1
|
Gu H, Sun X, Zhao Q, Wang H, Cheng X, Yang C, Qiu D. Near-IR Electrochromic Film with High Optical Contrast and Stability Prepared by Oxidative Electropolymerization of Triphenylamine Modified Terpyridine Platinum(II) Chloride. Molecules 2023; 28:8027. [PMID: 38138516 PMCID: PMC10745481 DOI: 10.3390/molecules28248027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Terpyridine (TPY) platinum(II) chloride with a triphenylamine (TPA) group was successfully synthesized. The strong intramolecular Donor(TPA)-Acceptor(TPY) interaction induced the low-energy absorption band, mixing the spin-allowed singlet dπ(Pt)→π*(TPY) metal-to-ligand charge transfer (MLCT) with the chloride ligand-to-metal charge transfer (LMCT) and chloride ligand-to-ligand (TPY) charge transfer (LLCT) transitions, to bathochromically shift to λmax = 449 nm with significant enhancement and broadening effects. Using the cyclic voltammetry method, its oxidative electropolymerization (EP) films on working Pt disk and ITO electrodes were produced with tunable thickness and diffusion controlled redox behavior, which were characterized by the SEM, EDS, FT-IR, and AC impedance methods. Upon applying +1.4 V voltage, the sandwich-type electrochromic device (ECD) with ca. 290 nm thickness of the EP film exhibits a distinct color transformation from red (CIE coordinates: L = 50.75, a = 18.58, b = 5.69) to dark blue (CIE coordinates: L = 45.65, a = -1.35, b = -12.49). Good electrochromic (EC) parameters, such as a large optical contrast (ΔT%) of 78%, quick coloration and bleaching response times of 2.9 s and 1.1 s, high coloration and bleaching efficiencies of 278.0 and 390.5 C-1·cm2, and good cycling stability (maintains 70% of the initial ΔT% value after 3200 voltage switching cycles), were obtained.
Collapse
Affiliation(s)
- Huiying Gu
- College of Chemistry, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou 450001, China
| | - Xiaomeng Sun
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Qian Zhao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Hongwei Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xinfeng Cheng
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Chunxia Yang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Dongfang Qiu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
2
|
Sun Z, Yang W, Zhang X, Zhu X, Luan J, Li W, Liu Y. Preparation of Novel Nitrogen-Rich Fluorinated Hyperbranched Poly(amide-imide) and Evaluation of Its Electrochromic Properties and Iodine Adsorption Behavior. Polymers (Basel) 2023; 15:4537. [PMID: 38231955 PMCID: PMC10707875 DOI: 10.3390/polym15234537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, we successfully synthesized a novel triacid monomer by means of the thermal cyclization reaction. Subsequently, a series of nitrogen-rich (A3+B2)-type fluorinated hyperbranched poly(amide-imide)s (denoted as PAI-1 and -2, respectively) were prepared by means of a one-pot method using this triacid monomer and a diamine monomer with a triphenylamine-carbazole unit as precursors. The degree of support of the prepared hyperbranched PAIs was found to be about 60% via 1H NMR calculations. Through X-ray photoelectron spectroscopy (XPS), it was found that the binding energies of C-N (398.4 eV) and -NH (399.7 eV) became lower under a current, while the binding energy peak of N+ appeared at 402.9 eV. In addition, the PAIs have good solubility and thermal stability (Tgs: 256-261 °C, T10%: 564-608 °C). Cyclic voltammetry (CV) analysis shows that the hyperbranched PAI films have good redox properties, and a range of values for the HOMO (4.83 to 4.85 eV) versus LUMO (1.85 to 1.97 eV) energy levels are calculated. The PAI films have excellent electrochromic properties: PAI-1 on coloration efficiency (CE) and transmittance change (ΔT, 852 nm) are 257 cm2/C and 62%, respectively, and have long-lasting redox properties (100 cycles). In addition, we conduct iodine adsorption tests using the structural features of PAIs with electron-drawing units, and the results show that PAI-1 had a high adsorption capacity for iodine (633 mg/g).
Collapse
Affiliation(s)
- Zebang Sun
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (Z.S.); (W.Y.); (X.Z.); (X.Z.)
| | - Wen Yang
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (Z.S.); (W.Y.); (X.Z.); (X.Z.)
| | - Xiaosa Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (Z.S.); (W.Y.); (X.Z.); (X.Z.)
| | - Xiaoyu Zhu
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (Z.S.); (W.Y.); (X.Z.); (X.Z.)
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang 110819, China;
| | - Wenze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (Z.S.); (W.Y.); (X.Z.); (X.Z.)
| | - Yu Liu
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (Z.S.); (W.Y.); (X.Z.); (X.Z.)
| |
Collapse
|
3
|
Feng J, Luo Y, Wang X, Cai G, Cao R. A Large-Area Patterned Hydrogen-Bonded Organic Framework Electrochromic Film and Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304691. [PMID: 37403296 DOI: 10.1002/smll.202304691] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/20/2023] [Indexed: 07/06/2023]
Abstract
Fabrication of a patterned hydrogen-bonded organic framework (HOF) films on a large scale is an extreme challenge. In this work, a large area HOF film (30 × 30 cm2 ) is prepared via an efficient and low-cost electrostatic spray deposition (ESD) approach on the un-modified conductive substrates directly. Combining the ESD with a template method, variously patterned HOF films can be easily produced, including deer- and horse-shaped films. The obtained films exhibit excellent electrochromic performance with multicolor change from yellow to green and violet, and two-band regulation at 550 and 830 nm. Benefiting from the inherently present channels of HOF materials and the additional film porosity created by ESD, the PFC-1 film could quickly change color (within 10 s). Furthermore, the large-area patterned EC device is constructed based on the above film to prove practical potential application. The presented ESD method can be extended to other HOF materials; thus, this work paves a feasible path for constructing large-area patterned HOF films for practical optoelectronic applications.
Collapse
Affiliation(s)
- Jifei Feng
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering, Henan University, Kaifeng, 475004, China
| | - Yi Luo
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering, Henan University, Kaifeng, 475004, China
| | - Xinyi Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering, Henan University, Kaifeng, 475004, China
| | - Guofa Cai
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering, Henan University, Kaifeng, 475004, China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| |
Collapse
|
4
|
Mondal S, Santra DC, Roy S, Narayana YSLV, Yoshida T, Ninomiya Y, Higuchi M. Reversible Electrochromic/Electrofluorochromic Dual Switching in Zn(II)-Based Metallo-Supramolecular Polymer Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42912-42919. [PMID: 37644710 DOI: 10.1021/acsami.3c06673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The introduction of novel materials with multifunctional chromogenic properties, such as electrochromic/electrofluorochromic (EC/EFC) properties, has recently attracted prospective interest in the development of various optoelectronic devices and smart windows. In this study, a novel Zn(II)-based metallo-supramolecular polymer (polyZn) has been developed as an ON/OFF switchable EFC application with prominent EC behavior. In this regard, the polymeric chain of polyZn was first synthesized by 1:1 complexation in a zigzag manner with Zn(II) ions at the metal center and 4,4'-[bis(2,2':6',2″-terpyridinyl)benzene]triphenylamine (LTPY-TPA) as the redox-active ditopic ligand. The polyZn exhibits excellent solubility in organic solvents and can form a very good uniform thin film on an indium tin oxide/glass substrate by spin-coating. In a neutral state, transparent polyZn exhibits a bright yellow color to the naked eye (absorption at ∼325 nm). The electroactive triphenylamine (TPA) core of LTPA-TPY, however, undergoes reversible single-electron oxidation when a positive bias of +1.6 V vs Ag/Ag+ is applied, generating radical cations (TPA ↔ TPA•+) with a significant drop in transparency (77%). A noticeable chromic shift in the hue of the film from brilliant yellow to green was observed with the appearance of a near-infrared absorption band at ∼897 nm with a tail of 1300-1600 nm. Interestingly, in addition to this EC phenomenon, the fabricated solid-state polyZn film exhibits intense, high-contrast reddish-orange photoluminescence with λem = 650 nm, which is significantly desired as a molecular probe for bioimaging. Both the TPA core and the redox-inactive Zn(II)-terpyridine core emit orange-red photoluminescence in polyZn, which is significantly quenched upon the oxidation of the film and is re-emitted at 0.0 V vs Ag/Ag+. This ON/OFF EFC transition was sustained for several cycles. This study should motivate to design and create distinctive new unique materials with combined EC/EFC behavior for the fabrication of optoelectronic devices by combining a metal-fluorescent core with a redox-active spacer.
