1
|
Gibbard JA. Electron Loss and Dissociation Pathways of a Complex Dicarboxylate Dianion: EDTA 2. J Phys Chem A 2024; 128:11005-11011. [PMID: 39661444 DOI: 10.1021/acs.jpca.4c06679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Photoelectron imaging of the doubly deprotonated ethylenediaminetetraacetic acid dianion (EDTA2-) at variable wavelengths indicates two electron loss pathways: direct detachment and thermionic emission from monoanions. The structure of EDTA2- is also investigated by electronic structure calculations, which indicate that EDTA2- has two intramolecular hydrogen bonds linking a carboxylate and carboxylic acid group at either end of the molecular backbone. The direct detachment feature in the photoelectron spectrum is very broad and provides evidence for a dissociative photodetachment, where decarboxylation occurs rapidly after electron loss. Near 0 eV kinetic energy electrons are only observed in the photoelectron spectrum of EDTA2- at hν = 3.49 eV (high laser fluence), providing evidence for secondary electron loss via a two-photon process, mediated by an excited state of the decarboxylated anion, and likely resulting in a cyclic neutral product.
Collapse
Affiliation(s)
- Jemma A Gibbard
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
2
|
Clarke CJ, Verlet JRR. Dynamics of Anions: From Bound to Unbound States and Everything In Between. Annu Rev Phys Chem 2024; 75:89-110. [PMID: 38277700 DOI: 10.1146/annurev-physchem-090722-125031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Gas-phase anions present an ideal playground for the exploration of excited-state dynamics. They offer control in terms of the mass, extent of solvation, internal temperature, and conformation. The application of a range of ion sources has opened the field to a vast array of anionic systems whose dynamics are important in areas ranging from biology to star formation. Here, we review recent experimental developments in the field of anion photodynamics, demonstrating the detailed insight into photodynamical and electron-capture processes that can be uncovered. We consider the electronic and nuclear ultrafast dynamics of electronically bound excited states along entire reaction coordinates; electronically unbound states showing that photochemical concepts, such as chromophores and Kasha's rule, are transferable to electron-driven chemistry; and nonvalence states that straddle the interface between bound and unbound states. Finally, we consider likely developments that are sure to keep the field of anion dynamics buoyant and impactful.
Collapse
Affiliation(s)
- Connor J Clarke
- Department of Chemistry, Durham University, Durham, United Kingdom;
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham, United Kingdom;
| |
Collapse
|
3
|
Dong XR, Zhang JX, Chen TT, Xu CQ, Li J. Metal-Centered Boron-Wheel Cluster of Y©B 112- with Rare D11h Symmetry. Inorg Chem 2024; 63:6276-6284. [PMID: 38546717 DOI: 10.1021/acs.inorgchem.3c04636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Molecules with high point-group symmetry are interesting prototype species in the textbook. As transition metal-centered boron clusters tend to have highly symmetric structures to fulfill multicenter bonding and high stability, new boron clusters with rare point-group symmetry may be viable. Through in-depth scrutiny over the structures of experimentally already observed transition metal-centered boron-wheel complexes, geometric and electronic design principles are summarized, based on which we studied M©B11k- (M = Y, La; Zr, Hf; k = 1, 2) clusters and found that a Y©B112- boron-wheel complex has an unprecedented D11h point-group symmetry. The remarkable stability of the planar Y©B112- complex is illustrated via extensive global-minimum structural search as well as comprehensive chemical bonding analyses. Similar to other boron-wheel complexes, the Y©B112- complex is shown to possess σ and π double aromaticity, indeed following the electronic design principle previously summarized. This new compound is expected to be experimentally identified, which will extend the currently known largest possible planar molecular symmetry and enrich the metal-centered boron-wheel class.
Collapse
Affiliation(s)
- Xin-Ran Dong
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing-Xuan Zhang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Teng-Teng Chen
- Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Hong Kong SAR 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen 518045, China
| | - Cong-Qiao Xu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| |
Collapse
|
4
|
Sedmidubská B, Kočišek J. Interaction of low-energy electrons with radiosensitizers. Phys Chem Chem Phys 2024; 26:9112-9136. [PMID: 38376461 DOI: 10.1039/d3cp06003a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
We provide an experimentalist's perspective on the present state-of-the-art in the studies of low-energy electron interactions with common radiosensitizers, including compounds used in combined chemo-radiation therapy and their model systems. Low-energy electrons are important secondary species formed during the interaction of ionizing radiation with matter. Their role in the radiation chemistry of living organisms has become an important topic for more than 20 years. With the increasing number of works and reviews in the field, we would like to focus here on a very narrow area of compounds that have been shown to have radio-sensitizing properties on the one hand, and high reactivity towards low-energy electrons on the other hand. Gas phase experiments studying electron attachment to isolated molecules and environmental effects on reaction dynamics are reviewed for modified DNA components, nitroimidazoles, and organometallics. In the end, we provide a perspective on the future directions that may be important for transferring the fundamental knowledge about the processes induced by low-energy electrons into practice in the field of rational design of agents for concomitant chemo-radiation therapy.
Collapse
Affiliation(s)
- Barbora Sedmidubská
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 182223 Prague, Czech Republic.
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 11519 Prague, Czech Republic
- Institut de Chimie Physique, UMR 8000 CNRS and Faculté des sciences d'Orsay, Université Paris Saclay, F-91405 Orsay Cedex, France
| | - Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 182223 Prague, Czech Republic.
| |
Collapse
|
5
|
Najeeb PK, Stockett MH, Anderson EK, Kristiansson MK, Reinhed P, Simonsson A, Rosén S, Thomas RD, Chartkunchand KC, Gnaser H, Golser R, Hanstorp D, Larson Å, Cederquist H, Schmidt HT, Zettergren H. Stability and Cooling of the C_{7}^{2-} Dianion. PHYSICAL REVIEW LETTERS 2023; 131:113003. [PMID: 37774298 DOI: 10.1103/physrevlett.131.113003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/26/2023] [Accepted: 08/12/2023] [Indexed: 10/01/2023]
Abstract
We have studied the stability of the smallest long-lived all carbon molecular dianion (C_{7}^{2-}) in new time domains and with a single ion at a time using a cryogenic electrostatic ion-beam storage ring. We observe spontaneous electron emission from internally excited dianions on millisecond timescales and monitor the survival of single colder C_{7}^{2-} molecules on much longer timescales. We find that their intrinsic lifetime exceeds several minutes-6 orders of magnitude longer than established from earlier experiments on C_{7}^{2-}. This is consistent with our calculations of vertical electron detachment energies predicting one inherently stable isomer and one isomer which is stable or effectively stable behind a large Coulomb barrier for C_{7}^{2-}→C_{7}^{-}+e^{-} separation.
