1
|
El-Khouly ME, Khatab HA, Abdel-Shafi AA, Hammad SF. Acridinedione-phthalimide conjugates: Intramolecular electron transfer and singlet oxygen generation studies for optical and photodynamic therapy applications. Photochem Photobiol Sci 2024; 23:1445-1455. [PMID: 38937393 DOI: 10.1007/s43630-024-00603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
We reported herein the synthesis, characterization of hybrid conjugates composed of phthalimide (Phth) and acridine-1,8-diones (Acr) for optical and medical applications. For the synthetic procedure, a three-step synthetic strategy has been utilized. The optical properties of the examined 1,8-acridinedione-phthalimide connected molecules (AcrPhth 1-5) have been examined utilizing various spectroscopic techniques, e.g., steady-state absorption and fluorescence, and time-correlated single photon counting. The steady-state absorption studies showed that AcrPhth 1-5 absorbs the light in the UV and visible region. The fluorescence studies of AcrPhth 1-5 exhibited significant fluorescence quenching compared to the acridinedione control compounds (Acr 1-5) suggesting the occurrence of electron-transfer reactions from the electron donating acridinedione moiety (Acr) to the electron accepting phthalimide moiety (Phth). The rate and efficiency of the electron-transfer reactions were determined from the fluorescence lifetime measurements indicating the fast electron-transfer processes of the covalently connected AcrPhth 1-5 conjugates. Computational studies supported the intramolecular electron-transfer reaction of AcrPhth conjugates using ab initio B3LYP/6-311G methods. In the optimized structures, the HOMO was found to be entirely located on the Acr entity, while the LUMO was found to be entirely on the Phth entity. Further, the synthesized compounds were tested as photosensitizers for generating the singlet oxygen species, which is a key factor in the photodynamic therapy (PDT) applications. The nanosecond laser flash measurements enable us to detect the triplet-excited states of examined Acr and AcrPhth conjugates, determining the triplet quantum yields, and direct detecting the singlet oxygen in an accurate way. From this observation, the singlet quantum yields were found to be in the range of 0.12-0.27 (for Acr 1-5) and 0.07-0.19 (for AcrPhth 1-5 conjugates). The molecular docking studies revealed that compound AcrPhth 2 exhibited high binding affinity with for key genes (p53, TOP2B, p38, and EGFR) suggesting its potential as a targeted anticancer therapy.
Collapse
Affiliation(s)
- Mohamed E El-Khouly
- Nanoscience Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, Egypt.
| | - Hassan A Khatab
- Pharm D Program, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, Egypt
| | - Ayamn A Abdel-Shafi
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Abbassia, Cairo, Egypt
| | - Sherif F Hammad
- Pharm D Program, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, Egypt
| |
Collapse
|
2
|
Fernandes GFS, Lopes JR, Dos Santos JL, Scarim CB. Phthalimide as a versatile pharmacophore scaffold: Unlocking its diverse biological activities. Drug Dev Res 2023; 84:1346-1375. [PMID: 37492986 DOI: 10.1002/ddr.22094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
Phthalimide, a pharmacophore exhibiting diverse biological activities, holds a prominent position in medicinal chemistry. In recent decades, numerous derivatives of phthalimide have been synthesized and extensively studied for their therapeutic potential across a wide range of health conditions. This comprehensive review highlights the latest developments in medicinal chemistry, specifically focusing on phthalimide-based compounds that have emerged within the last decade. These compounds showcase promising biological activities, including anti-inflammatory, anti-Alzheimer, antiepileptic, antischizophrenia, antiplatelet, anticancer, antibacterial, antifungal, antimycobacterial, antiparasitic, anthelmintic, antiviral, and antidiabetic properties. The physicochemical profiles of the phthalimide derivatives were carefully analyzed using the online platform pkCSM, revealing the remarkable versatility of this scaffold. Therefore, this review emphasizes the potential of phthalimide as a valuable scaffold for the development of novel therapeutic agents, providing avenues for the exploration and design of new compounds.
Collapse
Affiliation(s)
| | - Juliana R Lopes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Cauê B Scarim
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
3
|
Khatab HA, Hammad SF, El-Fakharany EM, Hashem AI, El-Helw EAE. Synthesis and cytotoxicity evaluation of novel 1,8-acridinedione derivatives bearing phthalimide moiety as potential antitumor agents. Sci Rep 2023; 13:15093. [PMID: 37699954 PMCID: PMC10497682 DOI: 10.1038/s41598-023-41970-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
In this study, we aimed to develop hybrid antitumor compounds by synthesizing and characterizing novel N-substituted acrididine-1,8-dione derivatives, designed as hybrids of phthalimide and acridine-1,8-diones. We employed a three-step synthetic strategy and characterized all compounds using IR, 1H NMR, 13C NMR, and LC-MS. The cytotoxicity and antitumor activity of five compounds (8c, 8f, 8h, 8i, and 8L) against four cancer cell lines (H460, A431, A549, and MDA-MB-231) compared to human skin fibroblast cells were evaluated. Among the synthesized compounds, compound 8f showed promising activity against skin and lung cancers, with favorable IC50 values and selectivity index. The relative changes in mRNA expression levels of four key genes (p53, TOP2B, p38, and EGFR) in A431 cells treated with the five synthesized compounds (8c, 8f, 8h, 8i, and 8L) were also investigated. Additionally, molecular docking studies revealed that compound 8f exhibited high binding affinity with TOP2B, p38, p53, and EGFR, suggesting its potential as a targeted anticancer therapy. The results obtained indicate that N-substituted acrididine-1,8-dione derivatives have the potential to be developed as novel antitumor agents with a dual mechanism of action, and compound 8f is a promising candidate for further investigation.
Collapse
Affiliation(s)
- Hassan A Khatab
- Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sherif F Hammad
- Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City of Scientific Research and Technological Applications, New Borg El Arab, 21934, Alexandria, Egypt
| | - Ahmed I Hashem
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Eman A E El-Helw
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
4
|
Ugwu DI, Eze FU, Ezeorah CJ, Rhyman L, Ramasami P, Tania G, Eze CC, Uzoewulu CP, Ogboo BC, Okpareke OC. Synthesis, Structure, Hirshfeld Surface Analysis, Non-Covalent Interaction, and In Silico Studies of 4-Hydroxy-1-[(4-Nitrophenyl)Sulfonyl]Pyrrolidine-2-Carboxyllic Acid. JOURNAL OF CHEMICAL CRYSTALLOGRAPHY 2023; 53:1-14. [PMID: 37362239 PMCID: PMC9998016 DOI: 10.1007/s10870-023-00978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/14/2023] [Indexed: 06/28/2023]
Abstract
The new compound 4-hydroxy-1-[(4-nitrophenyl)sulfonyl]pyrrolidine-2-carboxyllic acid was obtained by the reaction of 4-hydroxyproline with 4-nitrobenzenesulfonyl chloride. The compound was characterized using single crystal X-ray diffraction studies. Spectroscopic methods including NMR, FTIR, ES-MS, and UV were employed for further structural analysis of the synthesized compound. The title compound was found to have crystallized in an orthorhombic crystal system with space group P212121. The S1-N1 bond length of 1.628 (2) Å was a strong indication of the formation of the title compound. The absence of characteristic downfield 1H NMR peak of pyrrolidine ring and the presence of S-N stretching vibration at 857.82 cm-1 on the FTIR are strong indications for the formation of the sulfonamide. The experimental study was complemented with computations at the B3LYP/6-311G + + (d,p) level of theory to gain more understanding of interactions in the compound at the molecular level. Noncovalent interaction, Hirsfeld surface analysis and interaction energy calculations were employed in the analysis of the supramolecular architecture of the compound. Predicted ADMET parameters, awarded suitable bioavailability credentials, while the molecular docking study indicated that the compound enchants promising inhibition prospects against dihydropteroate synthase, DNA topoisomerase, and SARS-CoV-2 spike. Graphical Abstract Herein we present the solid state structure, noncovalent interaction and spectroscopic analysis of a prospective bioactive compound 4-hydroxy-1-[(4-nitrophenyl)sulphonyl]pyrrolidine-2-carboxyllic acid. Supplementary Information The online version contains supplementary material available at 10.1007/s10870-023-00978-0.