Collapse
Affiliation(s)
- Sanjoy Mondal
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Dines Chandra Santra
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Susmita Roy
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Yemineni S L V Narayana
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takefumi Yoshida
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Yoshikazu Ninomiya
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
5
|
Wang J, Lu T, Li Y, Wang J, Spruijt E. Aqueous coordination polymer complexes: From colloidal assemblies to bulk materials. Adv Colloid Interface Sci 2023; 318:102964. [PMID: 37515864 DOI: 10.1016/j.cis.2023.102964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
1-dimensional (1D) coordination polymers refer to the macromolecules that have metal ions incorporated in their pendent groups or main chain through metal-binding ligand groups. They have intrinsic advantages over traditional polymers to regulate the polymer structures and functions owing to the nature of the metal-ligand bond. Consequently, they have great potential for the development of smart and functional structures and materials and therapeutic agents. Water-soluble 1D coordination polymers and assemblies are an important subtype of coordination polymers with distinctive interests for demanding applications in aqueous systems, such as biological and medical applications. This review highlights the recent progress and research achievements in the design and use of water-soluble 1D coordination polymers and assemblies. The overview covers the design and structure control of 1D coordination polymers, their colloidal assemblies, including nanoparticles, nanofibers, micelles and vesicles, and fabricated bulk materials such as membraneless liquid condensates, security ink, hydrogel actuators, and smart fabrics. Finally, we discuss the potential applications of several of these coordination polymeric structures and materials and give an outlook on the field of aqueous coordination polymers.
Collapse
Affiliation(s)
- Jiahua Wang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Tiemei Lu
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Evan Spruijt
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Ranjan Jena S, Mandal T, Choudhury J. Metal-Terpyridine Assembled Functional Materials for Electrochromic, Catalytic and Environmental Applications. CHEM REC 2022; 22:e202200165. [PMID: 36002341 DOI: 10.1002/tcr.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Molecular assembly induced by metal-terpyridine-based coordinative interactions has become an emergent research topic due to its ease of synthesis and diverse applications. This article highlights recent significant developments in the metal-terpyridine-based supramolecular architectures. At first, the design aspect of the molecular building blocks has been described, followed by elaboration on how the ligand backbone plays an important role for achieving different dimensionalities of the resulting assemblies which exhibit a wide range of potential applications. After that, we discussed different synthetic approaches for constructing these assemblies, and finally, we focused on their significant developments in three specific areas, viz., electrochromic materials, catalysis and a new application in wastewater treatment. In the field of electrochromic materials, these assemblies made important advancements in various aspects like sub-second switching time (<1 s), low switching voltage (<1 V), increased switching stability (>10000 cycles), tuning of multiple colors by using multimetallic systems, fabrication of charge storing electrochromic devices, utilizing and storing solar energy etc. Similarly, the catalysis field witnessed application of the metal-terpyridine assemblies in C-H monohalogenation, heterogeneous Suzuki-Miyaura coupling, photocatalysis, reduction of carbon dioxide, etc. Finally, the environmental application of these coordination assemblies includes capturing Cr(VI) from waste water efficiently with high capture capacity, good recyclability, wide pH independency etc.
Collapse
Affiliation(s)
- Satya Ranjan Jena
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Tanmoy Mandal
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| |
Collapse
|
7
|
Liu W, Wang Y, Sheng F, Wan B, Tang G, Xu S. A nucleic acid dye-enhanced electrochemical biosensor for the label-free detection of Hg 2+ based on a gold nanoparticle-modified disposable screen-printed electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3451-3457. [PMID: 36000503 DOI: 10.1039/d2ay00548d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, a nucleic acid dye-enhanced electrochemical biosensor based on a screen-printed carbon electrode (SPCE) modified with Au nanoparticles (AuNPs) was designed for the detection of Hg2+ in water. AuNPs were modified on the surface of the disposable SPCE through the electrodeposition of HAuCl4. Subsequently, thiolated DNA probes were immobilized on the AuNP-modified electrode surface by Au-S reaction. After Hg2+ was bound with a DNA probe by thymine (T)-Hg2+-thymine (T) mismatch, the DNA probe was folded into a hairpin structure where positively charged GelRed molecules were embedded into the double-stranded part of the hairpin. Thus, the current of [Fe(CN)6]3-/4- increased significantly on account of the decreased electrostatic repulsion at the electrode surface. Under the optimized experimental conditions, the peak current of [Fe(CN)6]3-/4- exhibited a good linear relationship with lgCHg2+ in the concentration of Hg2+ linear range of 0.1 nM to 500 nM, and the limit of detection (S/N = 3) was calculated as 0.04 nM. The electrochemical sensor also exhibited excellent selectivity for Hg2+ in the presence of nine interfering ions, including Na+, Fe3+, Ni2+, Mg2+, Co2+, Pb2+, K+, Al3+ and Cu2+. Meanwhile, the developed electrochemical sensor was tested in the analysis of Hg2+ in tap water and river water samples, and the recoveries ranged from 81.0 to 114%. Therefore, this nucleic acid dye-enhanced electrochemical biosensor provided the advantages of simplicity, sensitivity, and specificity and is expected to be an alternative for Hg2+ detection in actual environmental samples.
Collapse
Affiliation(s)
- Wei Liu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Yunqi Wang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Fangfang Sheng
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Bing Wan
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Gangxu Tang
- College of Material and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
| | - Shuxia Xu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, P. R. China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, P. R. China
| |
Collapse
|
8
|
Shu M, Tao J, Han Y, Fu W, Li X, Zhang R, Liu J. Molecular engineering of terpyridine-Fe(II) coordination polymers consisting of quinoxaline-based π-spacers toward enhanced electrochromic performance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Guven N, Yucel B, Sultanova H, Camurlu P. Multichromic metallopolymers of poly(2,5-dithienylpyrrole)s derived through tethering of ruthenium(II) bipiridyl complex. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Mukkatt I, Mohanachandran AP, Nirmala A, Patra D, Sukumaran PA, Pillai RS, Rakhi RB, Shankar S, Ajayaghosh A. Tunable Capacitive Behavior in Metallopolymer-based Electrochromic Thin Film Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31900-31910. [PMID: 35791964 DOI: 10.1021/acsami.2c05744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Volumetric capacitance is a more critical performance parameter for rechargeable power supply in lightweight and microelectronic devices as compared to gravimetric capacitance in larger devices. To this end, we report three electrochromic metallopolymer-based electrode materials containing Fe2+ as the coordinating metal ion with high volumetric capacitance and energy densities in a symmetric two-electrode supercapacitor setup. These metallopolymers exhibited volumetric capacitance up to 866.2 F cm-3 at a constant current density of 0.25 A g-1. The volumetric capacitance (poly-Fe-L2: 544.6 F cm-3 > poly-Fe-L1: 313.8 F cm-3 > poly-Fe-L3: 230.8 F cm-3 at 1 A g-1) and energy densities (poly-Fe-L2: 75.5 mWh cm-3 > poly-Fe-L1: 43.6 mWh cm-3 > poly-Fe-L3: 31.2 mWh cm-3) followed the order of the electrical conductivity of the metallopolymers and are among the best values reported for metal-organic systems. The variation in the ligand structure was key toward achieving different electrical conductivities in these metallopolymers with excellent operational stability under continuous cycling. High volumetric capacitances and energy densities combined with tunable electro-optical properties and electrochromic behavior of these metallopolymers are expected to contribute to high performance and compact microenergy storage systems. We envision that the integration of smart functionalities with thin film supercapacitors would warrant the surge of miniaturized on-chip microsupercapacitors integrated in-plane with other microelectronic devices for wearable applications.
Collapse
Affiliation(s)
- Indulekha Mukkatt
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjana Padmaja Mohanachandran
- Material Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Department of Physics, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Anjali Nirmala
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dipak Patra
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanka A Sukumaran
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Renjith S Pillai
- Department of Chemistry, Christ University, Bangalore 560029, Karnataka, India
| | - R B Rakhi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Material Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
| | - Sreejith Shankar
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Manfroni G, Prescimone A, Constable EC, Housecroft CE. Stars and stripes: hexatopic tris(3,2':6',3''-terpyridine) ligands that unexpectedly form one-dimensional coordination polymers. CrystEngComm 2022; 24:491-503. [PMID: 35177954 PMCID: PMC8764615 DOI: 10.1039/d1ce01531a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 01/12/2023]
Abstract
The hexatopic ligands 1,3,5-tris(4,2':6',4''-terpyridin-4'-yl)benzene (1), 1,3,5-tris(3,2':6',3''-terpyridin-4'-yl)benzene (2), 1,3,5-tris{4-(4,2':6',4''-terpyridin-4'-yl)phenyl}benzene (3), 1,3,5-tris{4-(3,2':6',3''-terpyridin-4'-yl)phenyl}benzene (4) and 1,3,5-trimethyl-2,4,6-tris{4-(3,2':6',3''-terpyridin-4'-yl)phenyl}benzene (5) have been prepared and characterized. The single crystal structure of 1·1.75DMF was determined; 1 exhibits a propeller-shaped geometry with each of the three 4,2':6',4''-tpy domains being crystallographically independent. Packing of molecules of 1 is dominated by face-to-face π-stacking interactions which is consistent with the low solubility of 1 in common organic solvents. Reaction of 5 with [Cu(hfacac)2]·H2O (Hhfacac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione) under conditions of crystal growth by layering resulted in the formation of [Cu3(hfacac)6(5)] n ·2.8nC7H8·0.4nCHCl3. Single-crystal X-ray diffraction reveals an unusual 1D-coordination polymer consisting of a series of alternating single and double loops. Each of the three crystallographically independent Cu atoms is octahedrally sited with cis-arrangements two N-donors from two different ligands 1 and, therefore, cis-arrangements of coordinated [hfacac]- ligands; this observation is unusual among compounds in the Cambridge Structural Database containing {Cu(hfacac)2N2} coordination units in which the two N-donors are in a non-chelating ligand.
