1
|
Liu X, Qiao P, Chen H, Gao Y, Chen H. Synthesis of C-N or C-C Spiroindolines via Rearrangement Coupling Reaction. Org Lett 2024. [PMID: 39481044 DOI: 10.1021/acs.orglett.4c03644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Herein, we report a general approach to effectively construct C-N or C-C spiroindolines using tetrahydro-β-carbolines as starting materials via a rearrangement coupling reaction. This method is characterized by its operational simplicity and mild conditions. Notably, a wide range of anilines and indoles are suitable for this intermolecular coupling, yielding the corresponding C-N or C-C spiroindolines in good to excellent yields.
Collapse
Affiliation(s)
- Xiaoling Liu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Panpan Qiao
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Hui Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
2
|
Gola AK, Dubey A, Pandey SK. Mn(I)-Catalyzed Site-Selective C-H Activation: Unlocking Access to 3-Arylated Succinimides from 2-Arylpyridines and Maleimides. J Org Chem 2024; 89:15020-15025. [PMID: 39378297 DOI: 10.1021/acs.joc.4c01737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
An efficient and cost-effective Mn(I)-catalyzed site-selective C-H activation of 2-arylpyridines with maleimides has been described. This approach facilitates the synthesis of 3-arylated succinimide derivatives with high site selectivity, chemoselectivity, catalytic efficiency, and outstanding tolerance to numerous functional groups. The practicality of this approach is further evidenced by its successful application in large-scale reactions and the conversion of the synthesized succinimide derivatives into other valuable compounds.
Collapse
Affiliation(s)
- Ajay Kant Gola
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Abhishek Dubey
- Department of Chemistry, R. J. College, A constituent Unit of J. P. University, Chapra 841 301, India
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
3
|
Chen X, He Z, Xu S, Zou Y, Zhang Y. Chemical synthesis and application of aryldihydronaphthalene derivatives. RSC Adv 2024; 14:32174-32194. [PMID: 39399251 PMCID: PMC11467718 DOI: 10.1039/d4ra06517d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024] Open
Abstract
Aryldihydronaphthalenes (ADHNs) and their derivatives are widely found in many types of natural products, bioactive compounds, and functional materials, and are also important synthetic intermediates in organic chemistry, attracting widespread attention from both organic and pharmaceutical chemists. In the past two decades, the chemical synthesis and biological activity of ADHNs and their derivatives have become two hot spots. This review summarizes the synthetic protocols of ADHN derivatives, introduces some representative examples of the reaction mechanism, and focuses on the research progress of ADHNs in natural product chemistry and chemical biology since 2000.
Collapse
Affiliation(s)
- Xia Chen
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology Wuhan 430065 China
| | - Zhaolong He
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology Wuhan 430065 China
| | - Shiqiang Xu
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology Wuhan 430065 China
| | - Yu Zou
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology Wuhan 430065 China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
4
|
Wang C, Jiang H, Zeng W. Rh(III)-Catalyzed [3 + 3]-Coupling Cyclization of 3-Hydroxyisoindolinones with Carbenoids: Rapid Access to Spirolactam Skeletons. Org Lett 2024; 26:7728-7732. [PMID: 39190531 DOI: 10.1021/acs.orglett.4c02889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
A Rh(III)-catalyzed [3 + 3]-coupling cyclization of 3-hydroxy-3-phenylisoindolinone with carbenoids has been developed. The method provides an efficient approach to access polyfunctionalized-spiro[isochromene-1,1'-isoindolin]-3'-ones with good to excellent reaction conversions.
Collapse
Affiliation(s)
- Chengjie Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
5
|
Wu Y, Shi G, Liu Y, Kong Y, Wu M, Wang D, Wu X, Shang Y, He X. A rhodium-catalyzed cascade C-H activation/annulation strategy for the expeditious assembly of pyrrolidinedione-fused 1,2-benzothiazines. Org Biomol Chem 2024; 22:3523-3532. [PMID: 38606489 DOI: 10.1039/d4ob00193a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
A cascade annulation strategy triggered by rhodium(III)-catalyzed C-H activation has been reported for the expeditious assembly of pyrrolidinedione-fused 1,2-benzothiazines from free NH-sulfoximines with maleimides under mild conditions. Without the need for inert atmosphere protection, a broad range of sulfoximines with maleimides were well tolerated, producing diverse fused-thiazine derivatives in moderate to good yields. Additionally, the late-stage transformation of the target product demonstrated the potential synthetic value of this protocol.
Collapse
Affiliation(s)
- Yinsong Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Guanghao Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
- Jiangsu Xidi Pharmaceuticals Co., Ltd, Nantong, 226000, P. R. China
| | - Yanan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yangzilin Kong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Mengdi Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Demao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Xiaobing Wu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, P.R. China.
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| |
Collapse
|
6
|
Halaczkiewicz M, Maraj A, Kelm H, Manolikakes G. Brønsted Acid-Catalyzed Diastereoselective Synthesis of Spiroisoindolinones from Enamides. Org Lett 2024; 26:2321-2325. [PMID: 38467018 DOI: 10.1021/acs.orglett.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
A highly diastereoselective synthesis of spiroisoindolinones from enamides and 3-hydroxy-isoindolinones is reported. The reaction proceeds rapidly in the presence of p-toluenesulfonic acid as a Brønsted acid catalyst and affords a variety of densely substituted spiroisoindolinones with three contiguous stereogenic centers in high yields (≤98%) and diastereoselectivities (up to dr >98:<2:0:0).
