1
|
Kubelka GS, Kubelka J. Multi-Probe Equilibrium Analysis of Gradual (Un)Folding Processes. Methods Mol Biol 2022; 2376:161-171. [PMID: 34845609 DOI: 10.1007/978-1-0716-1716-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Studies of small proteins that exhibit noncooperative, gradual (un)folding can offer unique insights into the rarely accessible intermediate stages of the protein folding processes. Detailed experimental characterization of these intermediate states requires approaches that utilize multiple site-specific probes of the local structure. Isotopically edited infrared (IR) spectroscopy has emerged as a powerful methodology capable of providing such high-resolution structural information. Labeling of selected amide carbonyls with 13C results in detectable side-bands of amide I' vibrations, which are sensitive to local conformation and/or solvent exposure without introducing any significant structural perturbation to the protein. Incorporation of isotopically labeled amino acids at specific positions can be achieved by the chemical synthesis of the studied proteins. We describe the basic procedures for synthesis of 13C isotopically edited protein samples, experimental IR spectroscopic measurements and analysis of the site-specific equilibrium thermal unfolding of a small protein from the temperature-dependent IR data.
Collapse
Affiliation(s)
- Ginka S Kubelka
- Department of Chemistry, University of Wyoming, Laramie, WY, USA
| | - Jan Kubelka
- Department of Chemistry, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
2
|
Adams ZC, Olson EJ, Lopez-Silva TL, Lian Z, Kim AY, Holcomb M, Zimmermann J, Adhikary R, Dawson PE. Direct observation of peptide hydrogel self-assembly. Chem Sci 2022; 13:10020-10028. [PMID: 36128231 PMCID: PMC9430618 DOI: 10.1039/d1sc06562a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
The characterization of self-assembling molecules presents significant experimental challenges, especially when associated with phase separation or precipitation. Transparent window infrared (IR) spectroscopy leverages site-specific probes that absorb in the “transparent window” region of the biomolecular IR spectrum. Carbon–deuterium (C–D) bonds are especially compelling transparent window probes since they are non-perturbative, can be readily introduced site selectively into peptides and proteins, and their stretch frequencies are sensitive to changes in the local molecular environment. Importantly, IR spectroscopy can be applied to a wide range of molecular samples regardless of solubility or physical state, making it an ideal technique for addressing the solubility challenges presented by self-assembling molecules. Here, we present the first continuous observation of transparent window probes following stopped-flow initiation. To demonstrate utility in a self-assembling system, we selected the MAX1 peptide hydrogel, a biocompatible material that has significant promise for use in drug delivery and medical applications. C–D labeled valine was synthetically introduced into five distinct positions of the twenty-residue MAX1 β-hairpin peptide. Consistent with current structural models, steady-state IR absorption frequencies and linewidths of C–D bonds at all labeled positions indicate that these side chains occupy a hydrophobic region of the hydrogel and that the motion of side chains located in the middle of the hairpin is more restricted than those located on the hairpin ends. Following a rapid change in ionic strength to initiate self-assembly, the peptide absorption spectra were monitored as function of time, allowing determination of site-specific time constants. We find that within the experimental resolution, MAX1 self-assembly occurs as a cooperative process. These studies suggest that stopped-flow transparent window FTIR can be extended to other time-resolved applications, such as protein folding and enzyme kinetics. To facilitate the characterization of phase-transitioning molecules, site-specific non-perturbative infrared probes are leveraged for continuous observation of the self-assembly of fibrils in a peptide hydrogel following stopped-flow initiation.![]()
Collapse
Affiliation(s)
- Zoë C. Adams
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Erika J. Olson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Tania L. Lopez-Silva
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Zhengwen Lian
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Audrey Y. Kim
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Matthew Holcomb
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Jörg Zimmermann
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Ramkrishna Adhikary
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Philip E. Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| |
Collapse
|
3
|
Baiz CR, Błasiak B, Bredenbeck J, Cho M, Choi JH, Corcelli SA, Dijkstra AG, Feng CJ, Garrett-Roe S, Ge NH, Hanson-Heine MWD, Hirst JD, Jansen TLC, Kwac K, Kubarych KJ, Londergan CH, Maekawa H, Reppert M, Saito S, Roy S, Skinner JL, Stock G, Straub JE, Thielges MC, Tominaga K, Tokmakoff A, Torii H, Wang L, Webb LJ, Zanni MT. Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction. Chem Rev 2020; 120:7152-7218. [PMID: 32598850 PMCID: PMC7710120 DOI: 10.1021/acs.chemrev.9b00813] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.
Collapse
Affiliation(s)
- Carlos R. Baiz
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Bartosz Błasiak
- Department of Physical and Quantum Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jens Bredenbeck
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Arend G. Dijkstra
- School of Chemistry and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Sean Garrett-Roe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Nien-Hui Ge
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Magnus W. D. Hanson-Heine
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Thomas L. C. Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kijeong Kwac
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
| | - Kevin J. Kubarych
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, U.S.A
| | - Casey H. Londergan
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, U.S.A
| | - Hiroaki Maekawa
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Mike Reppert
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shinji Saito
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, 444-8585, Japan
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110, U.S.A
| | - James L. Skinner
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - John E. Straub
- Department of Chemistry, Boston University, Boston, MA 02215, U.S.A
| | - Megan C. Thielges
- Department of Chemistry, Indiana University, 800 East Kirkwood, Bloomington, Indiana 47405, U.S.A
| | - Keisuke Tominaga
- Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-0013, Japan
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Hajime Torii
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu 432-8561, Japan
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, U.S.A
| | - Lauren J. Webb
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, STOP A5300, Austin, Texas 78712, U.S.A
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1396, U.S.A
| |
Collapse
|
4
|
Bukowski GS, Horness RE, Thielges MC. Involvement of Local, Rapid Conformational Dynamics in Binding of Flexible Recognition Motifs. J Phys Chem B 2019; 123:8387-8396. [PMID: 31535866 DOI: 10.1021/acs.jpcb.9b07036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Flexible protein sequences populate ensembles of rapidly interconverting states differentiated by small-scale fluctuations; however, elucidating whether and how the ensembles determine function experimentally is challenged by the combined high spatial and temporal resolution needed to capture the states. We used carbon-deuterium (C-D) bond vibrations incorporated as infrared probes to characterize with residue-specific detail the heterogeneity of states adopted by proline-rich (PR) sequences and assess their involvement in recognition of Src homology 3 domains. The C-D absorption envelopes provided evidence for two or three sub-populations at all proline residues. The changes in the subpopulations induced by binding generally reflected recognition by conformational selection but depended on the residue and the state of the ligand to illuminate distinct mechanisms among the PR ligands. Notably, the spectral data indicate that greater adaptability among the states is associated with reduced recognition specificity and that perturbation to the ensemble populations contributes to differences in binding entropy. Broadly, the study quantifies rapidly interconverting ensembles with residue-specific detail and implicates them in function.
