; Coral Gables Florida 33124
| | | | - John Willis
- Department of Biology; University of Oregon; Eugene Oregon 97403
| |
Collapse
|
13
|
Willis JH. EFFECTS OF DIFFERENT LEVELS OF INBREEDING ON FITNESS COMPONENTS IN
MIMULUS GUTTATUS. Evolution 2017; 47:864-876. [DOI: 10.1111/j.1558-5646.1993.tb01240.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/1991] [Accepted: 08/25/1992] [Indexed: 11/29/2022]
Affiliation(s)
- John H. Willis
- Department of Ecology and Evolution The University of Chicago Chicago Illinois 60637
| |
Collapse
|
14
|
Lynch M, Gabriel W. MUTATION LOAD AND THE SURVIVAL OF SMALL POPULATIONS. Evolution 2017; 44:1725-1737. [PMID: 28567811 DOI: 10.1111/j.1558-5646.1990.tb05244.x] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/1989] [Accepted: 01/17/1990] [Indexed: 11/29/2022]
Abstract
Previous attempts to model the joint action of selection and mutation in finite populations have treated population size as being independent of the mutation load. However, the accumulation of deleterious mutations is expected to cause a gradual reduction in population size. Consequently, in small populations random genetic drift will progressively overpower selection making it easier to fix future mutations. This synergistic interaction, which we refer to as a mutational melt-down, ultimately leads to population extinction. For many conditions, the coefficient of variation of extinction time is less than 0.1, and for species that reproduce by binary fission, the expected extinction time is quite insensitive to population carrying capacity. These results are consistent with observations that many cultures of ciliated protozoans and vertebrate fibroblasts have characteristic extinction times. The model also predicts that clonal lineages are unlikely to survive more than 104 to 105 generations, which is consistent with existing data on parthenogenetic animals. Contrary to the usual view that Muller's ratchet does more damage when selection is weak, we show that the mean extinction time declines as mutations become more deleterious. Although very small sexual populations, such as self-fertilized lines, are subject to mutational meltdowns, recombination effectively eliminates the process when the effective population size exceeds a dozen or so. The concept of the effective mutation load is developed, and several procedures for estimating it are described. It is shown that this load can be reduced substantially when mutational effects are highly variable.
Collapse
Affiliation(s)
- Michael Lynch
- Department of Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Wilfried Gabriel
- Department of Physiological Ecology, Max Planck Institute for Limnology, Postfach 165, D-2320, Plön, FEDERAL REPUBLIC OF GERMANY
| |
Collapse
|
15
|
Abstract
Multipartite viruses have one of the most puzzling genetic organizations found in living organisms. These viruses have several genome segments, each containing only a part of the genetic information, and each individually encapsidated into a separate virus particle. While countless studies on molecular and cellular mechanisms of the infection cycle of multipartite viruses are available, just as for other virus types, very seldom is their lifestyle questioned at the viral system level. Moreover, the rare available “system” studies are purely theoretical, and their predictions on the putative benefit/cost balance of this peculiar genetic organization have not received experimental support. In light of ongoing progresses in general virology, we here challenge the current hypotheses explaining the evolutionary success of multipartite viruses and emphasize their shortcomings. We also discuss alternative ideas and research avenues to be explored in the future in order to solve the long-standing mystery of how viral systems composed of interdependent but physically separated information units can actually be functional.
Collapse
|
16
|
Abstract
Segmented RNA viruses are widespread in nature and include important human, animal and plant pathogens, such as influenza viruses and rotaviruses. Although the origin of RNA virus genome segmentation remains elusive, a major consequence of this genome structure is the capacity for reassortment to occur during co-infection, whereby segments are exchanged among different viral strains. Therefore, reassortment can create viral progeny that contain genes that are derived from more than one parent, potentially conferring important fitness advantages or disadvantages to the progeny virus. However, for segmented RNA viruses that package their multiple genome segments into a single virion particle, reassortment also requires genetic compatibility between parental strains, which occurs in the form of conserved packaging signals, and the maintenance of RNA and protein interactions. In this Review, we discuss recent studies that examined the mechanisms and outcomes of reassortment for three well-studied viral families - Cystoviridae, Orthomyxoviridae and Reoviridae - and discuss how these findings provide new perspectives on the replication and evolution of segmented RNA viruses.
Collapse
|
17
|
Zhang Z, Wang D, Yu C, Wang Z, Dong J, Shi K, Yuan X. Identification of three new isolates of Tomato spotted wilt virus from different hosts in China: molecular diversity, phylogenetic and recombination analyses. Virol J 2016; 13:8. [PMID: 26762153 PMCID: PMC4712509 DOI: 10.1186/s12985-015-0457-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/21/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Destructive diseases caused by Tomato spotted wilt virus (TSWV) have been reported associated with many important plants worldwide. Recently, TSWV was reported to infect different hosts in China. It is of value to clone TSWV isolates from different hosts and examine diversity and evolution among different TSWV isolates in China as well as worldwide. METHODS RT-PCR was used to clone the full-length genome (L, M and S segments) of three new isolates of TSWV that infected different hosts (tobacco, red pepper and green pepper) in China. Identity of nucleotide and amino acid sequences among TSWV isolates were analyzed by DNAMAN. MEGA 5.0 was used to construct phylogenetic trees. RDP4 was used to detect recombination events during evolution of these isolates. RESULTS Whole-genome sequences of three new TSWV isolates in China were determined. Together with other available isolates, 29 RNA L, 62 RNA M and 66 RNA S of TSWV isolates were analyzed for molecular diversity, phylogenetic and recombination events. This analysis revealed that the entire TSWV genome, especially the M and S RNAs, had major variations in genomic size that mainly involve the A-U rich intergenic region (IGR). Phylogenetic analyses on TSWV isolates worldwide revealed evidence for frequent reassortments in the evolution of tripartite negative-sense RNA genome. Significant numbers of recombination events with apparent 5' regional preference were detected among TSWV isolates worldwide. Moreover, TSWV isolates with similar recombination events usually had closer relationships in phylogenetic trees. CONCLUSIONS All five Chinese TSWV isolates including three TSWV isolates of this study and previously reported two isolates can be divided into two groups with different origins based on molecular diversity and phylogenetic analysis. During their evolution, both reassortment and recombination played roles. These results suggest that recombination could be an important mechanism in the evolution of multipartite RNA viruses, even negative-sense RNA viruses.
