1
|
Iversen JF, Bohr SSR, Pinholt HD, Moses ME, Iversen L, Christensen SM, Hatzakis NS, Zhang M. Single-Particle Tracking of Thermomyces lanuginosus Lipase Reveals How Mutations in the Lid Region Remodel Its Diffusion. Biomolecules 2023; 13:biom13040631. [PMID: 37189378 DOI: 10.3390/biom13040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The function of most lipases is controlled by the lid, which undergoes conformational changes at a water–lipid interface to expose the active site, thus activating catalysis. Understanding how lid mutations affect lipases’ function is important for designing improved variants. Lipases’ function has been found to correlate with their diffusion on the substrate surface. Here, we used single-particle tracking (SPT), a powerful tool for deciphering enzymes’ diffusional behavior, to study Thermomyces lanuginosus lipase (TLL) variants with different lid structures in a laundry-like application condition. Thousands of parallelized recorded trajectories and hidden Markov modeling (HMM) analysis allowed us to extract three interconverting diffusional states and quantify their abundance, microscopic transition rates, and the energy barriers for sampling them. Combining those findings with ensemble measurements, we determined that the overall activity variation in the application condition is dependent on surface binding and lipase mobility when bound. Specifically, the L4 variant with a TLL-like lid and wild-type (WT) TLL displayed similar ensemble activity, but WT bound stronger to the surface than L4, while L4 had a higher diffusion coefficient and thus activity when bound to the surface. These mechanistic elements can only be de-convoluted by our combined assays. Our findings offer fresh perspectives on the development of the next iteration of enzyme-based detergent.
Collapse
Affiliation(s)
- Josephine F. Iversen
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Søren S.-R. Bohr
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Henrik D. Pinholt
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | - Nikos S. Hatzakis
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Min Zhang
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
2
|
Investigation and Screening of Mixed Microalgae Species for Lipase Production and Recovery using Liquid Biphasic Flotation Approach. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Ćehić M, Brkljača Z, Filić Ž, Crnolatac I, Vujaklija D, Bakarić D. (Un)coupling the factors contributing to the interfacial activation of Streptomyces rimosus lipase: computational and spectrophotometric study. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2145304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mirsada Ćehić
- Division for Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Zlatko Brkljača
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Želimira Filić
- Division for Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivo Crnolatac
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Dušica Vujaklija
- Division for Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
4
|
Zhang J, Wang Z, Zhuang W, Rabiee H, Zhu C, Deng J, Ge L, Ying H. Amphiphilic Nanointerface: Inducing the Interfacial Activation for Lipase. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39622-39636. [PMID: 35980131 DOI: 10.1021/acsami.2c11500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Graphene-based materials are widely used in the field of immobilized enzymes due to their easily tunable interfacial properties. We designed amphiphilic nanobiological interfaces between graphene oxide (GO) and lipase TL (Thermomyces lanuginosus) with tunable reduction degrees through molecular dynamics simulations and a facile chemical modulation, thus revealing the optimal interface for the interfacial activation of lipase TL and addressing the weakness of lipase TL, which exhibits weak catalytic activity due to an inconspicuous active site lid. It was demonstrated that the reduced graphene oxide (rGO) after 4 h of ascorbic acid reduction could boost the relative enzyme activity of lipase TL to reach 208%, which was 48% higher than the pristine GO and 120% higher than the rGO after 48 h of reduction. Moreover, TL-GO-4 h's tolerance against heat, organic solvent, and long-term storage environment was higher than that of free TL. The drawbacks of strong hydrophobic nanomaterials on lipase production were explored in depth with the help of molecular dynamics simulations, which explained the mechanism of enzyme activity enhancement. We demonstrated that nanomaterials with certain hydrophilicity could facilitate the lipase to undergo interfacial activation and improve its stability and protein loading rate, displaying the potential of the extensive application.
Collapse
Affiliation(s)
- Jihang Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Zhaoxin Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hesamoddin Rabiee
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD 4300, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Jiawei Deng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Lei Ge
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD 4300, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Reactivity of a Recombinant Esterase from Thermus thermophilus HB27 in Aqueous and Organic Media. Microorganisms 2022; 10:microorganisms10050915. [PMID: 35630360 PMCID: PMC9143606 DOI: 10.3390/microorganisms10050915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
The thermoalkalophilic membrane-associated esterase E34Tt from Thermus thermophilus HB27 was cloned and expressed in Kluyveromyces lactis (KLEST-3S esterase). The recombinant enzyme was tested as a biocatalyst in aqueous and organic media. It displayed a high thermal stability and was active in the presence of 10% (v/v) organic solvents and 1% (w/v) detergents. KLEST-3S hydrolysed triglycerides of various acyl chains, which is a rare characteristic among carboxylic ester hydrolases from extreme thermophiles, with maximum activity on tributyrin. It also displayed interfacial activation towards triacetin. KLEST-3S was also tested as a biocatalyst in organic media. The esterase provided high yields for the acetylation of alcohols. In addition, KLEST-3S catalyzed the stereoselective hydrolysis of (R,S)-ibuprofen methyl ester (87% ee). Our results indicate that KLEST-3S may be a robust and efficient biocatalyst for application in industrial bioconversions.
Collapse
|
6
|
Wang J, Peng C, Li H, Zhang P, Liu X. The impact of microplastic-microbe interactions on animal health and biogeochemical cycles: A mini-review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145697. [PMID: 33940764 DOI: 10.1016/j.scitotenv.2021.145697] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 05/07/2023]
Abstract
Microplastic (MP) pollution has attracted global attention due to the extensive use of plastic products. The hydrophobic MP surface provides a habitat for multiple microorganisms. Although there have been several studies on the impact of plastic particles on microbial communities, there are few reviews that have systematically summarized the interaction between MPs and microbes and their effects on human health and biochemical circulation. The discussions in this review will take place under the following topics: (1) MPs prompt colonization, biofilm generation, and transfer of environmental microbes; (2) the microbial communities can cause the morphological alterations and biodegradation of MPs; (3) MP-microbe combinations can induce the alteration of intestinal flora and hazard animal health; (4) the biogeochemical cycles affected by MP-microbe interactions. This review will highlight the close interactions between MPs and microorganisms, and provide suggestions for future studies.
