1
|
Zhang W, Jin D, Hu Y, Yin K, Zou Q, Tang L, Qian P. Electrochemically Enable N-Sulfenylation/Phosphinylation of Sulfoximines via Oxidative Dehydrocoupling Reaction. J Org Chem 2024; 89:6106-6116. [PMID: 38632856 DOI: 10.1021/acs.joc.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
An electrochemical oxidative cross-coupling strategy for the synthesis of N-sulfenylsulfoximines from sulfoximines and thiols was accomplished, giving diverse N-sulfenylsulfoximines in moderate to good yields. Moreover, this strategy can be extended to construct the N-P bond of N-phosphinylated sulfoximines. With electrons as reagents, the oxidative dehydrogenation cross-coupling reaction proceeds smoothly in the absence of traditional redox reagents.
Collapse
Affiliation(s)
- Wenbao Zhang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
- Experimental and Training Management Center, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Dongsheng Jin
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Yongkang Hu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Kun Yin
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Quan Zou
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Liang Tang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Peng Qian
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| |
Collapse
|
2
|
Ghosh D, Samal AK, Parida A, Ikbal M, Jana A, Jana R, Sahu PK, Giri S, Samanta S. Progress in Electrochemically Empowered C-O Bond Formation: Unveiling the Pathway of Efficient Green Synthesis. Chem Asian J 2024:e202400116. [PMID: 38584137 DOI: 10.1002/asia.202400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
(C-X) bonds (X=C, N, O) are the main backbone for making different skeleton in the organic synthetic transformations. Among all the sustainable techniques, electro-organic synthesis for C-X bond formation is the advanced tool as it offers a greener and more cost-effective approach to chemical reactions by utilizing electrons as reagents. In this review, we want to explore the recent advancements in electrochemical C-O bond formation. The electrochemically driven C-O bond formation represents an emerging and exciting area of research. In this context, electrochemical techniques offers numerous advantages, including higher yields, cost-efficient production, and simplified work-up procedures. This method enables the continuous and consistent formation of C-O bonds in molecules, significantly enhancing overall reaction yields. Furthermore, both intramolecular and intermolecular C-O bond forming reaction provided valuable products of O-containing acyclic/cyclic analogue. Hence, carbonyl (C=O), ether -O-), and ester (-COOR) functionalization in both cyclic/acyclic analogues have been prepared continuously via this innovative pathway. In this context, we want to discuss one-decade electrochemical synthetic pathways of various C-O bond contains functional group in chronological manner. This review focused on all the synthetic aspects including mechanistic path and has also mentioned overall critical finding regarding the C-O bond formation via electrochemical pathways.
Collapse
Affiliation(s)
- Debosmit Ghosh
- Department of Chemistry, Bidhannagar College, Kolkata, 700064, India
| | - Aroop Kumar Samal
- Department of Chemistry, C.V. Raman Global UniversityInstitution, Bhubaneswar, 752054, India
| | - Anita Parida
- Department of Chemistry, C.V. Raman Global UniversityInstitution, Bhubaneswar, 752054, India
| | - Mohammed Ikbal
- Department of Chemistry, Berhampore Girls' College, Berhampore, 742101, India
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, Mohanpur741246, India
| | - Rathin Jana
- Department of Chemistry, Shahid Matangini Hazra Govt. General Degree College for women, West Bengal, India
| | - Pradeepta Kumar Sahu
- Department of Chemistry, C.V. Raman Global UniversityInstitution, Bhubaneswar, 752054, India
| | - Soumen Giri
- Department of Chemistry, C.V. Raman Global UniversityInstitution, Bhubaneswar, 752054, India
| | | |
Collapse
|
3
|
Pal S, Nandi R, Manna AS, Aich S, Maiti DK. Cu I-Catalyzed Radical Reaction of Benzimidates to Form Valuable 4,5-Dihydrooxazoles through Regioselective Aerobic Oxidative Cross-Coupling. J Org Chem 2024; 89:2703-2717. [PMID: 38295826 DOI: 10.1021/acs.joc.3c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A straightforward Cu(I)-catalyzed oxidative cross-coupled organic transformation has been developed under mild conditions for the construction of functionalized 4,5-dihydrooxazoles through a four-bond-forming regiocontrolled C-C/C-N/C-O coupling strategy emerging benzimidates, paraformaldehyde, and 1,3-diketo analogues using eco-friendly O2 as the sole oxidant. The fundamental features of these designed approaches involve operational simplicity, selectivity, generality, and a broad substrate scope with high yields under the same reaction conditions.
Collapse
Affiliation(s)
- Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Shobhon Aich
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
4
|
Huynh TNT, Nguyen KT, Sukwattanasinitt M, Wacharasindhu S. Electrochemical NaI-mediated one-pot synthesis of guanidines from isothiocyanates via tandem addition-guanylation. Org Biomol Chem 2023; 21:8667-8674. [PMID: 37672208 DOI: 10.1039/d3ob01113e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
In this study, we present an electrochemical approach for the synthesis of guanidines from isothiocyanates and amines in a single reaction vessel. This one-pot operation takes place in aqueous media, utilizing an undivided cell setup with NaI serving as both the electrolyte and mediator. The process involves the in situ generation of thiourea, followed by electrolytic guanylation with amines. Under ambient temperature conditions, we successfully demonstrated the formation of 30 different guanidine compounds, achieving yields ranging from fair to excellent. Furthermore, the synthesis method could be carried out on a gram scale with a good yield. This protocol stands out for its cost-effectiveness, step-economical design, high tolerance towards various functional groups, and environmentally friendly reaction conditions.