Collapse
Affiliation(s)
- Gregory S Bukowski
- Department of Chemistry , Indiana University, Bloomington , Bloomington , Indiana 47405 , United States
| | - Rachel E Horness
- Department of Chemistry , Indiana University, Bloomington , Bloomington , Indiana 47405 , United States
| | - Megan C Thielges
- Department of Chemistry , Indiana University, Bloomington , Bloomington , Indiana 47405 , United States
| |
Collapse
|
5
|
Trigo D, Nadais A, da Cruz e Silva OA. Unravelling protein aggregation as an ageing related process or a neuropathological response. Ageing Res Rev 2019; 51:67-77. [PMID: 30763619 DOI: 10.1016/j.arr.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022]
Abstract
Protein aggregation is normally associated with amyloidosis, namely motor neurone, Alzheimer's, Parkinson's or prion diseases. However, recent results have unveiled a concept of gradual increase of protein aggregation associated with the ageing process, apparently not necessarily associated with pathological conditions. Given that protein aggregation is sufficient to activate stress-response and inflammation, impairing protein synthesis and quality control mechanisms, the former is assumed to negatively affect cellular metabolism and behaviour. In this review the state of the art in protein aggregation research is discussed, namely the relationship between pathology and proteostasis. The role of pathology and ageing in overriding protein quality-control mechanisms, and consequently, the effect of these faulty cellular processes on pathological and healthy ageing, are also addressed.
Collapse
|
6
|
Adhikary R, Zimmermann J, Romesberg FE. Transparent Window Vibrational Probes for the Characterization of Proteins With High Structural and Temporal Resolution. Chem Rev 2017; 117:1927-1969. [DOI: 10.1021/acs.chemrev.6b00625] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ramkrishna Adhikary
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jörg Zimmermann
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
7
|
Le Sueur AL, Schaugaard RN, Baik MH, Thielges MC. Methionine Ligand Interaction in a Blue Copper Protein Characterized by Site-Selective Infrared Spectroscopy. J Am Chem Soc 2016; 138:7187-93. [PMID: 27164303 DOI: 10.1021/jacs.6b03916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The reactivity of metal sites in proteins is tuned by protein-based ligands. For example, in blue copper proteins such as plastocyanin (Pc), the structure imparts a highly elongated bond between the Cu and a methionine (Met) axial ligand to modulate its redox properties. Despite extensive study, a complete understanding of the contribution of the protein to redox activity is challenged by experimentally accessing both redox states of metalloproteins. Using infrared (IR) spectroscopy in combination with site-selective labeling with carbon-deuterium (C-D) vibrational probes, we characterized the localized changes at the Cu ligand Met97 in the oxidized and reduced states, as well as the Zn(II) or Co(II)-substituted, the pH-induced low-coordinate, the apoprotein, and the unfolded states. The IR absorptions of (d3-methyl)Met97 are highly sensitive to interaction of the sulfur-based orbitals with the metal center and are demonstrated to be useful reporters of its modulation in the different states. Unrestricted Kohn-Sham density functional theory calculations performed on a model of the Cu site of Pc confirm the observed dependence. IR spectroscopy was then applied to characterize the impact of binding to the physiological redox partner cytochrome (cyt) f. The spectral changes suggest a slightly stronger Cu-S(Met97) interaction in the complex with cyt f that has potential to modulate the electron transfer properties. Besides providing direct, molecular-level comparison of the oxidized and reduced states of Pc from the perspective of the axial Met ligand and evidence for perturbation of the Cu site properties by redox partner binding, this study demonstrates the localized spatial information afforded by IR spectroscopy of selectively incorporated C-D probes.
Collapse
Affiliation(s)
- Amanda L Le Sueur
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Richard N Schaugaard
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Megan C Thielges
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
8
|
Horness RE, Basom EJ, Mayer JP, Thielges MC. Resolution of Site-Specific Conformational Heterogeneity in Proline-Rich Molecular Recognition by Src Homology 3 Domains. J Am Chem Soc 2016; 138:1130-3. [PMID: 26784847 DOI: 10.1021/jacs.5b11999] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conformational heterogeneity and dynamics are increasingly evoked in models of protein molecular recognition but are challenging to experimentally characterize. Here we combine the inherent temporal resolution of infrared (IR) spectroscopy with the spatial resolution afforded by selective incorporation of carbon-deuterium (C-D) bonds, which provide frequency-resolved absorptions within a protein IR spectrum, to characterize the molecular recognition of the Src homology 3 (SH3) domain of the yeast protein Sho1 with its cognate proline-rich (PR) sequence of Pbs2. The IR absorptions of C-D bonds introduced at residues along a peptide of the Pbs2 PR sequence report on the changes in the local environments upon binding to the SH3 domain. Interestingly, upon forming the complex the IR spectra of the peptides labeled with C-D bonds at either of the two conserved prolines of the PXXP consensus recognition sequence show more absorptions than there are C-D bonds, providing evidence for the population of multiple states. In contrast, the NMR spectra of the peptides labeled with (13)C at the same residues show only single resonances, indicating rapid interconversion on the NMR time scale. Thus, the data suggest that the SH3 domain recognizes its cognate peptide with a component of induced fit molecular recognition involving the adoption of multiples states, which have previously gone undetected due to interconversion between the populated states that is too fast to resolve using conventional methods.