Collapse
Affiliation(s)
- Zhenjia Zhang
- College of Plant Protection, Shandong Agricultural University, No 61, Daizong Street, Tai'an, 271018, Shandong Province, P. R. China.
| | - Deya Wang
- College of Plant Protection, Shandong Agricultural University, No 61, Daizong Street, Tai'an, 271018, Shandong Province, P. R. China.
| | - Chengming Yu
- College of Plant Protection, Shandong Agricultural University, No 61, Daizong Street, Tai'an, 271018, Shandong Province, P. R. China.
| | - Zenghui Wang
- College of Plant Protection, Shandong Agricultural University, No 61, Daizong Street, Tai'an, 271018, Shandong Province, P. R. China.
| | - Jiahong Dong
- Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, 650223, China.
| | - Kerong Shi
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, P. R. China.
| | - Xuefeng Yuan
- College of Plant Protection, Shandong Agricultural University, No 61, Daizong Street, Tai'an, 271018, Shandong Province, P. R. China.
| |
Collapse
|
18
|
Domingo E. Molecular Basis of Genetic Variation of Viruses. VIRUS AS POPULATIONS 2016. [PMCID: PMC7149591 DOI: 10.1016/b978-0-12-800837-9.00002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genetic variation is a necessity of all biological systems. Viruses use all known mechanisms of variation: mutation, several forms of recombination, and segment reassortment in the case of viruses with a segmented genome. These processes are intimately connected with the replicative machineries of viruses, as well as with fundamental physico-chemical properties of nucleotides when acting as template or substrate residues. Recombination has been viewed as a means to rescue viable genomes from unfit parents, or to produce large modifications for the exploration of phenotypic novelty. All types of genetic variation can act conjointly as blind processes to provide the raw materials for adaptation to the changing environments in which viruses must replicate.
Collapse
|
19
|
Jupille H, Vega-Rua A, Rougeon F, Failloux AB. Arboviruses: variations on an ancient theme. Future Virol 2014. [DOI: 10.2217/fvl.14.62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACT Arboviruses utilize different strategies to complete their transmission cycle between vertebrate and invertebrate hosts. Most possess an RNA genome coupled with an RNA polymerase lacking proofreading activity and generate large populations of genetically distinct variants, permitting rapid adaptation to environmental changes. With mutation rates of between 10- 6 and 10-4 substitutions per nucleotide, arboviral genomes rapidly acquire mutations that can lead to viral emergence. Arboviruses can be described in seven families, four of which have medical importance: Togaviridae, Flaviviridae, Bunyaviridae and Reoviridae. The Togaviridae and Flaviviridae both have ssRNA genomes, while the Bunyaviridae and Reoviridae possess segmented RNA genomes. Recent epidemics caused by these arboviruses have been associated with specific mutations leading to enhanced host ranges, vector shifts and virulence.
Collapse
Affiliation(s)
- Henri Jupille
- Department of Virology, Arboviruses & Insect Vectors, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Anubis Vega-Rua
- Department of Virology, Arboviruses & Insect Vectors, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
- Cellule Pasteur UPMC, Université Pierre et Marie Curie, Paris, France
| | | | - Anna-Bella Failloux
- Department of Virology, Arboviruses & Insect Vectors, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
20
|
Molecular evolutionary history of Sugarcane yellow leaf virus based on sequence analysis of RNA-dependent RNA polymerase and putative aphid transmission factor-coding genes. J Mol Evol 2014; 78:349-65. [PMID: 24952671 DOI: 10.1007/s00239-014-9630-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
RNA-dependent RNA polymerase (RdRp) encoded by ORF2 and putative aphid transmission factor (PATF) encoded by ORF5 of Sugarcane yellow leaf virus (SCYLV) were detected in six sugarcane cultivars affected by yellow leaf using RT-PCR and real-time RT-PCR assays. Expression of both genes varied among infected plants, but overall expression of RdRp was higher than expression of PATF. Cultivar H87-4094 from Hawaii yielded the highest transcript levels of RdRp, whereas cultivar C1051-73 from Cuba exhibited the lowest levels. Sequence comparisons among 25 SCYLV isolates from various geographical locations revealed an amino acid similarity of 72.1-99.4 and 84.7-99.8 % for the RdRp and PATF genes, respectively. The 25 SCYLV isolates were separated into three (RdRp) and two (PATF) phylogenetic groups using the MEGA6 program that does not account for genetic recombination. However, the SCYLV genome contained potential recombination signals in the RdRp and PATF coding genes based on the GARD genetic algorithm. Use of this later program resulted in the reconstruction of phylogenies on the left as well as on the right sides of the putative recombination breaking points, and the 25 SCYLV isolates were distributed into three distinct phylogenetic groups based on either RdRp or PATF sequences. As a result, recombination reshuffled the affiliation of the accessions to the different clusters. Analysis of selection pressures exerted on RdRp and PATF encoded proteins revealed that ORF 2 and ORF 5 underwent predominantly purifying selection. However, a few sites were also under positive selection as assessed by various models such as FEL, IFEL, REL, FUBAR, MEME, GA-Branch, and PRIME.