Collapse
Affiliation(s)
- Thao Nguyen Thanh Huynh
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 10330.
| | - Khuyen Thu Nguyen
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 10330.
| | | | - Sumrit Wacharasindhu
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 10330.
- Green Chemistry for Fine Chemical Productions and Environmental Remediation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 10330
| |
Collapse
|
5
|
Solvent-dependence of KI Mediated Electrosynthesis of Imidazo[1,2-a]pyridines. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
6
|
Chen J, Zhang R, Ma C, Zhang P, Zhang Y, Wang B, Xue F, Jin W, Xia Y, Liu C. Sustainable electrochemical dearomatization for the synthesis of diverse 2, 3-functionalized indolines. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
7
|
Zhou K, Xia S, Liu Y, Chen Z. An electrochemical tandem Michael addition, azidation and intramolecular cyclization strategy for the synthesis of imidazole derivatives. Org Biomol Chem 2022; 20:7840-7844. [PMID: 36172809 DOI: 10.1039/d2ob01501c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical-oxidation-induced intramolecular annulation used for the synthesis of imidazole was developed under undivided electrolytic conditions. In an undivided cell, amines, alkynes and azides could smoothly participate in the transformation to furnish a variety of substituted imidazoles through the tandem Michael addition/azide/cycloamine reaction. The reaction could be easily handled and avoided the use of both transition metal catalysts and peroxide reagents, which is in line with the concept of green chemistry.
Collapse
Affiliation(s)
- Kai Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shendan Xia
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yanming Liu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhiwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
8
|
Qian P, Jiang S, Fan H, Jiang S, Xu L, Liu J. Electrochemically Enabled Cascade Cyclization Reaction of Aromatic Aldehydes and Pyrazol-5-amines: Synthesis of Bis-pyrazolo[3,4- b:4',3'- e]pyridines. J Org Chem 2022; 87:9242-9249. [PMID: 35795996 DOI: 10.1021/acs.joc.2c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A facile method for the synthesis of bis-pyrazolo[3,4-b:4',3'-e]pyridines from easily available aromatic aldehydes and pyrazol-5-amines was developed via electrochemistry. The reaction proceeded smoothly under metal and external chemical oxidant-free conditions, giving a variety of bis-pyrazolo[3,4-b:4',3'-e]pyridines in moderate yields.
Collapse
Affiliation(s)
- Peng Qian
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P.R. China
| | - Shan Jiang
- Experimental and Training Management Center, Fuyang Normal University, Fuyang, Anhui 236037, P.R. China
| | - Hua Fan
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P.R. China
| | - Siqi Jiang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P.R. China
| | - Longlong Xu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P.R. China
| | - Jiaojiao Liu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P.R. China
| |
Collapse
|
9
|
Devi S, Jyoti, Kiran, Wadhwa D, Sindhu J. Electro-organic synthesis: an environmentally benign alternative for heterocycle synthesis. Org Biomol Chem 2022; 20:5163-5229. [PMID: 35730661 DOI: 10.1039/d2ob00572g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterocyclic compounds are considered to be one of the most established structural classes due to their extensive application in agrochemicals, pharmaceuticals and organic materials. Over the past few years, the development of heterocyclic compounds has gone through a considerable renaissance from conventional traditional methodologies to non-conventional electro-organic synthesis. Replacing metal catalysts, strong oxidants and multi-step methodologies with metal and strong oxidant-free single-step protocols has revolutionized the field of sustainable organic synthesis. Electro-organic synthesis has evolved as a scalable and sustainable approach in different synthetic protocols in an environment-benign manner. The current review outlines the recent developments in C-C, C-N, C-S and C-O/Se bond formation for heterocycle synthesis using electrochemical methods. Different synthetic strategies and their detailed mechanistic description are presented to enlighten the future applications of electrochemistry in heterocycle synthesis.
Collapse
Affiliation(s)
- Suman Devi
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jyoti
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| | - Deepak Wadhwa
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| |
Collapse
|
10
|
Wang H, Zheng Y, Xu H, Zou J, Jin C. Metal-Free Synthesis of N-Heterocycles via Intramolecular Electrochemical C-H Aminations. Front Chem 2022; 10:950635. [PMID: 35795218 PMCID: PMC9251003 DOI: 10.3389/fchem.2022.950635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
N-heterocycles are key structural units in many drugs, biologically interesting molecules and functional materials. To avoid the residues of metal catalysts, the construction of N-heterocycles under metal-free conditions has attracted much research attention in academia and industry. Among them, the intramolecular electrochemical C-H aminations arguably constitute environmentally friendly methodologies for the metal-free construction of N-heterocycles, mainly due to the direct use of clean electricity as the redox agents. With the recent renaissance of organic electrosynthesis, the intramolecular electrochemical C-H aminations have undergone much progress in recent years. In this article, we would like to summarize the advances in this research field since 2019. The emphasis is placed on the reaction design and mechanistic insight. The challenges and future developments in the intramolecular electrochemical C-H aminations are also discussed.