Collapse
Affiliation(s)
- P K Najeeb
- Department of Physics, Stockholm University, AlbaNova, Stockholm SE-106 91, Sweden
| | - M H Stockett
- Department of Physics, Stockholm University, AlbaNova, Stockholm SE-106 91, Sweden
| | - E K Anderson
- Department of Physics, Stockholm University, AlbaNova, Stockholm SE-106 91, Sweden
| | - M K Kristiansson
- Department of Physics, Stockholm University, AlbaNova, Stockholm SE-106 91, Sweden
| | - P Reinhed
- Department of Physics, Stockholm University, AlbaNova, Stockholm SE-106 91, Sweden
| | - A Simonsson
- Department of Physics, Stockholm University, AlbaNova, Stockholm SE-106 91, Sweden
| | - S Rosén
- Department of Physics, Stockholm University, AlbaNova, Stockholm SE-106 91, Sweden
| | - R D Thomas
- Department of Physics, Stockholm University, AlbaNova, Stockholm SE-106 91, Sweden
| | - K C Chartkunchand
- AMO Physics Laboratory, RIKEN Advanced Science Institute, Saitama 351-0198, Japan
| | - H Gnaser
- Institute for Isotope Physics, University of Vienna, Vienna A-1090, Austria
| | - R Golser
- Institute for Isotope Physics, University of Vienna, Vienna A-1090, Austria
| | - D Hanstorp
- Department of Physics, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Å Larson
- Department of Physics, Stockholm University, AlbaNova, Stockholm SE-106 91, Sweden
| | - H Cederquist
- Department of Physics, Stockholm University, AlbaNova, Stockholm SE-106 91, Sweden
| | - H T Schmidt
- Department of Physics, Stockholm University, AlbaNova, Stockholm SE-106 91, Sweden
| | - H Zettergren
- Department of Physics, Stockholm University, AlbaNova, Stockholm SE-106 91, Sweden
| |
Collapse
|
6
|
Jiang Y, Hu Z, Yang Y, Peng P, Zhong C, Sun H, Sun Z, Wang XB. Beyond Duality: Rationalizing Repulsive Coulomb Barriers in Host-Guest Cyclodextrin-Dodecaborate Complexes. J Phys Chem Lett 2023:6736-6742. [PMID: 37470699 DOI: 10.1021/acs.jpclett.3c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The repulsive Coulomb barrier (RCB), an intrinsic potential energy barrier along electron detachment or charge-separation coordinates in multiply charged anions (MCAs), provides dynamic stability to MCAs whose electronic and thermodynamic stabilities are largely dictated by strong internal Coulomb repulsions. Spectroscopic and theoretical characterizations of the RCB have been focused on isolated MCAs. In this work, we extend the RCB investigation beyond the previous scope by including noncovalent host-guest cyclodextrin-closo-dodecaborate dianionic complexes χCD·B12X122- (χ = α, β, γ; X = H, F-I). Photodechment photoelectron spectroscopy reveals the existence of two distinctly different RCBs, derived from detaching electrons from the guest dianions (RCB1) or ionizing the host neutrals (RCB2), respectively, with the latter being substantially smaller than the former. Theoretical calculations support the duality of RCBs in these complexes and further exhibit highly anisotropic nature of the RCBs.
Collapse
Affiliation(s)
- Yanrong Jiang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yan Yang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Peng Peng
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Cheng Zhong
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
7
|
Hou SJ, Yang YF, Cui ZH, Cederbaum LS. Can anions possess bound doubly-excited electronic states? Chem Sci 2023; 14:7230-7236. [PMID: 37416703 PMCID: PMC10321500 DOI: 10.1039/d3sc00370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/27/2023] [Indexed: 07/08/2023] Open
Abstract
Anions play an important role in many fields of chemistry. Many molecules possess stable anions, but these anions often do not have stable electronic excited states and the anion loses its excess electron once excited. All the known stable valence excited states of anions are singly-excited states, i.e., valence doubly-excited states have not been reported. As excited states are relevant for numerous applications, and constitute basic properties, we searched for valence doubly-excited states which are stable, i.e., exhibit energies below that of the ground state of the respective neutral molecule. We concentrated on two promising prototype candidates, the anions of the smallest endocircular carbon ring Li@C12 and of the smallest endohedral fullerene Li@C20. By employing accurate state-of-the-art many-electron quantum chemistry methods, we investigated the low-lying excited states of these anions and found that they possess several low-lying stable singly-excited states and, in particular, a stable doubly-excited state each. It is noteworthy that the found doubly-excited state of Li@C12- possesses a cumulenic carbon ring in sharp contrast to the ground and singly-excited states. The findings shed light on how to design anions with stable valence singly- and doubly-excited states. Possible applications are mentioned.
Collapse
Affiliation(s)
- Shi-Jie Hou
- Institute of Atomic and Molecular Physics, Jilin University Changchun 130023 China
| | - Yi-Fan Yang
- Quantum Theory Project, Departments of Physics and Chemistry, University of Florida Gainesville Florida 32611 USA
| | - Zhong-Hua Cui
- Institute of Atomic and Molecular Physics, Jilin University Changchun 130023 China
| | - Lorenz S Cederbaum
- Theoretical Chemistry, Institute of Physical Chemistry, Universität Heidelberg Im Neuenheimer Feld 229 D-69120 Heidelberg Germany
| |
Collapse
|
8
|
Gibbard JA, Verlet JRR. Kasha's Rule and Koopmans' Correlations for Electron Tunnelling through Repulsive Coulomb Barriers in a Polyanion. J Phys Chem Lett 2022; 13:7797-7801. [PMID: 35973214 PMCID: PMC9421885 DOI: 10.1021/acs.jpclett.2c02145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/11/2022] [Indexed: 05/17/2023]
Abstract
The long-range electronic structure of polyanions is defined by the repulsive Coulomb barrier (RCB). Excited states can decay by resonant electron tunnelling through RCBs, but such decay has not been observed for electronically excited states other than the first excited state, suggesting a Kasha-type rule for resonant electron tunnelling. Using action spectroscopy, photoelectron imaging, and computational chemistry, we show that the fluorescein dianion, Fl2-, partially decays through electron tunnelling from the S2 excited state, thus demonstrating anti-Kasha behavior, and that resonant electron tunnelling adheres to Koopmans' correlations, thus disentangling different channels.
Collapse
Affiliation(s)
- Jemma A. Gibbard
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R. R. Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
9
|
Gibbard JA, Verlet JRR. Photoelectron Imaging Study of the Diplatinum Iodide Dianions [Pt 2I 6] 2- and [Pt 2I 8] 2. J Phys Chem A 2022; 126:3495-3501. [PMID: 35621996 PMCID: PMC9189829 DOI: 10.1021/acs.jpca.2c02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Photoelectron spectroscopy
has been used to study the electronic
structure, photodetachment, and photodissociation of the stable diplatinum
iodide dianions [Pt2I6]2– and
[Pt2I8]2–. Photoelectron spectra
over a range of photon energies show the characteristic absence of
low kinetic energy photoelectrons expected for dianions as a result
of the repulsive Coulomb barrier (RCB). Vertical detachment energies
of ∼1.6 and ∼1.9 eV and minimum RCBs of ∼1.2
and ∼1.3 eV are reported for [Pt2I6]2– and [Pt2I8]2–, respectively. Both of the diplatinum halides exhibit three direct
detachment channels with distinct anisotropies, analogous to the previously
reported spectra for PtI2– and PtI–, suggesting a platinum-centered molecular core that
dominates the photodetachment. Additionally, evidence for two-photon
photodissociation and subsequent photodetachment channels producing
I– are observed for both dianions. Finally, an unexplained
feature is observed at photon energies around 3 eV, whose origin is
considered. Our work highlights the complex electronic structure of
the heavy platinum-halide dianions that are characterized by a dense
manifold of electronic states.