Collapse
Affiliation(s)
- Miro Halaczkiewicz
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
| | - Arianit Maraj
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
| | - Harald Kelm
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
| | - Georg Manolikakes
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
| |
Collapse
|
7
|
Angulo-Elizari E, Henriquez-Figuereo A, Morán-Serradilla C, Plano D, Sanmartín C. Unlocking the potential of 1,4-naphthoquinones: A comprehensive review of their anticancer properties. Eur J Med Chem 2024; 268:116249. [PMID: 38458106 DOI: 10.1016/j.ejmech.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.
Collapse
Affiliation(s)
- Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Sciences, Irunlarrea 1, 31008, Pamplona, Spain; Navarra Institute for Health Research (IdisNA), 31008, Pamplona, Spain.
| |
Collapse
|
8
|
Nan J, Liang L. Rhodium-catalyzed divergent dehydroxylation/alkenylation of hydroxyisoindolinones with vinylene carbonate. Chem Commun (Camb) 2023; 59:14559-14562. [PMID: 37964745 DOI: 10.1039/d3cc03760f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Herein, a novel organic transformation involving rhodium-catalyzed divergent dehydroxylation/alkenylation of hydroxyisoindolinone with vinylene carbonate is reported, and a series of architecturally rigid and widely used spirolactams are obtained with excellent functional group tolerance and high selectivity. Remarkably, the promising vinylene carbonate reagent presents a distinct chemical reactivity as a vinyl-oxygen cyclic synthon and first transfers the C-H bond to spiroheterocycle scaffolds. Moreover, another chemoselectivity, direct dehydrogenative coupling with vinylene carbonate, is also presented. This protocol is compatible with green chemistry and only releases H2O and CO2 as byproducts.
Collapse
Affiliation(s)
- Jiang Nan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Lu Liang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
9
|
Khan ZA, Singh VK. Synthesis of Spiroisoindolinones via Ru(II)-Catalyzed Spiroannulation of N-Acyl Ketimines with Aryl Isocyanates/Isothiocyanates through Aromatic C-H Bond Activation. J Org Chem 2023. [PMID: 38053308 DOI: 10.1021/acs.joc.3c02275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Herein, we disclose the first report on Ru(II)-catalyzed amidation/thioamidation of 3-hydroxy-3-arylisoindolinones with isocyanates/isothiocyanates, respectively. The reaction furnishes spiroisoindolinones via sequential C-H functionalization of ortho C-H bond followed by intramolecular cyclization in moderate to high yields (up to 94%). Moreover, the developed strategy is highly atom-economical and site-selective and shows diverse substrate generality. Also, synthesized spiroisoindolinones undergo several chemical transformations.
Collapse
Affiliation(s)
- Zahid Ahmad Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
10
|
Gadhave MS, Barik S, Wessels F, Biju AT. Nucleophilic Acylation-Annulation Cascade of 2-Chlorobenzonitriles Using Aldehydes Triggered by N-Heterocyclic Carbenes. Org Lett 2023; 25:8314-8319. [PMID: 37962305 DOI: 10.1021/acs.orglett.3c03376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A general and practical route to the synthesis of functionalized isoindolin-2-ones from commercially available aldehydes and 2-chlorobenzonitriles under mild conditions initiated by N-heterocyclic carbenes is presented. The catalytically generated Breslow intermediates from aldehydes and carbenes underwent smooth SNAr with 2-chlorobenzonitriles followed by annulation triggered by adventitious water present in DMF to furnish the functionalized isoindolin-2-ones in good to excellent yields.
Collapse
Affiliation(s)
- Mahesh S Gadhave
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Soumen Barik
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Felix Wessels
- Organisch-Chemisches Institut, Universität Münster, 48149 Münster, Germany
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
11
|
Hussain Y, Empel C, Koenigs RM, Chauhan P. Carbene Formation or Reduction of the Diazo Functional Group? An Unexpected Solvent-Dependent Reactivity of Cyclic Diazo Imides. Angew Chem Int Ed Engl 2023; 62:e202309184. [PMID: 37506274 DOI: 10.1002/anie.202309184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
The control of the reactivity of diazo compounds is commonly achieved by the choice of a suitable catalyst, e.g. via stabilization of singlet carbenes or radical intermediates. Herein, we report on the light-promoted reactivity of cyclic diazo imides with thiols, where the choice of solvent results in two fundamentally different reaction pathways. In dichloromethane (DCM), a carbene is formed initially and engages in a cascade C-H functionalization/thiolation reaction to deliver indane-fused pyrrolidines in good to excellent yields. When switching to acetonitrile solvent, the carbene pathway is shut down and an unusual reduction of the diazo compound occurs under otherwise identical reaction conditions, where the aryl thiol acts as reductant. A combined set of experimental and computational studies was carried out to obtain mechanistic understanding and to support that indane formation proceeds via the insertion of a triplet carbene, while the reduction of diazo imides proceeds via an electron transfer process.
Collapse
Affiliation(s)
- Yaseen Hussain
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074, Aachen, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074, Aachen, Germany
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| |
Collapse
|
12
|
Nagesh K, Manda J, Sridhar B, Subba Reddy BV. Rh(III)-catalyzed [3 + 2] spiroannulation of 2,3-dihydro-1,4-benzoxazines with 4-hydroxy-2-alkynoates through ortho-C-H bond functionalization. Org Biomol Chem 2023. [PMID: 37464919 DOI: 10.1039/d3ob00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Rhodium(III)-catalyzed [3 + 2]-spiroannulation of 2-aryl-1,4-benzoxazines with 4-hydroxy-2-alkynoates has been developed for the synthesis of highly rigid spirolactones in good yields with high regioselectivity. The reaction proceeds through a cascade of C-H activation followed by C-H annulation and lactonization. In this approach, two C-C and C-O bonds are formed in a single step. This is the first report on the spiroannulation of 2,3-dihydro-1,4-benzoxazines with 4-hydroxy-2-alkynoates.