Collapse
Affiliation(s)
- Jiao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Chu Peng
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Hongyu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China.
| |
Collapse
|
7
|
Immobilized Candida antarctica lipase B (CALB) on functionalized MCM-41: Stability and catalysis of transesterification of soybean oil and phytosterol. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Tamemoto N, Noguchi H. Pattern formation in reaction-diffusion system on membrane with mechanochemical feedback. Sci Rep 2020; 10:19582. [PMID: 33177597 PMCID: PMC7659017 DOI: 10.1038/s41598-020-76695-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/02/2020] [Indexed: 11/11/2022] Open
Abstract
Shapes of biological membranes are dynamically regulated in living cells. Although membrane shape deformation by proteins at thermal equilibrium has been extensively studied, nonequilibrium dynamics have been much less explored. Recently, chemical reaction propagation has been experimentally observed in plasma membranes. Thus, it is important to understand how the reaction-diffusion dynamics are modified on deformable curved membranes. Here, we investigated nonequilibrium pattern formation on vesicles induced by mechanochemical feedback between membrane deformation and chemical reactions, using dynamically triangulated membrane simulations combined with the Brusselator model. We found that membrane deformation changes stable patterns relative to those that occur on a non-deformable curved surface, as determined by linear stability analysis. We further found that budding and multi-spindle shapes are induced by Turing patterns, and we also observed the transition from oscillation patterns to stable spot patterns. Our results demonstrate the importance of mechanochemical feedback in pattern formation on deforming membranes.
Collapse
Affiliation(s)
- Naoki Tamemoto
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan
| | - Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan.
| |
Collapse
|
9
|
Lu X. Structure and Function of Angiopoietin-like Protein 3 (ANGPTL3) in Atherosclerosis. Curr Med Chem 2020; 27:5159-5174. [PMID: 31223079 DOI: 10.2174/0929867326666190621120523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Angiopoietin-Like Proteins (ANGPTLs) are structurally related to the angiopoietins. A total of eight ANGPTLs (from ANGPTL1 to ANGPTL8) have been identified so far. Most ANGPTLs possess multibiological functions on lipid metabolism, atherosclerosis, and cancer. Among them, ANGPTL3 has been shown to regulate the levels of Very Low-Density Lipoprotein (VLDL) made by the liver and play a crucial role in human lipoprotein metabolism. METHOD A systematic appraisal of ANGPTLs was conducted, focusing on the main features of ANGPTL3 that has a significant role in atherosclerosis. RESULTS Angiopoietins including ANGPTL3 are vascular growth factors that are highly specific for endothelial cells, perform a variety of other regulatory activities to influence inflammation, and have been shown to possess both pro-atherosclerotic and atheroprotective effects. CONCLUSION ANGPTL3 has been demonstrated as a promising target in the pharmacological management of atherosclerosis. However, many questions remain about its biological functions.
Collapse
Affiliation(s)
- Xinjie Lu
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London SW3 6LR, England, United Kingdom
| |
Collapse
|
10
|
Abstract
Microbial lipases represent one of the most important groups of biotechnological biocatalysts. However, the high-level production of lipases requires an understanding of the molecular mechanisms of gene expression, folding, and secretion processes. Stable, selective, and productive lipase is essential for modern chemical industries, as most lipases cannot work in different process conditions. However, the screening and isolation of a new lipase with desired and specific properties would be time consuming, and costly, so researchers typically modify an available lipase with a certain potential for minimizing cost. Improving enzyme properties is associated with altering the enzymatic structure by changing one or several amino acids in the protein sequence. This review detailed the main sources, classification, structural properties, and mutagenic approaches, such as rational design (site direct mutagenesis, iterative saturation mutagenesis) and direct evolution (error prone PCR, DNA shuffling), for achieving modification goals. Here, both techniques were reviewed, with different results for lipase engineering, with a particular focus on improving or changing lipase specificity. Changing the amino acid sequences of the binding pocket or lid region of the lipase led to remarkable enzyme substrate specificity and enantioselectivity improvement. Site-directed mutagenesis is one of the appropriate methods to alter the enzyme sequence, as compared to random mutagenesis, such as error-prone PCR. This contribution has summarized and evaluated several experimental studies on modifying the substrate specificity of lipases.
Collapse
|
11
|
Bohr SSR, Thorlaksen C, Kühnel RM, Günther-Pomorski T, Hatzakis NS. Label-Free Fluorescence Quantification of Hydrolytic Enzyme Activity on Native Substrates Reveals How Lipase Function Depends on Membrane Curvature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6473-6481. [PMID: 32437165 DOI: 10.1021/acs.langmuir.0c00787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipases are important hydrolytic enzymes used in a spectrum of technological applications, such as the pharmaceutical and detergent industries. Because of their versatile nature and ability to accept a broad range of substrates, they have been extensively used for biotechnological and industrial applications. Current assays to measure lipase activity primarily rely on low-sensitivity measurements of pH variations or visible changes of material properties, like hydration, and often require high amounts of proteins. Fluorescent readouts, on the other hand, offer high contrast and even single-molecule sensitivity, albeit they are reliant on fluorogenic substrates that structurally resemble the native ones. Here we present a method that combines the highly sensitive readout of fluorescent techniques while reporting enzymatic lipase function on native substrates. The method relies on embedding the environmentally sensitive fluorescent dye pHrodo and native substrates into the bilayer of liposomes. The charged products of the enzymatic hydrolysis alter the local membrane environment and thus the fluorescence intensity of pHrodo. The fluorescence can be accurately quantified and directly assigned to product formation and thus enzymatic activity. We illustrated the capacity of the assay to report the function of diverse lipases and phospholipases both in a microplate setup and at the single-particle level on individual nanoscale liposomes using total internal reflection fluorescence (TIRF). The parallelized sensitive readout of microscopy combined with the inherent polydispersity in sizes of liposomes allowed us to screen the effect of membrane curvature on lipase function and identify how mutations in the lid region control the membrane curvature-dependent activity. We anticipate this methodology to be applicable for sensitive activity readouts for a spectrum of enzymes where the product of the enzymatic reaction is charged.