Collapse
|
21
|
Molecular adaptation within the coat protein-encoding gene of Tunisian almond isolates of Prunus necrotic ringspot virus. J Genet 2013; 92:11-24. [PMID: 23640404 DOI: 10.1007/s12041-013-0211-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The sequence alignments of five Tunisian isolates of Prunus necrotic ringspot virus (PNRSV) were searched for evidence of recombination and diversifying selection. Since failing to account for recombination can elevate the false positive error rate in positive selection inference, a genetic algorithm (GARD) was used first and led to the detection of potential recombination events in the coat protein-encoding gene of that virus. The Recco algorithm confirmed these results by identifying, additionally, the potential recombinants. For neutrality testing and evaluation of nucleotide polymorphism in PNRSV CP gene, Tajima's D, and Fu and Li's D and F statistical tests were used. About selection inference, eight algorithms (SLAC, FEL, IFEL, REL, FUBAR, MEME, PARRIS, and GA branch) incorporated in HyPhy package were utilized to assess the selection pressure exerted on the expression of PNRSV capsid. Inferred phylogenies pointed out, in addition to the three classical groups (PE-5, PV-32, and PV-96), the delineation of a fourth cluster having the new proposed designation SW6, and a fifth clade comprising four Tunisian PNRSV isolates which underwent recombination and selective pressure and to which the name Tunisian outgroup was allocated.
Collapse
|
22
|
Gene copy number is differentially regulated in a multipartite virus. Nat Commun 2013; 4:2248. [DOI: 10.1038/ncomms3248] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/05/2013] [Indexed: 12/14/2022] Open
|
23
|
Dennehy JJ, Duffy S, O'Keefe KJ, Edwards SV, Turner PE. Frequent Coinfection Reduces RNA Virus Population Genetic Diversity. J Hered 2013; 104:704-12. [DOI: 10.1093/jhered/est038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Cooperation: another mechanism of viral evolution. Trends Microbiol 2013; 21:320-4. [DOI: 10.1016/j.tim.2013.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 02/05/2023]
|
25
|
Lian S, Lee JS, Cho WK, Yu J, Kim MK, Choi HS, Kim KH. Phylogenetic and recombination analysis of tomato spotted wilt virus. PLoS One 2013; 8:e63380. [PMID: 23696821 PMCID: PMC3656965 DOI: 10.1371/journal.pone.0063380] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
Tomato spotted wilt virus (TSWV) severely damages and reduces the yield of many economically important plants worldwide. In this study, we determined the whole-genome sequences of 10 TSWV isolates recently identified from various regions and hosts in Korea. Phylogenetic analysis of these 10 isolates as well as the three previously sequenced isolates indicated that the 13 Korean TSWV isolates could be divided into two groups reflecting either two different origins or divergences of Korean TSWV isolates. In addition, the complete nucleotide sequences for the 13 Korean TSWV isolates along with previously sequenced TSWV RNA segments from Korea and other countries were subjected to phylogenetic and recombination analysis. The phylogenetic analysis indicated that both the RNA L and RNA M segments of most Korean isolates might have originated in Western Europe and North America but that the RNA S segments for all Korean isolates might have originated in China and Japan. Recombination analysis identified a total of 12 recombination events among all isolates and segments and five recombination events among the 13 Korea isolates; among the five recombinants from Korea, three contained the whole RNA L segment, suggesting reassortment rather than recombination. Our analyses provide evidence that both recombination and reassortment have contributed to the molecular diversity of TSWV.
Collapse
Affiliation(s)
- Sen Lian
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Jong-Seung Lee
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Won Kyong Cho
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
- Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jisuk Yu
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Mi-Kyeong Kim
- Department of Agricultural Biology, National Academy of Agriculture Sciences, Suwon, Republic of Korea
| | - Hong-Soo Choi
- Department of Agricultural Biology, National Academy of Agriculture Sciences, Suwon, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
- Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Griswold CK, Henry TA. Epistasis can increase multivariate trait diversity in haploid non-recombining populations. Theor Popul Biol 2012; 82:209-21. [PMID: 22771491 DOI: 10.1016/j.tpb.2012.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/21/2012] [Accepted: 06/23/2012] [Indexed: 11/18/2022]
Abstract
We evaluate the effect of epistasis on genetically-based multivariate trait variation in haploid non-recombining populations. In a univariate setting, past work has shown that epistasis reduces genetic variance (additive plus epistatic) in a population experiencing stabilizing selection. Here we show that in a multivariate setting, epistasis also reduces total genetic variation across the entire multivariate trait in a population experiencing stabilizing selection. But, we also show that the pattern of variation across the multivariate trait can be more even when epistasis occurs compared to when epistasis is absent, such that some character combinations will have more genetic variance when epistasis occurs compared to when epistasis is absent. In fact, a measure of generalized multivariate trait variation can be increased by epistasis under weak to moderate stabilizing selection conditions, as well as neutral conditions. Likewise, a measure of conditional evolvability can be increased by epistasis under weak to moderate stabilizing selection and neutral conditions. We investigate the nature of epistasis assuming a multivariate-normal model genetic effects and investigate the nature of epistasis underlying the biophysical properties of RNA. Increased multivariate diversity occurs for populations that are infinite in size, as well as populations that are finite in size. Our model of finite populations is explicitly genealogical and we link our findings about the evenness of eigenvalues with epistasis to prior work on the genealogical mapping of epistatic effects.
Collapse
|
27
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
28
|
Sardanyés J, Elena SF. Quasispecies spatial models for RNA viruses with different replication modes and infection strategies. PLoS One 2011; 6:e24884. [PMID: 21949777 PMCID: PMC3176287 DOI: 10.1371/journal.pone.0024884] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 08/23/2011] [Indexed: 02/04/2023] Open
Abstract
Empirical observations and theoretical studies suggest that viruses may use different replication strategies to amplify their genomes, which impact the dynamics of mutation accumulation in viral populations and therefore, their fitness and virulence. Similarly, during natural infections, viruses replicate and infect cells that are rarely in suspension but spatially organized. Surprisingly, most quasispecies models of virus replication have ignored these two phenomena. In order to study these two viral characteristics, we have developed stochastic cellular automata models that simulate two different modes of replication (geometric vs stamping machine) for quasispecies replicating and spreading on a two-dimensional space. Furthermore, we explored these two replication models considering epistatic fitness landscapes (antagonistic vs synergistic) and different scenarios for cell-to-cell spread, one with free superinfection and another with superinfection inhibition. We found that the master sequences for populations replicating geometrically and with antagonistic fitness effects vanished at low critical mutation rates. By contrast, the highest critical mutation rate was observed for populations replicating geometrically but with a synergistic fitness landscape. Our simulations also showed that for stamping machine replication and antagonistic epistasis, a combination that appears to be common among plant viruses, populations further increased their robustness by inhibiting superinfection. We have also shown that the mode of replication strongly influenced the linkage between viral loci, which rapidly reached linkage equilibrium at increasing mutations for geometric replication. We also found that the strategy that minimized the time required to spread over the whole space was the stamping machine with antagonistic epistasis among mutations. Finally, our simulations revealed that the multiplicity of infection fluctuated but generically increased along time.