Collapse
Affiliation(s)
- Kommu Nagesh
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Jagadish Manda
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - B Sridhar
- Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - B V Subba Reddy
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
13
|
Liu L, Liu Y, Li S, Gao J, Li J, Wei J. Rh(III)-Catalyzed [4 + 1] Annulation of Sulfoximines with Maleimides: Access to Benzoisothiazole Spiropyrrolidinediones. J Org Chem 2023; 88:3626-3635. [PMID: 36843288 DOI: 10.1021/acs.joc.2c02811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Rh(III)-catalyzed synthesis of benzoisothiazole spiropyrrolidinediones using sulfoximine as a directing group under a C-H activation and [4 + 1] annulation strategy with maleimides as a coupling partner is reported. The cyclization reaction was compatible with various substituted sulfoximine and maleimides. The deuterium-labeling studies were performed to investigate the mechanism of the reaction.
Collapse
Affiliation(s)
- Liansheng Liu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yiying Liu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shan Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jin Gao
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Junfa Wei
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
14
|
Liu H, Gong ZR, Lin ML, Luo W, Xu YJ, Dong L. C-O Coupling/[4+2] Cycloaddition Tandem Reactions via Oxidative Dearomatization of BINOLs: Access to Bridged Polycyclic Compounds. J Org Chem 2023; 88:3916-3926. [PMID: 36849248 DOI: 10.1021/acs.joc.2c02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Intramolecular C-H activation/C-O coupling, dearomatization, and [4+2] cycloaddition of BINOL units have been well developed in a one-pot approach with maleimide derivatives as the dienophiles. This tandem catalytic system generates a variety of functionalized bridged polycyclic products in a step-economical manner, which greatly enriches the modification methods and strategies for the BINOL skeletons.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zi-Rong Gong
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Meng-Ling Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wen Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan-Jun Xu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Brześkiewicz J, Loska R. Synthesis of Isoindole N-Oxides by Palladium-Catalyzed C-H Functionalization of Aldonitrones. J Org Chem 2023; 88:2385-2392. [PMID: 36704962 DOI: 10.1021/acs.joc.2c02797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A palladium-catalyzed strategy for isoindole N-oxide ring construction by C-H functionalization of aldonitrones is described. Our protocol is of general character, providing isoindole N-oxides with a variety of functional groups, including very sterically congested products. Further transformations into spirocyclic isoindolines, isoindoles, or a polycyclic isoquinolinium salt have been demonstrated as well. A mechanistic study suggests that the catalytic process proceeds via a Heck-type addition to the double C═N bond.
Collapse
Affiliation(s)
- Jakub Brześkiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Rafał Loska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|
16
|
Zhao X, Fan C, He J, Luo Y. Rh-Catalyzed [3+2] Annulation of Cyclic Ketimines and Alkynyl Chloride: A Strategy for Accessing Unsymmetrically Substituted and Highly Functionalizable Indenes. Org Lett 2022; 24:9169-9173. [PMID: 36503272 PMCID: PMC9791992 DOI: 10.1021/acs.orglett.2c02717] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alkynyl chlorides were found to be extraordinarily novel electrophiles, which could afford a single regioisomer of the [3+2] annulation adducts with cyclic ketimines by rhodium catalysis. The alkenyl chloride moiety in the products provided a valuable functional handle for further diverse transformations. Therefore, this research provided not only a synthetic protocol for accessing unsymmetrically substituted indenyl amines but also a highly divergent solution for decorating the substituting group by postmanipulation of the chloride.
Collapse
Affiliation(s)
- Xu Zhao
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenrui Fan
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China,School
of Material Science and Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Jianbo He
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China,School
of Material Science and Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Yunfei Luo
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China,
| |
Collapse
|
17
|
Ni-catalyzed benzylic β-C(sp 3)-H bond activation of formamides. Nat Commun 2022; 13:7892. [PMID: 36550165 PMCID: PMC9780214 DOI: 10.1038/s41467-022-35541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The development of transition metal-catalyzed β-C-H bond activation via highly-strained 4-membered metallacycles has been a formidable task. So far, only scarce examples have been reported to undergo β-C-H bond activation via 4-membered metallacycles, and all of them rely on precious metals. In contrast, earth-abundant and inexpensive 3d transition metal-catalyzed β-C-H bond activation via 4-membered metallacycles still remains an elusive challenge. Herein, we report a phosphine oxide-ligated Ni-Al bimetallic catalyst to activate secondary benzylic C(sp3)-H bonds of formamides via 4-membered nickelacycles, providing a series of α,β-unsaturated γ-lactams in up to 97% yield.