Collapse
Affiliation(s)
- David Izuchukwu Ugwu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001 Nigeria
| | - Florence Uchenna Eze
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001 Nigeria
| | - Chigozie Julius Ezeorah
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001 Nigeria
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 USA
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 808037 Mauritius
- Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, 2028 South Africa
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 808037 Mauritius
- Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, 2028 South Africa
| | - Groutso Tania
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Cosmas Chinweike Eze
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001 Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, 410001 Nigeria
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204 USA
| | - Chiamaka Peace Uzoewulu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001 Nigeria
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204 USA
| | - Blessing Chinweotito Ogboo
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, 410001 Nigeria
- Department of Chemistry, State University of NewYork at Buffalo, Buffalo, NY 14260 USA
| | | |
Collapse
|
5
|
Du Y, Jiang B, Han G. A Facile Highly Selective Anti‐Markovnikov Hydroamination of Vinyl Pyridines by Free Radical Oxidation. ChemistrySelect 2022. [DOI: 10.1002/slct.202204136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Yue‐Yue Du
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 P. R. of. China
| | - Bo Jiang
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 P. R. of. China
| | - Guo‐Zhi Han
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 P. R. of. China
| |
Collapse
|
6
|
Melo ISF, Ziviani VP, Barbosa BCM, Rodrigues FF, Silva RRL, da Silva Neto L, de Fátima Â, César IC, Machado RR, Coelho MM. Synthesis of 2-(2-(4-thioxo-3H-1,2-dithiole-5-yl) phenoxy)ethyl)isoindole-1,3-thione, a novel hydrogen sulfide-releasing phthalimide hybrid, and evaluation of its activity in models of inflammatory pain. Eur J Pharmacol 2022; 938:175409. [PMID: 36436591 DOI: 10.1016/j.ejphar.2022.175409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Hydrogen sulfide (H2S) is a gaseous mediator that modulates several physiological and pathological processes. Phthalimide analogues, substances that have the phthalimide ring in the structure, belong to the group of thalidomide analogues. Both H2S donors and phthalimide analogues exhibit activities in models of inflammation and pain. As molecular hybridization is an important strategy aiming to develop drugs with a better pharmacological profile, in the present study we synthesized a novel H2S-releasing phthalimide hybrid, 2-(2-(4-thioxo-3H-1,2-dithiole-5-yl) phenoxy)ethyl)isoindole-1,3-thione (PTD-H2S), and evaluated its activity in models of inflammatory pain in mice. Per os (p.o.) administration of PTD-H2S (125 or 250 mg/kg) reduced mechanical allodynia induced by carrageenan and lipopolysaccharide. Intraperitoneal (i.p.) administration of PTD-H2S (25 mg/kg), but not equimolar doses of its precursors 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (14.2 mg/kg) and 2-phthalimidethanol (12 mg/kg), reduced mechanical allodynia induced by lipopolysaccharide. The antiallodynic effect induced by PTD-H2S (25 mg/kg, i.p.) was more sustained than that induced by the H2S donor NaHS (8 mg/kg, i.p.). Previous administration of hydroxocobalamin (300 mg/kg, i.p.) or glibenclamide (40 mg/kg, p.o.) attenuated PTD-H2S antiallodynic activity. In conclusion, we synthesized a novel H2S-releasing phthalimide hybrid and demonstrated its activity in models of inflammatory pain. PTD-H2S activity may be due to H2S release and activation of ATP-sensitive potassium channels. The demonstration of PTD-H2S activity in models of pain stimulates further studies aiming to evaluate H2S-releasing phthalimide hybrids as candidates for analgesic drugs.
Collapse
Affiliation(s)
- Ivo S F Melo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Victor P Ziviani
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Barbara C M Barbosa
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Felipe F Rodrigues
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Roger R L Silva
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Leonardo da Silva Neto
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Isabela C César
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Renes R Machado
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Márcio M Coelho
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Experimental design optimization for the synthesis of lenalidomide nitro precursor. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04869-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Amin A, Qadir T, Sharma PK, Jeelani I, Abe H. A Review on The Medicinal And Industrial Applications of N-Containing Heterocycles. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2022. [DOI: 10.2174/18741045-v16-e2209010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nitrogen-containing heterocycles constitute an important division of organic chemistry. The structural and functional diversity in nitrogen-containing heterocyclic compounds emanates from the presence and nature of the heteroatom that optimizes the compound for a specific application. Nitrogen heterocycles have been found to mimic various endogenous metabolites and natural products, highlighting their pivotal role in current drug design. Their applications are manifold and are predominantly used as pharmaceuticals, corrosion inhibitors, polymers, agrochemicals, dyes, developers, etc. Additionally, their catalytic behavior has rendered these compounds notable precursors in synthesizing various important organic compounds. The rate at which nitrogen heterocycles are synthesized explains this organic chemistry domain's vitality and usefulness. The present review article focuses on nitrogen-containing heterocycles as a versatile scaffold for current applications of organic chemistry.
Collapse
|
9
|
Nouali F, Sousa JLC, Albuquerque HMT, Mendes RF, Paz FAA, Saher L, Kibou Z, Choukchou-Braham N, Talhi O, Silva AMS. Microwave-Assisted Synthesis of 4,6-Disubstituted Isoindoline-1,3-diones by Diels-Alder Reactions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Saddiqa A, Shahzadi I, Usman M, Çakmak O, Ökten S. Facile, Expeditious and Cost-effective Preparation of N-Phthaloyl ( S)-Amino Acids and Their in silico Activities against Staphylococcus Aureus. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2113724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Aisha Saddiqa
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Iram Shahzadi
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Muhammad Usman
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| | - Osman Çakmak
- Department of Gastronomy, Faculty of Arts and Design, İstanbul Rumeli University, Silivri, İstanbul, Türkiye
| | - Salih Ökten
- Department of Maths and Science Education, Division of Science Education, Faculty of Education, Kırıkkale University, Yahşihan, Kırıkkale, Türkiye
| |
Collapse
|
11
|
Ram S, Mehara P, Kumar A, Sharma AK, Chauhan AS, Kumar A, Das P. Supported-Pd catalyzed carbonylative synthesis of phthalimides and isoindolinones using Oxalic acid as in situ CO surrogate with 2-iodobenzamides and 2-iodobenzylanilines in ppm-level catalyst loading. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Tan A. Synthesis, spectroscopic characterization of novel phthalimides derivatives bearing a 1,2,3-triazole unit and examination as potential SARS-CoV-2 inhibitors via in silico studies. J Mol Struct 2022; 1261:132915. [PMID: 35345413 PMCID: PMC8942404 DOI: 10.1016/j.molstruc.2022.132915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022]
Abstract
In the present study, novel phthalimide derivatives 8(a-f) and 9(a-f) bearing a 1,2,3-triazole subunit were synthesized via CuAAC reactions and characterized by 1H, 13C NMR, HR-MS, and FT-IR analyses. To support the fight against SARS-CoV-2, in silico molecular docking studies were carried out to examine their interactions with the proteins of SARS-CoV-2 (Mpro and PLpro) and the protein-protein interactions (PPI) between the ACE2-spike (S1) in comparison with various inhibitors reported to be active by in vitro experiments. The ligand-protein stabilities of compounds 8a-Mpro, 8b-PLpro, and 9a-'ACE2-S1' showing the best binding energy and predicted inhibition constant values (Ki) were examined by molecular dynamics simulation studies. Finally, in silico ADMET properties of the target compounds were investigated using the Swiss ADME and ProTox-II web tools. According to in silico results, all phthalimide analogs may block the PPI between S1 and ACE2. The compounds may also inhibit the progression of the Mpro, and PLpro proteins of SARS-CoV-2. Additionally, it has been estimated that the compounds are suitable for oral administration and exhibit low levels of toxicity.