Collapse
Affiliation(s)
- Josep Sardanyés
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, València, Spain.
| | | |
Collapse
|
29
|
Hyder MZ, Shah SH, Hameed S, Naqvi SMS. Evidence of recombination in the Banana bunchy top virus genome. INFECTION GENETICS AND EVOLUTION 2011; 11:1293-300. [PMID: 21539936 DOI: 10.1016/j.meegid.2011.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 04/13/2011] [Accepted: 04/16/2011] [Indexed: 10/18/2022]
Abstract
Viruses serve as good model for evolutionary studies, owing to their short generation times and small genomes. Banana bunchy top virus (BBTV) is a significant subject being multicomponent circular single stranded DNA virus. BBTV belongs to family Nanoviridae and contains DNA-R, -U3, -S, -M, -C, and -N as integral genomic components. Evolutionary studies have shown genetic re-assortment of components among its isolates and revealed a concerted type evolution in non-coding regions of its genome. The DNA U3 having been shown as the most diverse component in our previous studies, was subjected to sequencing from some Pakistani isolates for the first time. Sequence analysis revealed intergenomic recombination in DNA-U3 among the isolates of two sub-groups and a very rare intragenomic recombination in Pakistani BBTV population. This indicates that like other evolutionary processes including intergenomic recombination, intragenomic recombination among the genomic components of the same isolate may also have a significant contribution in the evolution of BBTV genome. Intragenomic recombination therefore appears to be a unique way to generate genetic diversity in the multicomponent ssDNA viruses.
Collapse
Affiliation(s)
- Muhammad Zeeshan Hyder
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Islamabad 44000, Pakistan
| | | | | | | |
Collapse
|
30
|
Ojosnegros S, García-Arriaza J, Escarmís C, Manrubia SC, Perales C, Arias A, Mateu MG, Domingo E. Viral genome segmentation can result from a trade-off between genetic content and particle stability. PLoS Genet 2011; 7:e1001344. [PMID: 21437265 PMCID: PMC3060069 DOI: 10.1371/journal.pgen.1001344] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 02/16/2011] [Indexed: 01/30/2023] Open
Abstract
The evolutionary benefit of viral genome segmentation is a classical, yet unsolved question in evolutionary biology and RNA genetics. Theoretical studies anticipated that replication of shorter RNA segments could provide a replicative advantage over standard size genomes. However, this question has remained elusive to experimentalists because of the lack of a proper viral model system. Here we present a study with a stable segmented bipartite RNA virus and its ancestor non-segmented counterpart, in an identical genomic nucleotide sequence context. Results of RNA replication, protein expression, competition experiments, and inactivation of infectious particles point to a non-replicative trait, the particle stability, as the main driver of fitness gain of segmented genomes. Accordingly, measurements of the volume occupation of the genome inside viral capsids indicate that packaging shorter genomes involves a relaxation of the packaging density that is energetically favourable. The empirical observations are used to design a computational model that predicts the existence of a critical multiplicity of infection for domination of segmented over standard types. Our experiments suggest that viral segmented genomes may have arisen as a molecular solution for the trade-off between genome length and particle stability. Genome segmentation allows maximizing the genetic content without the detrimental effect in stability derived from incresing genome length. Genome segmentation, the splitting of a linear genome into two or more segments, is a major evolutionary transition from independent towards complementing transmission of genetic information. Many viruses with RNA as genetic material have segmented genomes, but the molecular forces behind genome segmentation are unknown. We have used foot-and-mouth disease virus to address this question, because this non-segmented RNA virus became segmented into two RNAs when it was extensively propagated in cell culture. This made possible a comparison of the segmented form (with two shorter RNAs enclosed into separate viral particles) with its exactly matching non-segmented counterpart. The results show that the advantage of the segmented form lies in the higher stability of the particles that enclose the shorter RNA, and not in any difference in the rate of RNA synthesis or expression of the genetic material. Genome segmentation may have arisen as a molecular mechanism to overcome the trade-off between genomic content and particle stability. It allows optimizing the amount of genetic information while relaxing packaging density.
Collapse
Affiliation(s)
- Samuel Ojosnegros
- Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Madrid, Spain
| | - Juan García-Arriaza
- Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Madrid, Spain
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Cristina Escarmís
- Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Madrid, Spain
| | - Susanna C. Manrubia
- Laboratorio de Evolución Molecular, Centro de Astrobiología (CSIC/INTA), Instituto Nacional de Técnica Aeroespacial, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Madrid, Spain
| | - Armando Arias
- Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Madrid, Spain
| | | | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa,” CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- * E-mail:
| |
Collapse
|
31
|
O'Keefe KJ, Silander OK, McCreery H, Weinreich DM, Wright KM, Chao L, Edwards SV, Remold SK, Turner PE. Geographic differences in sexual reassortment in RNA phage. Evolution 2010; 64:3010-23. [PMID: 20500219 DOI: 10.1111/j.1558-5646.2010.01040.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The genetic structure of natural bacteriophage populations is poorly understood. Recent metagenomic studies suggest that phage biogeography is characterized by frequent migration. Using virus samples mostly isolated in Southern California, we recently showed that very little population structure exists in segmented RNA phage of the Cystoviridae family due to frequent segment reassortment (sexual genetic mixis) between unrelated virus individuals. Here we use a larger genetic dataset to examine the structure of Cystoviridae phage isolated from three geographic locations in Southern New England. We document extensive natural variation in the physical sizes of RNA genome segments for these viruses. In addition, consistent with earlier findings, our phylogenetic analyses and calculations of linkage disequilibrium (LD) show no evidence of within-segment recombination in wild populations. However, in contrast to the prior study, our analysis finds that reassortment of segments between individual phage plays a lesser role among cystoviruses sampled in New England, suggesting that the evolutionary importance of genetic mixis in Cystoviridae phage may vary according to geography. We discuss possible explanations for these conflicting results across the studies, such as differing local ecology and its impact on phage growth, and geographic differences in selection against hybrid phage genotypes.