Collapse
Affiliation(s)
- Jemma A Gibbard
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
10
|
Jagau TC. Theory of electronic resonances: fundamental aspects and recent advances. Chem Commun (Camb) 2022; 58:5205-5224. [PMID: 35395664 DOI: 10.1039/d1cc07090h] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Electronic resonances are states that are unstable towards loss of electrons. They play critical roles in high-energy environments across chemistry, physics, and biology but are also relevant to processes under ambient conditions that involve unbound electrons. This feature article focuses on complex-variable techniques such as complex scaling and complex absorbing potentials that afford a treatment of electronic resonances in terms of discrete square-integrable eigenstates of non-Hermitian Hamiltonians with complex energy. Fundamental aspects of these techniques as well as their integration into molecular electronic-structure theory are discussed and an overview of some recent developments is given: analytic gradient theory for electronic resonances, the application of rank-reduction techniques and quantum embedding to them, as well as approaches for evaluating partial decay widths.
Collapse
Affiliation(s)
- Thomas-C Jagau
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| |
Collapse
|
11
|
Storing and Releasing Mg by C12 Carbon Ring. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Artemyev AN, Kutscher E, Demekhin PV. Photoelectron circular dichroism of a model chiral anion. J Chem Phys 2022; 156:031101. [DOI: 10.1063/5.0079723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Anton N. Artemyev
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Eric Kutscher
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Philipp V. Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
13
|
Yuan Q, Rohdenburg M, Cao W, Aprà E, Landmann J, Finze M, Warneke J, Wang XB. Isolated [B 2(CN) 6] 2-: Small Yet Exceptionally Stable Nonmetal Dianion. J Phys Chem Lett 2021; 12:12005-12011. [PMID: 34890205 DOI: 10.1021/acs.jpclett.1c03533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report the observation of a small, yet remarkably stable, metal-free hexacyanodiborate dianion [B2(CN)6]2- in the gas phase. Negative ion photoelectron spectroscopy (NIPES) was employed to measure its spectra at multiple laser wavelengths, yielding a 1.9 eV electron binding energy (EBE) ─a remarkably high value of electronic stability and a ∼2.60 eV repulsive Coulomb barrier (RCB) for electron detachment. This rationalizes the observation of this dianion, although homolytic charge-separation dissociation into two [B(CN)3]•- is energetically favorable. Quantum chemical calculations demonstrate a D3d staggered conformation for both the dianion and radical monoanion, and the calculated EBE and RCB match the experimental values well. The simulated density of states spectrum reproduces all measured electronic transitions, while the simulated vibrational progressions for the ground state transition cover a much narrower EBE range compared to the experimental band, indicating appreciable auto-photodetachment via electronically excited dianion resonances.
Collapse
Affiliation(s)
- Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, China
| | - Markus Rohdenburg
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| | - Edoardo Aprà
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Johannes Landmann
- Institute of Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maik Finze
- Institute of Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jonas Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
14
|
Gibbard JA, Clarke CJ, Verlet JRR. Photoelectron spectroscopy of the protoporphyrin IX dianion. Phys Chem Chem Phys 2021; 23:18425-18431. [PMID: 34612383 DOI: 10.1039/d1cp03075b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional photoelectron spectroscopy using nanosecond and femtosecond lasers has been used to study the protopophyrin IX dianion at photon energies between 1.8-4.1 eV. The photoelectron spectra indicated the presence of two direct detachment channels, tunnelling through the repulsive Coulomb barrier (RCB) and thermionic emission from monoanions. A direct detachment feature suggested a near 0 eV electron affinity, which may be attributable to the repulsive through space interaction of the unshielded carboxylate groups. The minimum height of the repulsive Coulomb barrier (RCB) was found to be between 1.4-1.9 eV. Adiabatic tunnelling through the RCB was seen to occur on a timescale faster than rotational dephasing of the molecule. The observation of thermionic emission below the RCB in the nanosecond spectra originated from monoanions, which were produced via photon-cycling of the dianion.
Collapse
Affiliation(s)
- Jemma A Gibbard
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| | | | | |
Collapse
|
15
|
Hu Z, Sun Z, Sun H. Simulation of Negative Ion Photoelectron Spectroscopy Using a Nuclear Ensemble Approach: Implications from a Nuclear Vibration Effect. J Phys Chem A 2021; 125:6621-6628. [PMID: 34318668 DOI: 10.1021/acs.jpca.1c04246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The negative ion photoelectron spectroscopy (NIPES) has been proven to be a powerful technique to reveal the electronic structures and spectroscopic properties of various cluster anions/radicals with very high precision. However, direct comparisons of the theoretical NIPES with experimental measurements remain challenging. Particularly the nuclear vibration effect and the ionization probability are typically ignored in reproducing NIPES. In this work, the NIPES of three representative anions (NaS5-, P2N3-, and HCPN3-) with significantly different spectral features were simulated by combining the nuclear ensemble approach (NEA) and Dyson orbitals (DOs). Overall, the simulated NIPES are in good agreement with the experimentally determined ones, confirming the robustness of such a strategy. The analysis of frontier molecular orbitals (MOs) and DOs further suggests the similar mixed characters for the first ionized doublet (D0) and adjacent D1 states of NaS5- with distributions on the side sulfur atoms. And the D0 of P2N3* is confirmed as the lowest energy σ radical state; however, the D0 of HCPN3* should possess a mixture of π and σ electrons by taking into account the nuclear vibration effect. Next, the broader vibrational distribution and stronger main vibration modes of P2N3- and HCPN3- explain why the nuclear vibration possesses a more pronounced influence in reproducing their NIPES while it has little effect on NaS5-. Last, the limitations based on the double-harmonic approximation model and density of state method were also discussed, highlighting that the ionization probability and orbital relaxation effect during the ionization process should be reasonably considered.
Collapse
Affiliation(s)
- Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, P. R. China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| |
Collapse
|
16
|
Assessment of DFT methods for the prediction of detachment energies and electronic structures of complex and multiply charged anions. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Warneke J, Wang XB. Measuring Electronic Structure of Multiply Charged Anions to Understand Their Chemistry: A Case Study on Gaseous Polyhedral closo-Borate Dianions. J Phys Chem A 2021; 125:6653-6661. [PMID: 34323504 DOI: 10.1021/acs.jpca.1c04618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research on multiply charged anions (MCAs) in the gas phase has been intensively performed during the past decades, mainly to understand fundamental molecular physics phenomena, for example, intramolecular Coulomb repulsion and existence of the repulsive Coulomb barrier. However, the relevance of these investigations with respect to understanding MCAs' chemistry appears often vague. Here, we discuss how insights into the electronic structure obtained from negative ion photoelectron spectroscopy (NIPES) combined with theoretical calculations and collision-induced dissociation can provide a fundamental understanding of the intrinsic chemical reactivity of MCAs and their fragments. This is exemplified in our studies on polyhedral closo-borate dianions [BnXn]2- (n = 6, 10, 11, 12; X = H, F-I, CN) and their fragment ions. For example, the rational design of closo-borate dianions with specific electronic properties is described, which leads to generating highly reactive fragments. Depending on the dianionic precursor, these fragments are tuned to either bind noble gases effectively or activate small molecules like CO and N2. The intrinsic electronic properties of closo-borate dianions are further compared to their electrochemistry in solutions, revealing solvent effects on the redox potentials. Neutral host molecules such as cyclodextrins are found to bind strongly to [BnXn]2-, and gas phase NIPES provides insights into the intrinsic host-guest interactions. Finally, outlooks including the direct NIPES of molecular fragment ions that cannot be generated in the condensed phase and their utilization in preparative mass spectrometry are discussed.