Collapse
|
18
|
Phukon J, Jyoti Borah A, Gogoi S. Transition‐Metal‐Catalyzed Synthesis of Spiro Compounds through Activation and Cleavage of C−H Bonds. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jyotshna Phukon
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006, Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Arun Jyoti Borah
- Department of Chemistry Gauhati University Guwahati 781014 India
| | - Sanjib Gogoi
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006, Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
19
|
Kumar R, Jain VK, Jain N. Photoredox Hydroxy-arylation of the Terminal Double Bond of N-Substituted 3-Methyleneisoindolin-1-ones in Visible Light. J Org Chem 2022; 87:11939-11946. [PMID: 36041118 DOI: 10.1021/acs.joc.2c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mild and efficient ruthenium-catalyzed hydroxy-arylation of the terminal double bond of N-substituted 3-methyleneisoindolin-1-ones is described. The reaction takes place with aryl diazonium salt as the arylating reagent and water as the hydroxyl source in visible light at ambient temperature. The strategy entails vicinal difunctionalization of alkene and enables construction of 3-benzyl-3-hydroxyisoindolin-1-one heterocyclic scaffolds in moderate to good yields. C-C and C-O bonds are formed in one pot without any external additive and oxidant through an in situ generation of a carbocation intermediate in green light.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| | - Vipin Kumar Jain
- Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| | - Nidhi Jain
- Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
20
|
Shit S, Bora SK, Sahu AK, Saikia AK. Synthesis of Spiro[furan-2,1'-isoindolin]-3'-ones from 2-(4-Hydroxybut-1-yn-1-yl)benzonitriles and Aryl Aldehydes under the Action of Triflic Acid. J Org Chem 2022; 87:11634-11643. [PMID: 35976061 DOI: 10.1021/acs.joc.2c01286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The synthesis of spiro[furan-2,1'-isoindolin]-3'-ones from 2-(4-hydroxybut-1-yn-1-yl)benzonitriles and aryl aldehydes is demonstrated. It involves the initial formation of dihydrofuranylideneisoindolinone via intramolecular sequential Prins and Ritter reactions, followed by the ring opening of the furanyl moiety to generate N-acyliminium ions and alcohols for the final cyclization reaction, and the spiro-cyclic compounds are produced in moderate to good yields. It is a one-pot, three-component reaction in which one new quaternary carbon, two five-membered rings, one C-N bond, two C-O bonds, and one C-C bond are formed. The reaction is carried out with a Brønsted acid from 0 °C to room temperature within a short period of time.
Collapse
Affiliation(s)
- Sudip Shit
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Surjya Kumar Bora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Archana Kumari Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
21
|
Mardjan MID, Hariadi MF, Putri IM, Musyarrofah NA, Salimah M, Priatmoko, Purwono B, Commeiras L. Ultrasonic-assisted-synthesis of isoindolin-1-one derivatives. RSC Adv 2022; 12:19016-19021. [PMID: 35873335 PMCID: PMC9241359 DOI: 10.1039/d2ra02720h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
A small library of 3-hydroxyisoindolin-1-ones has been prepared from 3-alkylidenephtalides under ultrasonic irradiation. This practical synthesis is featured by group tolerance, high efficiency and yields. The reaction can also be performed in multigram scale and be further extended to access other motifs of isoindolin-1-ones in a one-pot fashion. Functionalized isoindolin-1-ones have been prepared in short reaction time and excellent yields from 3-alkylidenephtalides and primary amines under ultrasonic irradiation.![]()
Collapse
Affiliation(s)
- Muhammad Idham Darussalam Mardjan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Bulaksumur POS BLS 21 Yogyakarta 55281 Indonesia
| | - Muhamad Fadhly Hariadi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Bulaksumur POS BLS 21 Yogyakarta 55281 Indonesia
| | - Indah Mutiara Putri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Bulaksumur POS BLS 21 Yogyakarta 55281 Indonesia
| | - Nilna Amalia Musyarrofah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Bulaksumur POS BLS 21 Yogyakarta 55281 Indonesia
| | - Muflihah Salimah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Bulaksumur POS BLS 21 Yogyakarta 55281 Indonesia
| | - Priatmoko
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Bulaksumur POS BLS 21 Yogyakarta 55281 Indonesia
| | - Bambang Purwono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Bulaksumur POS BLS 21 Yogyakarta 55281 Indonesia
| | - Laurent Commeiras
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2 Marseille 13013 France
| |
Collapse
|
22
|
Unhale RA, Sadhu MM, Singh VK. Chiral Brønsted Acid Catalyzed Enantioselective Synthesis of Spiro-Isoindolinone-Indolines via Formal [3 + 2] Cycloaddition. Org Lett 2022; 24:3319-3324. [PMID: 35507765 DOI: 10.1021/acs.orglett.2c00748] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel organocatalytic asymmetric formal [3 + 2] cycloaddition of 3-substituted 1H-indoles with in situ generated 3-hydroxy-isoindolinone-derived β,γ-alkynyl-α-ketimines has been developed. A variety of biologically relevant chiral spiro-isoindolinone-indolines were achieved with excellent yields (up to 99%) and enantioselectivity (up to 99% ee) under mild conditions. The gram-scale reaction of this methodology and several interesting transformations of the products have been demonstrated.
Collapse
Affiliation(s)
- Rajshekhar A Unhale
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - Milon M Sadhu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India.,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
23
|
Hu H, Li BS, Xu JL, Sun W, Wang Y, Sun M. Rh(III)-Catalyzed spiroannulation of ketimines with cyclopropenones via sequential C-H/C-C bond activation. Chem Commun (Camb) 2022; 58:4743-4746. [PMID: 35323830 DOI: 10.1039/d2cc00421f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented Rh(III)-catalyzed [3+3]-spiroannulation of ketimines with cyclopropenones to access spiro[4,5]dienones has been developed. Sequential C-H/C-C bond activation and subsequent nucleophilic addition are disclosed in this process. This procedure represents the first example of the construction of spirolactams utilising cyclopropenones as 3C synthons. The remarkable advantages of this protocol are excellent chemo- and regio-selectivity, wide functional group tolerance, high reaction yields, and tolerance towards H2O.
Collapse
Affiliation(s)
- Hong Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| | - Bin-Shi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| | - Jing-Lei Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| | - Wei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| | - Yong Wang
- BGI-Shenzhen, Shenzhen 518083, China.
| | - Meng Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China. .,State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
24
|
Topolovčan N, Degač M, Čikoš A, Gredičak M. Chemoselective and Regioselective Synthesis of Spiroisoindolinone Indenes via an Intercepted Meyer-Schuster Rearrangement/Intramolecular Friedel-Crafts Alkylation Relay. J Org Chem 2022; 87:3712-3717. [PMID: 35139639 DOI: 10.1021/acs.joc.1c02647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Brønsted acid-catalyzed reaction between isoindolinone-derived propargylic alcohols and external aromatic nucleophiles for the construction of spiroisoindolinone indenes is described. The reaction proceeds rapidly with a broad range of substrates to generate spiroindenes chemoselectively and regioselectively in moderate to high yields. Key to the success of this transformation is an intercepted Meyer-Schuster rearrangement/intramolecular Friedel-Crafts alkylation relay that offers a modular approach in the synthesis of target compounds.