Collapse
Affiliation(s)
- Kara J O'Keefe
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Populations of genomic RNAs devoted to the replication or spread of a bipartite plant virus differ in genetic structure. J Virol 2009; 83:12973-83. [PMID: 19793810 DOI: 10.1128/jvi.00950-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA viruses within a host exist as dynamic distributions of closely related mutants and recombinant genomes. These closely related mutants and recombinant genomes, which are subjected to a continuous process of genetic variation, competition, and selection, act as a unit of selection, termed viral quasispecies. Characterization of mutant spectra within hosts is essential for understanding viral evolution and pathogenesis resulting from the cooperative behavior of viral mutants within viral quasispecies. Furthermore, a detailed analysis of viral variability within hosts is needed to design control strategies, because viral quasispecies are reservoirs of viral variants that potentially can emerge with increased virulence or altered tropism. In this work, we report a detailed analysis of within-host viral populations in 13 field isolates of the bipartite Tomato chlorosis virus (ToCV) (genus Crinivirus, family Closteroviridae). The intraisolate genetic structure was analyzed based on sequencing data for 755 molecular clones distributed in four genomic regions within the RNA-dependent RNA polymerase (RNA1) and Hsp70h, CP, and CPm (RNA2) open reading frames. Our results showed that populations of ToCV within a host plant have a heterogeneous and complex genetic structure similar to that described for animal and plant RNA viral quasispecies. Moreover, the structures of these populations clearly differ depending on the RNA segment considered, being more complex for RNA1 (encoding replication-associated proteins) than for RNA2 (encoding encapsidation-, systemic-movement-, and insect transmission-relevant proteins). These results support the idea that, in multicomponent RNA viruses, function can generate profound differences in the genetic structures of the different genomic segments.
Collapse
|
33
|
|
34
|
González-Jara P, Fraile A, Canto T, García-Arenal F. The multiplicity of infection of a plant virus varies during colonization of its eukaryotic host. J Virol 2009; 83:7487-94. [PMID: 19474097 PMCID: PMC2708614 DOI: 10.1128/jvi.00636-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 05/19/2009] [Indexed: 11/20/2022] Open
Abstract
The multiplicity of infection (MOI), i.e., the number of virus genomes that infect a cell, is a key parameter in virus evolution, as it determines processes such as genetic exchange among genomes, selection intensity on viral genes, epistatic interactions, and the evolution of multipartite viruses. In fact, the MOI level is equivalent to the virus ploidy during genome expression. Nevertheless, there are few experimental estimates of MOI, particularly for viruses with eukaryotic hosts. Here we estimate the MOI of Tobacco mosaic virus (TMV) in its systemic host, Nicotiana benthamiana. The progress of infection of two TMV genotypes, differently tagged with the green or red fluorescent proteins GFP and RFP, was monitored by determining the number of leaf cell protoplasts that showed GFP, RFP, or GFP and RFP fluorescence at different times postinoculation. This approach allowed the quantitative analysis of the kinetics of infection and estimation of the generation time and the number of infection cycles required for leaf colonization. MOI levels were estimated from the frequency of cells infected by only TMV-GFP or TMV-RFP. The MOI was high, but it changed during the infection process, decreasing from an initial level of about 6 to a final one of 1 to 2, with most infection cycles occurring at the higher MOI levels. The decreasing MOI can be explained by mechanisms limiting superinfection and/or by genotype competition within double-infected cells, which was shown to occur in coinfected tobacco protoplasts. To our knowledge, this is the first estimate of MOI during virus colonization of a eukaryotic host.
Collapse
Affiliation(s)
- Pablo González-Jara
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | | | | | | |
Collapse
|
35
|
Abstract
Coinfection in RNA virus populations results in two important phenomena, complementation and recombination. Of the two, complementation has a strong effect on selection against deleterious mutations, as has been confirmed in earlier studies. As complementation delays the purging of less-fit mutations, coinfection may be detrimental to the evolution of a virus population. Here we employ both deterministic modeling and stochastic simulation to explore the mechanisms underlying the interactions between complementation and other evolutionary factors, namely, mutation, selection, and epistasis. We find that strong complementation reduces slightly the overall fitness of a virus population but substantially enhances its diversity and robustness, especially when interacting with selection and epistasis.
Collapse
|
36
|
Hardstone MC, Leichter CA, Scott JG. Multiplicative interaction between the two major mechanisms of permethrin resistance, kdr and cytochrome P450-monooxygenase detoxification, in mosquitoes. J Evol Biol 2009; 22:416-23. [PMID: 19196389 DOI: 10.1111/j.1420-9101.2008.01661.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epistasis is the nonadditive interaction between different loci which contribute to a phenotype. Epistasis between independent loci conferring insecticide resistance is important to investigate as this phenomenon can shape the rate that resistance evolves and can dictate the level of resistance in the field. The evolution of insecticide resistance in mosquitoes is a growing and world-wide problem. The two major mechanisms that confer resistance to permethrin in Culex mosquitoes are target site insensitivity (i.e. kdr) and enhanced detoxification by cytochrome P450 monooxygenases. Using three strains of mosquitoes, and crosses between these strains, we assessed the relative contribution of the two independent loci conferring permethrin resistance, individually and when present together. We found that for all genotype combinations tested, Culex pipiens quinquefasciatus exhibited multiplicative interactions between kdr and P450 detoxification, whether the resistance alleles were homozygous or heterozygous. These results provide a basis for further analysis of the evolution and maintenance of insecticide resistance in mosquitoes.