Collapse
Affiliation(s)
- Giacomo Manfroni
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| | - Edwin C Constable
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| | - Catherine E Housecroft
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| |
Collapse
|
12
|
Laschuk NO, Ebralidze II, Easton EB, Zenkina OV. Post-Synthetic Color Tuning of the Ultra-Effective and Highly Stable Surface-Confined Electrochromic Monolayer: Shades of Green for Camouflage Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39573-39583. [PMID: 34378920 DOI: 10.1021/acsami.1c09863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report here on the strategy for the preparation of a series of electrochromic (EC) materials in green shades designed for camouflage purposes. This top-down post-synthetic modification provides access to new EC materials by fine modulation of the color of the surface-confined metalorganic monolayer pre-deposited on indium tin oxide screen-printed supports. Selective on-surface N-quaternization of the outer pyridine unit of the EC metal complex covalently embedded onto an enhanced surface area electrode results in a bathochromic shift of the absorbance signal as well as visual color change from blue to different shades of green. When assembled into solid-state EC devices (ECDs), the materials demonstrate high color differences between colored and bleached states and significant differences in optical density. Upon electrochemical switching, the ECDs initially featuring different shades of green become yellowish or clay. The accessible gamut of colors, fulfilling the requirements for chameleon-like camouflage materials, is able to mimic conditions of various natural environments including forests and sands. Notably, ECDs demonstrate high long-term durability (95% retention of the performance after 3300 cycles), fast coloration (0.6-1.1 s), and bleaching (1.2-3.3 s) times and outstanding coloration efficiencies of 1018-1513 cm2/C. Importantly, post-synthetic N-quaternization/color tuning does not deteriorate the performance of the resulting EC materials and devices as judged by cyclic voltammetry, spectroelectrochemistry, and electrochemical impedance spectroscopy. This work adds to the limited number of reports that explore color tuning of EC molecular layers via on-surface modification with the aim to access new non-symmetric materials. Notably, the facile and straightforward technology presented here allows the creation of green-colored EC materials that are difficult to prepare in other ways.
Collapse
Affiliation(s)
- Nadia O Laschuk
- Faculty of Science, Ontario Tech. University, 2000 Simcoe Street North, Oshawa L1G 0C5, Canada
| | - Iraklii I Ebralidze
- Faculty of Science, Ontario Tech. University, 2000 Simcoe Street North, Oshawa L1G 0C5, Canada
| | - E Bradley Easton
- Faculty of Science, Ontario Tech. University, 2000 Simcoe Street North, Oshawa L1G 0C5, Canada
| | - Olena V Zenkina
- Faculty of Science, Ontario Tech. University, 2000 Simcoe Street North, Oshawa L1G 0C5, Canada
| |
Collapse
|
13
|
Santra DC, Mondal S, Yoshida T, Ninomiya Y, Higuchi M. Ru(II)-Based Metallo-Supramolecular Polymer with Tetrakis( N-methylbenzimidazolyl)bipyridine for a Durable, Nonvolatile, and Electrochromic Device Driven at 0.6 V. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31153-31162. [PMID: 34176261 DOI: 10.1021/acsami.1c07275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Low-voltage operation, high durability, and long memory time are demanded for electrochromic (EC) display device applications. Metallo-supramolecular polymers (MSPs), composed of a metal ion and ditopic ligand, are one of the recently developed EC materials, and the ligand modification is expected to tune the redox potential of MSP. In order to lower the redox potential of MSP, tetrakis(N-methylbenzimidazolyl)bipyridine (LBip) was designed as an electronically rich ligand. Ru-based MSP (polyRu-LBip) was successfully synthesized by 1:1 complexation of RuCl2(DMSO)4 with LBip. The molecular weight (Mw) was high (8.8 × 106 Da) enough to provide a simple 1H NMR spectrum, of which the proton peaks could be assigned by the comparison with the spectrum of the corresponding mono-Ru complex. The redox potential (E1/2) between Ru(II/III) was 0.51 V versus Ag/Ag+, which was much lower than the redox potential of previously reported Ru-based MSP with bis(terpyridyl)benzene (0.95 V vs Ag/Ag+). The polymer film exhibited reversible, distinct color changes between violet and light green-yellow upon applying very low potentials of 0 and 0.6 V vs Ag/Ag+, respectively. The appearance and disappearance of the metal-to-ligand charge transfer absorption by the electrochemical redox between Ru(II/III) were confirmed using in situ spectro-electrochemical measurement. A solid-state EC device with polyRu-LBip was revealed to have large optical contrast (ΔT 54%), fast response time (1.37 s for bleaching and 0.67 s for coloration), remarkable coloration efficiency (571 cm2/C), and high durability for the repeated color changes more than 20,000 cycles. The device also showed a long optical memory time of up to 19 h to maintain 40% to the initial contrast under the open circuit conditions. It is considered that the stabilization of the Ru(III) state by LBip suppressed the self-coloring to Ru(II) inside the device.
Collapse
Affiliation(s)
- Dines Chandra Santra
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Sanjoy Mondal
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takefumi Yoshida
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Yoshikazu Ninomiya
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
14
|
Zhu C, Chen H, Chen C, Yu Y. Preparation of porous polyamide films with enhanced electrochromic performance by electrostatic spray deposition. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Mukkatt I, Nirmala A, Madhavan ND, Shankar S, Deb B, Ajayaghosh A. Ligand-Controlled Electrochromic Diversification with Multilayer Coated Metallosupramolecular Polymer Assemblies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5245-5255. [PMID: 33470782 DOI: 10.1021/acsami.0c20428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Designing surface-confined molecular systems capable of expressing changes in functional properties as a result of slight variations in chemical structure under the influence of an external stimulus is of contemporary interest. In this context, we have designed three tetraterpyridine ligands with variations in their core architecture (phenyl vs tetraphenylethynyl vs bithiophene) to create spray-coated electrochromic assemblies of iron(II)-based metallosupramolecular polymer network films on transparent conducting oxide substrates. These assemblies exhibited molecular permeability and spectroelectrochemical properties that are in turn dictated by the ligand structure. Electrochromic films with high coloration efficiencies (up to 1050 cm2/C) and superior optical contrast (up to 76%) with a concomitant color-to-color redox transition were readily achieved. These functional switching elements were integrated into sandwich-type electrochromic cells (CE up to 641 cm2/C) that exhibited high contrast ratios of up to 56%, with attractive ON-OFF ratios, fast switching kinetics, and high operational stability. Every measurable spectroelectrochemical property of the films and devices is an associated function of the ligand structure that coordinates the same metal ion to different extents. While exhibiting a ligand-structure induced differential metal coordination leading to porosity and spectroelectrochemical diversification, these assemblies allow the creation of electrochromic patterns and images by a simple spray-coating technique.
Collapse
Affiliation(s)
- Indulekha Mukkatt
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Anjali Nirmala
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, India
| | - Nayan Dev Madhavan
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, India
| | - Sreejith Shankar
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Biswapriya Deb
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| |
Collapse
|
16
|
Mondal S, Chandra Santra D, Ninomiya Y, Yoshida T, Higuchi M. Dual-Redox System of Metallo-Supramolecular Polymers for Visible-to-Near-IR Modulable Electrochromism and Durable Device Fabrication. ACS APPLIED MATERIALS & INTERFACES 2020; 12:58277-58286. [PMID: 33326234 DOI: 10.1021/acsami.0c18109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dual-redox metallo-supramolecular polymers with a zigzag structure (polyFe-N and polyRu-N) were successfully synthesized by 1:1 complexation of a redox-active Fe(II) or Ru(II) ion and 4,4-bis(2,2:6,2-terpyridinyl)phenyl-triphenylamine (LTPA) as a redox-active ligand. The polymers had high solubility in methanol, and the polymer solutions showed dark brown (polyFe-N) or orange-red (polyRu-N) coloration. UV-vis spectra of the polymers displayed a strong metal-to-ligand charge transfer (MLCT) absorption in the visible region. Cyclic voltammograms of the polymer films exhibited two pairs of reversible redox waves. The first redox at ∼0.5 V versus Ag/Ag+ was assigned to the redox in the triphenylamine (TPA) moiety of LTPA, and the second redox at 0.8 V versus Ag/Ag+ (polyFe-N) or 0.9 V versus Ag/Ag+ (polyRu-N) was given to the redox of Fe(II)/(III) or Ru(II)/(III), respectively. Upon applying a positive potential of more than 0.5 V versus Ag/Ag+ to the polymer films, a new absorption at ∼820 nm in the near-infrared (NIR) region appeared with wide tailing to the longer wavelength. It is considered that the new absorption in the NIR region is caused by the polaron band of the oxidized ligand in the polymers. When the applied potential was increased to 1.0 V versus Ag/Ag+ (polyFe-N) or 1.1 V versus Ag/Ag+ (polyRu-N), the maximum wavelength of the new absorption in the NIR region shifted to 885-900 nm and the absorbance was further enhanced with disappearance of the MLCT absorption. Eventually, the original colors of the polymers were faint to light green. This visible-to-NIR electrochromism was reversible, and maximum optical contrast (ΔT) reached 52% in the visible region and 80% in the NIR region. A prototype solid-state device with the polymer was fabricated for practical utilization, exhibiting excellent cycle stability of >4000 cycles with maintaining high optical contrast from the visible-to-NIR range.