Collapse
Affiliation(s)
- Jonas Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, 04103 Leipzig, Germany.,Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
18
|
Zhong MM, Fang H, Deepika, Jena P. Super-electrophiles of tri- and tetra-anions stabilized by selected terminal groups and their role in binding noble gas atoms. Phys Chem Chem Phys 2021; 23:21496-21500. [PMID: 34296724 DOI: 10.1039/d1cp01969d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Stabilization of multiply-charged atomic clusters in the gas phase has been a topic of great interest not only because of their potential applications as weakly-coordinating anions, but also for their ability to promote unusual reactions and serve as building blocks of materials. Recent experiments have shown that, after removing one terminal ligand from the closo-dodecacyano-borate, B12(CN)122-, the cluster can strongly bind an argon atom at room temperature. Bearing this in mind, here, we have developed more than a dozen highly stable tri- and tetra-anions using density functional theory (DFT) calculations with hybrid functional (B3LYP) and semi-empirical dispersion corrections. The interactions between the clusters and noble gas atoms, including Ne, Ar and Kr, are studied. The resulting super-electrophilic sites embedded in these charged clusters can bind noble gas atoms with binding energies up to 0.7 eV. This study enriches the database of highly-charged clusters and provides a viable design rule for super-electrophiles that can strongly bind noble gas atoms.
Collapse
Affiliation(s)
- Ming Min Zhong
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Hong Fang
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23238, USA.
| | - Deepika
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23238, USA.
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23238, USA.
| |
Collapse
|
19
|
Dempwolff AL, Belogolova AM, Trofimov AB, Dreuw A. Intermediate state representation approach to physical properties of molecular electron-attached states: Theory, implementation, and benchmarking. J Chem Phys 2021; 154:104117. [PMID: 33722034 DOI: 10.1063/5.0043337] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Computational schemes for comprehensive studies of molecular electron-attached states and the calculation of electron affinities (EAs) are formulated and implemented employing the intermediate state representation (ISR) formalism and the algebraic-diagrammatic construction approximation for the electron propagator (EA-ADC). These EA-ADC(n)/ISR(m) schemes allow for a consistent treatment of not only electron affinities and pole strengths up to third-order of perturbation theory (n = 3) but also one-electron properties of electron-attached states up to second order (m = 2). The EA-ADC/ISR equations were implemented in the Q-Chem program for Ŝz-adapted intermediate states, allowing also open-shell systems to be studied using unrestricted Hartree-Fock references. For benchmarking of the EA-(U)ADC/ISR schemes, EAs and dipole moments of various electron-attached states of small closed- and open-shell molecules were computed and compared to full configuration interaction data. As an illustrative example, EA-ADC(3)/ISR(2) has been applied to the thymine-thymine (6-4) DNA photolesion.
Collapse
Affiliation(s)
- Adrian L Dempwolff
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
| | - Alexandra M Belogolova
- Laboratory of Quantum Chemistry, Irkutsk State University, Karl Marx Street 1, 664003 Irkutsk, Russia
| | - Alexander B Trofimov
- Laboratory of Quantum Chemistry, Irkutsk State University, Karl Marx Street 1, 664003 Irkutsk, Russia
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
| |
Collapse
|
20
|
Davis JU, Phung QM, Yanai T, Ehara M, Sommerfeld T. Lifetimes of Be32– and Mg32– Cluster Dianions. J Phys Chem A 2021; 125:3579-3588. [DOI: 10.1021/acs.jpca.1c00770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jeremy U. Davis
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, Louisiana 70402, United States
| | - Quan Manh Phung
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8602, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Masahiro Ehara
- Institute for Molecular Science and Research Center for Computational Science, Okazaki 444-8585, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Thomas Sommerfeld
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, Louisiana 70402, United States
| |
Collapse
|
21
|
Castellani ME, Avagliano D, Verlet JRR. Ultrafast Dynamics of the Isolated Adenosine-5'-triphosphate Dianion Probed by Time-Resolved Photoelectron Imaging. J Phys Chem A 2021; 125:3646-3652. [PMID: 33882670 DOI: 10.1021/acs.jpca.1c01646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The excited state dynamics of the doubly deprotonated dianion of adenosine-5'-triphosphate, [ATP-H2]2-, has been spectroscopically explored by time-resolved photoelectron spectroscopy following excitation at 4.66 eV. Time-resolved photoelectron spectra show that two competing processes occur for the initially populated 1ππ* state. The first is rapid electron emission by tunneling through a repulsive Coulomb barrier as the 1ππ* state is a resonance. The second is nuclear motion on the 1ππ* state surface leading to an intermediate that no longer tunnels and subsequently decays by internal conversion to the ground electronic state. The spectral signatures of the features are similar to those observed for other adenine-derivatives, suggesting that this nucleobase is quite insensitive to the nearby negative charges localized on the phosphates, except of course for the appearance of the additional electron tunneling channel, which is open in the dianion.
Collapse
Affiliation(s)
| | - Davide Avagliano
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17 1090 Vienna, Austria
| | - Jan R R Verlet
- Department of Chemistry, Durham University, DH1 3LE Durham, U.K
| |
Collapse
|
22
|
Castellani ME, Avagliano D, González L, Verlet JRR. Site-Specific Photo-oxidation of the Isolated Adenosine-5'-triphosphate Dianion Determined by Photoelectron Imaging. J Phys Chem Lett 2020; 11:8195-8201. [PMID: 32886886 DOI: 10.1021/acs.jpclett.0c02089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photoelectron imaging of the isolated adenosine-5'-triphosphate dianion excited to the 1ππ* states reveals that electron emission is predominantly parallel to the polarization axis of the light and arises from subpicosecond electron tunneling through the repulsive Coulomb barrier (RCB). The computed RCB shows that the most probable electron emission site is on the amino group of adenine. This is consistent with the photoelectron imaging: excitation to the 1ππ* states leads to an aligned ensemble distributed predominantly parallel to the long axis of adenine; the subsequent electron tunneling site is along this axis; and the negatively charged phosphate groups guide the outgoing electron mostly along this axis at long range. Imaging of electron tunneling from polyanions combined with computational chemistry may offer a general route for probing the intrinsic photo-oxidation site and dynamics as well as the overall structure of complex isolated species.