Collapse
Affiliation(s)
- M C Hardstone
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| | | | | |
Collapse
|
37
|
Estimation of the effective number of founders that initiate an infection after aphid transmission of a multipartite plant virus. J Virol 2008; 82:12416-21. [PMID: 18842732 DOI: 10.1128/jvi.01542-08] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fecundity of RNA viruses can be very high. Thus, it is often assumed that viruses have large populations, and RNA virus evolution has been mostly explained using purely deterministic models. However, population bottlenecks during the virus life cycle could result in effective population numbers being much smaller than reported censuses, and random genetic drift could be important in virus evolution. A step at which population bottlenecks may be severe is host-to-host transmission. We report here an estimate of the size of the population that starts a new infection when Cucumber mosaic virus (CMV) is transmitted by the aphid Aphis gossypii, based on the segregation of two CMV genotypes in plants infected by aphids that acquired the virus from plants infected by both genotypes. Results show very small effective numbers of founders, between one and two, both in experiments in which the three-partite genome of CMV was aphid transmitted and in experiments in which a fourth RNA, CMV satellite RNA, was also transmitted. These numbers are very similar to those published for Potato virus Y, which has a monopartite genome and is transmitted by aphids according to a different mechanism than CMV. Thus, the number of genomic segments seems not to be a major determinant of the effective number of founders. Also, our results suggest that the occurrence of severe bottlenecks during horizontal transmission is general for viruses nonpersistently transmitted by aphids, indicating that random genetic drift should be considered when modeling virus evolution.
Collapse
|
38
|
Abstract
A model of the division of labor in simple evolving systems is explored to compare two strategies evident in natural populations: phenotypic specialization (such as differentiation by regulated gene expression) and genotypic specialization (such as co-infection by complementary covirus populations). While genotypic specialization is vulnerable to the chance extinction of an essential specialist type and to parasitism, phenotypic specialization is able to overcome these hurdles. When simple spatial effects are included, phenotypic specialization has further benefits, protecting against destructive dynamic patterns. Many of the advantages of phenotypic specialization, however, can only be realized when a high degree of relatedness within groups is ensured.
Collapse
Affiliation(s)
- L M Wahl
- Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
39
|
|
40
|
Hughes AL, Hughes MAK. More effective purifying selection on RNA viruses than in DNA viruses. Gene 2007; 404:117-25. [PMID: 17928171 DOI: 10.1016/j.gene.2007.09.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 09/11/2007] [Accepted: 09/13/2007] [Indexed: 01/11/2023]
Abstract
Analysis of the pattern of nucleotide diversity in 222 independent viral sequence datasets showed the prevalence of purifying selection. In spite of the higher mutation rate of RNA viruses, our analyses revealed stronger evidence of the action of purifying selection in RNA viruses than in DNA viruses. The ratio of nonsynonymous to synonymous nucleotide diversity was significantly lower in RNA viruses than in DNA viruses, indicating that nonsynonymous mutations have been removed at a greater rate (relative to the mutation rate) in the former than in the latter. Moreover, statistics that measure the occurrence of rare polymorphisms revealed significantly a greater excess of rare nonsynonymous polymorphisms in RNA viruses than in DNA viruses but no difference with respect to synonymous polymorphisms. Since rare nonsynonymous polymorphisms are likely to be undergoing the effects of purifying selection acting to eliminate them, this result implies a stronger signature of ongoing purifying selection in RNA viruses than in DNA viruses. Across datasets from both DNA viruses and RNA viruses, we found a negatively allometric relationship between nonsynonymous and synonymous nucleotide diversity; in other words, nonsynonymous nucleotide diversity increased with synonymous nucleotide diversity at a less than linear rate. These findings are most easily explained by the occurrence of slightly deleterious mutations. The fact that the negative allometry was more pronounced in RNA viruses than in DNA viruses provided additional evidence that purifying selection is more effective in the former than in the latter.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29205, USA.
| | | |
Collapse
|
41
|
Beerenwinkel N, Pachter L, Sturmfels B, Elena SF, Lenski RE. Analysis of epistatic interactions and fitness landscapes using a new geometric approach. BMC Evol Biol 2007; 7:60. [PMID: 17433106 PMCID: PMC1865543 DOI: 10.1186/1471-2148-7-60] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 04/13/2007] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Understanding interactions between mutations and how they affect fitness is a central problem in evolutionary biology that bears on such fundamental issues as the structure of fitness landscapes and the evolution of sex. To date, analyses of fitness landscapes have focused either on the overall directional curvature of the fitness landscape or on the distribution of pairwise interactions. In this paper, we propose and employ a new mathematical approach that allows a more complete description of multi-way interactions and provides new insights into the structure of fitness landscapes. RESULTS We apply the mathematical theory of gene interactions developed by Beerenwinkel et al. to a fitness landscape for Escherichia coli obtained by Elena and Lenski. The genotypes were constructed by introducing nine mutations into a wild-type strain and constructing a restricted set of 27 double mutants. Despite the absence of mutants higher than second order, our analysis of this genotypic space points to previously unappreciated gene interactions, in addition to the standard pairwise epistasis. Our analysis confirms Elena and Lenski's inference that the fitness landscape is complex, so that an overall measure of curvature obscures a diversity of interaction types. We also demonstrate that some mutations contribute disproportionately to this complexity. In particular, some mutations are systematically better than others at mixing with other mutations. We also find a strong correlation between epistasis and the average fitness loss caused by deleterious mutations. In particular, the epistatic deviations from multiplicative expectations tend toward more positive values in the context of more deleterious mutations, emphasizing that pairwise epistasis is a local property of the fitness landscape. Finally, we determine the geometry of the fitness landscape, which reflects many of these biologically interesting features. CONCLUSION A full description of complex fitness landscapes requires more information than the average curvature or the distribution of independent pairwise interactions. We have proposed a mathematical approach that, in principle, allows a complete description and, in practice, can suggest new insights into the structure of real fitness landscapes. Our analysis emphasizes the value of non-independent genotypes for these inferences.