Collapse
Affiliation(s)
- Rachel E Horness
- Department of Chemistry, Indiana University , 800 East Kirkwood, Bloomington, Indiana 47405, United States
| | - Edward J Basom
- Department of Chemistry, Indiana University , 800 East Kirkwood, Bloomington, Indiana 47405, United States
| | - John P Mayer
- Department of Chemistry, Indiana University , 800 East Kirkwood, Bloomington, Indiana 47405, United States
| | - Megan C Thielges
- Department of Chemistry, Indiana University , 800 East Kirkwood, Bloomington, Indiana 47405, United States
| |
Collapse
|
9
|
Lu R, Li WW, Katzir A, Raichlin Y, Mizaikoff B, Yu HQ. Fourier transform infrared spectroscopy on external perturbations inducing secondary structure changes of hemoglobin. Analyst 2016; 141:6061-6067. [DOI: 10.1039/c6an01477a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The secondary structure of proteins and their conformation are intimately related to their biological functions.
Collapse
Affiliation(s)
- Rui Lu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P.R. China
| | - Abraham Katzir
- School of Physics
- Tel-Aviv University
- Tel-Aviv 69978
- Israel
| | - Yosef Raichlin
- Department of Applied Physics
- Ariel University Center of Samaria
- Ariel
- Israel
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- 89081 Ulm
- Germany
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P.R. China
| |
Collapse
|
10
|
Wang T, Zhang H, Wang L, Wang R, Chen Z. Mechanistic insights into solubilization of rice protein isolates by freeze–milling combined with alkali pretreatment. Food Chem 2015; 178:82-8. [DOI: 10.1016/j.foodchem.2015.01.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
|
11
|
Shanmugaraj K, Anandakumar S, Ilanchelian M. Unraveling the binding interaction of Toluidine blue O with bovine hemoglobin – a multi spectroscopic and molecular modeling approach. RSC Adv 2015. [DOI: 10.1039/c4ra11136b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Toluidine blue O (TBO) is a cationic photosensitizer that belongs to the class of phenothiazinium dyes.
Collapse
|
12
|
Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci U S A 2014; 112:E194-203. [PMID: 25550518 DOI: 10.1073/pnas.1420406112] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. In this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D2O) combined with Raman microspectroscopy. Incorporation of D2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labeling pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics.
Collapse
|
13
|
Adhikary R, Zimmermann J, Liu J, Forrest RP, Janicki TD, Dawson PE, Corcelli SA, Romesberg FE. Evidence of an unusual N-H···N hydrogen bond in proteins. J Am Chem Soc 2014; 136:13474-7. [PMID: 25226114 DOI: 10.1021/ja503107h] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many residues within proteins adopt conformations that appear to be stabilized by interactions between an amide N-H and the amide N of the previous residue. To explore whether these interactions constitute hydrogen bonds, we characterized the IR stretching frequencies of deuterated variants of proline and the corresponding carbamate, as well as the four proline residues of an Src homology 3 domain protein. The CδD2 stretching frequencies are shifted to lower energies due to hyperconjugation with Ni electron density, and engaging this density via protonation or the formation of the Ni+1-H···Ni interaction ablates this hyperconjugation and thus induces an otherwise difficult to explain blue shift in the C-D absorptions. Along with density functional theory calculations, the data reveal that the Ni+1-H···Ni interactions constitute H-bonds and suggest that they may play an important and previously underappreciated role in protein folding, structure, and function.
Collapse
Affiliation(s)
- Ramkrishna Adhikary
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Carbon-deuterium bonds as non-perturbative infrared probes of protein dynamics, electrostatics, heterogeneity, and folding. Methods Mol Biol 2014; 1084:101-19. [PMID: 24061918 DOI: 10.1007/978-1-62703-658-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Vibrational spectroscopy is uniquely able to characterize protein dynamics and microenvironmental heterogeneity because it possesses an inherently high temporal resolution and employs probes of ultimately high structural resolution-the bonds themselves. The use of carbon-deuterium (C-D) bonds as vibrational labels circumvents the spectral congestion that otherwise precludes the use of vibrational spectroscopy to proteins and makes the observation of single vibrations within a protein possible while being wholly non-perturbative. Thus, C-D probes can be used to site-specifically characterize conformational heterogeneity and thermodynamic stability. C-D probes are also uniquely useful in characterizing the electrostatic microenvironment experienced by a specific residue side chain or backbone due to its effect on the C-D absorption frequency. In this chapter we describe the experimental procedures required to use C-D bonds and FT IR spectroscopy to characterize protein dynamics, structural and electrostatic heterogeneity, ligand binding, and folding.
Collapse
|
15
|
Shanmugaraj K, Anandakumar S, Ilanchelian M. Exploring the biophysical aspects and binding mechanism of thionine with bovine hemoglobin by optical spectroscopic and molecular docking methods. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 131:43-52. [DOI: 10.1016/j.jphotobiol.2014.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/19/2013] [Accepted: 01/05/2014] [Indexed: 10/25/2022]
|
16
|
Adhikary R, Zimmermann J, Liu J, Dawson PE, Romesberg FE. Experimental characterization of electrostatic and conformational heterogeneity in an SH3 domain. J Phys Chem B 2013; 117:13082-9. [PMID: 23834285 DOI: 10.1021/jp402772x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrostatic and conformational heterogeneity make central contributions to protein function, but their experimental characterization requires a combination of spatial and temporal resolution that is challenging to achieve. Src homology 3 (SH3) domains mediate protein-protein interactions, and NMR studies have demonstrated that most possess conformational heterogeneity, which could be critical for their function. Here, we use the IR absorptions of carbon-deuterium (C-D) bonds site-selectively incorporated throughout the N-terminal SH3 domain from the murine adapter protein Crk-II to characterize its different microenvironments with high spatial and temporal resolution. The C-D absorptions are only differentiated in the folded state of the protein where they show evidence of significant environmental heterogeneity. However, the spectra of the folded state are independent of temperature, and upon thermal denaturation the protein undergoes a single, global unfolding transition. While some evidence of conformational heterogeneity is found within the peptide backbone, the majority of the environmental heterogeneity appears to result from electrostatics.