Collapse
Affiliation(s)
| | - Davide Avagliano
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
23
|
Kossoski F, Barbatti M. Nonadiabatic dynamics in multidimensional complex potential energy surfaces. Chem Sci 2020; 11:9827-9835. [PMID: 34094243 PMCID: PMC8162122 DOI: 10.1039/d0sc04197a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Despite the continuous development of theoretical methodologies for describing nonadiabatic dynamics of molecular systems, there is a lack of approaches for processes where the norm of the wave function is not conserved, i.e., when an imaginary potential accounts for some irreversible decaying mechanism. Current approaches rely on building potential energy surfaces of reduced dimensionality, which is not optimal for more involving and realistic multidimensional problems. Here, we present a novel methodology for describing the dynamics of complex-valued molecular Hamiltonians, which is a generalisation of the trajectory surface hopping method. As a first application, the complex surface fewest switches surface hopping (CS-FSSH) method was employed to survey the relaxation mechanisms of the shape resonant anions of iodoethene. We have provided the first detailed and dynamical picture of the π*/σ* mechanism of dissociative electron attachment in halogenated unsaturated compounds, which is believed to underlie electron-induced reactions of several molecules of interest. Electron capture into the π* orbital promotes C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C stretching and out-of-plane vibrations, followed by charge transfer from the double bond into the σ* orbital at the C–I bond, and, finally, release of the iodine ion, all within only 15 fs. On-the-fly dynamics simulations of a vast class of processes can be envisioned with the CS-FSSH methodology, including autoionisation from transient anions, core-ionised and superexcited states, Auger and interatomic coulombic decay, and time-dependent luminescence. Despite the continuous development of methods for describing nonadiabatic dynamics, there is a lack of multidimensional approaches for processes where the wave function norm is not conserved. A new surface hopping variant closes this knowledge gap.![]()
Collapse
|
24
|
Kirchhoff B, Braunwarth L, Jung C, Jónsson H, Fantauzzi D, Jacob T. Simulations of the Oxidation and Degradation of Platinum Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905159. [PMID: 31880069 DOI: 10.1002/smll.201905159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Improved understanding of the fundamental processes leading to degradation of platinum nanoparticle electrocatalysts is essential to the continued advancement of their catalytic activity and stability. To this end, the oxidation of platinum nanoparticles is simulated using a ReaxFF reactive force field within a grand-canonical Monte Carlo scheme. 2-4 nm cuboctahedral particles serve as model systems, for which electrochemical potential-dependent phase diagrams are constructed from the thermodynamically most stable oxide structures, including solvation and thermochemical contributions. Calculations in this study suggest that surface oxide structures should become thermodynamically stable at voltages around 0.80-0.85 V versus standard hydrogen electrode, which corresponds to typical fuel cell operating conditions. The potential presence of a surface oxide during catalysis is usually not accounted for in theoretical studies of Pt electrocatalysts. Beyond 1.1 V, fragmentation of the catalyst particles into [Pt6 O8 ]4- clusters is observed. Density functional theory calculations confirm that [Pt6 O8 ]4- is indeed stable and hydrophilic. These results suggest that the formation of [Pt6 O8 ]4- may play an important role in platinum catalyst degradation as well as the electromotoric transport of Pt2+/4+ ions in fuel cells.
Collapse
Affiliation(s)
- Björn Kirchhoff
- Science Institute and Faculty of Physical Sciences, University of Iceland, 107, Reykjavík, Iceland
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Laura Braunwarth
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Christoph Jung
- Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz-Straße 16, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, 107, Reykjavík, Iceland
| | - Donato Fantauzzi
- Science Institute and Faculty of Physical Sciences, University of Iceland, 107, Reykjavík, Iceland
- Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz-Straße 16, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
- Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz-Straße 16, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| |
Collapse
|
25
|
Joshi M, Ghanty TK. Unprecedented stability enhancement of multiply charged anions through decoration with negative electron affinity noble gases. Phys Chem Chem Phys 2020; 22:13368-13372. [PMID: 32538412 DOI: 10.1039/d0cp01478h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present communication reports unprecedented stabilization of multiply charged anion, B12F122-, through insertion of noble gas (Ng) atoms possessing negative electron affinity into B-F bonds, resulting in the formation of stable icosahedral B12Ng12F122-, where the HOMO is stabilized significantly and the binding energy of the second excess electron is increased remarkably. Unprecedented stability enhancement with Ng is attributed to a strong covalent B-Ng bond, increased charge delocalization and increased electrostatic interaction between the oppositely charged centers.
Collapse
Affiliation(s)
- Meenakshi Joshi
- Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400085, India. and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Tapan K Ghanty
- Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400085, India. and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
26
|
Zhong MM, Fang H, Jena P. Record-high stability and compactness of multiply-charged clusters aided by selected terminal groups. Phys Chem Chem Phys 2020; 22:4880-4883. [DOI: 10.1039/c9cp06215g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiply-charged clusters with compact sizes that are stable in the gas phase are important due to their potential applications as weakly-coordinating ions and building blocks of bulk materials.
Collapse
Affiliation(s)
- Ming Min Zhong
- School of Physical Science and Technology
- Southwest University
- Chongqing 400715
- China
| | - Hong Fang
- Department of Physics
- Virginia Commonwealth University
- Richmond
- USA
| | - Puru Jena
- Department of Physics
- Virginia Commonwealth University
- Richmond
- USA
| |
Collapse
|
27
|
Yadav M, Fang H, Giri S, Jena P. Ligand stabilization of manganocene dianions - in defiance of the 18-electron rule. Phys Chem Chem Phys 2019; 21:24300-24307. [PMID: 31524210 DOI: 10.1039/c9cp02331c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganocene [Mn(C5H5)2], a 17-electron system, is expected to have a high electron affinity, as addition of an extra electron would make it a closed-shell 18-electron system. Surprisingly, it has a very low electron affinity of only 0.28 eV. Combined with its high ionization potential of around 7.0 eV, manganocene, therefore, should not be eager to either donate or accept an electron. We show that this property can be fundamentally altered with the proper choice of ligands, even though the total electron count remains the same. For example, the electron affinities of manganocene-derivatives Mn[C5(CN)5]2 and Mn[C5(BO)5]2, created by replacing H with CN or BO, are found to be 4.78 eV and 4.85 eV, respectively, making these species superhalogens. The power of the ligands is further demonstrated by studying the stability of their di-anions. Note that [Mn(C5X5)2]2- (X = H, CN, BO) di-anions, with 19-electrons, have one electron more than necessary to satisfy the 18-electron rule for stability. This factor, combined with the unavoidable repulsion between the two extra electrons, should destabilize [Mn(C5X5)2]2-. While that is the case for [Mn(C5H5)2]2-, we show that both Mn[C5(CN)5]22- and Mn[C5(BO)5]22- are stable against auto-detachment of the second electron by 0.7 eV and 0.38 eV, respectively. These results, based on first-principles calculations, demonstrate that ligand-manipulation can be used as an effective strategy to design and synthesize new materials with novel and tailored properties.