Collapse
Affiliation(s)
- Niko Beerenwinkel
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA
| | - Lior Pachter
- Department of Mathematics, University of California, Berkeley, CA 94720, USA
| | - Bernd Sturmfels
- Department of Mathematics, University of California, Berkeley, CA 94720, USA
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 València, Spain
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
42
|
Misevic D, Ofria C, Lenski RE. Sexual reproduction reshapes the genetic architecture of digital organisms. Proc Biol Sci 2006; 273:457-64. [PMID: 16615213 PMCID: PMC1560214 DOI: 10.1098/rspb.2005.3338] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Modularity and epistasis, as well as other aspects of genetic architecture, have emerged as central themes in evolutionary biology. Theory suggests that modularity promotes evolvability, and that aggravating (synergistic) epistasis among deleterious mutations facilitates the evolution of sex. Here, by contrast, we investigate the evolution of different genetic architectures using digital organisms, which are computer programs that self-replicate, mutate, compete and evolve. Specifically, we investigate how genetic architecture is shaped by reproductive mode. We allowed 200 populations of digital organisms to evolve for over 10 000 generations while reproducing either asexually or sexually. For 10 randomly chosen organisms from each population, we constructed and analysed all possible single mutants as well as one million mutants at each mutational distance from 2 to 10. The genomes of sexual organisms were more modular than asexual ones; sites encoding different functional traits had less overlap and sites encoding a particular trait were more tightly clustered. Net directional epistasis was alleviating (antagonistic) in both groups, although the overall strength of this epistasis was weaker in sexual than in asexual organisms. Our results show that sexual reproduction profoundly influences the evolution of the genetic architecture.
Collapse
Affiliation(s)
- Dusan Misevic
- Ecology, Evolutionary Biology and Behavior Program, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
43
|
Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. Nidovirales: evolving the largest RNA virus genome. Virus Res 2006; 117:17-37. [PMID: 16503362 PMCID: PMC7114179 DOI: 10.1016/j.virusres.2006.01.017] [Citation(s) in RCA: 650] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 01/13/2006] [Accepted: 01/18/2006] [Indexed: 11/19/2022]
Abstract
This review focuses on the monophyletic group of animal RNA viruses united in the order Nidovirales. The order includes the distantly related coronaviruses, toroviruses, and roniviruses, which possess the largest known RNA genomes (from 26 to 32kb) and will therefore be called "large" nidoviruses in this review. They are compared with their arterivirus cousins, which also belong to the Nidovirales despite having a much smaller genome (13-16kb). Common and unique features that have been identified for either large or all nidoviruses are outlined. These include the nidovirus genetic plan and genome diversity, the composition of the replicase machinery and virus particles, virus-specific accessory genes, the mechanisms of RNA and protein synthesis, and the origin and evolution of nidoviruses with small and large genomes. Nidoviruses employ single-stranded, polycistronic RNA genomes of positive polarity that direct the synthesis of the subunits of the replicative complex, including the RNA-dependent RNA polymerase and helicase. Replicase gene expression is under the principal control of a ribosomal frameshifting signal and a chymotrypsin-like protease, which is assisted by one or more papain-like proteases. A nested set of subgenomic RNAs is synthesized to express the 3'-proximal ORFs that encode most conserved structural proteins and, in some large nidoviruses, also diverse accessory proteins that may promote virus adaptation to specific hosts. The replicase machinery includes a set of RNA-processing enzymes some of which are unique for either all or large nidoviruses. The acquisition of these enzymes may have improved the low fidelity of RNA replication to allow genome expansion and give rise to the ancestors of small and, subsequently, large nidoviruses.
Collapse
Affiliation(s)
- Alexander E Gorbalenya
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, LUMC E4-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | |
Collapse
|
44
|
Abstract
Although deleterious mutations are believed to play a critical role in evolution, assessing their realized effect has been difficult. A key parameter governing the effect of deleterious mutations is the nature of epistasis, the interaction between the mutations. RNA viruses should provide one of the best systems for investigating the nature of epistasis because the high mutation rate allows a thorough investigation of mutational effects and interactions. Nonetheless, previous investigations of RNA viruses by S. Crotty and co-workers and by S. F. Elena have been unable to detect a significant effect of epistasis. Here we provide evidence that positive epistasis is characteristic of deleterious mutations in the RNA bacteriophage phi 6. We estimated the effects of deleterious mutations by performing mutation-accumulation experiments on five viral genotypes of decreasing fitness. We inferred positive epistasis because viral genotypes with low fitness were found to be less sensitive to deleterious mutations. We further examined environmental sensitivity in these genotypes and found that low-fitness genotypes were also less sensitive to environmental perturbations. Our results suggest that even random mutations impact the degree of canalization, the buffering of a phenotype against genetic and environmental perturbations. In addition, our results suggest that genetic and environmental canalization have the same developmental basis and finally that an understanding of the nature of epistasis may first require an understanding of the nature of canalization.
Collapse
Affiliation(s)
- Christina L Burch
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
45
|
Froissart R, Wilke CO, Montville R, Remold SK, Chao L, Turner PE. Co-infection weakens selection against epistatic mutations in RNA viruses. Genetics 2005; 168:9-19. [PMID: 15454523 PMCID: PMC1448111 DOI: 10.1534/genetics.104.030205] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Co-infection may be beneficial in large populations of viruses because it permits sexual exchange between viruses that is useful in combating the mutational load. This advantage of sex should be especially substantial when mutations interact through negative epistasis. In contrast, co-infection may be detrimental because it allows virus complementation, where inferior genotypes profit from superior virus products available within the cell. The RNA bacteriophage phi6 features a genome divided into three segments. Co-infection by multiple phi6 genotypes produces hybrids containing reassorted mixtures of the parental segments. We imposed a mutational load on phi6 populations by mixing the wild-type virus with three single mutants, each harboring a deleterious mutation on a different one of the three virus segments. We then contrasted the speed at which these epistatic mutations were removed from virus populations in the presence and absence of co-infection. If sex is a stronger force, we predicted that the load should be purged faster in the presence of co-infection. In contrast, if complementation is more important we hypothesized that mutations would be eliminated faster in the absence of co-infection. We found that the load was purged faster in the absence of co-infection, which suggests that the disadvantages of complementation can outweigh the benefits of sex, even in the presence of negative epistasis. We discuss our results in light of virus disease management and the evolutionary advantage of haploidy in biological populations.