Collapse
Affiliation(s)
- Huiqiao Wang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, China
- *Correspondence: Huiqiao Wang, ; Congrui Jin,
| | - Yongjun Zheng
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, China
| | - Hucheng Xu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, China
| | - Jiaru Zou
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, China
| | - Congrui Jin
- Department of Civil and Environmental Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States
- *Correspondence: Huiqiao Wang, ; Congrui Jin,
| |
Collapse
|
11
|
Ahdenov R, Mohammadi AA, Makarem S, Taheri S, Mollabagher H. Eelectrosynthesis of benzothiazole derivatives via C–H thiolation. HETEROCYCL COMMUN 2022. [DOI: 10.1515/hc-2022-0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Benzothiazole derivatives are essential intermediates in synthesizing a wide variety of medical and pharmaceutical compounds, and there is a great demand for a simple and efficient method to synthesize benzothiazoles under mild reaction conditions. Organic electrosynthesis as an energy-efficient process represents an environmentally benign and safer method than traditional methods for organic synthesis. Herein, we present bromine-free and straightforward synthesis of 2-amino benzothiazole derivatives via the reaction of aniline derivatives and ammonium thiocyanate using electrosynthesis in the presence of sodium bromide both as an electrolyte and as a brominating agent at room temperature in isopropyl alcohol (i-PrOH) as a solvent. The reaction of ammonium thiocyanate via C–H thiolation routes, using various aniline derivatives, resulted in a simple, green, and bromine-free synthesis of 2-amino benzothiazole in moderate to good yields under mild reaction conditions. Riluzole drug can be produced using the same procedure in moderate yields.
Collapse
Affiliation(s)
- Reza Ahdenov
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI) , 14335-186 , Tehran , Iran
| | - Ali Asghar Mohammadi
- Department of Organic Chemistry, Chemistry and Chemical Engineering Research Center of Iran (CCERCI) , 14335-186 , Tehran , Iran
| | - Somayeh Makarem
- Department of Chemistry, Karaj Branch, Islamic Azad University , Karaj , Iran
| | - Salman Taheri
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI) , 14335-186 , Tehran , Iran
| | - Hoda Mollabagher
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI) , 14335-186 , Tehran , Iran
| |
Collapse
|
12
|
Shi SH, Wei J, Liang CM, Bai H, Zhu HT, Zhang Y, Fu F. Electro-oxidation induced O–S cross-coupling of quinoxalinones with sodium sulfinates for synthesizing 2-sulfonyloxylated quinoxalines. Chem Commun (Camb) 2022; 58:12357-12360. [DOI: 10.1039/d2cc04524a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel C2–O sulfonylation of quinoxalinones via electro-oxidation induced O–S coupling strategy under mild conditions was reported.
Collapse
Affiliation(s)
- Shi-Hui Shi
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Jian Wei
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Chun-Miao Liang
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Huan Bai
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Hai-Tao Zhu
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Yantu Zhang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Feng Fu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| |
Collapse
|
13
|
Peng Q, Xu L, Wang W, Zhang L, Tang L, Liu J, Sheng L. Electrochemical synthesis of dipyrazolo/dipyrimidine-fused pyridines via oxidative domino cyclization of C(sp3)–H bonds. Org Chem Front 2022. [DOI: 10.1039/d1qo01641e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemically oxidative domino cyclization reaction of methyl azaarenes/ketones with pyrazol-5-amines and 6-amino-pyrimidine-2,4-diones was developed, providing a variety of dipyrazolo[3,4-b:4',3'-e]pyridines and dipyrimidine-fused pyridines with moderate to good yields. The reaction...
Collapse
|
14
|
Zhaoxin W, Renjie W, Yonghong Z, Bin W, Yu X, Weiwei J, Chenjiang L. Electrochemical Synthesis of N-Acyl/Sulfonylsulfenamides Using Potassium Iodide as Mediator. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
He Y, Yin Y, Liu C, Wu XF, Yin Z. Electrochemical oxidative cyclization of N-allylcarboxamides: efficient synthesis of halogenated oxazolines. NEW J CHEM 2022. [DOI: 10.1039/d1nj04819h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, we reported an efficient and sustainable intramolecular electrochemical cyclization of N-allylcarboxamides for the synthesis of various halogenated oxazolines.
Collapse
Affiliation(s)
- Yanyang He
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yanzhao Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Chenwei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Zhiping Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
16
|
Balalaie S, Nikbakht A, Mohammadi F, Mousavi MS, Amiri K, Rominger F, Bijanzadeh HR. A Domino Approach for the Synthesis of 4-Carboxamide Oxazolines from Azirines. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1558-7457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractA regio- and diastereoselective ring-expansion reaction of N-acylaziridines is described for the synthesis of 4-carboxamide oxazolines using InCl3. A domino Ugi–Joullié/ring-expansion reaction of arylphenylazirines, isocyanides, and carboxylic acids leads to the target products through the N-acylaziridine intermediates in the presence of the indium catalyst. The oxazolines were synthesized in moderate to excellent yields with high atom economy and high bond-forming efficiency under mild reaction conditions.