Collapse
Affiliation(s)
- Nikola Topolovčan
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marina Degač
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ana Čikoš
- NMR Centre, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Matija Gredičak
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
25
|
Liu S, Shi Y, Xue C, Zhang L, Zhou L, Song M. Maleimides in Directing‐Group‐Controlled Transition‐Metal‐Catalyzed Selective C−H Alkylation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shuang‐Liang Liu
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Yajun Shi
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Cong Xue
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Liming Zhang
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Liming Zhou
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Mao‐Ping Song
- College of Chemistry, and Green Catalysis Center Zhengzhou University Kexue avenue 136 Zhengzhou 450001 P.R. China
| |
Collapse
|
26
|
Wang J, Li L, Chai M, Ding S, Li J, Shang Y, Zhao H, Li D, Zhu Q. Enantioselective Construction of 1 H-Isoindoles Containing Tri- and Difluoromethylated Quaternary Stereogenic Centers via Palladium-Catalyzed C–H Bond Imidoylation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Lianjie Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Minxue Chai
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Shumin Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, People’s Republic of China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Haixia Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Dan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, People’s Republic of China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, People’s Republic of China
| |
Collapse
|
27
|
Shi Y, Huang T, Wang T, Chen J, Liu X, Wu Z, Huang X, Zheng Y, Yang Z, Wu Y. Divergent Construction of Diverse Scaffolds through Catalyst-Controlled C-H Activation Cascades of Quinazolinones and Cyclopropenones. Chemistry 2021; 27:13346-13351. [PMID: 34350649 DOI: 10.1002/chem.202101839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 11/10/2022]
Abstract
A transition-metal-catalyzed C-H activation cascade strategy to rapidly construct diverse quinazolinone derivatives in a one-pot manner is reported. The catalysts play an important role in the different transformations. Additionally, the procedure is scalable, proceeds with high efficiency and good chemo-/regio-selectivity, and tolerates a range of functional groups.
Collapse
Affiliation(s)
- Yuesen Shi
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Tianle Huang
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Ting Wang
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Jian Chen
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xuexin Liu
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhouping Wu
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaofang Huang
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yao Zheng
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhongzhen Yang
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yong Wu
- Department Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
28
|
Nayeem N, Contel M. Exploring the Potential of Metallodrugs as Chemotherapeutics for Triple Negative Breast Cancer. Chemistry 2021; 27:8891-8917. [PMID: 33857345 DOI: 10.1002/chem.202100438] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 12/11/2022]
Abstract
This review focuses on studies of coordination and organometallic compounds as potential chemotherapeutics against triple negative breast cancer (TNBC) which has one of the poorest prognoses and worst survival rates from all breast cancer types. At present, chemotherapy is still the standard of care for TNBC since only one type of targeted therapy has been recently developed. References for metal-based compounds studied in TNBC cell lines will be listed, and those of metal-specific reviews, but a detailed overview will also be provided on compounds studied in vivo (mostly in mice models) and those compounds for which some preliminary mechanistic data was obtained (in TNBC cell lines and tumors) and/or for which bioactive ligands have been used. The main goal of this review is to highlight the most promising metal-based compounds with potential as chemotherapeutic agents in TNBC.
Collapse
Affiliation(s)
- Nazia Nayeem
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology PhD Program, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA
| | - Maria Contel
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology PhD Program, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA.,Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA.,University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, Hawaii, 96813, USA
| |
Collapse
|
29
|
Gein VL, Nosova NV, Yankin AN, Bazhina AY, Dmitriev MV. An Eco-Friendly Stereoselective Synthesis of Novel Derivatives of Indeno[1,2- b]Pyrrole and Indeno[1,2- c]Pyridazine. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2019.1602061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Andrei N. Yankin
- St. Petersburg State University, St. Petersburg, Russian Federation
| | | | | |
Collapse
|
30
|
Krishna Y, Tanaka F. Intramolecular Formal [4 + 2] Cycloadditions: Synthesis of Spiro Isoindolinone Derivatives and Related Molecules. Org Lett 2021; 23:1874-1879. [PMID: 33601884 DOI: 10.1021/acs.orglett.1c00283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acid-catalyzed intramolecular reactions of isoindolinone-derived hydroxylactam derivatives bearing enones or enals that afford spiro isoindolinone derivatives and related molecules have been developed. From the hydroxylactam moieties, N-acylenamides were generated in situ and reacted with the enone and the enal moieties via formal [4 + 2] cycloaddition reactions to construct cyclohexanone- and dihydropyran-fused ring systems and the spiro ring systems.
Collapse
Affiliation(s)
- Yarkali Krishna
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
31
|
Bora D, Kaushal A, Shankaraiah N. Anticancer potential of spirocompounds in medicinal chemistry: A pentennial expedition. Eur J Med Chem 2021; 215:113263. [PMID: 33601313 DOI: 10.1016/j.ejmech.2021.113263] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 12/30/2022]
Abstract
Spirocompounds constitute an important class of organic frameworks enveloping numerous pharmacological activities, among them, the promising anticancer potential of spirocompounds have enthused medicinal chemists to explore new spiro derivatives with significantly improved pharmacodynamic and pharmacokinetic profile along with their mechanism of action. The current review intends to provide a sketch of the anticancer activity of various spirocompounds like spirooxindole, spiroisoxazole, spiroindole etc, from the past five years unfolding various aspects of pharmacological activities and their structure-activity relationships (SARs). This literature analysis may provide future direction for the efficient design of novel spiromolecules with enhanced safety and efficacy.