Collapse
Affiliation(s)
- Sanjoy Mondal
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Dines Chandra Santra
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Yoshikazu Ninomiya
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takefumi Yoshida
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
17
|
Li Z, Wang J, Li X, Wang Y, Fan LJ, Yang S, Guo M, Li X, Tu Y. Supramolecular and Physically Double-Cross-Linked Network Strategy toward Strong and Tough Elastic Fibers. ACS Macro Lett 2020; 9:1655-1661. [PMID: 35617066 DOI: 10.1021/acsmacrolett.0c00579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The strength and toughness are two trade-off properties of a material, yet Nature can achieve strong and tough materials by introducing sacrificial bonds into a system. Here, we present a four-component multiblock copolymer (mBCP) approach toward strong and tough elastic fibers, by introducing terpyridine moieties into poly(ether ester) mBCP elastomers. After coordination with Fe(II), supramolecular cross-links are formed within the physically cross-linked thermoplastic elastomers. The toughening elastic fibers with a double-cross-linked network structure show high tensile strength (ca. 300 MPa) and toughness (ca. 100 MJ m-3). In addition, they display excellent resilience with enhanced self-healing properties. Our strategy provides a promising way for the development of strong and tough elastomers by introducing metal-ligand sacrificial bonds into mBCPs elastomers.
Collapse
Affiliation(s)
- Zhikai Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiabin Wang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaohong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ying Wang
- Testing and Analysis Center, Soochow University, Suzhou 215123, China
| | - Li-Juan Fan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mingyu Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yingfeng Tu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
18
|
Banasz R, Kubicki M, Wałęsa-Chorab M. Yellow-to-brown and yellow-to-green electrochromic devices based on complexes of transition metal ions with a triphenylamine-based ligand. Dalton Trans 2020; 49:15041-15053. [PMID: 33103702 DOI: 10.1039/d0dt03232h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transmissive-to-colored electrochromism has been achieved by combination of MLCT of transition metal complexes with the electrochromic properties of ligand molecules. The color transitions were from yellow to dark brown for the Fe(ii) complex, yellow to orange to bluish-green for the Co(ii) complex and yellow to green for the Zn(ii) complex. By using a metal ion-ligand coordination approach, the self-assembly of hydrazone-based ligands containing a triphenylamine group with appropriate metal salts (FeCl2, Co(ClO4)2 and Zn(BF4)2) produced novel complexes of the general formula [ML2]X2. The isolated complexes were characterized by spectroscopic methods, and the Co(ii) complex also by X-ray diffraction analysis. Thin films of the complexes have been obtained by a spray-coating method and they were used in the construction of electrochromic devices, which showed good electrochromic stability, a high color contrast of 47.5% for Fe(ii), 37.2% for Co(ii) and 33.7% for Zn(ii) complexes and fast coloring and bleaching times.
Collapse
Affiliation(s)
- Radosław Banasz
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | | | | |
Collapse
|
19
|
Napierała S, Wałęsa-Chorab M. On-substrate postsynthetic metal ion exchange as a tool for tuning electrochromic properties of materials. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Vilà N, Walcarius A. Bis(terpyridine) Iron(II) Functionalized Vertically-Oriented Nanostructured Silica Films: Toward Electrochromic Materials. Front Chem 2020; 8:830. [PMID: 33094099 PMCID: PMC7523427 DOI: 10.3389/fchem.2020.00830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022] Open
Abstract
Recent and potential applications of electrochromic materials include smart windows, optoelectronic devices, and energy conversion. In this study, we have incorporated bis(terpyridine) iron (II) complexes into vertically-oriented silica thin films deposited on indium-tin oxide (ITO) and their electrochromic behavior has been investigated. If 2,2′:6′,2″-terpyridine is commonly used as a ligand for forming metallo-supramolecular assemblies, with the objective to get metal-terpyridine complexes with multiple stable redox states, their simple and reliable arrangement into linear structures enabling effective electronic communication is however more challenging. We propose to overcome this difficulty by generating such complexes within vertical nanochannels on electrode. Terpyridine ligands were firstly immobilized by combining a click chemistry azide/alkyne approach with an electrochemically-assisted self-assembly (EASA) method used to grow an oriented mesoporous silica membrane bearing azide groups which were further derivatized with 4′-ethynyl-terpyridine ligands. The resulting terpyridine-functionalized films were consecutively dipped in an aqueous solution of Fe(BF4)2 and then in a solution of terpyridine in acetonitrile to form the bis(terpyridine) iron (II) complexes in situ. The electrochromic properties of the films functionalized at various levels were examined by monitoring the changes in their UV/Vis spectra upon electrochemical oxidation at controlled potential of +1.2 V vs. Ag/AgCl. Due to facile charge delocalization during the Fe2+ to Fe3+ redox process, the bis(terpyridine) iron (II) functionalized silica films exhibited electrochromic properties by changing from violet to non-colored using TBABF4 in acetonitrile as an electrolyte. The bis(terpyridine) iron(II) film experienced reversible electrochromic switching by applying +0.5 V in a reverse reduction electrochemical process. The Fe(tpy)2-functionalized silica thin films displayed a good contrast ratio (ΔT%) of 47% and relatively high coloration efficiency (CE) of about 245 cm2/C with a response time of coloring and bleaching of a few seconds (< 4 s).
Collapse
Affiliation(s)
- Neus Vilà
- Université de Lorraine, CNRS, LCPME, Nancy, France
| | | |
Collapse
|
21
|
Roy S, Chakraborty C. Interfacial Coordination Nanosheet Based on Nonconjugated Three-Arm Terpyridine: A Highly Color-Efficient Electrochromic Material to Converge Fast Switching with Long Optical Memory. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35181-35192. [PMID: 32657568 DOI: 10.1021/acsami.0c06045] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An electrochromic (EC) hyperbranched coordination nanosheet (CONASH) comprising a three-arm terpyridine (3tpy)-based ligand and Fe(II) ion has been synthesized by interfacial complexation at the liquid-liquid interface. The film can be easily deposited on the desired substrate such as indium tin oxide (ITO) glass. Characterization of CONASH deposited on ITO by microscopic methods reveals the homogeneous nanosheet film with an ∼350 nm thickness after 48 h of reaction. The fabricated solid-state EC device (ECD) undergoes a reversible redox reaction (Fe2+ → Fe3+) in the potential range of +3 to -2 V in ECDs accompanied with a distinct color change from intense pink to colorless for several switching cycles with a coloration time of 1.15 s and a bleaching time of 2.49 s along with a high coloration efficiency of 470.16 cm2 C-1. Besides, the nonconjugated 3tpy ligand restricts the easy electron redox conduction inside the EC film to enhance the EC memory in open-circuit condition as it shows 50% retention of its colorless state until 25 min. The long EC memory compared to other metallo-supramolecular polymers having a conjugated ligand suggests the potentiality of the 3tpy-Fe CONASH film to be used as a power-efficient EC material for modern display device applications.
Collapse
Affiliation(s)
- Susmita Roy
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad 500078, India
| | - Chanchal Chakraborty
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad 500078, India
| |
Collapse
|
22
|
Mondal S, Ninomiya Y, Yoshida T, Mori T, Bera MK, Ariga K, Higuchi M. Dual-Branched Dense Hexagonal Fe(II)-Based Coordination Nanosheets with Red-to-Colorless Electrochromism and Durable Device Fabrication. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31896-31903. [PMID: 32543825 DOI: 10.1021/acsami.0c05921] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Highly dense hexagonal Fe(II)-based coordination nanosheets (CONASHs) were designed by dual-branching, at the metal-coordination moieties and the tritopic ligands, which successfully obtained a liquid/liquid interface by the complexation of Fe(II) ions and the tritopic bidentate ligands. The 1:1 complexation was confirmed by titration. The obtained Fe(II)-based nanosheets were fully characterized by small-angle X-ray scattering (SAXS), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). A monolayer of the sheets was obtained, employing the Langmuir-Blodgett (LB) method, and the determined thickness was ∼2.5 nm. The polymer nanosheets exhibited red-to-colorless electrochromism because the electrochemical redox transformation between Fe(II) and Fe (III) ions controlled the appearance/disappearance of the metal (ion)-to-ligand charge-transfer (MLCT) absorption. The poor π-conjugation in the tritopic ligands contributed to the highly colorless electrochromic state. A solid-state device, with the robust polymer film, exhibited excellent electrochromic (EC) properties, with high optical contrast (ΔT > 65%) and high durability after repeated color changes for >15 000 cycles, upon applying low-operating voltages (+1.5/0 V).