Collapse
Affiliation(s)
- Rémy Froissart
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
46
|
Parasitism Between Co‐Infecting Bacteriophages. ADV ECOL RES 2005. [DOI: 10.1016/s0065-2504(04)37010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
47
|
Sanjuán R, Moya A, Elena SF. The contribution of epistasis to the architecture of fitness in an RNA virus. Proc Natl Acad Sci U S A 2004; 101:15376-9. [PMID: 15492220 PMCID: PMC524436 DOI: 10.1073/pnas.0404125101] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Accepted: 09/09/2004] [Indexed: 02/07/2023] Open
Abstract
The tendency for genetic architectures to exhibit epistasis among mutations plays a central role in the modern synthesis of evolutionary biology and in theoretical descriptions of many evolutionary processes. Nevertheless, few studies unquestionably show whether, and how, mutations typically interact. Beneficial mutations are especially difficult to identify because of their scarcity. Consequently, epistasis among pairs of this important class of mutations has, to our knowledge, never before been explored. Interactions among genome components should be of special relevance in compacted genomes such as those of RNA viruses. To tackle these issues, we first generated 47 genotypes of vesicular stomatitis virus carrying pairs of nucleotide substitution mutations whose separated and combined deleterious effects on fitness were determined. Several pairs exhibited significant interactions for fitness, including antagonistic and synergistic epistasis. Synthetic lethals represented 50% of the latter. In a second set of experiments, 15 genotypes carrying pairs of beneficial mutations were also created. In this case, all significant interactions were antagonistic. Our results show that the architecture of the fitness depends on complex interactions among genome components.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de Valencia, P.O. Box 22085, 46071 Valencia, Spain
| | | | | |
Collapse
|
48
|
Lin HX, Rubio L, Smythe AB, Falk BW. Molecular population genetics of Cucumber mosaic virus in California: evidence for founder effects and reassortment. J Virol 2004; 78:6666-75. [PMID: 15163757 PMCID: PMC416521 DOI: 10.1128/jvi.78.12.6666-6675.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Accepted: 02/18/2004] [Indexed: 11/20/2022] Open
Abstract
The structure and genetic diversity of a California Cucumber mosaic virus (CMV) population was assessed by single-strand conformation polymorphism and nucleotide sequence analyses of genomic regions 2b, CP, MP, and the 3' nontranslated region of RNA3. The California CMV population exhibited low genetic diversity and was composed of one to three predominant haplotypes and a large number of minor haplotypes for specific genomic regions. Extremely low diversity and close evolutionary relationships among isolates in a subpopulation suggested that founder effects might play a role in shaping the genetic structure. Phylogenetic analysis indicated a naturally occurring reassortant between subgroup IA and IB isolates and potential reassortants between subgroup IA isolates, suggesting that genetic exchange by reassortment contributed to the evolution of the California CMV population. Analysis of various population genetics parameters and distribution of synonymous and nonsynonymous mutations revealed that different coding regions and even different parts of coding regions were under different evolutionary constraints, including a short region of the 2b gene for which evidence suggests possible positive selection.
Collapse
Affiliation(s)
- Han-Xin Lin
- Department of Plant Pathology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
49
|
Peng W, Levine H, Hwa T, Kessler DA. Analytical study of the effect of recombination on evolution via DNA shuffling. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 69:051911. [PMID: 15244851 DOI: 10.1103/physreve.69.051911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2003] [Indexed: 05/24/2023]
Abstract
DNA shuffling is an evolutionary protocol wherein cycles of selection, recombination, mutation, and amplification are employed to evolve proteins and DNA sequences. Experiments have shown its superiority to traditional protocols which do not employ recombination. Motivated by DNA shuffling, we investigate a multilocus evolutionary model that incorporates selection, recombination, and point mutations. Due to simplicity of the model, for the case of an infinite population we can obtain a full analytical treatment of both its dynamical and equilibrium properties, and study the benefit of recombination explicitly and quantitatively. We also briefly discuss finite-population size corrections.
Collapse
Affiliation(s)
- Weiqun Peng
- Center for Theoretical Biological Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Research on the molecular biology of cucumoviruses and their plant-virus interactions has been very extensive in the last decade. Cucumovirus genome structures have been analyzed, giving new insights into their genetic variability, evolution, and taxonomy. A new viral gene has been discovered, and its role in promoting virus infection has been delineated. The localization and various functions of each viral-encoded gene product have been established. The particle structures of Cucumber mosaic virus (CMV) and Tomato aspermy virus have been determined. Pathogenicity domains have been mapped, and barriers to virus infection have been localized. The movement pathways of the viruses in some hosts have been discerned, and viral mutants affecting the movement processes have been identified. Host responses to viral infection have been characterized, both temporally and spatially. Progress has been made in determining the mechanisms of replication, gene expression, and transmission of CMV. The pathogenicity determinants of various satellite RNAs have been characterized, and the importance of secondary structure in satellite RNA-mediated interactions has been recognized. Novel plant genes specifying resistance to infection by CMV have been identified. In some cases, these genes have been mapped, and one resistance gene to CMV has been isolated and characterized. Pathogen-derived resistance has been demonstrated against CMV using various segments of the CMV genome, and the mechanisms of some of these forms of resistances have been analyzed. Finally, the nature of synergistic interactions between CMV and other viruses has been characterized. This review highlights these various achievements in the context of the previous work on the biology of cucumoviruses and their interactions with plants.
Collapse
Affiliation(s)
- Peter Palukaitis
- Gene Expression Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom
| | | |
Collapse
|