Collapse
Affiliation(s)
- Monalisa Yadav
- IISER Kolkata, Haringhata Farm, Nadia, West Bengal - 741252, India
| | | | | | | |
Collapse
|
28
|
Li Z, Hu Z, Jiang Y, Yuan Q, Sun H, Wang XB, Sun Z. Electronic structures and binding motifs of sodium polysulfide clusters NaS n - (n = 5-9): A joint negative ion photoelectron spectroscopy and computational investigation. J Chem Phys 2019; 150:244305. [PMID: 31255059 DOI: 10.1063/1.5100733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We report a joint experimental and computational study on the electronic and geometric structures of a series of NaSn - (n = 5-9) clusters. Cryogenic, size-selective, negative ion photoelectron spectroscopy was employed to obtain their photoelectron spectra, in which distinctive spectral features with electron binding energy (EBE) up to 6.4 eV are unraveled. The EBE of the first peak in each spectrum for NaSn - (n = 5-9), assigned to the transition from the ground state of the anion to the ground state of each neutral radical, was observed to increase with cluster size. The vertical detachment energies (VDEs), measured from the first peak maximum, are 3.43 ± 0.02, 3.57 ± 0.02, 3.82 ± 0.03, 3.86 ± 0.02, and 4.00 ± 0.02 eV, and the adiabatic detachment energies (ADEs), determined from the onset of the first peak, are 3.27 ± 0.05, 3.44 ± 0.05, 3.65 ± 0.05, 3.75 ± 0.05, and 3.93 ± 0.05 eV, for n = 5-9, respectively. A number of low-lying isomers of the anions were screened and identified with density functional theory calculations, showing a structural preference of a chainlike polysulfide moiety electrostatically interacting with a sodium cation for all of the clusters. The CCSD(T)/aug-cc-pVTZ calculated VDEs and ADEs are in excellent agreement with the experimental results, confirming the identified isomers. Further analyses based on excited-state transitions, molecular orbitals, and natural population charges were performed, to assign and reveal the nature of all observed spectral bands. These computational results suggest that the electron detachment process and observed excitations are mainly derived from the polysulfide chain within each NaSn - cluster. This work provides a fundamental understanding of the intrinsic molecular properties of sodium polysulfide systems, which widely exist in life science and sodium-sulfur cells.
Collapse
Affiliation(s)
- Zhipeng Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Yanrong Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| |
Collapse
|
29
|
Abstract
Chemically binding to argon (Ar) at room temperature has remained the privilege of the most reactive electrophiles, all of which are cationic (or even dicationic) in nature. Herein, we report a concept for the rational design of anionic superelectrophiles that are composed of a strong electrophilic center firmly embedded in a negatively charged framework of exceptional stability. To validate our concept, we synthesized the percyano-dodecoborate [B12(CN)12]2-, the electronically most stable dianion ever investigated experimentally. It serves as a precursor for the generation of the monoanion [B12(CN)11]-, which indeed spontaneously binds Ar at 298 K. Our mass spectrometric and spectroscopic studies are accompanied by high-level computational investigations including a bonding analysis of the exceptional B-Ar bond. The detection and characterization of this highly reactive, structurally stable anionic superelectrophile starts another chapter in the metal-free activation of particularly inert compounds and elements.
Collapse
|
30
|
Gulania S, Jagau TC, Krylov AI. EOM-CC guide to Fock-space travel: the C2 edition. Faraday Discuss 2019; 217:514-532. [DOI: 10.1039/c8fd00185e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electronic structure calculations for C2, C2−, and C22− using the CC/EOM-CC family of methods. Results illustrate that EOM-CCSD provides an attractive alternative to MR approaches.
Collapse
Affiliation(s)
- Sahil Gulania
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Thomas-C. Jagau
- Department of Chemistry
- University of Munich (LMU)
- 81377 Munich
- Germany
| | - Anna I. Krylov
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
- The Hamburg Centre for Ultrafast Imaging
| |
Collapse
|
31
|
Warneke J, Konieczka SZ, Hou GL, Aprà E, Kerpen C, Keppner F, Schäfer TC, Deckert M, Yang Z, Bylaska EJ, Johnson GE, Laskin J, Xantheas SS, Wang XB, Finze M. Properties of perhalogenated {closo-B10} and {closo-B11} multiply charged anions and a critical comparison with {closo-B12} in the gas and the condensed phase. Phys Chem Chem Phys 2019; 21:5903-5915. [DOI: 10.1039/c8cp05313h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dependence of electronic properties and reactivity of closo-borates with size and halogen substituent was investigated.
Collapse
|
32
|
Probing the Structural and Electronic Properties of Dirhenium Halide Clusters: A Density Functional Theory Study. Sci Rep 2018; 8:6702. [PMID: 29713044 PMCID: PMC5928166 DOI: 10.1038/s41598-018-25027-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/13/2018] [Indexed: 11/08/2022] Open
Abstract
Dirhenium halide dianions received considerable attention in past decades due to the unusual metal-metal quadruple bond. The systematic structural evolution of dirhenium halide clusters has not been sufficiently studied and hence is not well-understood. In this work, we report an in-depth investigation on the structures and electronic properties of doubly charged dirhenium halide clusters Re2X82- (X = F, Cl, Br, I). Our computational efforts rely on the well-tested unbiased CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization) method combined with density functional theory calculations. We find that all ground-state Re2X82- clusters have cube-like structures of D4h symmetry with two Re atoms encapsulated in halogen framework. The reasonable agreement between the simulated and experimental photoelectron spectrum of the Re2Cl82- cluster supports strongly the reliability of our computational strategy. The chemical bonding analysis reveals that the δ bond is the pivotal factor for the ground-state Re2X82- (X = F, Cl, Br, I) clusters to maintain D4h symmetric cube-like structures, and the enhanced stability of Re2Cl82- is mainly attributed to the chemical bonding of 5d orbital of Re atoms and 3p orbital of Cl atoms.
Collapse
|
33
|
Moon J, Baek H, Kim J. Unusually high stability of B12(BO)122− achieved by boronyl ligand manipulation: Theoretical investigation. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Zilberg S, Mizrahi A, Meyerstein D, Kornweitz H. Carbonate and carbonate anion radicals in aqueous solutions exist as CO3(H2O)62− and CO3(H2O)6˙− respectively: the crucial role of the inner hydration sphere of anions in explaining their properties. Phys Chem Chem Phys 2018; 20:9429-9435. [DOI: 10.1039/c7cp08240a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An effort to reproduce the physical properties of CO32− and CO3˙− in water proves that one has to include an inner hydration sphere of six water molecules for both anions.