Collapse
Affiliation(s)
- Sanjoy Mondal
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Yoshikazu Ninomiya
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takefumi Yoshida
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Taizo Mori
- World Premier International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Manas Kumar Bera
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Katsuhiko Ariga
- World Premier International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
23
|
Kanao M, Seino Y, Higuchi M. Thermally Tough Electrochromic Devices with Metallo-Supramolecular Polymer: Investigation of Gel Electrolyte Component and Fabrication Process. J PHOTOPOLYM SCI TEC 2020. [DOI: 10.2494/photopolymer.33.405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Miki Kanao
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS)
| | - Yuki Seino
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS)
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS)
| |
Collapse
|
24
|
Li Z, Li Y, Zhao Y, Wang H, Zhang Y, Song B, Li X, Lu S, Hao XQ, Hla SW, Tu Y, Li X. Synthesis of Metallopolymers and Direct Visualization of the Single Polymer Chain. J Am Chem Soc 2020; 142:6196-6205. [PMID: 32150680 PMCID: PMC7375330 DOI: 10.1021/jacs.0c00110] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During the past few decades, the study of the single polymer chain has attracted considerable attention with the goal of exploring the structure-property relationship of polymers. It still, however, remains challenging due to the variability and low atomic resolution of the amorphous single polymer chain. Here, we demonstrated a new strategy to visualize the single metallopolymer chain with a hexameric or trimeric supramolecule as a repeat unit, in which Ru(II) with strong coordination and Fe(II) with weak coordination were combined together in a stepwise manner. With the help of ultrahigh-vacuum, low-temperature scanning tunneling microscopy (UHV-LT-STM) and scanning tunneling spectroscopy (STS), we were able to directly visualize both Ru(II) and Fe(II), which act as staining reagents on the repeat units, thus providing detailed structural information for the single polymer chain. As such, the direct visualization of the single random polymer chain is realized to enhance the characterization of polymers at the single-molecule level.
Collapse
Affiliation(s)
- Zhikai Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yiming Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yiming Zhao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Heng Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Yuan Zhang
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Bo Song
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xiaohong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuai Lu
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Saw-Wai Hla
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yingfeng Tu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
25
|
Bera MK, Ninomiya Y, Higuchi M. Constructing Alternated Heterobimetallic [Fe(II)/Os(II)] Supramolecular Polymers with Diverse Solubility for Facile Fabrication of Voltage-Tunable Multicolor Electrochromic Devices. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14376-14385. [PMID: 32150376 DOI: 10.1021/acsami.9b21966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metallo-supramolecular polymer (MSP)-based electrochromic devices (ECDs) have drawn much attention because of their variable colors and attractive electrochromic (EC) properties. However, fabrication of voltage-tunable multicolor ECDs using single MSP is yet hard to realize. We anticipated alternate introduction of two different redox-active metal ions in an MSP combined with the adjustment of counteranions could be a solution to fabricate multicolor ECDs. The heterometals will induce color variability upon voltage alteration, and counteranions will help to tune the solubility of MSP in different solvents. In an attempt to fulfill this target, we have synthesized four heterobimetallic supramolecular polymers (HBPs) having different counteranions (BF4-, Cl-, PF6-, and OAc-), in which Fe(II) and Os(II) are alternately complexed by two terpyridine units. To apply as EC material, the HBPs should be soluble in methanol and insoluble in acetonitrile for the preparation of EC film as well as ECDs. However, among the HBPs, only HBP-OAc is found to meet this requirement. The EC behaviors of the spray-coating film of HBP-OAc on an indium tin oxide (ITO)-coated glass substrate are investigated in terms of maximum transmittance contrast, coloration voltage, response time, coloration efficiency, and operational stability, which exhibits reversible multicolor electrochromism (the initial purple color of the film is changed to violet followed by greenish-yellow) upon alteration of the voltage from 0.0 to 0.7 V [required to oxidize the Os(II) ion] and to 1.0 V [required to oxidize the Fe(II) ion]. The film is also integrated into a laminated ECD by using lithium-based gel electrolyte. Finally, as a proof-of-concept, a prototype voltage-tunable multicolor EC display (6 cm × 2.5 cm) is fabricated by using a designed image containing a flower, leaves, and a flower pot, which exhibits six different types of multicolor image upon application of tunable voltages.
Collapse
Affiliation(s)
- Manas Kumar Bera
- Electronic Functional Macromolecules Group, Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshikazu Ninomiya
- Electronic Functional Macromolecules Group, Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group, Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
26
|
Yoshida T, Ninomiya Y, Higuchi M. Reversible four-color electrochromism triggered by the electrochemical multi-step redox of Cr-based metallo-supramolecular polymers. RSC Adv 2020; 10:10904-10909. [PMID: 35492949 PMCID: PMC9050427 DOI: 10.1039/d0ra00676a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Four color electrochromism (yellow, magenta, blue, and navy) has been achieved in Cr(iii)-based metallo-supramolecular polymers (polyCr), which were synthesized by 1 : 1 complexation of Cr ions and 1,4-di[[2,2′:6′,2′′-terpyridin]-4′-yl]benzene (L).
Collapse
Affiliation(s)
- Takefumi Yoshida
- Electronic Functional Macromolecules Group
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Yoshikazu Ninomiya
- Electronic Functional Macromolecules Group
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| |
Collapse
|
27
|
Xiong S, Zhang J, Wang R, Wu B, Chu J, Wang X, Zhang R, Gong M, Li Z, Qu M, Chen Z. Enhancing the Electrochromic Properties of Polyaniline through Incorporating Terpyridine Units and Coordination Bonding with Transition Metal Ions. ChemistrySelect 2019. [DOI: 10.1002/slct.201904040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shanxin Xiong
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
- Key Laboratory of Coal Resources Exploration and Comprehensive UtilizationMinistry of Natural Resources Xi'an 710021 PR China
| | - Jiaojiao Zhang
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
| | - Ru Wang
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
| | - Bohua Wu
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
| | - Jia Chu
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
| | - Xiaoqin Wang
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
| | - Runlan Zhang
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
| | - Ming Gong
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
| | - Zhen Li
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
- Key Laboratory of Coal Resources Exploration and Comprehensive UtilizationMinistry of Natural Resources Xi'an 710021 PR China
| | - Mengnan Qu
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
| | - Zhenming Chen
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive UtilizationHezhou University Hezhou 542899 PR China
| |
Collapse
|
28
|
Bera MK, Ninomiya Y, Yoshida T, Higuchi M. Precise Synthesis of Alternate Fe(II)/Os(II)‐Based Bimetallic Metallo‐Supramolecular Polymer. Macromol Rapid Commun 2019; 41:e1900384. [DOI: 10.1002/marc.201900384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/18/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Manas K. Bera
- Electronic Functional Macromolecules Group Research Center for Functional Materials National Institute for Materials Science (NIMS) 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| | - Yoshikazu Ninomiya
- Electronic Functional Macromolecules Group Research Center for Functional Materials National Institute for Materials Science (NIMS) 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| | - Takefumi Yoshida
- Electronic Functional Macromolecules Group Research Center for Functional Materials National Institute for Materials Science (NIMS) 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group Research Center for Functional Materials National Institute for Materials Science (NIMS) 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| |
Collapse
|
29
|
Malik N, Elool Dov N, de Ruiter G, Lahav M, van der Boom ME. On-Surface Self-Assembly of Stimuli-Responsive Metallo-Organic Films: Automated Ultrasonic Spray-Coating and Electrochromic Devices. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22858-22868. [PMID: 31117463 DOI: 10.1021/acsami.9b05512] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We demonstrate the on-surface formation of homogeneous and uniform electrochromic films via ultrasonic spray coating. This fully automated process is capable of fabricating metallo-organic films on transparent conducting oxides (TCOs) on glass or flexible poly(ethylene terephthalate) (PET) with surface areas of up to 36 cm2 and film thicknesses of half a micron. The assembly process involves alternatingly spray-coating dilute solutions of structurally well-defined iron polypyridyl ([Fe(mbpy-py)3]2+) complexes and bis(benzonitrile)palladium dichloride (Pd(PhCN)2Cl2) onto conductive substrates, where the latter palladium salt was used as the inorganic cross-linker. The on-surface self-assembled three-dimensional networks are intensely colored and were subsequently integrated into laminated electrochromic devices (ECDs) containing a lithium-based gel electrolyte. The ECDs retain their intense color in the ground state, having a Δ Tmax of 40-49% at λmax ≈ 600 nm, and can be operated for up to 1500 redox cycles. The fluorine-doped tin oxide counter electrode coated with poly(3,4-ethylene-dioxythiophene)polystyrene sulfonate (PEDOT:PSS) as a charge-storage layer resulted in these stable devices. A significant decrease in the potential window of Δ E ≈ 2.5 V was achieved by using a metal grid on PET as the counter electrode. The operation of the electrochromic films is diffusion-controlled, and the diffusion coefficients ( Df) reflect their molecular densities. During these studies, we found that ClO4- is a suitable counterion of the lithium-based electrolytes for optimal ECD performance.