Collapse
Affiliation(s)
- Ayse Tan
- Vocational School of Technical Sciences, Mus Alparslan University, Mus 49250, Turkey
| |
Collapse
|
13
|
Dowarah J, Marak BN, Sran BS, Shah PK, Shukla PK, Singh VP. Synthesis of a Pyridone-Based Phthalimide Fleximer and Its Characterization and Supramolecular Property Evaluation. ACS OMEGA 2022; 7:24485-24497. [PMID: 35874266 PMCID: PMC9301638 DOI: 10.1021/acsomega.2c02095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, a novel pyridone-based phthalimide fleximer, that is, ethyl 5-cyano-6-(3-(1,3-dioxoisoindolin-2-yl)propoxy)-4-(3-methoxyphenyl)-2-methylnicotinate, was synthesized, and its structure was established by the single-crystal X-ray diffraction method. The supramolecular self-assembly of the titled compound through noncovalent interactions was then investigated thoroughly. The titled compound crystallized with two symmetry-independent molecules (A and B, Z' = 2). In agreement with experimental observations, our density functional theory calculations also showed that the titled compound has a flexible motif and can occur in various conformations, including molecules A and B. The investigation of the supramolecular framework revealed that the molecules are notably bound by the nonclassical C-H···O and C-H···N hydrogen bonds and C-H···π interactions. Hirshfeld surface analysis was carried out to quantify the various intermolecular interactions. The dual anti-inflammatory activity of the tilted compound was also explored by molecular docking in the active sites of 5-LOX and COX-2 receptors, which revealed good binding affinities of -9.0 and -8.6 kcal/mol, respectively.
Collapse
Affiliation(s)
- Jayanta Dowarah
- Department
of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Brilliant N. Marak
- Department
of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Balkaran Singh Sran
- Department
of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | | | | | - Ved Prakash Singh
- Department
of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| |
Collapse
|
14
|
Synthesis, investigation of the cholinesterase inhibitory activities and in silico studies of some novel N-substituted phthalimide derivatives. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02492-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Simple, green and one pot new strategy for synthesis of the phthalimide derivatives. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Tabatabaei Rafiei LS, Asadi M, Hosseini FS, Amanlou A, Biglar M, Amanlou M. Synthesis and Evaluation of Anti-Epileptic Properties of New Phthalimide-4,5-Dihydrothiazole-Amide Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1776345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Leila Sadat Tabatabaei Rafiei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Asadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Sadat Hosseini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Amanlou
- Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahmood Biglar
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Dziubina A, Szkatuła D, Gdula-Argasińska J, Sapa J. Synthesis and antinociceptive activity of four 1H-isoindolo-1,3(2H)-diones. Arch Pharm (Weinheim) 2022; 355:e2100423. [PMID: 35396875 DOI: 10.1002/ardp.202100423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 11/09/2022]
Abstract
The present study aimed to design and synthesize a series of 2-hydroxy-3-(4-aryl-1-piperazinyl)propyl phthalimide derivatives, which are analogs of 1H-pyrrolo[3,4-c]pyridine-1,3(2H)-dione derivatives with proven analgesic effect. In accordance with the basic principle proposed by Lipinski's rule, the probable bioavailabilities of the F1-F4 phthalimides were assessed. The obtained values indicate good absorption after oral administration and the ability to cross the blood-brain barrier. The four compounds F1-F4 differing in the type of pharmacophore in the phenyl group of the 2-hydroxy-3-(4-aryl-1-piperazinyl)propyl on the imide nitrogen atom (R, F1-F3) and the 4-benzhydryl analog (F4) were selected for in vitro and in vivo studies. Based on the in vitro studies, the effects of compounds F1-F4 on cell viability/proliferation and COX-2 levels were evaluated. Moreover, using in vivo methods, the compounds were tested for antinociceptive activity in models of acute pain (the writhing and the hot-plate tests) in mice. Their influence on the motor coordination effect and locomotor activity was also tested. The obtained results revealed that the compounds F1-F4 strongly suppress the pain of peripheral origin and to a lesser extent (F1-F3) pain of central/supraspinal origin. In the in vitro studies, F1-F4 reduced the COX-2 level in lipopolysaccharide-activated RAW 264.7 cells, which suggests their anti-inflammatory activity.
Collapse
Affiliation(s)
- Anna Dziubina
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Dominika Szkatuła
- Department of Medicinal Chemistry, Wrocław Medical University, Wrocław, Poland
| | - Joanna Gdula-Argasińska
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Sapa
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
18
|
Farajpour B, Alizadeh A. Recent advances in the synthesis of cyclic compounds using α,α-dicyanoolefins as versatile vinylogous nucleophiles. Org Biomol Chem 2022; 20:8366-8394. [DOI: 10.1039/d2ob01551j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article provides a review of the applications of α,α-dicyanoolefins as versatile vinylogous nucleophiles in the synthesis of various cyclic compounds, covering the literature from the past 13 years.
Collapse
Affiliation(s)
- Behnaz Farajpour
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
| | - Abdolali Alizadeh
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
| |
Collapse
|
19
|
Phthaloylation of amines, hydrazines, and hydrazides by N-substituted phthalimides using recyclable sulfated polyborate. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Synthesis, antiproliferative, and antimicrobial properties of novel phthalimide derivatives. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02823-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Viana MDM, de Lima AA, da Silva Neto GJ, da Silva SMA, Leite AB, Dos Santos EC, Bassi ÊJ, Campesatto EA, de Queiroz AC, Barreiro EJ, Lima LM, Alexandre-Moreira MS. LASSBio-596: a New Pre-clinical Candidate for Rheumatoid Arthritis? Inflammation 2021; 45:528-543. [PMID: 34697722 DOI: 10.1007/s10753-021-01564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Pain and inflammatory disorders are significant health problems because of prevalence and associated disabilities. In this context, LASSBio-596 is a hybrid compound able to modulate TNF-α and phosphodiesterases 4 and 5, exhibiting an anti-inflammatory effect in the pulmonary inflammatory model. Aiming at a better description of the activities of LASSBio-596, we initially conducted nociception tests (acetic acid-induced abdominal writhing, glutamate, and formalin-induced nociception and hot plate test) and later inflammatory tests (acute, peritonitis; and chronic, arthritis) that directed us to this last one. In the abdominal writhing test, there was a dose-dependent inhibition, whose response occurred at the maximum dose (50 mg/kg, p.o.), used in the subsequent tests. LASSBio-596 also inhibited nociception induced by chemical (glutamate by 31.9%; and formalin, in both phases, 1st phase: 25.7%; 2nd phase: 23.9%) and thermal agents (hotplate, by increased latency for pain at two different times). These effects were independent of the motor function, legitimated in rotarod. As there was a response in the inflammatory component of nociception, we performed the peritonitis test, in which migration was inhibited by LASSBio-596 by 39.9%. As the inflammatory process is present in autoimmune diseases, we also performed the arthritis test. LASSBio-596 reduced paw edema from the 15th day to the 21st day of treatment (no liver changes and with fewer paw injuries). In addition, LASSBio-596 decreased serum levels of TNF-α by 67.1%. These data demonstrated the antinociceptive effect of LASSBio-596 and reinforces its anti-inflammatory property (i.e., RA), amplifying the therapeutic potential of this molecule.