Collapse
Affiliation(s)
- Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology
- Medical Biology Research Center, Kermanshah University of Medical Sciences
| | - Ali Nikbakht
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology
| | - Fariba Mohammadi
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology
| | | | - Kamran Amiri
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg
| | - Hamid Reza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University
| |
Collapse
|
17
|
Ma J, Yang J, Yan K, Sun X, Wei W, Tian L, Wen J. Electrochemical‐Induced C(sp
3
)−H Dehydrogenative Trimerization of Pyrazolones to Tripyrazolones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Ma
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Jianjing Yang
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Xue Sun
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Wei Wei
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Laijin Tian
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| | - Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies College of Chemistry and Chemical Engineering Qufu Normal University, Qufu Shandong 273165 P. R. China
| |
Collapse
|
18
|
Tang HT, Jia JS, Pan YM. Halogen-mediated electrochemical organic synthesis. Org Biomol Chem 2021; 18:5315-5333. [PMID: 32638806 DOI: 10.1039/d0ob01008a] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In general, halogenide anions are anodically oxidized into active species, which can be elemental halogen, halogen cations, or halogen radicals. These species subsequently react with substrates, such as olefins, ketones, or amines, to generate halogenated products. We review the mechanisms of these reactions.
Collapse
Affiliation(s)
- Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, People's Republic of China.
| | - Jun-Song Jia
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, People's Republic of China.
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, People's Republic of China.
| |
Collapse
|
19
|
Access to multi-functionalized oxazolines via silver-catalyzed heteroannulation of enamides with sulfoxonium ylides. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Lian F, Xu K, Zeng C. Indirect Electrosynthesis with Halogen Ions as Mediators. CHEM REC 2021; 21:2290-2305. [PMID: 33728812 DOI: 10.1002/tcr.202100036] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022]
Abstract
Organic electrosynthesis has gained increasing research interest as it harvests electric current as redox regents, thereby providing a sustainable alternative to conventional approaches. Compared with direct electrosynthesis, indirect electrosynthesis employs mediator(s) to lower the overpotentials for substrate activation, and enhance the reaction efficiency and functional group compatibility by shifting the heterogenous electron transfer process to be homogenous. As one of the most versatile and cost-efficient mediators, halogen mediators are always combined with an irreversible halogenation reaction. Thus, the electrochemical reaction between halogen mediators and substrates doesn't directly controlled by the two standard potentials difference. In this account, our recent developments in the area of halogen-mediated indirect electrosynthesis are summarized. The anodically generated halogen species from halogenide salts have the abilities to undergo electron-transfer (ET) or hydrogen-atom- transfer (HAT) processes. The reaction features, scopes, limitations, and mechanistic rationalisations are discussed in this account. We hope our studies will contribute to the future developments to broaden the scope of halogen-mediated electrosynthesis.
Collapse
Affiliation(s)
- Fei Lian
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Chengchu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
21
|
Yang Q, Yan XT, Feng CT, Chen DX, Yan ZZ, Xu K. Tandem Strecker/C(sp 3)–H amination reactions for the construction of cyanide-functionalized imidazo[1,5- a]pyridines with NH 4SCN as a cyanating agent. Org Chem Front 2021. [DOI: 10.1039/d1qo01060c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An I2O5-mediated multicomponent reaction that allows the single-step construction of cyano-functionalized imidazo[1,5-a]pyridines with molecular diversity was realized for the first time.
Collapse
Affiliation(s)
- Qing Yang
- School of Pharmacy, Anhui University of Chinese Medicine; Anhui academy of Chinese medicine, Hefei, 230012, China
- Anhui University of Science and Technology, Huainan, 232001, China
| | - Xiao-Tong Yan
- Anhui University of Science and Technology, Huainan, 232001, China
| | - Cheng-Tao Feng
- School of Pharmacy, Anhui University of Chinese Medicine; Anhui academy of Chinese medicine, Hefei, 230012, China
- Anhui University of Science and Technology, Huainan, 232001, China
| | - De-Xiang Chen
- Anhui University of Science and Technology, Huainan, 232001, China
| | - Zhong-Zhong Yan
- Anhui University of Science and Technology, Huainan, 232001, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
22
|
Zhao F, Meng N, Sun T, Wen J, Zhao X, Wei W. Metal-free electrochemical synthesis of α-ketoamides via decarboxylative coupling of α-keto acids with isocyanides and water. Org Chem Front 2021. [DOI: 10.1039/d1qo01351c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A mild and convenient electrochemical protocol has been developed for the preparation of α-ketoamides via a decarboxylative coupling reaction of α-keto acids with isocyanides and water.
Collapse
Affiliation(s)
- Feng Zhao
- Key Laboratory of Functional Organic Molecule, School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, P. R. China
| | - Na Meng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Ting Sun
- Key Laboratory of Functional Organic Molecule, School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, P. R. China
| | - Jiangwei Wen
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, People's Republic of China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, People's Republic of China
| |
Collapse
|
23
|
Zhou Z, Hu K, Wang J, Li Z, Zhang Y, Zha Z, Wang Z. Electrosynthesis of Quinazolines and Quinazolinones via an Anodic Direct Oxidation C(sp 3)-H Amination/C-N Cleavage of Tertiary Amine in Aqueous Medium. ACS OMEGA 2020; 5:31963-31973. [PMID: 33344851 PMCID: PMC7745442 DOI: 10.1021/acsomega.0c04865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 05/07/2023]
Abstract
An electrochemical synthesis for quinazolines and quinazolinones was developed via a C(sp3)-H amination/C-N cleavage by virtue of the anodic oxidation. The reaction can be carried out in aqueous media under mild conditions to afford the desired products with high yields. The reaction mechanism was proposed after detailed investigation.