Collapse
Affiliation(s)
| | - Amir Mizrahi
- Chemistry Department
- Ben-Gurion University
- Beer-Sheva
- Israel
| | - Dan Meyerstein
- Chemical Sciences Department
- Ariel University
- Ariel
- Israel
- Chemistry Department
| | | |
Collapse
|
35
|
Warneke J, Hou GL, Aprà E, Jenne C, Yang Z, Qin Z, Kowalski K, Wang XB, Xantheas SS. Electronic Structure and Stability of [B12X12]2– (X = F–At): A Combined Photoelectron Spectroscopic and Theoretical Study. J Am Chem Soc 2017; 139:14749-14756. [DOI: 10.1021/jacs.7b08598] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonas Warneke
- Physical
Sciences Division, Pacific Northwest National Laboratory, 902 Battelle
Boulevard, P.O. Box 999, MS K8-88, Richland, Washington 99352, United States
| | - Gao-Lei Hou
- Physical
Sciences Division, Pacific Northwest National Laboratory, 902 Battelle
Boulevard, P.O. Box 999, MS K8-88, Richland, Washington 99352, United States
| | - Edoardo Aprà
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 United States
| | - Carsten Jenne
- Anorganische
Chemie, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - Zheng Yang
- Physical
Sciences Division, Pacific Northwest National Laboratory, 902 Battelle
Boulevard, P.O. Box 999, MS K8-88, Richland, Washington 99352, United States
| | - Zhengbo Qin
- Physical
Sciences Division, Pacific Northwest National Laboratory, 902 Battelle
Boulevard, P.O. Box 999, MS K8-88, Richland, Washington 99352, United States
| | - Karol Kowalski
- Environmental
Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 United States
| | - Xue-Bin Wang
- Physical
Sciences Division, Pacific Northwest National Laboratory, 902 Battelle
Boulevard, P.O. Box 999, MS K8-88, Richland, Washington 99352, United States
| | - Sotiris S. Xantheas
- Advanced
Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box
999, MS K1-83, Richland, Washington 99352, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
36
|
Zhao T, Zhou J, Wang Q, Jena P. Colossal Stability of Gas‐Phase Trianions: Super‐Pnictogens. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tianshan Zhao
- Center for Applied Physics and Technology, College of Engineering Key Laboratory of High Energy Density Physics Simulation, Ministry of Education Peking University Beijing 100871 China
- Collaborative Innovation Center of IFSA(CICIFSA) Shanghai Jiao Tong University Shanghai 200240 China
- Department of Physics Virginia Commonwealth University Richmond VA 23284 USA
| | - Jian Zhou
- Department of Physics Virginia Commonwealth University Richmond VA 23284 USA
| | - Qian Wang
- Center for Applied Physics and Technology, College of Engineering Key Laboratory of High Energy Density Physics Simulation, Ministry of Education Peking University Beijing 100871 China
- Collaborative Innovation Center of IFSA(CICIFSA) Shanghai Jiao Tong University Shanghai 200240 China
- Department of Physics Virginia Commonwealth University Richmond VA 23284 USA
| | - Puru Jena
- Department of Physics Virginia Commonwealth University Richmond VA 23284 USA
| |
Collapse
|
37
|
Zhao T, Zhou J, Wang Q, Jena P. Colossal Stability of Gas‐Phase Trianions: Super‐Pnictogens. Angew Chem Int Ed Engl 2017; 56:13421-13425. [DOI: 10.1002/anie.201706764] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Tianshan Zhao
- Center for Applied Physics and Technology, College of Engineering Key Laboratory of High Energy Density Physics Simulation, Ministry of Education Peking University Beijing 100871 China
- Collaborative Innovation Center of IFSA(CICIFSA) Shanghai Jiao Tong University Shanghai 200240 China
- Department of Physics Virginia Commonwealth University Richmond VA 23284 USA
| | - Jian Zhou
- Department of Physics Virginia Commonwealth University Richmond VA 23284 USA
| | - Qian Wang
- Center for Applied Physics and Technology, College of Engineering Key Laboratory of High Energy Density Physics Simulation, Ministry of Education Peking University Beijing 100871 China
- Collaborative Innovation Center of IFSA(CICIFSA) Shanghai Jiao Tong University Shanghai 200240 China
- Department of Physics Virginia Commonwealth University Richmond VA 23284 USA
| | - Puru Jena
- Department of Physics Virginia Commonwealth University Richmond VA 23284 USA
| |
Collapse
|
38
|
Lu W, Tsai IH“M, Sun Y, Zhou W, Liu J. Elucidating Potential Energy Surfaces for Singlet O2 Reactions with Protonated, Deprotonated, and Di-Deprotonated Cystine Using a Combination of Approximately Spin-Projected Density Functional Theory and Guided-Ion-Beam Mass Spectrometry. J Phys Chem B 2017; 121:7844-7854. [DOI: 10.1021/acs.jpcb.7b05674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenchao Lu
- Department
of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
| | - I-Hsien “Midas” Tsai
- Department
of Natural Sciences, LaGuardia Community College, 31-10 Thomson Avenue, Long Island City, New York 11101, United States
| | - Yan Sun
- Department
of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
| | - Wenjing Zhou
- Department
of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
| | - Jianbo Liu
- Department
of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
39
|
Concina B, Lépine F, Bordas C. A detailed-balance model for thermionic emission from polyanions: The case of fullerene dianions. J Chem Phys 2017; 146:224311. [PMID: 29166075 DOI: 10.1063/1.4985609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A detailed-balance model for thermionic emission from polyanions has been developed and applied to fullerene dianions. The specificity of this delayed decay process is electron tunneling through the repulsive Coulomb barrier (RCB). An analytical expression of the RCB is derived from electrostatic modeling of the fullerene cage. The reverse process, namely, electron attachment to the singly charged anion, is described by a hard sphere cross section weighted by the Wentzel-Kramers-Brillouin tunneling probability. This simple expression leads to a very good agreement with a measured time-resolved kinetic energy distribution of C842-. Electron binding energy is reduced when the fullerene cage size decreases, leading to an almost zero one for C702- and a negative one for C602-. Extension of the model to these systems of interest is discussed, and model outputs are compared with the experimental data from the literature.
Collapse
Affiliation(s)
- Bruno Concina
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Franck Lépine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Christian Bordas
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| |
Collapse
|
40
|
Anderson LN, Oviedo MB, Wong BM. Accurate Electron Affinities and Orbital Energies of Anions from a Nonempirically Tuned Range-Separated Density Functional Theory Approach. J Chem Theory Comput 2017; 13:1656-1666. [DOI: 10.1021/acs.jctc.6b01249] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lindsey N. Anderson
- Department of Chemical and
Environmental Engineering and Materials Science and Engineering Program, University of California−Riverside, Riverside, California 92521, United States
| | - M. Belén Oviedo
- Department of Chemical and
Environmental Engineering and Materials Science and Engineering Program, University of California−Riverside, Riverside, California 92521, United States
| | - Bryan M. Wong
- Department of Chemical and
Environmental Engineering and Materials Science and Engineering Program, University of California−Riverside, Riverside, California 92521, United States
| |
Collapse
|
41
|
Wang XB. Cluster Model Studies of Anion and Molecular Specificities via Electrospray Ionization Photoelectron Spectroscopy. J Phys Chem A 2017; 121:1389-1401. [PMID: 28060511 DOI: 10.1021/acs.jpca.6b09784] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ion specificity, a widely observed macroscopic phenomenon in condensed phases and at interfaces, is a fundamental chemical physics issue. Herein we report our recent studies of such effects using cluster models in an "atom-by-atom" and "molecule-by-molecule" fashion not possible with the condensed-phase methods. We use electrospray ionization (ESI) to generate molecular and ionic clusters to simulate key molecular entities involved in local binding regions and characterize them by employing negative ion photoelectron spectroscopy (NIPES). Inter- and intramolecular interactions and binding configurations are directly obtained as functions of the cluster size and composition, providing molecular-level descriptions and characterization over the local active sites that play crucial roles in determining the solution chemistry and condensed-phase phenomena. The topics covered in this article are relevant to a wide range of research fields from ion specific effects in electrolyte solutions, ion selectivity/recognition in normal functioning of life, to molecular specificity in aerosol particle formation, as well as in rational material design and synthesis.