Collapse
Affiliation(s)
- Naveen Malik
- Department of Organic Chemistry , The Weizmann Institute of Science , 7610001 Rehovot , Israel
| | - Neta Elool Dov
- Department of Organic Chemistry , The Weizmann Institute of Science , 7610001 Rehovot , Israel
| | - Graham de Ruiter
- Department of Organic Chemistry , The Weizmann Institute of Science , 7610001 Rehovot , Israel
| | - Michal Lahav
- Department of Organic Chemistry , The Weizmann Institute of Science , 7610001 Rehovot , Israel
| | - Milko E van der Boom
- Department of Organic Chemistry , The Weizmann Institute of Science , 7610001 Rehovot , Israel
| |
Collapse
|
30
|
Hatakeyama-Sato K, Ichinoi R, Sasada Y, Sasaki Y, Oyaizu K, Nishide H. n-Type Redox-active Benzoylpyridinium-substituted Supramolecular Gel for an Organogel-based Rechargeable Device. CHEM LETT 2019. [DOI: 10.1246/cl.190085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | - Rieka Ichinoi
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Yoshito Sasada
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Yusuke Sasaki
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Kenichi Oyaizu
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Hiroyuki Nishide
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
31
|
Banasz R, Wałęsa-Chorab M. Polymeric complexes of transition metal ions as electrochromic materials: Synthesis and properties. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Bera MK, Mori T, Yoshida T, Ariga K, Higuchi M. Construction of Coordination Nanosheets Based on Tris(2,2'-bipyridine)-Iron (Fe 2+) Complexes as Potential Electrochromic Materials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11893-11903. [PMID: 30817110 DOI: 10.1021/acsami.8b22568] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The coordination nanosheets (CONASHs) are emerging as a new class of functional two-dimensional materials, which are one of the most active research areas of chemistry and physics in this decade. Despite the success of various structural and functional CONASHs, the development of a new molecular structure to discover alluring functional CONASHs remains challenging. Herein, we report successful preparation of two novel CONASHs (NBP1 and NBP2) through coordination between one of the unexplored molecular frameworks of bis(2,2'-bipyridine)-based ligands (BP1 and BP2) and Fe2+ ions. Using a liquid-liquid interface as a platform, large-scale thin films of multilayer CONASHs have been prepared without any support, which can be deposited onto any desired substrate. Detailed characterization of the CONASHs using various microscopic and spectroscopic techniques reveals homogeneous and flat morphology of nanometer thickness with the quantitative formation of tris(2,2'-bipyridine)-Fe2+ complex motifs in the nanosheet frameworks. The color of the films has been tuned from blue to magenta by the suitable molecular design of the ligands. Owing to the insolubility of the CONASH films in any solvent and the presence of redox-active Fe2+, we explore the functionality of these nanostructured thin films deposited on indium tin oxide as electrochromic materials. The CONASHs exhibit color-to-colorless and color-to-color electrochromic transitions with attractive response times, switching stabilities, and coloration efficiencies. Finally, we demonstrate solid-state electrochromic devices of the CONASHs operated at a potential range of +2.5 to -2.5 V, which are electrochemically stable for several switching cycles, suggesting that these CONASHs are potential electrochromic materials for next-generation display applications.
Collapse
Affiliation(s)
| | - Taizo Mori
- Department of Advanced Materials Science, Graduate School of Frontier Sciences , The University of Tokyo , 5-1-5 Kashiwanoha , Kashiwa , Chiba 277-8561 , Japan
| | | | - Katsuhiko Ariga
- Department of Advanced Materials Science, Graduate School of Frontier Sciences , The University of Tokyo , 5-1-5 Kashiwanoha , Kashiwa , Chiba 277-8561 , Japan
| | | |
Collapse
|
33
|
Wang Y, Astruc D, Abd-El-Aziz AS. Metallopolymers for advanced sustainable applications. Chem Soc Rev 2019; 48:558-636. [PMID: 30506080 DOI: 10.1039/c7cs00656j] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the development of metallopolymers, there has been tremendous interest in the applications of this type of materials. The interest in these materials stems from their potential use in industry as catalysts, biomedical agents in healthcare, energy storage and production as well as climate change mitigation. The past two decades have clearly shown exponential growth in the development of many new classes of metallopolymers that address these issues. Today, metallopolymers are considered to be at the forefront for discovering new and sustainable heterogeneous catalysts, therapeutics for drug-resistant diseases, energy storage and photovoltaics, molecular barometers and thermometers, as well as carbon dioxide sequesters. The focus of this review is to highlight the advances in design of metallopolymers with specific sustainable applications.
Collapse
Affiliation(s)
- Yanlan Wang
- Liaocheng University, Department of Chemistry and Chemical Engineering, 252059, Liaocheng, China.
| | | | | |
Collapse
|
34
|
A bifunctional triphenylamine-based electrochromic polymer with excellent self-healing performance. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Bera MK, Chakraborty C, Rana U, Higuchi M. Electrochromic Os(II)-Based Metallo-Supramolecular Polymers. Macromol Rapid Commun 2018; 39:e1800415. [PMID: 30062769 DOI: 10.1002/marc.201800415] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/03/2018] [Indexed: 01/12/2023]
Abstract
This work presents the preparation of a series of novel Os(II)-based metallo-supramolecular polymers (polyOss: linear polyOsL1100% and hyperbranched polyOsL1x% L2y% ) that show a broad absorption spanning 312 to 677 nm and a low Os(II)/(III) redox potential of 0.94 V. The electrochromic properties of a polyOs film cast on an ITO substrate is investigated. The change in transmittance (ΔT) of polyOsL1100% is 49.9%, and the switching times for coloration (t c ) and bleaching (t b ) are 0.70 and 0.82 s, respectively. The introduction of a 10% branching structure (polyOsL190% L210% ) further enhanced the electrochromic performance with ΔT = 59.4%, t c = 0.41 s, and t b = 0.54 s. The coloration efficiency (η) increased from 396.1 to 467.5 cm2 C-1 upon branching. A solid-state electrochromic device with polyOsL1100% is successfully fabricated to use the polymer for potential applications.
Collapse
Affiliation(s)
- Manas Kumar Bera
- Electronic Functional Macromolecules Group, Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Chanchal Chakraborty
- Electronic Functional Macromolecules Group, Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Utpal Rana
- Electronic Functional Macromolecules Group, Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group, Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
36
|
Yoshida T, Higuchi M. Diversity in Design of Electrochromic Devices with Metallo-Supramolecular Polymer: Multi-Patterned and Tube-Shaped Displays. J PHOTOPOLYM SCI TEC 2018. [DOI: 10.2494/photopolymer.31.343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takefumi Yoshida
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS)
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS)
| |
Collapse
|
37
|
Korlepara DB, Balasubramanian S. Molecular modelling of supramolecular one dimensional polymers. RSC Adv 2018; 8:22659-22669. [PMID: 35539740 PMCID: PMC9081382 DOI: 10.1039/c8ra03402h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/11/2018] [Indexed: 11/29/2022] Open
Abstract
Supramolecular polymers exemplify the need to employ several computational techniques to study processes and phenomena occuring at varied length and time scales. Electronic processes, conformational and configurational excitations of small aggregates of chromophoric molecules, solvent effects under realistic thermodynamic conditions and mesoscale morphologies are some of the challenges which demand hierarchical modelling approaches. This review focusses on one-dimensional supramolecular polymers, the mechanism of self-assembly of monomers in polar and non-polar solvents and properties they exhibit. Directions for future work are as well outlined.
Collapse
Affiliation(s)
- Divya B Korlepara
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| | - S Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India +91 80 2208 2766 +91-80 2208 2808
| |
Collapse
|
38
|
Uflyand IE, Dzhardimalieva GI. Molecular design of supramolecular polymers with chelated units and their application as functional materials. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1465567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Igor E. Uflyand
- Department of Chemistry, Southern Federal University, Rostov-on-Don, Russian Federation
| | - Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, Chernogolovka, Russian Federation
| |
Collapse
|
39
|
Beneto AJ, Jeong JY, Park JS. Sub-phthalocyanine-incorporated Fe(ii) metallo-supramolecular polymer exhibiting blue-to-transmissive electrochromic transition with high transmittance and coloration efficiency. Dalton Trans 2018; 47:16036-16039. [DOI: 10.1039/c8dt03587c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of a new Fe(ii) metallo-supramolecular polymer (poly-subPc-Fe) constructed from a terpyridine-functionalized sub-phthalocyanine with axially substituted polyisobutylene is presented.