Collapse
Affiliation(s)
- Darshana Bora
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Anjali Kaushal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.
| |
Collapse
|
32
|
Wood JM, de Carvalho RL, da Silva Júnior EN. The Different Facets of Metal-Catalyzed C-H Functionalization Involving Quinone Compounds. CHEM REC 2021; 21:2604-2637. [PMID: 33415843 DOI: 10.1002/tcr.202000163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Metal-catalysed C-H functionalization has emerged as a powerful platform for the derivatization of quinones, a class of compounds with wide-ranging applications. This review organises and discusses the evolution of this chemistry from early Fujiwara-Moritani reactions, through to modern directing-group assisted C-H functionalization processes, including C-H functionalization reactions directed by the quinone ring itself. Mechanistic details of these reactions are provided to afford insight into how the unique reactivity of quinoidal compounds has been leveraged in each example.
Collapse
Affiliation(s)
- James M Wood
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| |
Collapse
|
33
|
Alves AJS, Alves NG, Soares MIL, Pinho e Melo TMVD. Strategies and methodologies for the construction of spiro-γ-lactams: an update. Org Chem Front 2021. [DOI: 10.1039/d0qo01564d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review gives an insight into the most recent synthetic methodologies towards spiro-γ-lactams, a class of compounds that are present in a wide range of synthetic bioactive and naturally occurring molecules.
Collapse
Affiliation(s)
- Américo J. S. Alves
- University of Coimbra
- Coimbra Chemistry Centre and Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | - Nuno G. Alves
- University of Coimbra
- Coimbra Chemistry Centre and Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | - Maria I. L. Soares
- University of Coimbra
- Coimbra Chemistry Centre and Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | | |
Collapse
|
34
|
Li XR, Chen SQ, Fan J, Li CJ, Wang X, Liu ZW, Shi XY. Controllable Tandem [3+2] Cyclization of Aromatic Aldehydes with Maleimides: Rhodium(III)-Catalyzed Divergent Synthesis of Indane-Fused Pyrrolidine-2,5-dione. Org Lett 2020; 22:8808-8813. [DOI: 10.1021/acs.orglett.0c03113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xin-Ran Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Si-Qi Chen
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Juan Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Chao-Jun Li
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Xue Wang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Xian-Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| |
Collapse
|
35
|
Luo Y, Liu H, Zhang J, Liu M, Dong L. Rh(III)-Catalyzed [3 + 2] Spirocyclization of 2H-Imidazoles with 1,3-Diynes for the Synthesis of Spiro-[imidazole-indene] Derivatives. Org Lett 2020; 22:7604-7608. [PMID: 32966081 DOI: 10.1021/acs.orglett.0c02805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
36
|
Song Z, Yang Z, Wang P, Shi Z, Li T, Cui X. Ruthenium(II)-Catalyzed Regioselective [3 + 2] Spiroannulation of 2 H-Imidazoles with 2-Alkynoates. Org Lett 2020; 22:6272-6276. [PMID: 32806131 DOI: 10.1021/acs.orglett.0c02024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The C═N double bond of 2H-imidazole has been employed as a C-electrophile for the ruthenium(II)-catalyzed [3 + 2] spiroannulation reaction of 4-phenyl-2H-imidazoles and 2-alkynoates to synthesize spiroimidazole-4,1'-indenes. This strategy features high regioselectivity, broad functional group tolerance, and use of ruthenium as a catalyst, providing a new method to synthesize spirocycles with potential applications in pharmaceuticals.
Collapse
Affiliation(s)
- Zhenyu Song
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P.R. China
| | - Zi Yang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P.R. China
| | - Pu Wang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P.R. China
| | - Zhaojiang Shi
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P.R. China
| | - Tingfang Li
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P.R. China
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P.R. China
| |
Collapse
|
37
|
Tan H, Laishram RD, Zhang X, Shi G, Li K, Chen J. Rhodium-Catalyzed Spiro Indenyl Benzoxazine Synthesis via C-H Activation/Annulation of 3-Aryl-2 H
-Benzo[ b
][1,4]oxazines and Alkynes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Heng Tan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources; Yunnan Minzu University; 650500 Kunming Yunnan China
| | - Ronibala Devi Laishram
- Key Laboratory of Chemistry in Ethnic Medicinal Resources; Yunnan Minzu University; 650500 Kunming Yunnan China
| | - Xuexin Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources; Yunnan Minzu University; 650500 Kunming Yunnan China
| | - Guangrui Shi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources; Yunnan Minzu University; 650500 Kunming Yunnan China
| | - Kangkui Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources; Yunnan Minzu University; 650500 Kunming Yunnan China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources; Yunnan Minzu University; 650500 Kunming Yunnan China
| |
Collapse
|
38
|
Shi Y, Fang Y, Zhao X, Zhu C, Wu X, Yang X, Luo Y. Remarkable Ligand Effect on Rh-Catalyzed C–H-Active [3 + 2] Annulation of Ketimines and Alkynes. Org Lett 2020; 22:4903-4907. [DOI: 10.1021/acs.orglett.0c01768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yan Shi
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yong Fang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xu Zhao
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chengfeng Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiang Wu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoming Yang
- Shanghai Chiral Chemistry Co., Ltd., 158 Wuhe Road, Minhang District, Shanghai 201109, China
| | - Yunfei Luo
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
39
|