Collapse
|
24
|
Luo N, Zhan Z, Ban Z, Lu G, He J, Hu F, Huang G. Brønsted Acid‐Promoted Diastereoselective [4+1] Cyclization Reaction of Enamides and Sulfoxonium Ylides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nan Luo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Zhenzhen Zhan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Zihui Ban
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Guoqiang Lu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Jianping He
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Fangpeng Hu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Guosheng Huang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
25
|
Zhang J, Wang H, Chen Y, Xie H, Ding C, Tan J, Xu K. Electrochemical synthesis of selenocyanated imidazo[1,5-a]quinolines under metal catalyst- and chemical oxidant-free conditions. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.11.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Qian P, Zha Z, Wang Z. Recent Advances in C−H Functionalization with Electrochemistry and Various Iodine‐Containing Reagents. ChemElectroChem 2020. [DOI: 10.1002/celc.202000252] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng Qian
- School of Chemistry and Material Engineering Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational InstitutionsFuyang Normal University Fuyang Anhui 236037 P. R.China
| | - Zhenggen Zha
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials ScienceUniversity of Science and Technology of China Hefei Anhui 230026 P. R.China
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials ScienceUniversity of Science and Technology of China Hefei Anhui 230026 P. R.China
| |
Collapse
|
27
|
Sun X, Yang S, Wang Z, Liang S, Tian H, Yang S, Liu Y, Sun B, Zeng C. Electrochemically Oxidative Coupling of S‐H/S‐H for S‐S Bond Formation: A Facile Approach to Diacid‐disulfides. ChemistrySelect 2020. [DOI: 10.1002/slct.202000872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xue‐Jie Sun
- Beijing advanced innovation center for food nutrition and human health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 China
| | - Shang‐Feng Yang
- Beijing advanced innovation center for food nutrition and human health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 China
| | - Zhi‐Tong Wang
- Beijing advanced innovation center for food nutrition and human health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 China
| | - Sen Liang
- Beijing advanced innovation center for food nutrition and human health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 China
| | - Hong‐Yu Tian
- Beijing advanced innovation center for food nutrition and human health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 China
| | - Shao‐Xiang Yang
- Beijing advanced innovation center for food nutrition and human health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 China
| | - Yong‐Guo Liu
- Beijing advanced innovation center for food nutrition and human health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 China
| | - Bao‐Guo Sun
- Beijing advanced innovation center for food nutrition and human health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 China
| | - Cheng‐Chu Zeng
- Beijing advanced innovation center for food nutrition and human health, Beijing Key laboratory of Flavor ChemistryBeijing Technology and Business University Beijing 100048 China
- College of Life Science & BioengineeringBeijing University of Technology Beijing 100124 China
| |
Collapse
|
28
|
Li J, Yang P, Xie X, Jiang S, Tao L, Li Z, Lu C, Liu W. Catalyst‐Free Electrosynthesis of Benzimidazolones through Intramolecular Oxidative C−N Coupling. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jiang‐Sheng Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Pan‐Pan Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Xin‐Yun Xie
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Si Jiang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Li Tao
- State Grid Hunan Electric Power Company Limited Research Institute Changsha 410004 People's Republic of China
| | - Zhi‐Wei Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Cui‐Hong Lu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Wei‐Dong Liu
- National Engineering Research Center for AgrochemicalsHunan Research Institute of Chemical Industry Changsha 410007 People's Republic of China
| |
Collapse
|
29
|
Chen JY, Wu HY, Gui QW, Han XR, Wu Y, Du K, Cao Z, Lin YW, He WM. Electrochemical Synthesis of α-Ketoamides under Catalyst-, Oxidant-, and Electrolyte-Free Conditions. Org Lett 2020; 22:2206-2209. [DOI: 10.1021/acs.orglett.0c00387] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jin-Yang Chen
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408000, China
| | - Hong-Yu Wu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408000, China
| | - Qing-Wen Gui
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha 410114, China
| | - Xiao-Ran Han
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408000, China
| | - Yan Wu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408000, China
| | - Kui Du
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408000, China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha 410114, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Min He
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
30
|
Mulina OM, Zhironkina NV, Paveliev SA, Demchuk DV, Terent’ev AO. Electrochemically Induced Synthesis of Sulfonylated N-Unsubstituted Enamines from Vinyl Azides and Sulfonyl Hydrazides. Org Lett 2020; 22:1818-1824. [DOI: 10.1021/acs.orglett.0c00139] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Olga M. Mulina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Nataliya V. Zhironkina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russian Federation
| | - Stanislav A. Paveliev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Dmitry V. Demchuk
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russian Federation
| |
Collapse
|
31
|
Yang YZ, Wu YC, Song RJ, Li JH. Electrochemical dehydrogenative cross-coupling of xanthenes with ketones. Chem Commun (Camb) 2020; 56:7585-7588. [DOI: 10.1039/d0cc02580a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An oxidant-free electrochemical dehydrogenative cross-coupling of xanthenes and ketones for the preparation of functionalized 9-alkyl-9H-xanthenes was developed.