Collapse
Affiliation(s)
- Arockiam Jesin Beneto
- Department of Organic Material Science and Engineering
- Pusan National University
- Busan 46241
- Korea
| | - Jae Yoon Jeong
- Department of Organic Material Science and Engineering
- Pusan National University
- Busan 46241
- Korea
| | - Jong S. Park
- Department of Organic Material Science and Engineering
- Pusan National University
- Busan 46241
- Korea
| |
Collapse
|
40
|
Allan JTS, Quaranta S, Ebralidze II, Egan JG, Poisson J, Laschuk NO, Gaspari F, Easton EB, Zenkina OV. Terpyridine-Based Monolayer Electrochromic Materials. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40438-40445. [PMID: 29076345 DOI: 10.1021/acsami.7b11848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Novel electrochromic (EC) materials were developed and formed by a two-step chemical deposition process. First, a self-assembled monolayer (SAM) of 2,2':6',2″-terpyridin-4'-ylphosphonic acid, L, was deposited on the surface of a nanostructured conductive indium-tin oxide (ITO) screen-printed support by simple submerging of the support into an aqueous solution of L. Further reaction of the SAM with Fe or Ru ions results in the formation of a monolayer of the redox-active metal complex covalently bound to the ITO support (Fe-L/ITO and Ru-L/ITO, respectively). These novel light-reflective EC materials demonstrate a high color difference, significant durability, and fast switching speed. The Fe-based material shows an excellent change of optical density and coloration efficiency. The results of thermogravimetric analysis suggest high thermal stability of the materials. Indeed, the EC characteristics do not change significantly after heating of Fe-L/ITO at 100 °C for 1 week, confirming the excellent stability and high EC reversibility. The proposed fabrication approach that utilizes interparticle porosity of the support and requires as low as a monolayer of EC active molecule benefits from the significant molecular economy when compared with traditional polymer-based EC devices and is significantly less time-consuming than layer-by-layer growth of coordination-based molecular assemblies.
Collapse
Affiliation(s)
- Jesse T S Allan
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Simone Quaranta
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Iraklii I Ebralidze
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Jacquelyn G Egan
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Jade Poisson
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Nadia O Laschuk
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Franco Gaspari
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - E Bradley Easton
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Olena V Zenkina
- Faculty of Science, University of Ontario Institute of Technology , 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| |
Collapse
|
41
|
Wang P, Wang H, Fang Y, Li H, He J, Ji Y, Li Y, Xu Q, Zheng J, Lu J. Thermoresponsive Memory Behavior in Metallosupramolecular Polymer-Based Ternary Memory Devices. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32930-32938. [PMID: 28849649 DOI: 10.1021/acsami.7b09132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thermal-sensitive materials, such as metallosupramolecular polymers, have been integrated into devices for a broad range of applications. However, the role of these materials is limited to temperature sensing and the lack of a memory function. Herein, we present novel [PolyCo-L1xL2y-PF6]-based organic resistive memories (ORMs) possessing both a thermal response and ternary memory behavior with three electrical resistance states [high (HRS), intermediate (IRS), and low (LRS)]. Furthermore, the thermal behavior can be memorized by the Al/[PolyCoL1xL2y-PF6]/indium-tin oxide devices. Heating and cooling the devices at a LRS results in a switch from the LRS to a HRS and further to a LRS, indicating that the thermal behavior can be efficiently memorized. Following the heating and cooling process, devices at a HRS retain their ternary memory behavior, while an unstable resistance variation behavior is observed at the IRS. We propose a possible mechanism for the thermoresponsive memory behavior, and this finding provides a guide for the design of future thermoresponsive ORMs.
Collapse
Affiliation(s)
- Peng Wang
- College of Chemistry, Chemical Engineering, and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National Center for International Research, and ‡Institute of Functional Nano & Soft Materials Laboratory and Jiangsu Key Laboratory for Carbon-Based Functional Materials, Soochow University , Suzhou 215123, P. R. China
| | - Hongliang Wang
- College of Chemistry, Chemical Engineering, and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National Center for International Research, and ‡Institute of Functional Nano & Soft Materials Laboratory and Jiangsu Key Laboratory for Carbon-Based Functional Materials, Soochow University , Suzhou 215123, P. R. China
| | - Yu Fang
- College of Chemistry, Chemical Engineering, and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National Center for International Research, and ‡Institute of Functional Nano & Soft Materials Laboratory and Jiangsu Key Laboratory for Carbon-Based Functional Materials, Soochow University , Suzhou 215123, P. R. China
| | - Hua Li
- College of Chemistry, Chemical Engineering, and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National Center for International Research, and ‡Institute of Functional Nano & Soft Materials Laboratory and Jiangsu Key Laboratory for Carbon-Based Functional Materials, Soochow University , Suzhou 215123, P. R. China
| | - Jinghui He
- College of Chemistry, Chemical Engineering, and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National Center for International Research, and ‡Institute of Functional Nano & Soft Materials Laboratory and Jiangsu Key Laboratory for Carbon-Based Functional Materials, Soochow University , Suzhou 215123, P. R. China
| | - Yujin Ji
- College of Chemistry, Chemical Engineering, and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National Center for International Research, and ‡Institute of Functional Nano & Soft Materials Laboratory and Jiangsu Key Laboratory for Carbon-Based Functional Materials, Soochow University , Suzhou 215123, P. R. China
| | - Youyong Li
- College of Chemistry, Chemical Engineering, and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National Center for International Research, and ‡Institute of Functional Nano & Soft Materials Laboratory and Jiangsu Key Laboratory for Carbon-Based Functional Materials, Soochow University , Suzhou 215123, P. R. China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering, and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National Center for International Research, and ‡Institute of Functional Nano & Soft Materials Laboratory and Jiangsu Key Laboratory for Carbon-Based Functional Materials, Soochow University , Suzhou 215123, P. R. China
| | - Junwei Zheng
- College of Chemistry, Chemical Engineering, and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National Center for International Research, and ‡Institute of Functional Nano & Soft Materials Laboratory and Jiangsu Key Laboratory for Carbon-Based Functional Materials, Soochow University , Suzhou 215123, P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering, and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National Center for International Research, and ‡Institute of Functional Nano & Soft Materials Laboratory and Jiangsu Key Laboratory for Carbon-Based Functional Materials, Soochow University , Suzhou 215123, P. R. China
| |
Collapse
|
42
|
Gélinas B, Das D, Rochefort D. Air-Stable, Self-Bleaching Electrochromic Device Based on Viologen- and Ferrocene-Containing Triflimide Redox Ionic Liquids. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28726-28736. [PMID: 28731317 DOI: 10.1021/acsami.7b04427] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate an electrochromic device with self-bleaching ability that uses ethyl viologen- ([EV]2+) and ferrocene-based redox ionic liquids ([FcNTf]-) as the electroactive species. These electroactive compounds are insensitive to atmospheric O2 and H2O in both their oxidized and reduced states once dissolved in a typical ionic liquid electrolyte ([BMIm][NTf2]), allowing for the device to be assembled outside a glovebox without any encapsulation. This device could generate a deep blue color by the application of a 2.0 V potential between two fluorine-doped tin oxide (FTO) substrates to oxidize the ferrocenyl centers to [FcNTf]0 while reducing viologen to [EV]+•. Self-bleaching occurs at OCP as [EV]+• and [FcNTf]0 undergo homogeneous electron transfer in the electrolyte. The mass transport of ethyl viologen and ferrocenylsulfonyl(trifluoromethylsulfonyl)imide ([FcNTf]-) anion was evaluated by double potential step chronoamperometry to study the impact of the diffusion coefficient on the self-bleaching mechanism. The electrochromic device demonstrated here shows a contrast ΔT (610 nm) around 40% at 2.0 V as colored cell voltage, a switching time in the order of few seconds for coloration and bleaching, coloration efficiency of 105.4 to 146.2 cm2 C1- at 610 nm, and very high stability (94.8% ΔT after 1000 cycles) despite the presence of O2 and H2O in the electrolyte.
Collapse
Affiliation(s)
- Bruno Gélinas
- Département de Chimie, Université de Montréal , CP6128 Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Dyuman Das
- Département de Chimie, Université de Montréal , CP6128 Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Dominic Rochefort
- Département de Chimie, Université de Montréal , CP6128 Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
43
|
Elool Dov N, Shankar S, Cohen D, Bendikov T, Rechav K, Shimon LJW, Lahav M, van der Boom ME. Electrochromic Metallo-Organic Nanoscale Films: Fabrication, Color Range, and Devices. J Am Chem Soc 2017; 139:11471-11481. [PMID: 28702992 DOI: 10.1021/jacs.7b04217] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, we demonstrate a versatile approach for the formation of electrochromic nanoscale assemblies on transparent conductive oxides on both rigid and flexible substrates. Our method is based on the application of alternating spin-coated layers of well-defined metal polypyridyl complexes and a palladium(II) salt to form electrochemically addressable films with a high chromophore density. By varying the central metal ion of the polypyridyl complexes (Os, Ru, and Fe) and their ligands and by mixing these complexes, coatings with a wide range of colors can be achieved. These coatings cover a large area of RGB color space. The coloration intensities of these nanoscale films can be tuned by the number of deposition steps. The materials have very attractive ON/OFF ratios, electrochemical stabilities, and coloration efficiencies. Reversible color-to-colorless and color-to-color transitions were demonstrated, and the films were further integrated into sandwich cells.