Collapse
Affiliation(s)
- Max Denisson Maurício Viana
- Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Av. Lourival Melo Mota, SN, Tabuleiro do Martins, Maceio, AL, 57072-900, Brazil.
| | | | - Geraldo José da Silva Neto
- Laboratory of Catalysis and Chemical Reactivity, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio, AL, 57072-900, Brazil
| | - Suellen Maria Albuquerque da Silva
- Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, AL, 57072-900, Brazil
| | - Anderson Brandão Leite
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, AL, 57072-900, Brazil
| | - Elane Conceição Dos Santos
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, AL, 57072-900, Maceio, Brazil
| | - Ênio José Bassi
- Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, AL, 57072-900, Maceio, Brazil
| | - Eliane Aparecida Campesatto
- Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, AL, 57072-900, Brazil
| | - Aline Cavalcanti de Queiroz
- Microbiology, Immunology and Parasitology Laboratory, Medical and Nursing Sciences Complex, Federal University of Alagoas - Campus Arapiraca, Av. Manoel Severino Barbosa - Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Eliezer Jesus Barreiro
- Laboratory for Evaluation and Synthesis of Bioactive Substances, LASSBio®, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, PO Box 68024, Rio de Janeiro, RJ, 21944-910, Brazil
| | - Lidia Moreira Lima
- Laboratory for Evaluation and Synthesis of Bioactive Substances, LASSBio®, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, PO Box 68024, Rio de Janeiro, RJ, 21944-910, Brazil
| | - Magna Suzana Alexandre-Moreira
- Pharmacology and Immunity Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, AL, 57072-900, Brazil
| |
Collapse
|
22
|
Sankhe SS, Chindarkar NR. Synthesis, characterization and biological activity evaluation of new 3- methyl and 4- fluoro isoindoline-1, 3-dione/phthalimide analogues. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Mourad AAE, Khodir AE, Saber S, Mourad MAE. Novel Potent and Selective DPP-4 Inhibitors: Design, Synthesis and Molecular Docking Study of Dihydropyrimidine Phthalimide Hybrids. Pharmaceuticals (Basel) 2021; 14:144. [PMID: 33670273 PMCID: PMC7918823 DOI: 10.3390/ph14020144] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Dipeptidyl peptidase-4 (DPP-4) inhibitors have emerged as anti-hyperglycemic agents that improve glycemic control in type 2 diabetic patients, either as monotherapy or in combination with other antidiabetic drugs. METHODS A novel series of dihydropyrimidine phthalimide hybrids was synthesized and evaluated for their in vitro and in vivo DPP-4 inhibition activity and selectivity using alogliptin as reference. Oral glucose tolerance test was assessed in type 2 diabetic rats after chronic treatment with the synthesized hybrids ± metformin. Cytotoxicity and antioxidant assays were performed. Additionally, molecular docking study with DPP-4 and structure activity relationship of the novel hybrids were also studied. RESULTS Among the synthesized hybrids, 10g, 10i, 10e, 10d and 10b had stronger in vitro DPP-4 inhibitory activity than alogliptin. Moreover, an in vivo DPP-4 inhibition assay revealed that 10g and 10i have the strongest and the most extended blood DPP-4 inhibitory activity compared to alogliptin. In type 2 diabetic rats, hybrids 10g, 10i and 10e exhibited better glycemic control than alogliptin, an effect that further supported by metformin combination. Finally, 10j, 10e, 10h and 10d had the highest radical scavenging activity in DPPH assay. CONCLUSIONS Hybrids 10g, 10i and 10e are potent DPP-4 inhibitors which may be beneficial for T2DM treatment.
Collapse
Affiliation(s)
- Ahmed A. E. Mourad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Port-Said University, Port-Said 42511, Egypt;
| | - Ahmed E. Khodir
- Pharmacology Department, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt;
| | - Sameh Saber
- Pharmacology Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Mansoura, Dakahlia 11152, Egypt;
| | - Mai A. E. Mourad
- Medicinal Chemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said 42511, Egypt
| |
Collapse
|
24
|
Alizadeh A, Farajpour B, Knedel TO, Janiak C. Synthesis of Substituted Phthalimides via Ultrasound-Promoted One-Pot Multicomponent Reaction. J Org Chem 2021; 86:574-580. [PMID: 33226238 DOI: 10.1021/acs.joc.0c02245] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, a novel strategy for the straightforward synthesis of substituted phthalimides is described, which includes base-mediated Michael addition/intramolecular cyclization/[1,5]-H shift/cleavage of CS2/aromatization/nucleophilic acyl substitution reaction of 2-(4-oxo-2-thioxothiazolidin-5-ylidene)acetates and α,α-dicyanoolefines under ultrasound (US) irradiation. Some advantages of this method are as follows: having simple operation, easily accessible starting materials, chemoselective cascade process, synthetically useful yields, and green conditions by utilizing US irradiation as a source of energy and using ethanol as solvent.
Collapse
Affiliation(s)
- Abdolali Alizadeh
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Behnaz Farajpour
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Tim-Oliver Knedel
- Institut für Anorganische Chemie, und Strukturchemie Heinrich-Heine-Universität Düsseldorf, I40225 Düsseldorf, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie, und Strukturchemie Heinrich-Heine-Universität Düsseldorf, I40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Ye ZP, Hu YZ, Xia PJ, Xiang HY, Chen K, Yang H. Photocatalytic intermolecular anti-Markovnikov hydroamination of unactivated alkenes with N-hydroxyphthalimide. Org Chem Front 2021. [DOI: 10.1039/d0qo01321h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A visible-light-induced/phosphite-promoted anti-Markovnikov hydroamination of alkenes with N-hydroxyphthalimide was successfully realized, which was initiated by a proton-coupled electron transfer to enable direct cleavage of its N–O bond.
Collapse
Affiliation(s)
- Zhi-Peng Ye
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Yuan-Zhuo Hu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Peng-Ju Xia
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
- School of Chemistry and Pharmaceutical Sciences
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
- State Key Laboratory of Chemical Oncogenomics
| | - Hua Yang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| |
Collapse
|
26
|
Uysal S, Soyer Z, Saylam M, Tarikogullari AH, Yilmaz S, Kirmizibayrak PB. Design, synthesis and biological evaluation of novel naphthoquinone-4-aminobenzensulfonamide/carboxamide derivatives as proteasome inhibitors. Eur J Med Chem 2020; 209:112890. [PMID: 33039723 DOI: 10.1016/j.ejmech.2020.112890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
A series of novel 4-aminobenzensulfonamide/carboxamide derivatives bearing naphthoquinone pharmacophore were designed, sythesized and evaluated for their proteasome inhibitory and antiproliferative activities against human breast cancer cell line (MCF-7). The structures of the synthesized compounds were confirmed by spectral and elemental analyses. The proteasome inhibitory activity studies were carried out using cell-based assay. The antiproteasomal activity results revealed that most of the compounds exhibited inhibitory activity with different percentages against the caspase-like (C-L, β1 subunit), trypsin-like (T-L, β2 subunit) and chymotrypsin-like (ChT-L, β5 subunit) activities of proteasome. Among the tested compounds, compound 14 bearing 5-chloro-2-pyridyl ring on the nitrogen atom of sulfonamide group is the most active compound in the series and displayed higher inhibition with IC50 values of 9.90 ± 0.61, 44.83 ± 4.23 and 22.27 ± 0.15 μM against ChT-L, C-L and T-L activities of proteasome compared to the lead compound PI-083 (IC50 = 12.47 ± 0.21, 53.12 ± 2.56 and 26.37 ± 0.5 μM), respectively. The antiproliferative activity was also determined by MTT (3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay in vitro. According to the antiproliferative activity results, all of the compounds exhibited cell growth inhibitory activity in a range of IC50 = 1.72 ± 0.14-20.8 ± 0.5 μM and compounds 13 and 28 were found to be the most active compounds with IC50 values of 1.79 ± 0.21 and 1.72 ± 0.14 μM, respectively. Furthermore, molecular modeling studies were carried out for the compounds 13, 14 and 28 to investigate the ligand-enzyme binding interactions.