Collapse
Affiliation(s)
- Søren S-R Bohr
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Camilla Thorlaksen
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- Biophysics, Novo Nordisk A/S, Novo Nordisk Park 1, Maaloev 2760, Denmark
- Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Ronja Marie Kühnel
- Faculty of Chemistry and Biochemistry, Department of Molecular Biochemistry, Ruhr University Bochum, Universitätstrasse 150, D-44780 Bochum, Germany
| | - Thomas Günther-Pomorski
- Faculty of Chemistry and Biochemistry, Department of Molecular Biochemistry, Ruhr University Bochum, Universitätstrasse 150, D-44780 Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| |
Collapse
|
12
|
Kovaliov M, Wright TA, Cheng B, Mathers RT, Zhang X, Meng D, Szcześniak K, Jenczyk J, Jurga S, Cohen-Karni D, Page RC, Konkolewicz D, Averick S. Toward Next-Generation Biohybrid Catalyst Design: Influence of Degree of Polymerization on Enzyme Activity. Bioconjug Chem 2020; 31:939-947. [DOI: 10.1021/acs.bioconjchem.0c00084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Marina Kovaliov
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Thaiesha A. Wright
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45011, United States
| | - Boyle Cheng
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Robert T. Mathers
- Department of Chemistry, Penn State University, New Kensington, Pennsylvania 15068, United States
| | - Xiangyu Zhang
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Dong Meng
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Katarzyna Szcześniak
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, 61614, Poland
- Faculty of Chemical Technology, Poznan University of Technology, Poznań, Berdychowo 4, 60-965 Poznań, Poland
| | - Jacek Jenczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, 61614, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, 61614, Poland
| | - Devora Cohen-Karni
- Preclinical Education, Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, Pennsylvania 15601, United States
| | - Richard C. Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45011, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45011, United States
| | - Saadyah Averick
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| |
Collapse
|
13
|
Bohr SSR, Lund PM, Kallenbach AS, Pinholt H, Thomsen J, Iversen L, Svendsen A, Christensen SM, Hatzakis NS. Direct observation of Thermomyces lanuginosus lipase diffusional states by Single Particle Tracking and their remodeling by mutations and inhibition. Sci Rep 2019; 9:16169. [PMID: 31700110 PMCID: PMC6838188 DOI: 10.1038/s41598-019-52539-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
Lipases are interfacially activated enzymes that catalyze the hydrolysis of ester bonds and constitute prime candidates for industrial and biotechnological applications ranging from detergent industry, to chiral organic synthesis. As a result, there is an incentive to understand the mechanisms underlying lipase activity at the molecular level, so as to be able to design new lipase variants with tailor-made functionalities. Our understanding of lipase function primarily relies on bulk assay averaging the behavior of a high number of enzymes masking structural dynamics and functional heterogeneities. Recent advances in single molecule techniques based on fluorogenic substrate analogues revealed the existence of lipase functional states, and furthermore so how they are remodeled by regulatory cues. Single particle studies of lipases on the other hand directly observed diffusional heterogeneities and suggested lipases to operate in two different modes. Here to decipher how mutations in the lid region controls Thermomyces lanuginosus lipase (TLL) diffusion and function we employed a Single Particle Tracking (SPT) assay to directly observe the spatiotemporal localization of TLL and rationally designed mutants on native substrate surfaces. Parallel imaging of thousands of individual TLL enzymes and HMM analysis allowed us to observe and quantify the diffusion, abundance and microscopic transition rates between three linearly interconverting diffusional states for each lipase. We proposed a model that correlate diffusion with function that allowed us to predict that lipase regulation, via mutations in lid region or product inhibition, primarily operates via biasing transitions to the active states.
Collapse
Affiliation(s)
- Søren S-R Bohr
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Philip M Lund
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Amalie S Kallenbach
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Henrik Pinholt
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Johannes Thomsen
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Lars Iversen
- Novozymes A/S, Krogshøjsvej 36, DK 2880, Bagværd, Denmark
| | - Allan Svendsen
- Novozymes A/S, Krogshøjsvej 36, DK 2880, Bagværd, Denmark
| | | | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark.
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
14
|
Huang W, Lan D, Popowicz GM, Zak KM, Zhao Z, Yuan H, Yang B, Wang Y. Structure and characterization of
Aspergillus fumigatus
lipase B with a unique, oversized regulatory subdomain. FEBS J 2019; 286:2366-2380. [DOI: 10.1111/febs.14814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/01/2019] [Accepted: 03/21/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Weiqian Huang
- School of Bioscience and Bioengineering South China University of Technology Guangzhou China
| | - Dongming Lan
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | | | - Krzysztof M. Zak
- Institute of Structural Biology Helmholtz Zentrum München Neuherberg Germany
| | - Zexin Zhao
- School of Bioscience and Bioengineering South China University of Technology Guangzhou China
| | - Hong Yuan
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Bo Yang
- School of Bioscience and Bioengineering South China University of Technology Guangzhou China
| | - Yonghua Wang
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| |
Collapse
|
15
|
Kinetic study of soybean oil hydrolysis catalyzed by lipase from solid castor bean seeds. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Soni S, Sathe SS, Sheth RR, Tiwari P, Vadgama RKN, Odaneth AA, Lali AM, Chandrayan SK. N-terminal domain replacement changes an archaeal monoacylglycerol lipase into a triacylglycerol lipase. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:110. [PMID: 31080517 PMCID: PMC6501381 DOI: 10.1186/s13068-019-1452-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/25/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Lipolytic enzymes of hyperthermophilic archaea generally prefer small carbon chain fatty acid esters (C2-C12) and are categorized as esterases. However, a few have shown activity with long-chain fatty acid esters, but none of them have been classified as a true lipase except a lipolytic enzyme AFL from Archaeglobus fulgidus. Thus, our main objective is to engineer an archaeal esterase into a true thermostable lipase for industrial applications. Lipases which hydrolyze long-chain fatty acid esters display an interfacial activation mediated by the lid domain which lies over active site and switches to open conformation at the oil-water interface. Lid domains modulate enzyme activities, substrate specificities, and stabilities which have been shown by protein engineering and mutational analyses. Here, we report engineering of an uncharacterized monoacylglycerol lipase (TON-LPL) from an archaeon Thermococcus onnurineus (strain NA1) into a triacylglycerol lipase (rc-TGL) by replacing its 61 N-terminus amino acid residues with 118 residues carrying lid domain of a thermophilic fungal lipase-Thermomyces lanuginosus (TLIP). RESULTS TON-LPL and rc-TGL were cloned and overexpressed in E. coli, and the proteins were purified by Ni-NTA affinity chromatography for biochemical studies. Both enzymes were capable of hydrolyzing various monoglycerides and shared the same optimum pH of 7.0. However, rc-TGL showed a significant decrease of 10 °C in its optimum temperature (Topt). The far UV-CD spectrums were consistent with a well-folded α/β-hydrolase fold for both proteins, but gel filtration chromatography revealed a change in quaternary structure from trimer (TON-LPL) to monomer (rc-TGL). Seemingly, the difference in the oligomeric state of rc-TGL may be linked to a decrease in temperature optimum. Nonetheless, rc-TGL hydrolyzed triglycerides and castor oil, while TON-LPL was not active with these substrates. CONCLUSIONS Here, we have confirmed the predicted esterase activity of TON-LPL and also performed the lid engineering on TON-LPL which effectively expanded its substrate specificity from monoglycerides to triglycerides. This approach provides a way to engineer other hyperthermophilic esterases into industrially suitable lipases by employing N-terminal domain replacement. The immobilized preparation of rc-TGL has shown significant activity with castor oil and has a potential application in castor oil biorefinery to obtain value-added chemicals.