Collapse
Affiliation(s)
- Yong-Zheng Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Yan-Chen Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| |
Collapse
|
32
|
Tan C, Liu Y, Liu X, Jia H, Xu K, Huang S, Wang J, Tan J. Stereoselective synthesis of trans-aziridines via intramolecular oxidative C(sp3)–H amination of β-amino ketones. Org Chem Front 2020. [DOI: 10.1039/c9qo01489f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An expedient strategy for the synthesis of trans-2,3-disubstituted via the intramolecular KI/TBHP mediated oxidative dehydrogenative C(sp3)–H amination reaction was presented.
Collapse
Affiliation(s)
- Chen Tan
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavor Chemistry
- Beijing Technology and Business University (BTBU)
- Beijing 100048
- China
| | - Xinyuan Liu
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Huanxin Jia
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Kun Xu
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang
- China
| | - Sihan Huang
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jingwen Wang
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jiajing Tan
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
33
|
Wang H, Shi J, Tan J, Xu W, Zhang S, Xu K. Electrochemical Synthesis of trans-2,3-Disubstituted Aziridines via Oxidative Dehydrogenative Intramolecular C(sp3)–H Amination. Org Lett 2019; 21:9430-9433. [DOI: 10.1021/acs.orglett.9b03641] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Huiqiao Wang
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jianxue Shi
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jiajing Tan
- Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenting Xu
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Sheng Zhang
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Kun Xu
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
- College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
34
|
Huang H, Yang W, Chen Z, Lai Z, Sun J. A mild catalytic synthesis of 2-oxazolines via oxetane ring-opening: rapid access to a diverse family of natural products. Chem Sci 2019; 10:9586-9590. [PMID: 32055332 PMCID: PMC6993743 DOI: 10.1039/c9sc03843d] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/24/2019] [Indexed: 12/14/2022] Open
Abstract
A new catalytic protocol for the expedient synthesis of oxazolines from oxetanes is disclosed. This mild process complements the conventional oxazoline synthesis based on non-catalytic cyclization of β-hydroxy or unsaturated amides. It is also a new addition to the reactivity profile of oxetanes leading to heterocycles. In the presence of In(OTf)3, various 3-amido oxetanes underwent smooth intramolecular cyclization to form the corresponding 2-oxazolines, including some valuable oxazoline-based bidentate ligands. This protocol also provides rapid access to various natural products and antibacterial molecules.
Collapse
Affiliation(s)
- Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology , School of Petrochemical Engineering , Changzhou University , Changzhou 213164 , China .
| | - Wen Yang
- Department of Chemistry and Shenzhen Research Institute , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong SAR , China
| | - Zuliang Chen
- Department of Chemistry and Shenzhen Research Institute , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong SAR , China
| | - Zengwei Lai
- Department of Chemistry and Shenzhen Research Institute , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong SAR , China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology , School of Petrochemical Engineering , Changzhou University , Changzhou 213164 , China .
- Department of Chemistry and Shenzhen Research Institute , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong SAR , China
| |
Collapse
|
35
|
Sun C, Lian F, Xu K, Zeng C, Sun B. Electrochemical Synthesis of Allylamines via a Radical Trapping Sequence. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Cao‐Cao Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Engineering Beijing Technology and Business University Beijing 100048 People's Republic of China
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering Beijing University of Technology Pingleyuan 100, Chaoyang District Beijing 100124 People's Republic of China
| | - Fei Lian
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering Beijing University of Technology Pingleyuan 100, Chaoyang District Beijing 100124 People's Republic of China
| | - Kun Xu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering Beijing University of Technology Pingleyuan 100, Chaoyang District Beijing 100124 People's Republic of China
| | - Cheng‐Chu Zeng
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering Beijing University of Technology Pingleyuan 100, Chaoyang District Beijing 100124 People's Republic of China
| | - Bao‐Guo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Engineering Beijing Technology and Business University Beijing 100048 People's Republic of China
| |
Collapse
|
36
|
Li F, Lin D, He T, Zhong W, Huang J. Electrochemical Decarboxylative Trifluoromethylation of
α, β‐
Unsaturated Carboxylic Acids with CF
3
SO
2
Na. ChemCatChem 2019. [DOI: 10.1002/cctc.201900438] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fang‐Yuan Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Wushan, Tianhe, Guangzhou 510640 P.R. China
| | - Dian‐Zhao Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Wushan, Tianhe, Guangzhou 510640 P.R. China
| | - Tian‐Jun He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Wushan, Tianhe, Guangzhou 510640 P.R. China
| | - Wei‐Qiang Zhong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Wushan, Tianhe, Guangzhou 510640 P.R. China
| | - Jing‐Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Wushan, Tianhe, Guangzhou 510640 P.R. China
| |
Collapse
|
37
|
Yang QL, Wang XY, Wang TL, Yang X, Liu D, Tong X, Wu XY, Mei TS. Palladium-Catalyzed Electrochemical C–H Bromination Using NH4Br as the Brominating Reagent. Org Lett 2019; 21:2645-2649. [DOI: 10.1021/acs.orglett.9b00629] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Qi-Liang Yang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Xiang-Yang Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Tong-Lin Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Xiang Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Dong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Xiaofeng Tong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
38
|
Ye Z, Zhang F. Recent Advances in Constructing Nitrogen‐Containing Heterocycles
via
Electrochemical Dehydrogenation. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900049] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zenghui Ye
- College of Pharmaceutical ScienceZhejiang University of Technology, No. 18 Chaowang Road Hangzhou Zhejiang 310014 China
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology, No. 18 Chaowang Road Hangzhou Zhejiang 310014 China
| | - Fengzhi Zhang
- College of Pharmaceutical ScienceZhejiang University of Technology, No. 18 Chaowang Road Hangzhou Zhejiang 310014 China
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology, No. 18 Chaowang Road Hangzhou Zhejiang 310014 China
| |
Collapse
|
39
|
Zhang S, Li L, Zhang J, Zhang J, Xue M, Xu K. Electrochemical fluoromethylation triggered lactonizations of alkenes under semi-aqueous conditions. Chem Sci 2019; 10:3181-3185. [PMID: 30996899 PMCID: PMC6429606 DOI: 10.1039/c9sc00100j] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022] Open
Abstract
An electrochemical difluoromethylation triggered lactonization of alkenes was developed for the first time. This protocol employs readily prepared CF2HSO2Na as the difluoromethylating reagent, affording unprecedented CF2H-containing lactones in moderate yields. Moreover, with CF3SO2Na as the trifluoromethylating reagent, a wide array of CF3-containing lactones were obtained under additional supporting electrolyte- and catalyst-free conditions.