Collapse
Affiliation(s)
- Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory , P.O. Box 999, MS K8-88, Richland, Washington 99352, United States
| |
Collapse
|
42
|
Daly S, Girod M, Vojkovic M, Giuliani A, Antoine R, Nahon L, O'Hair RAJ, Dugourd P. Single-Photon, Double Photodetachment of Nickel Phthalocyanine Tetrasulfonic Acid 4- Anions. J Phys Chem Lett 2016; 7:2586-2590. [PMID: 27327376 DOI: 10.1021/acs.jpclett.6b01030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Single-photon, two-electron photodetachment from nickel phthalocyanine tetrasulfonic acid tetra anions, [NiPc](4-), was examined in the gas-phase using a linear ion trap coupled to the DESIRS VUV beamline of the SOLEIL Synchrotron. This system was chosen since it has a low detachment energy, known charge localization, and well-defined geometrical and electronic structures. A threshold for two-electron loss is observed at 10.2 eV, around 1 eV lower than previously observed double detachment thresholds on multiple charged protein anions. The photodetachment energy of [NiPc](4-) has been previously determined to be 3.5 eV and the photodetachment energy of [NiPc](3-•) is determined in this work to be 4.3 eV. The observed single photon double electron detachment threshold is hence 5.9 eV higher than the energy required for sequential single electron loss. Possible mechanisms are for double photodetachment are discussed. These observations pave the way toward new, exciting experiments for probing double photodetachment at relatively low energies, including correlation measurements on emitted photoelectrons.
Collapse
Affiliation(s)
- Steven Daly
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS UMR 5306 , F-69622 Lyon, France
| | - Marion Girod
- Institut des Sciences Analytiques, Université de Lyon, Université Claude Bernard Lyon 1, CNRS & ENS Lyon, UMR 5280 , 69100 Villeurbanne, France
| | - Marin Vojkovic
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS UMR 5306 , F-69622 Lyon, France
| | - Alexandre Giuliani
- SOLEIL, l'Orme des Merisiers, St Aubin, BP48, F-91192 Gif sur Yvette Cedex, France
- INRA, UAR1008 Caractérisation et Élaboration des Produits Issus de l'Agriculture, F-44316 Nantes, France
| | - Rodolphe Antoine
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS UMR 5306 , F-69622 Lyon, France
| | - Laurent Nahon
- SOLEIL, l'Orme des Merisiers, St Aubin, BP48, F-91192 Gif sur Yvette Cedex, France
| | | | - Philippe Dugourd
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS UMR 5306 , F-69622 Lyon, France
| |
Collapse
|
43
|
Warneke J, Jenne C, Bernarding J, Azov VA, Plaumann M. Evidence for an intrinsic binding force between dodecaborate dianions and receptors with hydrophobic binding pockets. Chem Commun (Camb) 2016; 52:6300-3. [PMID: 27087168 DOI: 10.1039/c6cc01233g] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A gas phase binding study revealed strong intrinsic intermolecular interactions between dianionic halogenated closo-dodecaborates [B12X12](2-) and several neutral organic receptors. Oxidation of a tetrathiafulvalene host allowed switching between two host-guest binding modes in a supramolecular complex. Complexes of β-cyclodextrin with [B12F12](2-) show remarkable stability in the gas phase and were successfully tested as carriers for the delivery of boron clusters into cancer cells.
Collapse
Affiliation(s)
- Jonas Warneke
- Universität Bremen, Institut für Angewandte und Physikalische Chemie, Leobener Str. NW 2, D-28334 Bremen, Germany.
| | | | | | | | | |
Collapse
|
44
|
Concina B, Papalazarou E, Barbaire M, Clavier C, Maurelli J, Lépine F, Bordas C. An instrument combining an electrospray ionization source and a velocity-map imaging spectrometer for studying delayed electron emission of polyanions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:033103. [PMID: 27036754 DOI: 10.1063/1.4942914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/13/2016] [Indexed: 06/05/2023]
Abstract
An instrument combining an electrospray ionization source and a velocity-map imaging (VMI) spectrometer has been developed in order to study the delayed electron emission of molecular anions and especially of polyanions. It operates at a high repetition rate (kHz) in order to increase the acquisition speed. The VMI spectrometer has been upgraded for nanosecond time resolution by gating the voltages applied on the position-sensitive detector. Kinetic energy release distribution of thermionic emission (without any contribution from direct detachment) can be recorded for well-defined delays after the nanosecond laser excitation. The capability of the instrument is demonstrated by recording photodetachment spectra of the benchmark C60(-) anion and C84(2-) dianion.
Collapse
Affiliation(s)
- Bruno Concina
- Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Evangelos Papalazarou
- Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Marc Barbaire
- Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Christian Clavier
- Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Jacques Maurelli
- Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Franck Lépine
- Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Christian Bordas
- Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| |
Collapse
|
45
|
Zhao H, Zhou J, Jena P. Stability of B12
(CN)12
2−
: Implications for Lithium and Magnesium Ion Batteries. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600275] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hongmin Zhao
- Department of Physics; School of Science; Beijing Jiaotong University; China
- Physics Department; Virginia Commonwealth University; USA
| | - Jian Zhou
- Physics Department; Virginia Commonwealth University; USA
| | - Puru Jena
- Physics Department; Virginia Commonwealth University; USA
| |
Collapse
|
46
|
Zhao H, Zhou J, Jena P. Stability of B12
(CN)12
2−
: Implications for Lithium and Magnesium Ion Batteries. Angew Chem Int Ed Engl 2016; 55:3704-8. [DOI: 10.1002/anie.201600275] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Hongmin Zhao
- Department of Physics; School of Science; Beijing Jiaotong University; China
- Physics Department; Virginia Commonwealth University; USA
| | - Jian Zhou
- Physics Department; Virginia Commonwealth University; USA
| | - Puru Jena
- Physics Department; Virginia Commonwealth University; USA
| |
Collapse
|
47
|
West CW, Bull JN, Woods DA, Verlet JR. Photoelectron imaging as a probe of the repulsive Coulomb barrier in the photodetachment of antimony tartrate dianions. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2015.12.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Wright PA, Alex A, Pullen FS. Can computational chemistry be used to predict CID fragmentation of anions? RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:2309-2315. [PMID: 26522325 DOI: 10.1002/rcm.7394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Affiliation(s)
| | - Alexander Alex
- Evenor Consulting Ltd, The New Barn, Mill Lane, Eastry, UK
| | | |
Collapse
|
49
|
Wang LS. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions. J Chem Phys 2015; 143:040901. [DOI: 10.1063/1.4927086] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
50
|
Jenne C, Keßler M, Warneke J. Protic anions [H(B12X12)]- (X = F, Cl, Br, I) that act as Brønsted acids in the gas phase. Chemistry 2015; 21:5887-91. [PMID: 25735766 DOI: 10.1002/chem.201500034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Indexed: 11/07/2022]
Abstract
The acidity of protic cations and neutral molecules has been studied extensively in the gas phase, and the gas-phase acidity has been established previously as a very useful measure of the intrinsic acidity of neutral and cationic compounds. However, no data for any anionic acids were available prior to this study. The protic anions [H(B12X12)](-) (X = F, Cl, Br, I) are expected to be the most acidic anions known to date. Therefore, they were investigated in this study with respect to their ability to protonate neutral molecules in the gas phase by using a combination of mass spectrometry and quantum-chemical calculations. For the first time it was shown that in the gas phase protic anions are also able to protonate neutral molecules and thus act as Brønsted acids. According to theoretical calculations, [H(B12I12)](-) is the most acidic gas-phase anion, whereas in actual protonation experiments [H(B12Cl12)](-) is the most potent gas-phase acidic anion for the protonation of neutral molecules. This discrepancy is explained by ion pairing and kinetic effects.
Collapse
Affiliation(s)
- Carsten Jenne
- Fachbereich C, Anorganische Chemie, Bergische Universität Wuppertal, Gaussstrasse 20, 42119 Wuppertal (Germany).
| | | | | |
Collapse
|