Collapse
Affiliation(s)
- Ramkrishna Adhikary
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | |
Collapse
|
17
|
Hoffman KW, Romei MG, Londergan CH. A New Raman Spectroscopic Probe of Both the Protonation State and Noncovalent Interactions of Histidine Residues. J Phys Chem A 2013; 117:5987-96. [DOI: 10.1021/jp311815k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kevin W. Hoffman
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United
States
| | - Matthew G. Romei
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United
States
| | - Casey H. Londergan
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, United
States
| |
Collapse
|
18
|
Tang J, Yang C, Zhou L, Ma F, Liu S, Wei S, Zhou J, Zhou Y. Studies on the binding behavior of prodigiosin with bovine hemoglobin by multi-spectroscopic techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 96:461-467. [PMID: 22728237 DOI: 10.1016/j.saa.2012.05.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/17/2012] [Accepted: 05/26/2012] [Indexed: 06/01/2023]
Abstract
In this article, the interaction mechanism of prodigiosin (PG) with bovine hemoglobin (BHb) is studied in detail using various spectroscopic technologies. UV-vis absorption and fluorescence spectra demonstrate the interaction process. The Stern-Volmer plot and the time-resolved fluorescence study suggest the quenching mechanism of fluorescence of BHb by PG is a static quenching procedure, and the hydrophobic interactions play a major role in binding of PG to BHb. Furthermore, synchronous fluorescence studies, Fourier transform infrared (FTIR) and circular dichroism (CD) spectra reveal that the conformation of BHb is changed after conjugation with PG.
Collapse
Affiliation(s)
- Jing Tang
- College of Chemistry and Materials Science, Analysis and Testing Center, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210046, PR China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yu W, Dawson PE, Zimmermann J, Romesberg FE. Carbon-deuterium bonds as probes of protein thermal unfolding. J Phys Chem B 2012; 116:6397-403. [PMID: 22625650 DOI: 10.1021/jp303521t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We report a residue-specific characterization of the thermal unfolding mechanism of ferric horse heart cytochrome c using C-D bonds site-specifically incorporated at residues dispersed throughout three different structural elements within the protein. As the temperature increases, Met80 first dissociates from the heme center, and the protein populates a folding intermediate before transitioning to a solvent exposed state. With further increases in temperature, the C-terminal helix frays and then loses structure along with the core of the protein. Interestingly, the data also reveal that the state populated at high temperature retains some structure and possibly represents a molten globule. Elucidation of the detailed unfolding mechanism and the structure of the associated molten globule, both of which represent challenges to conventional techniques, highlights the utility of the C-D technique.
Collapse
Affiliation(s)
- Wayne Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | |
Collapse
|
20
|
Abstract
Isotope-edited infrared (IR) spectroscopy is a powerful tool for studying structural and dynamical properties of peptides and proteins with site-specific resolution. Labeling of selected amide carbonyls with (13)C results in detectable sidebands of amide I' vibrations, which provide information about local conformation and/or solvent exposure without structural perturbation to the protein. Incorporation of isotopically labeled amino acids at specific positions is achieved by the chemical synthesis of the studied proteins. We describe the basic procedures for synthesis of (13)C isotopically edited protein samples, experimental IR spectroscopic measurements, and analysis of the site-specific structural changes from the thermal unfolding IR data.
Collapse
Affiliation(s)
- Ginka S Buchner
- Department of Chemistry, University of Wyoming, Laramie, WY, USA
| | | |
Collapse
|
21
|
Yang H, Habchi J, Longhi S, Londergan CH. Monitoring structural transitions in IDPs by vibrational spectroscopy of cyanylated cysteine. Methods Mol Biol 2012; 895:245-270. [PMID: 22760324 DOI: 10.1007/978-1-61779-927-3_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The fast intrinsic time scale of infrared absorption and the sensitivity of molecular vibrational frequencies to their environments can be applied with site-specificity by introducing the artificial amino acid β-thiocyanatoalanine, or cyanylated cysteine, into chosen sites within intrinsically disordered proteins. This amino acid can be inserted through native chemical ligation at single cysteines introduced via site-directed mutagenesis. The CN stretching band of cyanylated cysteine is sensitive to local changes in both structural content and solvent exposure. This dual sensitivity makes cyanylated cysteine an especially useful probe of binding-induced structural transitions in IDPs. The general strategy of creating single-site cysteine mutations and chemically modifying them to create the vibrational chromophore, as well as observation, processing and analysis of the CN stretching band, is presented.
Collapse
Affiliation(s)
- Hailiu Yang
- Department of Chemistry, Haverford College, Haverford, PA, USA
| | | | | | | |
Collapse
|
22
|
Hickert AS, Durgan AC, Patton DA, Blake SA, Cremeens ME. A B3LYP investigation of the conformational and environmental sensitivity of carbon–deuterium frequencies of aryl-perdeuterated phenylalanine and tryptophan. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-1050-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Thielges MC, Axup JY, Wong D, Lee HS, Chung JK, Schultz PG, Fayer MD. Two-dimensional IR spectroscopy of protein dynamics using two vibrational labels: a site-specific genetically encoded unnatural amino acid and an active site ligand. J Phys Chem B 2011; 115:11294-304. [PMID: 21823631 PMCID: PMC3261801 DOI: 10.1021/jp206986v] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protein dynamics and interactions in myoglobin (Mb) were characterized via two vibrational dynamics labels (VDLs): a genetically incorporated site-specific azide (Az) bearing unnatural amino acid (AzPhe43) and an active site CO ligand. The Az-labeled protein was studied using ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy. CO bound at the active site of the heme serves as a second VDL located nearby. Therefore, it was possible to use Fourier transform infrared (FT-IR) and 2D IR spectroscopic experiments on the Az in unligated Mb and in Mb bound to CO (MbAzCO) and on the CO in MbCO and MbAzCO to investigate the environment and motions of different states of one protein from the perspective of two spectrally resolved VDLs. A very broad bandwidth 2D IR spectrum, encompassing both the Az and CO spectral regions, found no evidence of direct coupling between the two VDLs. In MbAzCO, both VDLs reported similar time scale motions: very fast homogeneous dynamics, fast, ∼1 ps dynamics, and dynamics on a much slower time scale. Therefore, each VDL reports independently on the protein dynamics and interactions, and the measured dynamics are reflective of the protein motions rather than intrinsic to the chemical nature of the VDL. The AzPhe VDL also permitted study of oxidized Mb dynamics, which could not be accessed previously with 2D IR spectroscopy. The experiments demonstrate that the combined application of 2D IR spectroscopy and site-specific incorporation of VDLs can provide information on dynamics, structure, and interactions at virtually any site throughout any protein.