Collapse
Affiliation(s)
- Sheng Zhang
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis , College of Chemistry and Pharmaceutical Engineering , Nanyang Normal University , Nanyang , 473061 , China . ;
| | - Lijun Li
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis , College of Chemistry and Pharmaceutical Engineering , Nanyang Normal University , Nanyang , 473061 , China . ;
| | - Jinjin Zhang
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis , College of Chemistry and Pharmaceutical Engineering , Nanyang Normal University , Nanyang , 473061 , China . ;
| | - Junqi Zhang
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis , College of Chemistry and Pharmaceutical Engineering , Nanyang Normal University , Nanyang , 473061 , China . ;
| | - Mengyu Xue
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis , College of Chemistry and Pharmaceutical Engineering , Nanyang Normal University , Nanyang , 473061 , China . ;
| | - Kun Xu
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis , College of Chemistry and Pharmaceutical Engineering , Nanyang Normal University , Nanyang , 473061 , China . ;
- College of Life Science & Bioengineering , Beijing University of Technology , Beijing 100124 , China
| |
Collapse
|
40
|
Wang F, Stahl SS. Merging Photochemistry with Electrochemistry: Functional-Group Tolerant Electrochemical Amination of C(sp 3 )-H Bonds. Angew Chem Int Ed Engl 2019; 58:6385-6390. [PMID: 30763466 DOI: 10.1002/anie.201813960] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/13/2019] [Indexed: 12/22/2022]
Abstract
Direct amination of C(sp3 )-H bonds is of broad interest in the realm of C-H functionalization because of the prevalence of nitrogen heterocycles and amines in pharmaceuticals and natural products. Reported here is a combined electrochemical/photochemical method for dehydrogenative C(sp3 )-H/N-H coupling that exhibits good reactivity with both sp2 and sp3 N-H bonds. The results show how use of iodide as an electrochemical mediator, in combination with light-induced cleavage of intermediate N-I bonds, enables the electrochemical process to proceed at low electrode potentials. This approach significantly improves the functional-group compatibility of electrochemical C-H amination, for example, tolerating electron-rich aromatic groups that undergo deleterious side reactions in the presence of high electrode potentials.
Collapse
Affiliation(s)
- Fei Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
41
|
Wang F, Stahl SS. Merging Photochemistry with Electrochemistry: Functional‐Group Tolerant Electrochemical Amination of C(sp
3
)−H Bonds. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813960] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Fei Wang
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| | - Shannon S. Stahl
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| |
Collapse
|
42
|
Stereoselective synthesis of sulfur-containing β-enaminonitrile derivatives through electrochemical Csp 3-H bond oxidative functionalization of acetonitrile. Nat Commun 2019; 10:833. [PMID: 30783088 PMCID: PMC6381189 DOI: 10.1038/s41467-019-08762-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Incorporation of nitrile groups into fine chemicals is of particular interest through C(sp3)-H bonds activation of alkyl nitriles in the synthetic chemistry due to the highly efficient atom economy. However, the direct α-functionalization of alkyl nitriles is usually limited to its enolate chemistry. Here we report an electro-oxidative C(sp3)-H bond functionalization of acetonitrile with aromatic/aliphatic mercaptans for the synthesis of sulfur-containing β-enaminonitrile derivatives. These tetrasubstituted olefin products are stereoselectively synthesized and the stereoselectivity is enhanced in the presence of a phosphine oxide catalyst. With iodide as a redox catalyst, activation of C(sp3)-H bond to produce cyanomethyl radicals proceeds smoothly at a decreased anodic potential, and thus highly chemoselective formation of C-S bonds and enamines is achieved. Importantly, the process is carried out at ambient temperature and can be easily scaled up.
Collapse
|
43
|
Deng L, Wang Y, Mei H, Pan Y, Han J. Electrochemical Dehydrogenative Phosphorylation of Alcohols for the Synthesis of Organophosphinates. J Org Chem 2019; 84:949-956. [DOI: 10.1021/acs.joc.8b02882] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingling Deng
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing 210093, China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing 210093, China
| | - Haibo Mei
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yi Pan
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing 210093, China
| | - Jianlin Han
- School of Chemistry and Chemical Engineering, State Key laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing 210093, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
44
|
Liu L, Tan C, Fan R, Wang Z, Du H, Xu K, Tan J. I2/TBHP-Mediated tandem cyclization and oxidation reaction: Facile access to 2-substituted thiazoles and benzothiazoles. Org Biomol Chem 2019; 17:252-256. [DOI: 10.1039/c8ob02826e] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The efficient synthesis of 2-substituted thiazoles and benzothiazoles has been accomplished employing readily available cysteine esters and 2-aminobenzenethiols as N and S sources.