Collapse
Affiliation(s)
- Surabhi Soni
- DBT Centre for Energy Biosciences, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga East, Mumbai, Maharashtra 400019 India
| | - Sneha S. Sathe
- DBT Centre for Energy Biosciences, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga East, Mumbai, Maharashtra 400019 India
| | - Rutuja R. Sheth
- DBT Centre for Energy Biosciences, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga East, Mumbai, Maharashtra 400019 India
| | - Prince Tiwari
- IISER Mohali, Knowledge City, Sector 81, Manauli PO, Sahibzada Ajit Singh Nagar, Punjab 140306 India
| | - Rajesh-Kumar N. Vadgama
- DBT Centre for Energy Biosciences, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga East, Mumbai, Maharashtra 400019 India
| | - Annamma Anil Odaneth
- DBT Centre for Energy Biosciences, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga East, Mumbai, Maharashtra 400019 India
| | - Arvind M. Lali
- DBT Centre for Energy Biosciences, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga East, Mumbai, Maharashtra 400019 India
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga East, Mumbai, Maharashtra 400019 India
| | - Sanjeev K. Chandrayan
- DBT Centre for Energy Biosciences, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga East, Mumbai, Maharashtra 400019 India
| |
Collapse
|
17
|
Willems N, Lelimousin M, Skjold-Jørgensen J, Svendsen A, Sansom MS. The effect of mutations in the lid region of Thermomyces lanuginosus lipase on interactions with triglyceride surfaces: A multi-scale simulation study. Chem Phys Lipids 2018; 211:4-15. [DOI: 10.1016/j.chemphyslip.2017.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/25/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
|
18
|
Sánchez DA, Tonetto GM, Ferreira ML. Burkholderia cepacia
lipase: A versatile catalyst in synthesis reactions. Biotechnol Bioeng 2017; 115:6-24. [DOI: 10.1002/bit.26458] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/14/2017] [Accepted: 09/21/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Daniel A. Sánchez
- Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur; CONICET; Bahía Blanca Argentina
| | - Gabriela M. Tonetto
- Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur; CONICET; Bahía Blanca Argentina
| | - María L. Ferreira
- Planta Piloto de Ingeniería Química (PLAPIQUI), Universidad Nacional del Sur; CONICET; Bahía Blanca Argentina
| |
Collapse
|
19
|
Khan FI, Lan D, Durrani R, Huan W, Zhao Z, Wang Y. The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties. Front Bioeng Biotechnol 2017; 5:16. [PMID: 28337436 PMCID: PMC5343024 DOI: 10.3389/fbioe.2017.00016] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/22/2017] [Indexed: 01/08/2023] Open
Abstract
Lipases are important industrial enzymes. Most of the lipases operate at lipid–water interfaces enabled by a mobile lid domain located over the active site. Lid protects the active site and hence responsible for catalytic activity. In pure aqueous media, the lid is predominantly closed, whereas in the presence of a hydrophobic layer, it is partially opened. Hence, the lid controls the enzyme activity. In the present review, we have classified lipases into different groups based on the structure of lid domains. It has been observed that thermostable lipases contain larger lid domains with two or more helices, whereas mesophilic lipases tend to have smaller lids in the form of a loop or a helix. Recent developments in lipase engineering addressing the lid regions are critically reviewed here. After on, the dramatic changes in substrate selectivity, activity, and thermostability have been reported. Furthermore, improved computational models can now rationalize these observations by relating it to the mobility of the lid domain. In this contribution, we summarized and critically evaluated the most recent developments in experimental and computational research on lipase lids.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology , Guangzhou , China
| | - Rabia Durrani
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Weiqian Huan
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Zexin Zhao
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology , Guangzhou , China
| |
Collapse
|
20
|
Das S, Karmakar T, Balasubramanian S. Molecular Mechanism behind Solvent Concentration-Dependent Optimal Activity of Thermomyces lanuginosus Lipase in a Biocompatible Ionic Liquid: Interfacial Activation through Arginine Switch. J Phys Chem B 2016; 120:11720-11732. [DOI: 10.1021/acs.jpcb.6b08534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sudip Das
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Tarak Karmakar
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
21
|
Neta NS, Teixeira JA, Rodrigues LR. Sugar ester surfactants: enzymatic synthesis and applications in food industry. Crit Rev Food Sci Nutr 2016; 55:595-610. [PMID: 24915370 DOI: 10.1080/10408398.2012.667461] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sugar esters are non-ionic surfactants that can be synthesized in a single enzymatic reaction step using lipases. The stability and efficiency of lipases under unusual conditions and using non-conventional media can be significantly improved through immobilization and protein engineering. Also, the development of de novo enzymes has seen a significant increase lately under the scope of the new field of synthetic biology. Depending on the esterification degree and the nature of fatty acid and/or sugar, a range of sugar esters can be synthesized. Due to their surface activity and emulsifying capacity, sugar esters are promising for applications in food industry.