Collapse
Affiliation(s)
- Megan C. Thielges
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jun Y. Axup
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Daryl Wong
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 121-742, Korea
| | - Jean K. Chung
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Peter G. Schultz
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
24
|
Shao Q, Wu P, Gu P, Xu X, Zhang H, Cai C. Electrochemical and Spectroscopic Studies on the Conformational Structure of Hemoglobin Assembled on Gold Nanoparticles. J Phys Chem B 2011; 115:8627-37. [DOI: 10.1021/jp203344u] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qian Shao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofunctional Materials, Laboratory of Electrochemistry, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, People's Republic of China
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofunctional Materials, Laboratory of Electrochemistry, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, People's Republic of China
| | - Piao Gu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofunctional Materials, Laboratory of Electrochemistry, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, People's Republic of China
| | - Xiaoqing Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofunctional Materials, Laboratory of Electrochemistry, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, People's Republic of China
- Department of Pharmacy, College of Jiangsu Jiankang Profession, Nanjing 210029, People's Republic of China
| | - Hui Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofunctional Materials, Laboratory of Electrochemistry, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, People's Republic of China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofunctional Materials, Laboratory of Electrochemistry, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, People's Republic of China
| |
Collapse
|
25
|
Remorino A, Korendovych IV, Wu Y, DeGrado WF, Hochstrasser RM. Residue-specific vibrational echoes yield 3D structures of a transmembrane helix dimer. Science 2011; 332:1206-9. [PMID: 21636774 PMCID: PMC3295544 DOI: 10.1126/science.1202997] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Two-dimensional (2D) vibrational echo spectroscopy has previously been applied to structural determination of small peptides. Here we extend the technique to a more complex, biologically important system: the homodimeric transmembrane dimer from the α chain of the integrin α(IIb)β(3). We prepared micelle suspensions of the pair of 30-residue chains that span the membrane in the native structure, with varying levels of heavy ((13)C=(18)O) isotopes substituted in the backbone of the central 10th through 20th positions. The constraints derived from vibrational coupling of the precisely spaced heavy residues led to determination of an optimized structure from a range of model candidates: Glycine residues at the 12th, 15th, and 16th positions form a tertiary contact in parallel right-handed helix dimers with crossing angles of -58° ± 9° and interhelical distances of 7.7 ± 0.5 angstroms. The frequency correlation established the dynamical model used in the analysis, and it indicated the absence of mobile water associated with labeled residues. Delocalization of vibrational excitations between the helices was also quantitatively established.
Collapse
Affiliation(s)
- Amanda Remorino
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | | | | | | | | |
Collapse
|
26
|
Edelstein L, Stetz MA, McMahon HA, Londergan CH. The effects of alpha-helical structure and cyanylated cysteine on each other. J Phys Chem B 2010; 114:4931-6. [PMID: 20297787 PMCID: PMC2851192 DOI: 10.1021/jp101447r] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
β-Thiocyanatoalanine, or cyanylated cysteine, is an artificial amino acid that can be introduced at solvent-exposed cysteine residues in proteins via chemical modification. Its facile post-translational synthesis means that it may find broad use in large protein systems as a probe of site-specific structure and dynamics. The C≡N stretching vibration of this artificial side chain provides an isolated infrared chromophore. To test both the perturbative effect of this side chain on local secondary structure and its sensitivity to structural changes, three variants of a model water-soluble alanine-repeat helix were synthesized containing cyanylated cysteine at different sites. The cyanylated cysteine side chain is shown to destabilize, but not completely disrupt, the helical structure of the folded peptide when substituted for alanine. In addition, the C≡N stretching bandwidth of the artificial side chain is sensitive to the helix−coil structural transition. These model system results indicate that cyanylated cysteine can be placed into protein sequences with a native helical propensity without destroying the helix, and further that the CN probe may be able to report local helix formation events even when it is water-exposed in both the ordered and disordered conformational states. These results indicate that cyanylated cysteine could be a widely useful probe of structure-forming events in proteins with large in vitro structural distributions.
Collapse
Affiliation(s)
- Lena Edelstein
- Department of Chemistry, Haverford College 370 Lancaster Avenue, Haverford, Pennsylvania 19041-1392, USA
| | | | | | | |
Collapse
|
27
|
Miller CS, Corcelli SA. Carbon−Deuterium Vibrational Probes of the Protonation State of Histidine in the Gas-Phase and in Aqueous Solution. J Phys Chem B 2010; 114:8565-73. [DOI: 10.1021/jp1028596] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. S. Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - S. A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
28
|
Li X, Zheng W, Zhang L, Yu P, Lin Y, Su L, Mao L. Effective Electrochemical Method for Investigation of Hemoglobin Unfolding Based on the Redox Property of Heme Groups at Glassy Carbon Electrodes. Anal Chem 2009; 81:8557-63. [DOI: 10.1021/ac9015215] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xianchan Li
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Wei Zheng
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Limin Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Yuqing Lin
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Lei Su
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| |
Collapse
|
29
|
Schade M, Moretto A, Crisma M, Toniolo C, Hamm P. Vibrational Energy Transport in Peptide Helices after Excitation of C−D Modes in Leu-d10. J Phys Chem B 2009; 113:13393-7. [DOI: 10.1021/jp906363a] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marco Schade
- Physikalisch-Chemisches Institut, Universität Zürich, CH-8057 Zürich, Switzerland, and Institute of Biomolecular Chemistry, Padova Unit, CNR, Department of Chemistry, University of Padova, I-35131 Padova, Italy
| | - Alessandro Moretto
- Physikalisch-Chemisches Institut, Universität Zürich, CH-8057 Zürich, Switzerland, and Institute of Biomolecular Chemistry, Padova Unit, CNR, Department of Chemistry, University of Padova, I-35131 Padova, Italy
| | - Marco Crisma
- Physikalisch-Chemisches Institut, Universität Zürich, CH-8057 Zürich, Switzerland, and Institute of Biomolecular Chemistry, Padova Unit, CNR, Department of Chemistry, University of Padova, I-35131 Padova, Italy
| | - Claudio Toniolo
- Physikalisch-Chemisches Institut, Universität Zürich, CH-8057 Zürich, Switzerland, and Institute of Biomolecular Chemistry, Padova Unit, CNR, Department of Chemistry, University of Padova, I-35131 Padova, Italy
| | - Peter Hamm
- Physikalisch-Chemisches Institut, Universität Zürich, CH-8057 Zürich, Switzerland, and Institute of Biomolecular Chemistry, Padova Unit, CNR, Department of Chemistry, University of Padova, I-35131 Padova, Italy
| |
Collapse
|
30
|
Miller CS, Ploetz EA, Cremeens ME, Corcelli SA. Carbon-deuterium vibrational probes of peptide conformation: alanine dipeptide and glycine dipeptide. J Chem Phys 2009; 130:125103. [PMID: 19334896 DOI: 10.1063/1.3100185] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The utility of alpha-carbon deuterium-labeled bonds (C(alpha)-D) as infrared reporters of local peptide conformation was investigated for two model dipeptide compounds: C(alpha)-D labeled alanine dipeptide (Adp-d(1)) and C(alpha)-D(2) labeled glycine dipeptide (Gdp-d(2)). These model compounds adopt structures that are analogous to the motifs found in larger peptides and proteins. For both Adp-d(1) and Gdp-d(2), we systematically mapped the entire conformational landscape in the gas phase by optimizing the geometry of the molecule with the values of phi and psi, the two dihedral angles that are typically used to characterize the backbone structure of peptides and proteins, held fixed on a uniform grid with 7.5 degrees spacing. Since the conformations were not generally stationary states in the gas phase, we then calculated anharmonic C(alpha)-D and C(alpha)-D(2) stretch transition frequencies for each structure. For Adp-d(1) the C(alpha)-D stretch frequency exhibited a maximum variability of 39.4 cm(-1) between the six stable structures identified in the gas phase. The C(alpha)-D(2) frequencies of Gdp-d(2) show an even more substantial difference between its three stable conformations: there is a 40.7 cm(-1) maximum difference in the symmetric C(alpha)-D(2) stretch frequencies and an 81.3 cm(-1) maximum difference in the asymmetric C(alpha)-D(2) stretch frequencies. Moreover, the splitting between the symmetric and asymmetric C(alpha)-D(2) stretch frequencies of Gdp-d(2) is remarkably sensitive to its conformation.