Collapse
Affiliation(s)
- Sirin Uysal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Zeynep Soyer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey.
| | - Merve Saylam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, İzmir Katip Celebi University, İzmir, Turkey
| | - Ayse H Tarikogullari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Sinem Yilmaz
- Department of Biotechnology, Institute of Science, Ege University, İzmir, Turkey; Department of Bioengineering, Faculty of Engineering, University of Alaaddin Keykubat, Antalya, Turkey
| | | |
Collapse
|
27
|
Grib I, Berredjem M, Rachedi KO, Djouad SE, Bouacida S, Bahadi R, Ouk TS, Kadri M, Ben Hadda T, Belhani B. Novel N-sulfonylphthalimides: Efficient synthesis, X-ray characterization, spectral investigations, POM analyses, DFT computations and antibacterial activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128423] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Czopek A, Partyka A, Bucki A, Pawłowski M, Kołaczkowski M, Siwek A, Głuch-Lutwin M, Koczurkiewicz P, Pękala E, Jaromin A, Tyliszczak B, Wesołowska A, Zagórska A. Impact of N-Alkylamino Substituents on Serotonin Receptor (5-HTR) Affinity and Phosphodiesterase 10A (PDE10A) Inhibition of Isoindole-1,3-dione Derivatives. Molecules 2020; 25:molecules25173868. [PMID: 32854402 PMCID: PMC7504677 DOI: 10.3390/molecules25173868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, a series of compounds derived from 4-methoxy-1H-isoindole-1,3(2H)-dione, potential ligands of phosphodiesterase 10A and serotonin receptors, were investigated as potential antipsychotics. A library of 4-methoxy-1H-isoindole-1,3(2H)-dione derivatives with various amine moieties was synthesized and examined for their phosphodiesterase 10A (PDE10A)-inhibiting properties and their 5-HT1A and 5-HT7 receptor affinities. Based on in vitro studies, the most potent compound, 18 (2-[4-(1H-benzimidazol-2-yl)butyl]-4-methoxy-1H-isoindole-1,3(2H)-dione), was selected and its safety in vitro was evaluated. In order to explain the binding mode of compound 18 in the active site of the PDE10A enzyme and describe the molecular interactions responsible for its inhibition, computer-aided docking studies were performed. The potential antipsychotic properties of compound 18 in a behavioral model of schizophrenia were also investigated.
Collapse
Affiliation(s)
- Anna Czopek
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (A.B.); (M.P.); (M.K.); (A.Z.)
- Correspondence: ; Tel.: +48-12-620-5450
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (A.P.); (A.W.)
| | - Adam Bucki
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (A.B.); (M.P.); (M.K.); (A.Z.)
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (A.B.); (M.P.); (M.K.); (A.Z.)
| | - Marcin Kołaczkowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (A.B.); (M.P.); (M.K.); (A.Z.)
| | - Agata Siwek
- Department of Pharmacobiology, Jagiellonian University Collegium Medicum, 9 Medyczna Street, 30-688 Krakow, Poland; (A.S.); (M.G.-L.)
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Jagiellonian University Collegium Medicum, 9 Medyczna Street, 30-688 Krakow, Poland; (A.S.); (M.G.-L.)
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical Biochemistry, Jagiellonian University Collegium Medicum, 9 Medyczna Street, 30-688 Krakow, Poland; (P.K.); (E.P.)
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Jagiellonian University Collegium Medicum, 9 Medyczna Street, 30-688 Krakow, Poland; (P.K.); (E.P.)
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 14a Joliot-Curie, 50-383 Wroclaw, Poland;
| | - Bożena Tyliszczak
- Faculty of Materials Engineering and Physics, Cracow University of Technology, Institute of Materials Science, 24 Warszawska Street, 31-155 Krakow, Poland;
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (A.P.); (A.W.)
| | - Agnieszka Zagórska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (A.B.); (M.P.); (M.K.); (A.Z.)
| |
Collapse
|
29
|
Pharmacological Potential of Small Molecules for Treating Corneal Neovascularization. Molecules 2020; 25:molecules25153468. [PMID: 32751576 PMCID: PMC7435801 DOI: 10.3390/molecules25153468] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Under healthy conditions, the cornea is an avascular structure which allows for transparency and optimal visual acuity. Its avascular nature is maintained by a balance of proangiogenic and antiangiogenic factors. An imbalance of these factors can result in abnormal blood vessel proliferation into the cornea. This corneal neovascularization (CoNV) can stem from a variety of insults including hypoxia and ocular surface inflammation caused by trauma, infection, chemical burns, and immunological diseases. CoNV threatens corneal transparency, resulting in permanent vision loss. Mainstay treatments of CoNV have partial efficacy and associated side effects, revealing the need for novel treatments. Numerous natural products and synthetic small molecules have shown potential in preclinical studies in vivo as antiangiogenic therapies for CoNV. Such small molecules include synthetic inhibitors of the vascular endothelial growth factor (VEGF) receptor and other tyrosine kinases, plus repurposed antimicrobials, as well as natural source-derived flavonoid and non-flavonoid phytochemicals, immunosuppressants, vitamins, and histone deacetylase inhibitors. They induce antiangiogenic and anti-inflammatory effects through inhibition of VEGF, NF-κB, and other growth factor receptor pathways. Here, we review the potential of small molecules, both synthetics and natural products, targeting these and other molecular mechanisms, as antiangiogenic agents in the treatment of CoNV.
Collapse
|
30
|
Almeida ML, Oliveira MC, Pitta IR, Pitta MG. Advances in Synthesis and Medicinal Applications of Compounds Derived from Phthalimide. Curr Org Synth 2020; 17:252-270. [DOI: 10.2174/1570179417666200325124712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/20/2022]
Abstract
Phthalimide derivatives have been presenting several promising biological activities in the literature,
such as anti-inflammatory, analgesic, antitumor, antimicrobial and anticonvulsant. The most well-known and
studied phthalimide derivative (isoindoline-1,3-dione) is thalidomide: this compound initially presented
important sedative effects, but it is now known that thalidomide has effectiveness against a wide variety of
diseases, including inflammation and cancer. This review approaches some of the recent and efficient chemical
synthesis pathways to obtain phthalimide analogues and also presents a summary of the main biological
activities of these derivatives found in the literature. Therefore, this review describes the chemical and
therapeutic aspects of phthalimide derivatives.
Collapse
Affiliation(s)
- Marcel L. Almeida
- Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Bioscience Center, Federal University of Pernambuco, Recife, Brazil
| | - Maria C.V.A. Oliveira
- Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Bioscience Center, Federal University of Pernambuco, Recife, Brazil
| | - Ivan R. Pitta
- Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Bioscience Center, Federal University of Pernambuco, Recife, Brazil
| | - Marina G.R. Pitta
- Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Bioscience Center, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
31
|
Camara R, Ogbeni D, Gerstmann L, Ostovar M, Hurer E, Scott M, Mahmoud NG, Radon T, Crnogorac-Jurcevic T, Patel P, Mackenzie LS, Chau DYS, Kirton SB, Rossiter S. Discovery of novel small molecule inhibitors of S100P with in vitro anti-metastatic effects on pancreatic cancer cells. Eur J Med Chem 2020; 203:112621. [PMID: 32707527 PMCID: PMC7501730 DOI: 10.1016/j.ejmech.2020.112621] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022]
Abstract
S100P, a calcium-binding protein, is known to advance tumor progression and metastasis in pancreatic and several other cancers. Herein is described the in silico identification of a putative binding pocket of S100P to identify, synthesize and evaluate novel small molecules with the potential to selectively bind S100P and inhibit its activation of cell survival and metastatic pathways. The virtual screening of a drug-like database against the S100P model led to the identification of over 100 clusters of diverse scaffolds. A representative test set identified a number of structurally unrelated hits that inhibit S100P-RAGE interaction, measured by ELISA, and reduce in vitro cell invasion selectively in S100P-expressing pancreatic cancer cells at 10 μM. This study establishes a proof of concept in the potential for rational design of small molecule S100P inhibitors for drug candidate development.