Collapse
Affiliation(s)
- Nair S Neta
- a Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering , University of Minho , Campus de Gualtar, 4710-057 Braga , Portugal
| | | | | |
Collapse
|
22
|
Dramatic hyperactivation of lipase of Thermomyces lanuginosa by a cationic surfactant: Fixation of the hyperactivated form by adsorption on sulfopropyl-sepharose. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Iversen L, Mathiasen S, Larsen JB, Stamou D. Membrane curvature bends the laws of physics and chemistry. Nat Chem Biol 2015; 11:822-5. [DOI: 10.1038/nchembio.1941] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Motevalizadeh SF, Khoobi M, Sadighi A, Khalilvand-Sedagheh M, Pazhouhandeh M, Ramazani A, Faramarzi MA, Shafiee A. Lipase immobilization onto polyethylenimine coated magnetic nanoparticles assisted by divalent metal chelated ions. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.06.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Tang L, Su M, Yan J, Xie S, Zhang W. Lid hinge region of Penicillium expansum lipase affects enzyme activity and interfacial activation. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Tang T, Yuan C, Hwang H, Zhao X, Ramkrishna D, Liu D, Varma A. Engineering surface hydrophobicity improves activity of
Bacillus thermocatenulatus
lipase 2 enzyme. Biotechnol J 2015; 10:1762-9. [PMID: 26097135 DOI: 10.1002/biot.201500011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/12/2015] [Accepted: 06/10/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Ting Tang
- Department of Chemical Engineering, Institute of Applied Chemistry, Tsinghua University, Beijing, China
| | - Chongli Yuan
- School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Hyun‐Tae Hwang
- School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Xuebing Zhao
- Department of Chemical Engineering, Institute of Applied Chemistry, Tsinghua University, Beijing, China
| | | | - Dehua Liu
- Department of Chemical Engineering, Institute of Applied Chemistry, Tsinghua University, Beijing, China
| | - Arvind Varma
- School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
27
|
Damodaran S. Beyond the hydrophobic effect: Critical function of water at biological phase boundaries--A hypothesis. Adv Colloid Interface Sci 2015; 221:22-33. [PMID: 25888225 DOI: 10.1016/j.cis.2015.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/29/2022]
Abstract
Many life-sustaining processes in living cells occur at the membrane-water interface. The pertinent questions that need to be asked are what is the evolutionary reason for biology to choose the membrane-water interface as the site for performing and/or controlling crucial biological reactions and what is the key physical principle that is singular to the membrane-water interface that biology exploits for regulating metabolic processes in cells? In this review, a hypothesis is developed, which espouses that cells control activities of membrane-bound enzymes and receptor activated processes via manipulating the thermodynamic activity of water at the membrane-water interfacial region. In support of this hypothesis, first we establish that the surface pressure of a lipid monolayer is a direct measure of a reduction in the thermodynamic activity of interfacial water. Second, we show that the surface pressure-dependent activation/inactivation of interfacial enzymes is fundamentally related to their dependence on interfacial water activity. We extend this argument to infer that cells might manipulate activities of membrane-associated biological processes via manipulating the activity of interfacial water via localized compression or expansion of the interface. In this paper, we critically analyze literature data on mechano-activation of large pore ion channels in Escherichia coli spheroplasts and G-proteins in reconstituted lipid vesicles, and show that these pressure-induced activation processes are fundamentally and quantitatively related to changes in the thermodynamic state of interfacial water, caused by mechanical stretching of the bilayer.
Collapse
Affiliation(s)
- Srinivasan Damodaran
- University of Wisconsin-Madison, Department of Food Science, 1605 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|
28
|
Impact of mass transport on the enzymatic hydrolysis of rapeseed oil. Appl Microbiol Biotechnol 2014; 99:293-300. [PMID: 25007743 DOI: 10.1007/s00253-014-5892-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
In order to assess the capillary segmented flow reactor as a potentially appropriate reactor device for the enzymatic hydrolysis of vegetable oils, a study was made to reveal the impact of incident mass transfer processes on the hydrolysis rate. As demonstrated by means of experiments performed in a modified Lewis-cell type contactor, which allows the independent adjustment of flow rates for both phases, the enzymatic hydrolysis rate of rapeseed oil is strongly governed by mass transport processes taking place in both phases. In the oil phase, any increase in convective mass transfer results in an enhancement of hydrolysis rate due to facilitated removal of fatty acids from interface layer which is known to inhibit the activity of the enzyme adsorbed at the interface. At asynchronous condition when solely the water phase is agitated, however, convective mass transport in the interface layer has an inverse effect on the hydrolysis rate due to the generation of considerable shear stress in the vicinity of the interface unfavorable for the performance of the enzymes. By operating at synchronous agitation conditions, the shear stress can considerably be reduced. Generally, the positive effect of mass transport in the oil phase compensates the negative one in the aqueous phase thus resulting in an overall increase in hydrolysis rate of 57% with increasing stirrer rates. The results can be applied to the operation of segmented-flow capillary reactors by choosing the oil phase as disperse phase and the water phase as continuous phase, respectively.
Collapse
|
29
|
Engineering of Yarrowia lipolytica lipase Lip8p by circular permutation to alter substrate and temperature characteristics. ACTA ACUST UNITED AC 2014; 41:757-62. [DOI: 10.1007/s10295-014-1428-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
Abstract
Applications of lipases are mainly based on their catalytic efficiency and substrate specificity. In this study, circular permutation (CP), an unconventional protein engineering technique, was employed to acquire active mutants of Yarrowia lipolytica lipase Lip8p. A total of 21 mutant lipases exhibited significant shifts in substrate specificity. Cp128, the most active enzyme mutant, showed higher catalytic activity (14.5-fold) and higher affinity (4.6-fold) (decreased K m) to p-nitrophenyl-myristate (pNP-C14) than wild type (WT). Based on the three-dimensional (3D) structure model of the Lip8p, we found that most of the functional mutation occurred in the surface-exposed loop region in close proximity to the lid domain (S112–F122), which implies the steric effect of the lid on lipase activity and substrate specificity. The temperature properties of Cp128 were also investigated. In contrast to the optimal temperature of 45 °C for the WT enzyme, Cp128 exhibited the maximal activity at 37 °C. But it is noteworthy that there is no change in thermostability.
Collapse
|
30
|
Ye P, Xu YJ, Han ZP, Hu PC, Zhao ZL, Lu XL, Ni HG. Probing effects of bile salt on lipase adsorption at air/solution interface by sum frequency generation vibrational spectroscopy. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Zhu SS, Li M, Yu X, Xu Y. Role of Met93 and Thr96 in the lid hinge region of Rhizopus chinensis lipase. Appl Biochem Biotechnol 2013; 170:436-47. [PMID: 23546870 DOI: 10.1007/s12010-013-0209-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 03/18/2013] [Indexed: 10/27/2022]
Abstract
We engineered Rhizopus chinensis lipase to study its critical amino acid role in catalytic properties. Based on the amino acid sequence and three-dimensional model of the lipase, residues located in its lid hinge region (Met93 and Thr96) were replaced with corresponding amino acid residues (Ile93 and Asn96) found in the lid hinge region of Rhizopus oryzae lipase. The substitutions in the lid hinge region affected not only substrate specificity but also the thermostability of the lipase. Both lipases preferred p-nitrophenyl laurate and glyceryl trilaurate (C12). However, the variant S4-3O showed a slight decline in activity toward long-chain fatty acid (C16-C18). When enzymes activities decreased by half, the temperature of the variant (45 °C) was 22 °C lower than the parent (67 °C), probably substantially destabilized the structure of the lid region. The interfacial kinetic analysis of S4-3O suggested that the lower catalytic efficiency was due to a higher K m* value. According to the lipase structure investigated, Ile93Met played a role of narrowing the size of the hydrophobic patch, which affected the substrate binding affinity, and Asn96Thr destabilized the structure of the lipase by disrupting the H-bond interaction in the lid region.