Collapse
Affiliation(s)
- C S Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
31
|
Zimmermann J, Gundogdu K, Cremeens ME, Bandaria JN, Hwang GT, Thielges MC, Cheatum CM, Romesberg FE. Efforts toward developing probes of protein dynamics: vibrational dephasing and relaxation of carbon-deuterium stretching modes in deuterated leucine. J Phys Chem B 2009; 113:7991-4. [PMID: 19441845 DOI: 10.1021/jp900516c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The spectral position of C-D stretching absorptions in the so-called "transparent window" of protein absorption (1800-2300 cm(-1)) makes them well suited as probes of protein dynamics with high temporal and structural resolution. We have previously incorporated single deuterated amino acids into proteins to site-selectively follow protein folding and ligand binding by steady-state FT IR spectroscopy. Ultimately, our goal is to use C-D bonds as probes in time-resolved IR spectroscopy to study dynamics and intramolecular vibrational energy redistribution (IVR) in proteins. As a step toward this goal, we now present the first time-resolved experiments characterizing the population and dephasing dynamics of selectively excited C-D bonds in a deuterated amino acid. Three differently deuterated, Boc-protected leucines were selected to systematically alter the number of additional C-D bonds that may mediate IVR out of the initially populated bright C-D stretching mode. Three-pulse photon echo experiments show that the steady-state C-D absorption linewidths are broadened by both homogeneous and inhomogeneous effects, and transient grating experiments reveal that IVR occurs on a subpicosecond time scale and is nonstatistical. The results have important implications for the interpretation of steady-state C-D spectra and demonstrate the potential utility of C-D bonds as probes of dynamics and IVR within a protein.
Collapse
|
32
|
Andresen ER, Hamm P. Site-specific difference 2D-IR spectroscopy of bacteriorhodopsin. J Phys Chem B 2009; 113:6520-7. [PMID: 19358550 DOI: 10.1021/jp810397u] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We demonstrate the extension of the principle of difference Fourier transform infrared (FTIR) spectroscopy to difference 2D-IR spectroscopy. To this end, we measure difference 2D-IR spectra of the protein bacteriorhodopsin in its early J- and K-intermediates. By comparing with the static 2D-IR spectrum of the protonated Schiff base of all-trans retinal, we demonstrate that the 2D-IR spectrum of the all-trans retinal chromophore in bacteriorhodopsin can be measured with the background from the remainder of the protein completely suppressed. We discuss several models to interpret the detailed line shape of the difference 2D-IR spectrum.
Collapse
Affiliation(s)
- Esben Ravn Andresen
- Physikalisch-Chemisches Institut, Universitat Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | |
Collapse
|
33
|
Naraharisetty SRG, Kasyanenko VM, Zimmermann J, Thielges MC, Romesberg FE, Rubtsov IV. C-D modes of deuterated side chain of leucine as structural reporters via dual-frequency two-dimensional infrared spectroscopy. J Phys Chem B 2009; 113:4940-6. [PMID: 19298041 DOI: 10.1021/jp8112446] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Perdeuteration of the side chains of amino acids such as leucine results in appearance of reasonably strong absorption peaks around 2050-2220 cm(-1) that belong to the CD stretching modes and exhibit extinction coefficients of up to 120 M(-1) cm(-1). The properties of the CD stretching transitions in leucine-d(10) as structural labels are studied via the methods of two-dimensional infrared (2DIR) spectroscopy. The cross peaks caused by interactions of the CD stretching modes with amide I (Am-I), CO, and amide II (Am-II) modes are obtained by the dual-frequency 2DIR method. The CD stretching peaks in leucine-d(10) are characterized using DFT computational modeling as well as relaxation-assisted 2DIR (RA 2DIR) measurements. The RA 2DIR measurements showed different enhancements and different energy transport times (arrival times) for different CD/Am-II and CD/CO cross peaks; a correlation between the intermode distance, the arrival time, and the amplification factor is reported. We demonstrated that the CD transitions of leucine-d(10) amino acid can serve as convenient structural reporters via the dual-frequency 2DIR methods and discussed the potential of leucine-d(10) and other amino acids with deuterium-labeled side chains as probes of protein structure and dynamics.
Collapse
|
34
|
Groff D, Thielges MC, Cellitti S, Schultz PG, Romesberg FE. Efforts toward the direct experimental characterization of enzyme microenvironments: tyrosine100 in dihydrofolate reductase. Angew Chem Int Ed Engl 2009; 48:3478-81. [PMID: 19347910 DOI: 10.1002/anie.200806239] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
State secrets: Site-specific deuteration and FTIR studies reveal that Tyr100 in dihydrofolate reductase plays an important role in catalysis, with a strong electrostatic coupling occurring between Tyr100 and the charge that develops in the hydride-transfer transition state (see picture, NADP(+) purple, Tyr100 green). However, relaying correlated motions that facilitate catalysis from distal sites of the protein to the hydride donor may also be involved.