Elliott Q, Dos Passos Gomes G, Evoniuk CJ, Alabugin IV. Testing the limits of radical-anionic CH-amination: a 10-million-fold decrease in basicity opens a new path to hydroxyisoindolines via a mixed C-N/C-O-forming cascade. Chem Sci 2020; 11:6539-6555. [PMID: 34094120 PMCID: PMC8159354 DOI: 10.1039/c9sc06511c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/14/2020] [Indexed: 11/21/2022] Open
Abstract
An intramolecular C(sp3)-H amidation proceeds in the presence of t-BuOK, molecular oxygen, and DMF. This transformation is initiated by the deprotonation of an acidic N-H bond and selective radical activation of a benzylic C-H bond towards hydrogen atom transfer (HAT). Cyclization of this radical-anion intermediate en route to a two-centered/three-electron (2c,3e) C-N bond removes electron density from nitrogen. As this electronegative element resists such an "oxidation", making nitrogen more electron rich is key to overcoming this problem. This work dramatically expands the range of N-anions that can participate in this process by using amides instead of anilines. The resulting 107-fold decrease in the N-component basicity (and nucleophilicity) doubles the activation barrier for C-N bond formation and makes this process nearly thermoneutral. Remarkably, this reaction also converts a weak reductant into a much stronger reductant. Such "reductant upconversion" allows mild oxidants like molecular oxygen to complete the first part of the cascade. In contrast, the second stage of NH/CH activation forms a highly stabilized radical-anion intermediate incapable of undergoing electron transfer to oxygen. Because the oxidation is unfavored, an alternative reaction path opens via coupling between the radical anion intermediate and either superoxide or hydroperoxide radical. The hydroperoxide intermediate transforms into the final hydroxyisoindoline products under basic conditions. The use of TEMPO as an additive was found to activate less reactive amides. The combination of experimental and computational data outlines a conceptually new mechanism for conversion of unprotected amides into hydroxyisoindolines proceeding as a sequence of C-H amidation and C-H oxidation.
Collapse
Affiliation(s)
- Quintin Elliott
- Department of Chemistry and Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Gabriel Dos Passos Gomes
- Department of Chemistry and Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Christopher J Evoniuk
- Department of Chemistry and Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University Tallahassee Florida 32306 USA
| |
Collapse
|
40
|
Mishra A, Bhowmik A, Samanta S, Sarkar W, Das S, Deb I. Diastereoselective Spirocyclization of Benzoxazines with Nitroalkenes via Rhodium-Catalyzed C–H Functionalization/Annulation Cascade under Mild Conditions. Org Lett 2020; 22:1340-1344. [DOI: 10.1021/acs.orglett.9b04652] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aniket Mishra
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arup Bhowmik
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Siddhartha Samanta
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Writhabrata Sarkar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sumit Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Indubhusan Deb
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
41
|
Verma A, Singh Banjara L, Meena R, Kumar S. Transition‐Metal‐Free Synthesis of N‐Substituted Phenanthridinones and Spiro‐isoindolinones: C(
sp
2
)−N and C(
sp
2
)−O Coupling through Radical Pathway. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ajay Verma
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal By-pass Road Bhauri, Bhopal, Madhya Pradesh 462066 India
| | - Lal Singh Banjara
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal By-pass Road Bhauri, Bhopal, Madhya Pradesh 462066 India
| | - Rahul Meena
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal By-pass Road Bhauri, Bhopal, Madhya Pradesh 462066 India
| | - Sangit Kumar
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal By-pass Road Bhauri, Bhopal, Madhya Pradesh 462066 India
| |
Collapse
|
42
|
Vivek Kumar S, Banerjee S, Punniyamurthy T. Transition metal-catalyzed coupling of heterocyclic alkenes via C–H functionalization: recent trends and applications. Org Chem Front 2020. [DOI: 10.1039/d0qo00279h] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heterocyclic alkenes and their derivatives are an important class of reactive feedstock and valuable synthons. This review highlights the transition-metal-catalyzed coupling of heterocyclic alkenes via a C–H functionalization strategy.
Collapse
|
43
|
Li B, Guo C, Shen N, Zhang X, Fan X. Synthesis of maleimide fused benzocarbazoles and imidazo[1,2-a]pyridines via rhodium(iii)-catalyzed [4 + 2] oxidative cycloaddition. Org Chem Front 2020. [DOI: 10.1039/d0qo01109f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this paper, an efficient and sustainable synthesis of maleimide-fused benzocarbazoles/imidazo[1,2-a]pyridines from the reaction of 2-arylindoles/2-arylimidazo[1,2-a]pyridines with maleimides through oxidative [4 + 2] annulation is presented.
Collapse
Affiliation(s)
- Bin Li
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| | - Chenhao Guo
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| | - Nana Shen
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| | - Xinying Zhang
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| | - Xuesen Fan
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| |
Collapse
|
44
|
Zhang Y, Huang T, Li X, Zhang M, Song Y, Huang K, Su W. Rh( iii)-catalyzed spiroannulation of 3-arylquinoxalin-2(1 H)-ones with alkynes: practical access to spiroquinoxalinones. RSC Adv 2020; 10:22216-22221. [PMID: 35516638 PMCID: PMC9054490 DOI: 10.1039/d0ra03348k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 01/10/2023] Open
Abstract
The use of imines as a H acceptor for Rh(iii)-catalyzed spirocyclization of 3-arylquinoxalinones and alkynes via a C–H functionalization/[3 + 2] annulation sequence has been achieved.