Collapse
Affiliation(s)
- Ramatoulie Camara
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Deborah Ogbeni
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Lisa Gerstmann
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Mehrnoosh Ostovar
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Ellie Hurer
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Mark Scott
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Nasir G Mahmoud
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Tomasz Radon
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | | | - Pryank Patel
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Louise S Mackenzie
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK; School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - David Y S Chau
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK; Eastman Dental Institute, University College London, 256 Grays Inn Rd, London, WC1X 8LD, UK
| | - Stewart B Kirton
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Sharon Rossiter
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| |
Collapse
|
32
|
Tan A, Kizilkaya S, Kelestemur U, Akdemir A, Kara Y. The Synthesis, Anticancer Activity, Structure-Activity Relationships and Molecular Modelling Studies of Novel Isoindole-1,3(2H)-dione Compounds Containing Different Functional Groups. Anticancer Agents Med Chem 2020; 20:1368-1378. [DOI: 10.2174/1871520620666200410080648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 11/22/2022]
Abstract
Background:
Isoindole-1,3(2H)-dione derivatives are known to have cytotoxic effects on many
cancer cells. The anticancer activity of these compounds varies depending on the substituents attached to them.
Therefore, the effect of substituents is very important when determining the anticancer activities of molecules.
We have recently reported an example of the substituent effect.
:
According to that work, the anticancer activity against HeLa, C6, and A549 cancer cell lines of isoindole-
1,3(2H)-dione compounds containing tert-butyldiphenylsilyl ether, azido, and hydroxyl groups was examined by
our group. It was found that an isoindole-1,3(2H)-dione compound containing both tert-butyldiphenylsilyl ether
group and azido groups showed higher anticancer activity than 5-fluorouracil and another isoindole-1,3(2H)-
dione compound containing both azido and hydroxyl groups.
:
After we discovered that tert-butyldiphenylsilyl ether group in the skeletal structure of isoindole-1,3(2H)-dione
exhibits anticancer activity against HeLa, C6, and A549 cancer cell lines, we wanted to examine the anticancer
activities of different silyl ether groups, i.e., OTMS, -OTBDPS, and -OTBDMS groups, and also -OH and -Br
groups, by comparing them with each other according to the structure–activity relationship.
Methods:
All of the synthesized compounds were characterized by 1H and 13C NMR spectra, IR spectroscopy,
and mass spectra measurements. The IC50 values of these compounds were calculated for all cancer cell lines
and compared with each other and cisplatin, which is a platinum-containing chemotherapeutic drug. Molecular
modelling studies were carried out using the MOE software package.
Results:
It was found that compounds 13 and 16, containing both silyl ether (-OTBDMS) and -Br groups,
showed higher anticancer activity than cisplatin against both Caco-2 and MCF-7 cell lines. Compounds 20 and
23 showed anticancer activity in MCF-7 cells and compounds 8, 9, 20, and 23 in Caco-2 cells. While
compounds 20 and 23 have only a silyl ether (-OTMS) group, compounds 8 and 9 have only a -OH group.
Molecular modelling studies indicated that compounds 8 and 13, as well as their analogs, may bind to the active
site of hRS6KB1 (pdb: 4l3j), compound 11 may bind to the active site of human mTOR (pdb: 4jt5) and
additionally, compounds 10-17 are expected to be both mutagenic and reactive according to the mutagenicity
and reactivity calculations.
Conclusion:
According to these results, the anticancer activities of isoindole-1,3(2H)-dione compounds (8 - 23)
vary depending on the groups they contain and these groups affect each other's activities. Silyl ethers
(-OTBDMS and -OTMS) and -OH and -Br groups in the skeletal structure of isoindole-1,3(2H)-dione can be
regarded as anticancer agents. In this sense, compounds 13 and 16, containing both silyl ether (-OTBDMS) and -
Br groups, may be regarded as alternative chemotherapeutic drugs. This work may lead to the synthesis of new
isoindole-1,3(2H)-dione compounds containing different silyl ether groups and studies evaluating their
anticancer activities or other biological properties.
Collapse
Affiliation(s)
- Ayse Tan
- Vocational School of Technical Sciences, Mus Alparslan University, Mus 49250, Turkey
| | - Serap Kizilkaya
- Department of Chemistry, Faculty of Arts and Sciences, Mus Alparslan University, Mus 49250, Turkey
| | | | - Atilla Akdemir
- Computer-Aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Yunus Kara
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
33
|
New phthalimide-benzamide-1,2,3-triazole hybrids; design, synthesis, α-glucosidase inhibition assay, and docking study. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02522-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Biginelli Synthesis of Novel Dihydropyrimidinone Derivatives Containing Phthalimide Moiety. J CHEM-NY 2020. [DOI: 10.1155/2020/4284628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new series of novel Biginelli compounds, 5-benzoyl-substituted phenyl-3,4-dihydropyrimidin-2(1H)-one-1H-isoindole-1,3(2H)-dione (1−10), were synthesized from enaminone, 2-{4-[(2E)-3-(dimethylamino)prop-2-enoyl]phenyl}-1H-isoindole-1,3(2H)-dione (IV), which was synthesized by refluxing 2-(4-acetylphenyl)-1H-isoindole-1,3(2H)-dione (III), with dimethylformamide-dimethylacetal (DMF-DMA) without solvent for 12 h. The compound 2-(4-acetylphenyl)-1H-isoindole-1,3(2H)-dione (III) was obtained by reacting phthalic anhydride (I) with para-aminoacetophenone (II) in glacial acetic acid for 2 h. The dihydropyrimidinone derivatives containing phthalimide moiety (1–10) were obtained by reacting enaminone, 2-{4-[(2E)-3-(dimethylamino) prop-2-enoyl] phenyl}-1H-isoindole-1,3(2H)-dione (IV), with urea and different substituted benzaldehydes in the presence of glacial acetic acid for 3 h. Simple and efficient method was employed to synthesize the dihydropyrimidinone derivatives containing phthalimide moiety. Structures of all the synthesized compounds were characterized by spectroscopic methods.
Collapse
|
35
|
Yosefdad S, Valadbeigi Y, Bayat M. Effect of hydration and structure on the fragmentation of 2,2-(propane-1,3-diyl)bis(isoindoline-1,3-dione) and 2,2-(ethane-1,2-diyl)bis(isoindoline-1,3-dione) in electron impact ionization-mass spectrometry: A theoretical and experimental study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Monteiro CES, Sousa JAO, Lima LM, Barreiro EJ, da Silva-Leite KES, de Carvalho CMM, Girão DKFB, Reis Barbosa AL, de Souza MHLP, Gomes Soares PM. LASSBio-596 protects gastric mucosa against the development of ethanol-induced gastric lesions in mice. Eur J Pharmacol 2019; 863:172662. [DOI: 10.1016/j.ejphar.2019.172662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 02/08/2023]
|
37
|
Redzicka A, Szczukowski Ł, Kochel A, Wiatrak B, Gębczak K, Czyżnikowska Ż. COX-1/COX-2 inhibition activities and molecular docking study of newly designed and synthesized pyrrolo[3,4-c]pyrrole Mannich bases. Bioorg Med Chem 2019; 27:3918-3928. [PMID: 31345747 DOI: 10.1016/j.bmc.2019.07.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/11/2019] [Accepted: 07/18/2019] [Indexed: 12/26/2022]
Abstract
In the present paper we describe the biological activity of newly designed and synthesized series of pyrrolo[3,4-c]pyrrole Mannich bases (7a-n). The Mannich bases were obtained in good yields by one-pot, three-component condensation of pyrrolo[3,4-c]pyrrole scaffold (6a-c) with secondary amines and an excess of formaldehyde solution in C2H5OH. The chemical structures of the compounds were characterized by 1H NMR, 13C NMR, FT-IR, and elemental analysis. Moreover, single crystal X-ray diffraction has been recorded for compound 7l. All synthesized derivatives were investigated for their potencies to inhibit COX-1 and COX-2 enzymes by colorimetric inhibitor screening assay. In order to analyse the intermolecular interactions between theligands and cyclooxygenase, experimental data were supported with the results of molecular docking simulations. According to the results, all of the tested compounds inhibited the activity of COX-1 and COX-2.