Collapse
Affiliation(s)
- Li Liu
- Department of Organic Chemistry
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Chen Tan
- Department of Organic Chemistry
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Rong Fan
- Department of Organic Chemistry
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Zihan Wang
- Department of Organic Chemistry
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Hongguang Du
- Department of Organic Chemistry
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Kun Xu
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang
- P. R. China
| | - Jiajing Tan
- Department of Organic Chemistry
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
45
|
Wang Z, Zhang J, Shi J, Wang H. KOtBu-promoted oxidative dimerizations of 2-methylquinolines to 2-alkenyl bisquinolines with molecular oxygen. RSC Adv 2019; 9:30139-30143. [PMID: 35530195 PMCID: PMC9072141 DOI: 10.1039/c9ra06465f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/18/2019] [Indexed: 01/12/2023] Open
Abstract
KOtBu-promoted oxidative dimerizations of 2-methylquinolines with molecular oxygen as the oxidant have been developed for the first time.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pharmacy
- Nanyang Medical College
- Nanyang
- China
| | - Jinjin Zhang
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang
- China
| | - Jianxue Shi
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang
- China
| | - Huiqiao Wang
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang
- China
| |
Collapse
|
46
|
Terent'ev AO, Mulina OM, Parshin VD, Kokorekin VA, Nikishin GI. Electrochemically induced oxidative S–O coupling: synthesis of sulfonates from sulfonyl hydrazides and N-hydroxyimides or N-hydroxybenzotriazoles. Org Biomol Chem 2019; 17:3482-3488. [DOI: 10.1039/c8ob03162b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A variety of sulfonates were synthesized from sulfonyl hydrazides and N-hydroxy compounds via electrochemically induced oxidative S–O bond formation.
Collapse
Affiliation(s)
- Alexander O. Terent'ev
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
- D.I. Mendeleev University of Chemical Technology of Russia
| | - Olga M. Mulina
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Vadim D. Parshin
- D.I. Mendeleev University of Chemical Technology of Russia
- Moscow
- Russian Federation
| | - Vladimir A. Kokorekin
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
- Sechenov First Moscow State Medical University
| | - Gennady I. Nikishin
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| |
Collapse
|
47
|
Lian F, Sun C, Xu K, Zeng C. Electrochemical Dehydrogenative Imidation of N-Methyl-Substituted Benzylamines with Phthalimides for the Direct Synthesis of Phthalimide-Protected gem-Diamines. Org Lett 2018; 21:156-159. [DOI: 10.1021/acs.orglett.8b03624] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Fei Lian
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Caocao Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Kun Xu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Chengchu Zeng
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
48
|
Haupt JD, Berger M, Waldvogel SR. Electrochemical Fluorocyclization of N-Allylcarboxamides to 2-Oxazolines by Hypervalent Iodine Mediator. Org Lett 2018; 21:242-245. [DOI: 10.1021/acs.orglett.8b03682] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- John D. Haupt
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Michael Berger
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
49
|
Zhang S, Li L, Wu P, Gong P, Liu R, Xu K. Substrate‐Dependent Electrochemical Dimethoxylation of Olefins. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801173] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sheng Zhang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical EngineeringNanyang Normal University Nanyang 473061 People's Republic of China
| | - Lijun Li
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical EngineeringNanyang Normal University Nanyang 473061 People's Republic of China
| | - Ping Wu
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical EngineeringNanyang Normal University Nanyang 473061 People's Republic of China
| | - Pengjuan Gong
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical EngineeringNanyang Normal University Nanyang 473061 People's Republic of China
| | - Rui Liu
- School of Basic Medical SciencesAnhui Medical University 81 Meishan Road Hefei 230032 People's Republic of China
| | - Kun Xu
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical EngineeringNanyang Normal University Nanyang 473061 People's Republic of China
| |
Collapse
|
50
|
Yu H, Jiao M, Huang R, Fang X. Electrochemical Intramolecular Dehydrogenative Coupling of N
-Benzyl(thio)amides: A Direct and Facile Synthesis of 4H
-1,3-Benzoxazines and 4H
-1,3-Benzothiazines. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hui Yu
- School of Chemical Science and Engineering; Shanghai Key Lab of Chemical Assessment and Substainability; Tongji University; 1239 Siping Road 200092 Shanghai P. R. China
| | - Mingdong Jiao
- School of Chemical Science and Engineering; Shanghai Key Lab of Chemical Assessment and Substainability; Tongji University; 1239 Siping Road 200092 Shanghai P. R. China
| | - Ruohe Huang
- School of Chemical Science and Engineering; Shanghai Key Lab of Chemical Assessment and Substainability; Tongji University; 1239 Siping Road 200092 Shanghai P. R. China
| | - Xiaowei Fang
- School of Chemical Science and Engineering; Shanghai Key Lab of Chemical Assessment and Substainability; Tongji University; 1239 Siping Road 200092 Shanghai P. R. China
| |
Collapse
|