Collapse
Affiliation(s)
- Dan Groff
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
35
|
Groff D, Thielges M, Cellitti S, Schultz P, Romesberg F. Efforts Toward the Direct Experimental Characterization of Enzyme Microenvironments: Tyrosine100 in Dihydrofolate Reductase. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200806239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Thielges MC, Zimmermann J, Dawson PE, Romesberg FE. The determinants of stability and folding in evolutionarily diverged cytochromes c. J Mol Biol 2009; 388:159-67. [PMID: 19268474 PMCID: PMC2990880 DOI: 10.1016/j.jmb.2009.02.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/25/2009] [Accepted: 02/24/2009] [Indexed: 12/01/2022]
Abstract
Cytochrome c has served as a paradigm for the study of protein stability, folding, and molecular evolution, but it remains unclear how these aspects of the protein are related. For example, while the bovine and equine cytochromes c are known to have different stabilities, and possibly different folding mechanisms, it is not known how these differences arise from just three amino acid substitutions introduced during divergence. Using site-selectively incorporated carbon-deuterium bonds, we show that like the equine protein, bovine cytochrome c is induced to unfold by guanidine hydrochloride via a stepwise mechanism, but it does not populate an intermediate as is observed with the equine protein. The increased stability also results in more similar free energies of unfolding observed at different sites within the protein, giving the appearance of a more concerted mechanism. Furthermore, we show that the differences in stability and folding appear to result from a single amino acid substitution that stabilizes a helix by allowing for increased solvation of its N-terminus.
Collapse
Affiliation(s)
- Megan C. Thielges
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Jörg Zimmermann
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Philip E. Dawson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
37
|
Cai K, Wang J. Multiple Anharmonic Vibrational Probes of Sugar Structure and Dynamics. J Phys Chem B 2009; 113:1681-92. [DOI: 10.1021/jp8070025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kaicong Cai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| |
Collapse
|
38
|
Lindquist BA, Furse KE, Corcelli SA. Nitrile groups as vibrational probes of biomolecular structure and dynamics: an overview. Phys Chem Chem Phys 2009; 11:8119-32. [DOI: 10.1039/b908588b] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Kubelka J. Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics. Photochem Photobiol Sci 2009; 8:499-512. [DOI: 10.1039/b819929a] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
40
|
Lindquist BA, Haws RT, Corcelli SA. Optimized Quantum Mechanics/Molecular Mechanics Strategies for Nitrile Vibrational Probes: Acetonitrile and para-Tolunitrile in Water and Tetrahydrofuran. J Phys Chem B 2008; 112:13991-4001. [DOI: 10.1021/jp804900u] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Beth A. Lindquist
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Ryan T. Haws
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
41
|
Oh KI, Lee JH, Joo C, Han H, Cho M. β-Azidoalanine as an IR Probe: Application to Amyloid Aβ(16-22) Aggregation. J Phys Chem B 2008; 112:10352-7. [DOI: 10.1021/jp801558k] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry and Center for Multidimensional Spectroscopy, Korea University, Seoul 136-701, Korea, and Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713, Korea
| | - Joo-Hyun Lee
- Department of Chemistry and Center for Multidimensional Spectroscopy, Korea University, Seoul 136-701, Korea, and Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713, Korea
| | - Cheonik Joo
- Department of Chemistry and Center for Multidimensional Spectroscopy, Korea University, Seoul 136-701, Korea, and Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713, Korea
| | - Hogyu Han
- Department of Chemistry and Center for Multidimensional Spectroscopy, Korea University, Seoul 136-701, Korea, and Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713, Korea
| | - Minhaeng Cho
- Department of Chemistry and Center for Multidimensional Spectroscopy, Korea University, Seoul 136-701, Korea, and Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713, Korea
| |
Collapse
|
42
|
Koziński M, Garrett-Roe S, Hamm P. 2D-IR Spectroscopy of the Sulfhydryl Band of Cysteines in the Hydrophobic Core of Proteins. J Phys Chem B 2008; 112:7645-50. [DOI: 10.1021/jp8005734] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- M. Koziński
- Physikalisch-Chemisches Institut, Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - S. Garrett-Roe
- Physikalisch-Chemisches Institut, Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - P. Hamm
- Physikalisch-Chemisches Institut, Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
43
|
Lindquist BA, Corcelli SA. Nitrile Groups as Vibrational Probes: Calculations of the C≡N Infrared Absorption Line Shape of Acetonitrile in Water and Tetrahydrofuran. J Phys Chem B 2008; 112:6301-3. [DOI: 10.1021/jp802039e] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Beth A. Lindquist
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
44
|
Kinnaman CS, Cremeens ME, Romesberg FE, Corcelli SA. Infrared line shape of an alpha-carbon deuterium-labeled amino acid. J Am Chem Soc 2007; 128:13334-5. [PMID: 17031927 DOI: 10.1021/ja064468z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The viability of alpha-carbon deuterated bonds (Calpha-D) as infrared (IR) probes of protein backbone dynamics was explored through a combination of experiment and theory. alpha-Carbon deuterated alanine (Ala-d1) served as a convenient model system for a comparison of experiment, density functional theory (DFT), and combined quantum mechanical/molecular mechanical (QM/MM) simulations of the Calpha-D IR line shape. In addition to the primary Calpha-D absorption, the experimental spectrum contains three features that likely result from Fermi resonances. DFT calculations supported the assignments and identified the lower frequency modes participating in the Fermi resonances. A QM/MM simulation of the Ala-d1 line shape was in qualitative agreement with the experiment, including the presence of classical analogues of Fermi resonances. These studies demonstrated that the Calpha-D line shape is sensitive, via Fermi resonances, to lower frequency collective vibrations that are expected to play a role in protein dynamics and function, and that the QM/MM approach, which is applicable to proteins, is capable of aiding in their interpretation.