Collapse
Affiliation(s)
- Shan-Shan Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | | | | | | |
Collapse
|
32
|
Variant of the Thermomyces lanuginosus lipase with improved kinetic stability: a candidate for enzyme replacement therapy. Biophys Chem 2013; 172:43-52. [PMID: 23357413 DOI: 10.1016/j.bpc.2012.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/08/2012] [Accepted: 12/08/2012] [Indexed: 11/21/2022]
Abstract
Lipases with high kinetic stability and enzymatic efficiency in the human gastro-intestinal tract may help against exocrine pancreatic insufficiency. Here we mimic gastric conditions to study how bile salts and pH affect the stability and activity of Thermomyces lanuginosus lipase (TlL) and its stabler variant StL using spectroscopy, calorimetry and gel electrophoresis. Both enzymes resist trypsin digestion with and without bile salts. Bile salts activate native TlL and StL equally well, bind weakly to denatured TlL and StL at lower pH and precipitate native TlL and StL at pH 4. StL refolds more efficiently than TlL from gastric pH in bile salts, regaining activity when refolding from pH as low as 1.8 and above while TlL cannot go below pH 2.6. StL also unfolds 10-40 fold more slowly in the denaturant guanidinium chloride and the anionic surfactant SDS. We ascribe StL's superior performance to general alterations in its electrostatic potential which makes it more acid-resistant. These superior properties make StL a good candidate for pancreatic enzyme replacement therapy.
Collapse
|
33
|
Effect of Phospholipids on the Catalytic Performance of Lipase. CHINESE JOURNAL OF CATALYSIS 2013. [DOI: 10.3724/sp.j.1088.2012.11043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity. PLoS One 2012; 7:e46388. [PMID: 23056295 PMCID: PMC3462767 DOI: 10.1371/journal.pone.0046388] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
The key to enzyme function is the maintenance of an appropriate balance between molecular stability and structural flexibility. The lid domain which is very important for “interfacial activation” is the most flexible part in the lipase structure. In this work, rational design was applied to explore the relationship between lid rigidity and lipase activity by introducing a disulfide bond in the hinge region of the lid, in the hope of improving the thermostability of R. chinensis lipase through stabilization of the lid domain without interfering with its catalytic performance. A disulfide bridge between F95C and F214C was introduced into the lipase from R. chinensis in the hinge region of the lid according to the prediction of the “Disulfide by Design” algorithm. The disulfide variant showed substantially improved thermostability with an eleven-fold increase in the t1/2 value at 60°C and a 7°C increase of Tm compared with the parent enzyme, probably contributed by the stabilization of the geometric structure of the lid region. The additional disulfide bond did not interfere with the catalytic rate (kcat) and the catalytic efficiency towards the short-chain fatty acid substrate, however, the catalytic efficiency of the disulfide variant towards pNPP decreased by 1.5-fold probably due to the block of the hydrophobic substrate channel by the disulfide bond. Furthermore, in the synthesis of fatty acid methyl esters, the maximum conversion rate by RCLCYS reached 95% which was 9% higher than that by RCL. This is the first report on improving the thermostability of the lipase from R. chinensis by introduction of a disulfide bond in the lid hinge region without compromising the catalytic rate.
Collapse
|
35
|
Hatzakis NS, Wei L, Jorgensen SK, Kunding AH, Bolinger PY, Ehrlich N, Makarov I, Skjot M, Svendsen A, Hedegård P, Stamou D. Single enzyme studies reveal the existence of discrete functional states for monomeric enzymes and how they are "selected" upon allosteric regulation. J Am Chem Soc 2012; 134:9296-302. [PMID: 22489643 DOI: 10.1021/ja3011429] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Allosteric regulation of enzymatic activity forms the basis for controlling a plethora of vital cellular processes. While the mechanism underlying regulation of multimeric enzymes is generally well understood and proposed to primarily operate via conformational selection, the mechanism underlying allosteric regulation of monomeric enzymes is poorly understood. Here we monitored for the first time allosteric regulation of enzymatic activity at the single molecule level. We measured single stochastic catalytic turnovers of a monomeric metabolic enzyme (Thermomyces lanuginosus Lipase) while titrating its proximity to a lipid membrane that acts as an allosteric effector. The single molecule measurements revealed the existence of discrete binary functional states that could not be identified in macroscopic measurements due to ensemble averaging. The discrete functional states correlate with the enzyme's major conformational states and are redistributed in the presence of the regulatory effector. Thus, our data support allosteric regulation of monomeric enzymes to operate via selection of preexisting functional states and not via induction of new ones.
Collapse
Affiliation(s)
- Nikos S Hatzakis
- Bio-Nanotechnology Laboratory, Department of Chemistry, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Synthesis of Structured Lipids Containing Pinolenic Acid at the sn-2 Position via Lipase-Catalyzed Acidolysis. J AM OIL CHEM SOC 2012. [DOI: 10.1007/s11746-012-2040-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
|
38
|
Kamada M, Toda M, Sekijima M, Takata M, Joe K. Analysis of motion features for molecular dynamics simulation of proteins. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2010.12.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Christensen SM, Stamou DG. Sensing-applications of surface-based single vesicle arrays. SENSORS (BASEL, SWITZERLAND) 2010; 10:11352-68. [PMID: 22163531 PMCID: PMC3231067 DOI: 10.3390/s101211352] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 11/30/2010] [Accepted: 12/07/2010] [Indexed: 11/26/2022]
Abstract
A single lipid vesicle can be regarded as an autonomous ultra-miniaturised 3D biomimetic "scaffold" (Ø≥13 nm) ideally suited for reconstitution and interrogation of biochemical processes. The enclosing lipid bilayer membrane of a vesicle can be applied for studying binding (protein/lipid or receptor/ligand interactions) or transmembrane events (membrane permeability or ion channel activation) while the aqueous vesicle lumen can be used for confining few or single macromolecules and probe, e.g., protein folding, catalytic pathways of enzymes or more complex biochemical reactions, such as signal transduction cascades. Immobilisation (arraying) of single vesicles on a solid support is an extremely useful technique that allows detailed characterisation of vesicle preparations using surface sensitive techniques, in particular fluorescence microscopy. Surface-based single vesicle arrays allow a plethora of prototypic sensing applications in a high throughput format with high spatial and high temporal resolution. In this review we present a series of applications of single vesicle arrays for screening/sensing of: membrane curvature dependent protein-lipid interactions, bilayer tension, reactions triggered in the vesicle lumen, the activity of transmembrane protein channels and biological membrane fusion reactions.