Collapse
Affiliation(s)
- Aleksandra Redzicka
- Department of Chemistry of Drugs, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland.
| | - Łukasz Szczukowski
- Department of Chemistry of Drugs, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Andrzej Kochel
- Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 54-234, Wrocław, Poland
| | - Benita Wiatrak
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Katarzyna Gębczak
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Żaneta Czyżnikowska
- Department of Inorganic Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland
| |
Collapse
|
38
|
Mansour AM, Ragab MS. Spectroscopic and DFT studies of photoactivatable Mn(I) tricarbonyl complexes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ahmed M. Mansour
- Department of Chemistry, Faculty of ScienceCairo University Gamma Street Giza 12613 Egypt
| | - Mona S. Ragab
- Department of Chemistry, Faculty of ScienceCairo University Gamma Street Giza 12613 Egypt
| |
Collapse
|
39
|
Banarouei N, Davood A, Shafaroodi H, Saeedi G, Shafiee A. N-arylmethylideneaminophthalimide: Design, Synthesis and Evaluation as Analgesic and Anti-inflammatory Agents. Mini Rev Med Chem 2019; 19:679-687. [DOI: 10.2174/1389557518666180424101009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/19/2017] [Accepted: 04/09/2018] [Indexed: 11/22/2022]
Abstract
Background and Objective:
N-aryl derivatives of phthalimide and 4-nitro phthalimide have
demonstrated cyclooxygenase inhibitory activity. Also, they possess excellent analgesic and antiinflammatory
activity. In this work, a new series of N-arylmethylideneamino derivatives of
phthalimide and 4-nitro phthalimide were designed and synthesized.
Methods:
The designed compounds were synthesized by condensation of the appropriate aldehyde and
N-aminophthalimide in ethanol at room temperature at PH around 3. Their analgesic and antiinflammatory
activity were evaluated by acetic acid-induced pain test and carrageenan-induced paw
edema test in mice and rats, respectively.
Results and Conclusion::
The details of the synthesis and chemical characterization of the analogs are
described. In vivo screening showed compounds 3a, 3b, 3f and 3h were the most potent analgesic
compounds. In addition, compounds 3a, 3c, 3d, 3e and 3j indicated comparable anti-inflammatory activity
to indomethacin as a reference drug.
Collapse
Affiliation(s)
- Nasimossadat Banarouei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Asghar Davood
- Department of Medicinal Chemistry, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Saeedi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Shafiee
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Research Center, Tehran University of Medical Sciences, Iran
| |
Collapse
|
40
|
Assis SPDO, Silva MTD, Silva FTD, Sant’Anna MP, Tenório CMBDA, Santos CFBD, Fonseca CSMD, Seabra G, Lima VLM, Oliveira RND. Design and Synthesis of Triazole-Phthalimide Hybrids with Anti-inflammatory Activity. Chem Pharm Bull (Tokyo) 2019; 67:96-105. [DOI: 10.1248/cpb.c18-00607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shalom P. de O. Assis
- Laboratório de Síntese de Compostos Bioativos, Departamento de Química, Universidade Federal Rural de Pernambuco
- Departamento de Bioquímica, Universidade Federal de Pernambuco
- Departamento de Medicina, Universidade Católica de Pernambuco
| | - Moara T. da Silva
- Laboratório de Síntese de Compostos Bioativos, Departamento de Química, Universidade Federal Rural de Pernambuco
| | - Filipe Torres da Silva
- Laboratório de Síntese de Compostos Bioativos, Departamento de Química, Universidade Federal Rural de Pernambuco
- Departamento de Medicina, Universidade Católica de Pernambuco
| | | | | | | | | | | | - Vera L. M. Lima
- Departamento de Bioquímica, Universidade Federal de Pernambuco
| | - Ronaldo N. de Oliveira
- Laboratório de Síntese de Compostos Bioativos, Departamento de Química, Universidade Federal Rural de Pernambuco
| |
Collapse
|
41
|
Burdzhiev NT, Baramov TI, Stanoeva ER, Yanev SG, Stoyanova TD, Dimitrova DH, Kostadinova KA. Synthesis of novel trans-4-(phthalimidomethyl)- and 4-(imidazol-1-ylmethyl)-3-indolyl-tetrahydroisoquinolinones as possible aromatase inhibitors. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-018-00677-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Nadeem M, Bhatti MH, Zierkiewicz W, Bieńko D, Yunus U, Shah SR, Mehmood M, Flörke U. Synthesis, crystal structure and NLO study of two new versatile Ca (II) complexes. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Muhammad Nadeem
- Department of Chemistry; Allama Iqbal Open University; Islamabad Pakistan
| | - Moazzam H. Bhatti
- Department of Chemistry; Allama Iqbal Open University; Islamabad Pakistan
| | - Wiktor Zierkiewicz
- Faculty of Chemistry; Wrocław University of Technology; Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Dariusz Bieńko
- Faculty of Chemistry; Wrocław University of Technology; Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Uzma Yunus
- Department of Chemistry; Allama Iqbal Open University; Islamabad Pakistan
| | | | - Mazhar Mehmood
- National Center for Nanotechnology, Department of Metallurgy and Materials Engineering; Pakistan Institute of Engineering and Applied Sciences (PIEAS); Nilore 45650 Islamabad Pakistan
| | - Ulrich Flörke
- Anorganische und Analytische Chemie, Fakultät für Naturwissenschaften; Universität Paderborn; Warburgerstrasse 100 D-33098 Paderborn Germany
| |
Collapse
|
43
|
Islas-Espinoza AM, Campos-Rodriguez C, San Juan ER. Thalidomide protects against acute pentylenetetrazol and pilocarpine-induced seizures in mice. J Toxicol Sci 2018; 43:671-684. [PMID: 30405000 DOI: 10.2131/jts.43.671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Thalidomide was originally developed to treat primary neurological and psychiatric diseases. There are reports of anticonvulsant effects of thalidomide in rats and antiepileptic effects in patients. Hence, thalidomide (100, 200 and 400 mg/kg) was herein administered to mice to evaluate possible protection against seizures induced by the systemic administration of neurotoxins: 10 mg/kg of 4-aminopyridine (4-AP), 90 mg/kg of pentylenetetrazol (PTZ), or 380 mg/kg of pilocarpine. The effect of an NO and COX inhibitor (7-NI and ibuprofen, respectively) was also examined. The results show that thalidomide (1) induces the typical sedative effects, (2) has no anticonvulsant effect in mice treated with 4-AP, and (3) has anticonvulsant effect (400 mg/kg) in mice treated with PTZ and pilocarpine. It was found that 7-NI has an anticonvulsant effect in the pilocarpine model and that thalidomide's effect is not enhanced by its presence. However, thalidomide (200 mg/kg) plus 7-NI or ibuprofen tend to have a toxic effect in PTZ model. On the other hand, the combination of thalidomide and 7-NI or ibuprofen protects against pilocarpine-induced seizures. In conclusion, thalidomide did not exert an anticonvulsant effect for clonic-tonic type convulsions (4-AP), but it did so for seizures induced by PTZ and pilocarpine (representing absence seizures and status epilepticus, respectively). NO and prostaglandins were involved in the convulsive process elicited by pilocarpine.