Collapse
Affiliation(s)
- Carrie S Kinnaman
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
45
|
Cremeens ME, Fujisaki H, Zhang Y, Zimmermann J, Sagle LB, Matsuda S, Dawson PE, Straub JE, Romesberg FE. Efforts toward developing direct probes of protein dynamics. J Am Chem Soc 2007; 128:6028-9. [PMID: 16669659 DOI: 10.1021/ja061328g] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the first IR characterization of a single C-D bond within a protein, methyl-d1 Met80 of horse heart cytochrome c. A comparison was made to methyl-d1/d3 methionine as well as methyl-d3 Met80. We found that for methyl-d1 and the asymmetric stretches of methyl-d3, line widths/line shapes are dominated by inhomogeneous broadening, whereas the symmetric stretch of methyl-d3 has a significant homogeneous component. Vibrational energy relaxation calculations found that a significantly stronger Fermi resonance exists for the symmetric stretch than for the asymmetric stretches, thereby suggesting that a difference in intramolecular vibrational relaxation (IVR) causes the observed line width/line shape difference between the symmetric and asymmetric stretches.
Collapse
Affiliation(s)
- Matthew E Cremeens
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sagle LB, Zimmermann J, Dawson PE, Romesberg FE. Direct and High Resolution Characterization of Cytochrome c Equilibrium Folding. J Am Chem Soc 2006; 128:14232-3. [PMID: 17076477 DOI: 10.1021/ja065179d] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein folding has emerged as a central problem in biophysics, and the equilibrium folding mechanism of cytochrome c (cyt c) has served as a model system. Unfortunately, the detailed characterization of both the folding process and of any intermediate that might be populated has been limited by the low structural and/or temporal resolution of the available techniques. Here, we report the use of a recently developed technique to study folding that is based on the site-selective incorporation of carbon-deuterium (C-D) bonds and their characterization by IR spectroscopy. Specifically, we synthesize and characterize the protein with deuterated residues spread throughout four structural motifs: (d3)Leu68 in the 60's helix, (d8)Lys72 and (d8)Lys73 in the 70's helix, (d8)Lys79, (d3)Met80, and (d3)Ala83 in the D-loop, and (d3)Leu94, (d3)Leu98, and (d3)Ala101 in the C-terminal helix. The data reveal correlated behavior of the residues within each structural motif, as well as between the residues of the 60's and C-terminal helices and between residues of the 70's helix and D-loop. Residues of the 70's helix and the D-loop are more stable than those within the 60's and C-terminal helices, although the former are more sensitive to added denaturant. The data also suggest that the hydrophobicity of the heme cofactor plays a central role in folding. These results contrast with those from previous H/D exchange studies and suggest that the low denaturant fluctuations observed in the H/D exchange experiments are not similar to those through which the protein actually unfolds. The inherently fast time scale of IR also allows us to characterize the folding intermediate, long thought to be present, but which has proven difficult to characterize by other techniques.
Collapse
Affiliation(s)
- Laura B Sagle
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
47
|
Sagle LB, Zimmermann J, Matsuda S, Dawson PE, Romesberg FE. Redox-Coupled Dynamics and Folding in Cytochrome c. J Am Chem Soc 2006; 128:7909-15. [PMID: 16771505 DOI: 10.1021/ja060851s] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome c functions as an electron carrier in the mitochondrial electron-transport chain using the Fe(II)-Fe(III) redox couple of a covalently attached heme prosthetic group, and it has served as a paradigm for both biological redox activity and protein folding. On the basis of a wide variety of biophysical techniques, it has been suggested that the protein is more flexible in the oxidized state than in the reduced state, which has led to speculation that it is the dynamics of the protein that has been evolved to control the cofactor's redox properties. To test this hypothesis, we incorporated carbon-deuterium bonds throughout cytochrome c and characterized their absorption frequencies and line widths using IR spectroscopy. The absorption frequencies of several residues on the proximal side of the heme show redox-dependent changes, but none show changes in line width, implying that the flexibility of the oxidized and reduced proteins is not different. However, the spectra demonstrate that folded protein is in equilibrium with a surprisingly large amount of locally unfolded protein, which increases with oxidation for residues localized to the proximal side of the heme. The data suggest that while the oxidized protein is not more flexible than the reduced protein, it is more locally unfolded. Local unfolding of cytochrome c might be one mechanism whereby the protein evolved to control electron transfer.
Collapse
Affiliation(s)
- Laura B Sagle
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
48
|
Ha JH, Kim YS, Hochstrasser RM. Vibrational dynamics of N–H, C–D, and CO modes in formamide. J Chem Phys 2006; 124:64508. [PMID: 16483221 DOI: 10.1063/1.2162165] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By means of heterodyned two-dimensional IR photon echo experiments on liquid formamide and isotopomers the vibrational frequency dynamics of the N-H stretch mode, the C-D mode, and the C=O mode were obtained. In each case the vibrational frequency correlation function is fitted to three exponentials representing ultrafast (few femtoseconds), intermediate (hundreds of femtoseconds), and slow (many picoseconds) correlation times. In the case of N-H there is a significant underdamped contribution to the correlation decay that was not seen in previous experiments and is attributed to hydrogen-bond librational modes. This underdamped motion is not seen in the C-D or C=O correlation functions. The motions probed by the C-D bond are generally faster than those seen by N-H and C=O, indicating that the environment of C-D interchanges more rapidly, consistent with a weaker C-D...O=C bond. The correlation decays of N-H and C=O are similar, consistent with both being involved in strong H bonding.
Collapse
Affiliation(s)
- Jeong-Hyon Ha
- Department of Chemistry, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | |
Collapse
|
49
|
Abstract
Dansyl-to-heme distance distributions [P(r)] during folding have been determined in five variants of Saccharomyces cerevisiae iso-1 ferricytochrome c (labeled at mutant Cys residues 4, 39, 50, 66, and 99) by analysis of fluorescence energy-transfer kinetics. Moment analysis of the P(r) distributions clearly indicates that cytochrome c refolding is not a simple two-state process. After 1 ms of folding, the polypeptide ensemble is not uniformly collapsed and there are site variations in the relative populations of collapsed structures. P(r) distributions reveal structural features of the multiple intermediate species and evolution of the polypeptide ensemble.
Collapse
|
50
|
Kumar S, Khan ZA, Parveen N, Kabir-ud-Din. Influence of different ureas on aggregational properties of aqueous surfactant systems. Colloids Surf A Physicochem Eng Asp 2005. [DOI: 10.1016/j.colsurfa.2005.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|