Collapse
Affiliation(s)
- Sune M. Christensen
- Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Nano-Science Center, University of Copenhagen, 2100 Copenhagen, Denmark
- Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Dimitrios G. Stamou
- Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Nano-Science Center, University of Copenhagen, 2100 Copenhagen, Denmark
- Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Center for Pharmaceutical Nanotechnology and Nanotoxicology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
40
|
Template-based modeling of a psychrophilic lipase: Conformational changes, novel structural features and its application in predicting the enantioselectivity of lipase catalyzed transesterification of secondary alcohols. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:2183-90. [DOI: 10.1016/j.bbapap.2010.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 08/24/2010] [Accepted: 08/27/2010] [Indexed: 11/21/2022]
|
41
|
Lindhoud S, Norde W, Cohen Stuart MA. Effects of polyelectrolyte complex micelles and their components on the enzymatic activity of lipase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:9802-9808. [PMID: 20387819 DOI: 10.1021/la1000705] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The enzymatic activity of Hl-lipase embedded in complexes of poly-2-methylvinylpyridinium-co-poly(ethylene oxide) (P2MVP(41)-PEO(205)) and poly(acrylic acid)(PAA(139)) is studied as a function of the PAA(139) + P2MVP(41)-PEO(205) complex composition. The measurements revealed that there are several factors that influence the enzymatic activity. When incorporated in micelles, the activity of lipase is increased, which suggests that the micelles favor the active state. The activity may further increase because the substrate tends to accumulate to the micelles. It is found that the presence of PAA(139) alone also increases the enzymatic activity somewhat. Increasing of the ionic strength decreases the enzymatic activity in all systems. However, at ionic strengths where the micelles are disintegrated (>0.5 M), the activity of lipase in the presence of both polyelectrolytes is still higher than the activity of free lipase. At 0.7 M NaCl it was found that lipase in the presence of (just) P2MVP(41)-PEO(205) is more active than lipase without this additive.
Collapse
Affiliation(s)
- Saskia Lindhoud
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands.
| | | | | |
Collapse
|
42
|
Bhatia VK, Hatzakis NS, Stamou D. A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. Semin Cell Dev Biol 2010; 21:381-90. [DOI: 10.1016/j.semcdb.2009.12.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 11/27/2022]
|
43
|
Salameh MA, Wiegel J. Effects of Detergents on Activity, Thermostability and Aggregation of Two Alkalithermophilic Lipases from Thermosyntropha lipolytica. Open Biochem J 2010; 4:22-8. [PMID: 20361033 PMCID: PMC2847205 DOI: 10.2174/1874091x01004010022] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 12/20/2009] [Accepted: 12/30/2009] [Indexed: 11/22/2022] Open
Abstract
Thermosyntropha lipolytica DSM 11003, an anaerobic thermophilic lipolytic bacterium, produces the two alkalithermophilic lipases, LipA and LipB. Among all tested detergents, the two lipases were mostly affected by SDS when used at concentrations below its critical micelle concentration (CMC). In the absence of SDS, the vmax of both LipA and LipB were 12.6 U·mg-1 and 13.3 U·mg-1 and K0.5 were 1.8 mM and 1.65 mM, respectively at 96°C and pHopt25ºCof 9.4-9.6. In the presence of 0.2% SDS, the vmax increased to 105 U·mg-1 and 112 U·mg-1, and K0.5 values decreased to 200 µM and 140 µM for LipA and LipB, respectively. Inhibitory assays of lipases using diisopropyl p-nitrophenylphosphate (E600) with increasing concentration of SDS and Tween 20 strongly suggest that SDS and Tween 20 do bind to the lid domain and/or active site pocket, thus promoting conformational changes that facilitate active site accessibility for the substrate. The two lipases exhibited moderate activation in the presence of nonionic detergents when used below their CMC values. Both lipases were found to exhibit strong tendency to aggregate as observed through gel filtration chromatography and gradient native gel electrophoresis. The addition of 1.0% (w/v) SDS led to disaggregation as the lipases were eluted corresponding to their monomeric mass (based on SDS gel electrophoresis value) and caused a significant decrease in thermostability, suggesting that, enzyme aggregation might be a major contributor to the high thermostability of LipA and LipB.
Collapse
Affiliation(s)
- Moh'd A Salameh
- Department of Microbiology, University of Georgia, Athens, Georgia 30602-2605, USA
| | | |
Collapse
|
44
|
Madsen KL, Bhatia VK, Gether U, Stamou D. BAR domains, amphipathic helices and membrane-anchored proteins use the same mechanism to sense membrane curvature. FEBS Lett 2010; 584:1848-55. [PMID: 20122931 DOI: 10.1016/j.febslet.2010.01.053] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 01/26/2010] [Indexed: 12/24/2022]
Abstract
The internal membranes of eukaryotic cells are all twists and bends characterized by high curvature. During recent years it has become clear that specific proteins sustain these curvatures while others simply recognize membrane shape and use it as "molecular information" to organize cellular processes in space and time. Here we discuss this new important recognition process termed membrane curvature sensing (MCS). First, we review a new fluorescence-based experimental method that allows characterization of MCS using measurements on single vesicles and compare it to sensing assays that use bulk/ensemble liposome samples of different mean diameter. Next, we describe two different MCS protein motifs (amphipathic helices and BAR domains) and suggest that in both cases curvature sensitive membrane binding results from asymmetric insertion of hydrophobic amino acids in the lipid membrane. This mechanism can be extended to include the insertion of alkyl chain in the lipid membrane and consequently palmitoylated and myristoylated proteins are predicted to display similar curvature sensitive binding. Surprisingly, in all the aforementioned cases, MCS is predominantly mediated by a higher density of binding sites on curved membranes instead of higher affinity as assumed so far. Finally, we integrate these new insights into the debate about which motifs are involved in sensing versus induction of membrane curvature and what role MCS proteins may play in biology.