Collapse
Affiliation(s)
- Ana Mara Islas-Espinoza
- Physiology Department, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico
| | - Carolina Campos-Rodriguez
- Physiology Department, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico
| | - Eduardo Ramírez San Juan
- Physiology Department, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Mexico
| |
Collapse
|
44
|
Huang J, Su M, Lee BK, Kim MJ, Jung JH, Im DS. Suppressive Effect of 4-Hydroxy-2-(4-Hydroxyphenethyl) Isoindoline-1,3-Dione on Ovalbumin-Induced Allergic Asthma. Biomol Ther (Seoul) 2018; 26:539-545. [PMID: 29665659 PMCID: PMC6254637 DOI: 10.4062/biomolther.2018.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 12/14/2022] Open
Abstract
4-Hydroxy-2-(4-hydroxyphenethyl)isoindoline-1,3-dione (PD1) is a synthetic phthalimide derivative of a marine compound. PD1 has peroxisome proliferator-activated receptor (PPAR) γ agonistic and anti-inflammatory effects. This study aimed to investigate the effect of PD1 on allergic asthma using rat basophilic leukemia (RBL)-2H3 mast cells and an ovalbumin (OVA)-induced asthma mouse model. In vitro, PD1 suppressed β-hexosaminidase activity in RBL-2H3 cells. In the OVA-induced allergic asthma mouse model, increased inflammatory cells and elevated Th2 and Th1 cytokine levels were observed in bronchoalveolar lavage fluid (BALF) and lung tissue. PD1 administration decreased the numbers of inflammatory cells, especially eosinophils, and reduced the mRNA and protein levels of the Th2 cytokines including interleukin (IL)-4 and IL-13, in BALF and lung tissue. The severity of inflammation and mucin secretion in the lungs of PD1-treated mice was also less. These findings indicate that PD1 could be a potential compound for anti-allergic therapy.
Collapse
Affiliation(s)
- Jin Huang
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Mingzhi Su
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Bo-Kyung Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Mee-Jeong Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jee H Jung
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
45
|
L-Proline-Catalyzed Synthesis of Phthalimide Derivatives and Evaluation of Their Antioxidant, Anti-Inflammatory, and Lipoxygenase Inhibition Activities. J CHEM-NY 2018. [DOI: 10.1155/2018/5198325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A study was planned to synthesize the phthalimide derivatives as phthalimides have versatile biological activities. To synthesize the phthalimide derivatives, initially the reaction was optimized with various catalysts, and L-proline was found to be the best catalyst as it provided excellent yield. A series of phthalimide derivatives was synthesized by facile one-top reaction of phthalic acid with aryl amines under mild reaction conditions in the presence of L-proline as catalyst. Products were obtained in excellent yields and structurally characterized by 1H, 13C NMR, and mass spectral data. Products 1–7 were evaluated for antioxidant, anti-inflammatory, and lipoxygenase enzyme inhibition activities. Compounds 1 and 4 showed potent antioxidant activity under DPPH with IC50 values 27.3 and 25.0 μM when compared with the standard BHA (IC50 = 44.2 μM), respectively. Compounds 1 and 4 further showed strong lipoxygenase inhibition activity with IC50 values 21.34 and 20.45 μM when compared with standard baicalein (IC50 = 22.60 μM), respectively. Compound 2 was found to be promising and about equal to the used standard aspirin in the inhibition of bovine serum albumin denaturation, while other compounds showed weak-to-moderate % inhibition.
Collapse
|
46
|
Nadeem M, Bhatti MH, Yunus U, Mehmood M, Asif HM, Mehboob S, Flörke U. Synthesis and characterization of unique new lithium, sodium and potassium coordination polymers. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
Zhao S, Sun H, Yan W, Xu D, Shen T. A proteomic study of the pulmonary injury induced by microcystin-LR in mice. Toxicon 2018; 150:304-314. [PMID: 29908261 DOI: 10.1016/j.toxicon.2018.06.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 12/28/2022]
Abstract
MCLR has been shown to act as potent hepatotoxin, and recent studies showed that MCs can accumulate in lung tissue and exert adverse effects. However, the exact mechanism still remain unclear. The present study mainly focuses on the impairments of respiratory system after MCLR exposure in mice. After intratracheal instillation with MCLR (0, 10 and 25 μg/kg bw), histological change was examined in MCLR exposure groups. Results indicated that exposure of MCLR led to serious histopathology alteration and apoptosis in lung of mice. To further our understanding of the toxic effects of MCLR on the lung, we employed a proteomic method to search the mechanisms behind MCLR-induced pulmonary injury. In total, 38 proteins were identified to be significantly altered after MCLR exposure. These proteins involved in inflammatory response, apoptosis, cytoskeleton, and energetic metabolism, suggesting MCLR exerts complex toxic effects contributing to pulmonary injury. Furthermore, MCLR also induced pulmonary inflammation, as manifested by up-regulating the protein levels of interleukin-1β (IL-1β) and p65 subunit. Our results indicated that MCLR exerts lung injury mainly by generating inflammation and apoptosis.
Collapse
Affiliation(s)
- Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hong Sun
- Maternal and Child Health Hospital of Hubei Province, Wuhan 430070, China.
| | - Wei Yan
- China Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Dexiang Xu
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Tong Shen
- School of Public Health, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
48
|
5-(1-Aryl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)-1H-tetrazoles: Synthesis, structural characterization, Hirshfeld analysis, anti-inflammatory and anti-bacterial studies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Casquilho NV, Moreira-Gomes MD, Magalhães CB, Okuro RT, Ortenzi VH, Feitosa-Lima EK, Lima LM, Barreiro EJ, Soares RM, Azevedo SMFO, Valença SS, Fortunato RS, Carvalho AR, Zin WA. Oxidative imbalance in mice intoxicated by microcystin-LR can be minimized. Toxicon 2018; 144:75-82. [PMID: 29454806 DOI: 10.1016/j.toxicon.2018.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/19/2022]
Abstract
Microcystins-LR (MC-LR) is a cyanotoxin produced by cyanobacteria. We evaluated the antioxidant potential of LASSBio-596 (LB-596, inhibitor of phosphodiesterases 4 and 5), per os, and biochemical markers involved in lung and liver injury induced by exposure to sublethal dose of MC-LR. Fifty male Swiss mice received an intraperitoneal injection of 60 μL of saline (CTRL group, n = 20) or a sublethal dose of MC-LR (40 μg/kg, TOX group, n = 20). After 6 h the animals received either saline (TOX and CTRL groups) or LB-596 (50 mg/kg, TOX + LASS group, n = 10) by gavage. At 6 h after exposure, respiratory mechanics was evaluated in 10 CTRL and 10 TOX mice: there was a significant increase of all lung mechanics parameters (static elastance, viscoelastic component of elastance and lung resistive and viscoelastic/inhomogeneous pressures) in TOX compared to CTRL. 8 h after saline or MC-LR administration, i.e., 2 h after treatment with LB-596, blood serum levels of alanine aminotransferase and aspartate aminotransferase, activity of superoxide dismutase, catalase, and content of malondialdehyde and carbonyl in lung and liver, NADPH oxidase 2 and 4 mRNA expressions, dual oxidase enzyme activity and H2O2 generation were analyzed in lung homogenates. All parameters were significantly higher in TOX than in the other groups. There was no significant difference between CTRL and TOX + LASS. MC-LR deteriorated lung and liver functions and induced redox imbalance in them, which was prevented by oral administration of LB-596.
Collapse
Affiliation(s)
- Natália V Casquilho
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Diana Moreira-Gomes
- Laboratory of Respiratory Physiology and Biochemistry, Superior Institute of Biomedical Sciences, Universidade Estadual do Ceará, Fortaleza, Brazil
| | - Clarissa B Magalhães
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata T Okuro
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Hugo Ortenzi
- Laboratory of Molecular Radiobiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emanuel K Feitosa-Lima
- Laboratory of Biology Redox, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lidia M Lima
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio(®)), Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliezer J Barreiro
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio(®)), Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel M Soares
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; NUMPEX-BIO - Multidisciplinar Center of Biological Research, Universidade Federal do Rio de Janeiro, Polo Xerém, Duque de Caxias, RJ, Brazil
| | - Sandra M F O Azevedo
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samuel S Valença
- Laboratory of Biology Redox, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- Laboratory of Molecular Radiobiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alysson Roncally Carvalho
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Walter A Zin
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
50
|
Mansour AM. RuII
-Carbonyl photoCORMs with N,N
-Benzimidazole Bidentate Ligands: Spectroscopic, Lysozyme Binding Affinity, and Biological Activity Evaluation. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701341] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ahmed M. Mansour
- Chemistry Department; Cairo University; Faculty of Science; Gamma Street 12613 Giza, Cairo Egypt
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|