Collapse
Affiliation(s)
- Yuanfei Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- Nanning Normal University
- Nanning 530001
- China
- State Key Laboratory of Structural Chemistry
| | - Ting Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- Nanning Normal University
- Nanning 530001
- China
| | - Xinghua Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- Nanning Normal University
- Nanning 530001
- China
| | - Min Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | - Ying Song
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- Nanning Normal University
- Nanning 530001
- China
| | - Kelin Huang
- China Academy of Science and Technology Development Guangxi Branch
- Nanning 530022
- China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| |
Collapse
|
45
|
Kumar Das D, Kannaujiya VK, Sadhu MM, Ray SK, Singh VK. BF 3·OEt 2-Catalyzed Vinyl Azide Addition to in Situ Generated N-Acyl Iminium Salts: Synthesis of 3-Oxoisoindoline-1-acetamides. J Org Chem 2019; 84:15865-15876. [PMID: 31741383 DOI: 10.1021/acs.joc.9b02127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BF3·OEt2-catalyzed nucleophilic addition of vinyl azides to in situ generated N-acyl iminium salts obtained from 3-hydroxyisoindolinones is described in this article. The procedure is operationally simple, mild, additive, and metal-free. The reaction proceeds smoothly at ambient temperature with a wide range of 3-hydroxyisoindol-1-ones and vinyl azides to afford 3-oxoisoindoline-1-acetamides (32 examples) in high yields (up to 97%). Furthermore, the synthetic utility of this methodology is depicted by exploiting the reactivity of an amide functionality in the products.
Collapse
Affiliation(s)
- Deb Kumar Das
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal , MP 462066 , India
| | - Vinod Kumar Kannaujiya
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal , MP 462066 , India
| | - Milon M Sadhu
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal , MP 462066 , India
| | - Sumit Kumar Ray
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal , MP 462066 , India
| | - Vinod K Singh
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur , UP 208016 , India
| |
Collapse
|
46
|
Kumar R, Kumar R, Parmar D, Gupta SS, Sharma U. Ru(II)/Rh(III)-Catalyzed C(sp3)–C(sp3) Bond Formation through C(sp3)–H Activation: Selective Linear Alkylation of 8-Methylquinolines and Ketoximes with Olefins. J Org Chem 2019; 85:1181-1192. [DOI: 10.1021/acs.joc.9b03257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Rohit Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Diksha Parmar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Shiv Shankar Gupta
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
47
|
Yuan YC, Goujon M, Bruneau C, Roisnel T, Gramage-Doria R. C–H Bond Alkylation of Cyclic Amides with Maleimides via a Site-Selective-Determining Six-Membered Ruthenacycle. J Org Chem 2019; 84:16183-16191. [DOI: 10.1021/acs.joc.9b02690] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu-Chao Yuan
- Univ Rennes, CNRS, ISCR-UMR6226, F-35000 Rennes, France
| | - Marion Goujon
- Univ Rennes, CNRS, ISCR-UMR6226, F-35000 Rennes, France
| | | | | | | |
Collapse
|
48
|
Li P, Jia X, Ma X, Ma W, Sheng Y, Zhao J, Zhao F. A Catalyst‐Free Cascade Reaction for the Selective Assembly of 3‐Hydroxyisoindolinones on Water. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pinyi Li
- Antibiotics Researchand Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 P. R. China
| | - Xiuwen Jia
- Antibiotics Researchand Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 P. R. China
| | - Xiaoli Ma
- Antibiotics Researchand Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 P. R. China
| | - Wenbo Ma
- Antibiotics Researchand Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 P. R. China
| | - Yilin Sheng
- College of Pharmaceutics and Materials EngineeringJinhua Polytechnic 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Jingwei Zhao
- Antibiotics Researchand Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 P. R. China
- Jinhua Branch of Sichuan Industrial Institute of Antibiotics 888 West Hai Tang Road Jinhua 321007 P. R. China
| | - Fei Zhao
- Antibiotics Researchand Re-evaluation Key Laboratory of Sichuan ProvinceSichuan Industrial Institute of AntibioticsChengdu University 168 Hua Guan Road Chengdu 610052 P. R. China
- Jinhua Branch of Sichuan Industrial Institute of Antibiotics 888 West Hai Tang Road Jinhua 321007 P. R. China
| |
Collapse
|
49
|
Rh(III)-Catalyzed C–H Bond Activation for the Construction of Heterocycles with sp3-Carbon Centers. Catalysts 2019. [DOI: 10.3390/catal9100823] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rh(III)-catalyzed C–H activation features mild reaction conditions, good functional group tolerance, high reaction efficiency, and regioselectivity. Recently, it has attracted tremendous attention and has been employed to synthesize various heterocycles, such as indoles, isoquinolines, isoquinolones, pyrroles, pyridines, and polyheterocycles, which are important privileged structures in biological molecules, natural products, and agrochemicals. In this short review, we attempt to present an overview of recent advances in Rh(III)-mediated C–H bond activation to generate diverse heterocyclic scaffolds with sp3 carbon centers.
Collapse
|
50
|
Liu Z, Zhang W, Guo S, Zhu J. Spiro[indene-1,4'-oxa-zolidinones] Synthesis via Rh(III)-Catalyzed Coupling of 4-Phenyl-1,3-oxazol-2(3 H)-ones with Alkynes: A Redox-Neutral Approach. J Org Chem 2019; 84:11945-11957. [PMID: 31436097 DOI: 10.1021/acs.joc.9b01804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition-metal-catalyzed C-H activation synthesis of heterocyclic spiro[4,4]nonanes has persistently witnessed the use of additional stoichiometric transition-metal oxidant when employing C═C bond as the spiro ring closure site. Herein, we have addressed the issue by reporting a redox-neutral strategy for spiro[indene-1,4'-oxa-zolidinones] synthesis via Rh(III)-catalyzed coupling of 4-phenyl-1,3-oxazol-2(3H)-ones with alkynes. The synthesis features a broad substrate scope and high regiospecificity.
Collapse
Affiliation(s)
- Zhongsu Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| | - Wenjing Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| | - Shan Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| | - Jin Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures , Nanjing University , Nanjing 210023 , China
| |
Collapse
|