Collapse
Affiliation(s)
- K L Madsen
- Molecular Neuropharmacology Group, Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
45
|
Wang ZY, Li N, Zong MH. A simple procedure for the synthesis of potential 6-azauridine prodrugs by Thermomyces lanuginosus lipase. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2009.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Trodler P, Schmid RD, Pleiss J. Modeling of solvent-dependent conformational transitions in Burkholderia cepacia lipase. BMC STRUCTURAL BIOLOGY 2009; 9:38. [PMID: 19476626 PMCID: PMC2695465 DOI: 10.1186/1472-6807-9-38] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 05/28/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND The characteristic of most lipases is the interfacial activation at a lipid interface or in non-polar solvents. Interfacial activation is linked to a large conformational change of a lid, from a closed to an open conformation which makes the active site accessible for substrates. While for many lipases crystal structures of the closed and open conformation have been determined, the pathway of the conformational transition and possible bottlenecks are unknown. Therefore, molecular dynamics simulations of a closed homology model and an open crystal structure of Burkholderia cepacia lipase in water and toluene were performed to investigate the influence of solvents on structure, dynamics, and the conformational transition of the lid. RESULTS The conformational transition of B. cepacia lipase was dependent on the solvent. In simulations of closed B. cepacia lipase in water no conformational transition was observed, while in three independent simulations of the closed lipase in toluene the lid gradually opened during the first 10-15 ns. The pathway of conformational transition was accessible and a barrier was identified, where a helix prevented the lid from opening to the completely open conformation. The open structure in toluene was stabilized by the formation of hydrogen bonds.In simulations of open lipase in water, the lid closed slowly during 30 ns nearly reaching its position in the closed crystal structure, while a further lid opening compared to the crystal structure was observed in toluene. While the helical structure of the lid was intact during opening in toluene, it partially unfolded upon closing in water. The closing of the lid in water was also observed, when with eight intermediate structures between the closed and the open conformation as derived from the simulations in toluene were taken as starting structures. A hydrophobic beta-hairpin was moving away from the lid in all simulations in water, which was not observed in simulations in toluene. The conformational transition of the lid was not correlated to the motions of the beta-hairpin structure. CONCLUSION Conformational transitions between the experimentally observed closed and open conformation of the lid were observed by multiple molecular dynamics simulations of B. cepacia lipase. Transitions in both directions occurred without applying restraints or external forces. The opening and closing were driven by the solvent and independent of a bound substrate molecule.
Collapse
Affiliation(s)
- Peter Trodler
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany.
| | | | | |
Collapse
|
47
|
Pernas MA, Pastrana L, Fuciños P, Rúa ML. Regulation of the interfacial activation within theCandida rugosalipase family. J PHYS ORG CHEM 2009. [DOI: 10.1002/poc.1513] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Rocha S, Hutchison JA, Peneva K, Herrmann A, Müllen K, Skjøt M, Jørgensen CI, Svendsen A, De Schryver FC, Hofkens J, Uji-i H. Linking Phospholipase Mobility to Activity by Single-Molecule Wide-Field Microscopy. Chemphyschem 2009; 10:151-61. [DOI: 10.1002/cphc.200800537] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Ranaldi S, Belle V, Woudstra M, Rodriguez J, Guigliarelli B, Sturgis J, Carriere F, Fournel A. Lid Opening and Unfolding in Human Pancreatic Lipase at Low pH Revealed by Site-Directed Spin Labeling EPR and FTIR Spectroscopy. Biochemistry 2008; 48:630-8. [DOI: 10.1021/bi801250s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sebastien Ranaldi
- CNRS Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036, Marseille, France, CNRS Laboratoire d’Enzymologie Interfaciale et de Physiologie de la Lipolyse, UPR 9025, Marseille, France, and CNRS Laboratoire d’Ingénierie des Systèmes Membranaires, UPR 9027, Institut de Microbiologie de la Méditerranée, Aix-Marseille Universités, Marseille, France
| | - Valérie Belle
- CNRS Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036, Marseille, France, CNRS Laboratoire d’Enzymologie Interfaciale et de Physiologie de la Lipolyse, UPR 9025, Marseille, France, and CNRS Laboratoire d’Ingénierie des Systèmes Membranaires, UPR 9027, Institut de Microbiologie de la Méditerranée, Aix-Marseille Universités, Marseille, France
| | - Mireille Woudstra
- CNRS Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036, Marseille, France, CNRS Laboratoire d’Enzymologie Interfaciale et de Physiologie de la Lipolyse, UPR 9025, Marseille, France, and CNRS Laboratoire d’Ingénierie des Systèmes Membranaires, UPR 9027, Institut de Microbiologie de la Méditerranée, Aix-Marseille Universités, Marseille, France
| | - Jorge Rodriguez
- CNRS Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036, Marseille, France, CNRS Laboratoire d’Enzymologie Interfaciale et de Physiologie de la Lipolyse, UPR 9025, Marseille, France, and CNRS Laboratoire d’Ingénierie des Systèmes Membranaires, UPR 9027, Institut de Microbiologie de la Méditerranée, Aix-Marseille Universités, Marseille, France
| | - Bruno Guigliarelli
- CNRS Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036, Marseille, France, CNRS Laboratoire d’Enzymologie Interfaciale et de Physiologie de la Lipolyse, UPR 9025, Marseille, France, and CNRS Laboratoire d’Ingénierie des Systèmes Membranaires, UPR 9027, Institut de Microbiologie de la Méditerranée, Aix-Marseille Universités, Marseille, France
| | - James Sturgis
- CNRS Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036, Marseille, France, CNRS Laboratoire d’Enzymologie Interfaciale et de Physiologie de la Lipolyse, UPR 9025, Marseille, France, and CNRS Laboratoire d’Ingénierie des Systèmes Membranaires, UPR 9027, Institut de Microbiologie de la Méditerranée, Aix-Marseille Universités, Marseille, France
| | - Frederic Carriere
- CNRS Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036, Marseille, France, CNRS Laboratoire d’Enzymologie Interfaciale et de Physiologie de la Lipolyse, UPR 9025, Marseille, France, and CNRS Laboratoire d’Ingénierie des Systèmes Membranaires, UPR 9027, Institut de Microbiologie de la Méditerranée, Aix-Marseille Universités, Marseille, France
| | - Andre Fournel
- CNRS Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR 9036, Marseille, France, CNRS Laboratoire d’Enzymologie Interfaciale et de Physiologie de la Lipolyse, UPR 9025, Marseille, France, and CNRS Laboratoire d’Ingénierie des Systèmes Membranaires, UPR 9027, Institut de Microbiologie de la Méditerranée, Aix-Marseille Universités, Marseille, France
| |
Collapse
|
50
|
Misiūnas A, Talaikytė Z, Niaura G, Razumas V, Nylander T. Thermomyces lanuginosus lipase in the liquid-crystalline phases of aqueous phytantriol: X-ray diffraction and vibrational spectroscopic studies. Biophys Chem 2008; 134:144-56. [DOI: 10.1016/j.bpc.2008.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 02/04/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
|