Collapse
Affiliation(s)
- Neta Elool Dov
- Department of Organic Chemistry and §Department of Chemical Research Support, Weizmann Institute of Science , 7610001 Rehovot, Israel
| | - Sreejith Shankar
- Department of Organic Chemistry and §Department of Chemical Research Support, Weizmann Institute of Science , 7610001 Rehovot, Israel
| | - Dana Cohen
- Department of Organic Chemistry and §Department of Chemical Research Support, Weizmann Institute of Science , 7610001 Rehovot, Israel
| | - Tatyana Bendikov
- Department of Organic Chemistry and §Department of Chemical Research Support, Weizmann Institute of Science , 7610001 Rehovot, Israel
| | - Katya Rechav
- Department of Organic Chemistry and §Department of Chemical Research Support, Weizmann Institute of Science , 7610001 Rehovot, Israel
| | - Linda J W Shimon
- Department of Organic Chemistry and §Department of Chemical Research Support, Weizmann Institute of Science , 7610001 Rehovot, Israel
| | - Michal Lahav
- Department of Organic Chemistry and §Department of Chemical Research Support, Weizmann Institute of Science , 7610001 Rehovot, Israel
| | - Milko E van der Boom
- Department of Organic Chemistry and §Department of Chemical Research Support, Weizmann Institute of Science , 7610001 Rehovot, Israel
| |
Collapse
|
44
|
Electrochemical synthesis of stable ambipolar electrochromic polyimide film from a bis(triphenylamine) perylene diimide. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.06.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Synthesis of Dimethyl-Substituted Polyviologen and Control of Charge Transport in Electrodes for High-Resolution Electrochromic Displays. Polymers (Basel) 2017; 9:polym9030086. [PMID: 30970765 PMCID: PMC6432454 DOI: 10.3390/polym9030086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/17/2017] [Accepted: 02/26/2017] [Indexed: 11/24/2022] Open
Abstract
Electrochromic (EC) polymers such as polyviologens have been attracting considerable attention as wet-processable electrodes for EC displays, thanks to their brilliant color change accompanied with reversible redox reactions. To establish wider usage, achieving multicolor and high-resolution characteristics is indispensable. In this paper, we demonstrated that the introduction of substituents such as methyl groups into bipyridine units changed the stereostructure of the cation radicals, and thus shifted the color (e.g., ordinary purple to blue). Also, by relaxing excessive π-stacking between the viologen moieties, the response rate was improved by a factor of more than 10. The controlled charge transport throughout the polyviologen layer gave rise to the fabrication of EC displays which are potentially suitable for the thin film transistor (TFT) substrate as the counter electrodes with submillimeter pixels. The findings can be versatilely used for the new design of polyviologens with enhanced electrochemical properties and high-resolution, multicolor EC displays.
Collapse
|
46
|
Pai S, Moos M, Schreck MH, Lambert C, Kurth DG. Green-to-Red Electrochromic Fe(II) Metallo-Supramolecular Polyelectrolytes Self-Assembled from Fluorescent 2,6-Bis(2-pyridyl)pyrimidine Bithiophene. Inorg Chem 2017; 56:1418-1432. [PMID: 28106394 DOI: 10.1021/acs.inorgchem.6b02496] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure and properties of metallo-supramolecular polyelectrolytes (MEPEs) self-assembled from rigid 2,6-bis(2-pyridyl)pyrimidine and the metal ions FeII and CoII are presented. While FeL1-MEPE (L1 = 1,4-bis[2,6-bis(2-pyridyl)pyrimidin-4-yl]benzene) is deep blue, FeL2- and CoL2-MEPE (L2 = 5,5'-bis[2,6-bis(2-pyridyl)pyrimidin-4-yl]-2,2'-bithiophene) are intense green and red in color, respectively. These novel MEPEs display a high extinction coefficient and solvatochromism. Ligand L2 shows a high absolute fluorescence quantum yield (Φf = 82%). Viscosity and static light-scattering measurements reveal that the molar masses of these MEPEs are in the range of 1 × 108 g/mol under the current experimental conditions. In water, FeL1-MEPE forms a viscous gel at 20 °C (c = 8 mM). Thin films of high optical quality are fabricated by dip coating on transparent conducting indium tin oxide (ITO) glass substrate. Optical, electrochemical, and electrochromic properties of the obtained MEPEs are presented. Green to red and blue to colorless electrochromism is observed for FeL2-MEPE and FeL1-MEPE, respectively. The results show that the electrochromic properties are affected by the ligand topology. The Fe-MEPEs show a reversible redox behavior of the FeII/FeIII couple at 0.86 and 0.82 V versus Fc+/Fc and display an excellent redox cycle stability under switching conditions. FeL2-MEPE in its oxidized state exhibits a broad absorption band covering the near-IR region (ca. 1500 nm) due to the ligand-to-metal charge transfer transition originating due to charge delocalization in the bithiophene spacer.
Collapse
Affiliation(s)
- Sandesh Pai
- Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg , Röntgenring 11, D-97070 Würzburg, Germany
| | - Michael Moos
- Center for Nanosystems Chemistry, Institut für Organische Chemie, Universität Würzburg , Am Hubland, D-97074 Würzburg, Germany
| | - Maximilian H Schreck
- Center for Nanosystems Chemistry, Institut für Organische Chemie, Universität Würzburg , Am Hubland, D-97074 Würzburg, Germany
| | - Christoph Lambert
- Center for Nanosystems Chemistry, Institut für Organische Chemie, Universität Würzburg , Am Hubland, D-97074 Würzburg, Germany
| | - Dirk G Kurth
- Chemische Technologie der Materialsynthese, Julius-Maximilians-Universität Würzburg , Röntgenring 11, D-97070 Würzburg, Germany
| |
Collapse
|
47
|
KIMOTO A. Development of π-Conjugated Polymer Complexes and Their Application to Organic Electronics. KOBUNSHI RONBUNSHU 2017. [DOI: 10.1295/koron.2017-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Lu HC, Kao SY, Yu HF, Chang TH, Kung CW, Ho KC. Achieving Low-Energy Driven Viologens-Based Electrochromic Devices Utilizing Polymeric Ionic Liquids. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30351-30361. [PMID: 27726326 DOI: 10.1021/acsami.6b10152] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herein, three kinds of viologens-based electrochromic devices (ECDs) (heptyl viologen (HV(BF4)2), octyl viologen (OV(BF4)2), and nonyl viologen (NV(BF4)2)) were fabricated utilizing ferrocene (Fc) as a redox mediator. Among them, the NV(BF4)2-based ECD exhibits the highest coloration efficiency (36.2 cm2/C) owing to the lowest driving energy. Besides, switching between 0 and 1.2 V, the NV(BF4)2-based ECD shows a desirable initial transmittance change (ΔT = 56.7% at 605 nm), and long-term stability (ΔT = 45.4% after 4000 cycles). Furthermore, a UV-cured polymer electrolyte containing polymeric ionic liquid (PIL, 1-allyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) and ethoxylated trimethylolpropane triacrylate (ETPTA) was introduced to the NV(BF4)2-based ECD. By controlling the weight percentage of the PIL, different curing degrees of the polymer electrolytes were obtained and led to an improved stability of the NV(BF4)2-based ECD because of the immobilization of NV(BF4)2. This observation was explained by calculating the apparent diffusivity (Dapp) of the redox species in the NV(BF4)2-based ECD under various curing degrees. In addition, increasing the amount of PIL leads to a lower driven energy needed for the NV(BF4)2-based ECD, following the same trend as the value of Dapp. Among all NV(BF4)2-based ECDs, 20 wt % of PIL addition (20-PIL ECD) exhibits large transmittance change (ΔT = 55.2% at 605 nm), short switching times (2.13 s in coloring and 2.10 s in bleaching), high coloration efficiency (60.4 and 273.5 cm2/C at 605 nm, after excluding the current density at the steady state), and exceptional cycling stability (ΔT = 53.8% after 10,000 cycles, or retained 97.5% of its initial ΔT).
Collapse
Affiliation(s)
- Hsin-Che Lu
- Department of Chemical Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Sheng-Yuan Kao
- Department of Chemical Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hsin-Fu Yu
- Department of Chemical Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ting-Hsiang Chang
- Department of Chemical Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Kuo-Chuan Ho
- Department of Chemical Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Institute of Polymer Science and Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
49
|
Triphenylamine-based redox-active aramids with 1-piperidinyl substituent as an auxiliary donor: Enhanced electrochemical stability and electrochromic performance. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Rana U, Chakraborty C, Pandey RK, Hossain MD, Nagano R, Morita H, Hattori S, Minowa T, Higuchi M. Selective DNA Recognition and Cytotoxicity of Water-Soluble Helical Metallosupramolecular Polymers. Bioconjug Chem 2016; 27:2307-2314. [DOI: 10.1021/acs.bioconjchem.6b00255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Utpal Rana
- Electronic
Functional Macromolecules Group, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Chanchal Chakraborty
- Electronic
Functional Macromolecules Group, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- International
Center for Materials Nanoarchitectonics (MANA), NIMS, Tsukuba 305-0044, Japan
| | - Rakesh K. Pandey
- Electronic
Functional Macromolecules Group, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Md. Delwar Hossain
- Electronic
Functional Macromolecules Group, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Reiko Nagano
- Nanotechnology
Innovation Station, NIMS, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Hiromi Morita
- Nanotechnology
Innovation Station, NIMS, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Shinya Hattori
- Nanotechnology
Innovation Station, NIMS, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Takashi Minowa
- Nanotechnology
Innovation Station, NIMS, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Masayoshi Higuchi
- Electronic
Functional Macromolecules Group, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| |
Collapse
|