1
|
Oelschlaeger P, Kaadan H, Dhungana R. Strategies to Name Metallo-β-Lactamases and Number Their Amino Acid Residues. Antibiotics (Basel) 2023; 12:1746. [PMID: 38136780 PMCID: PMC10740994 DOI: 10.3390/antibiotics12121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Metallo-β-lactamases (MBLs), also known as class B β-lactamases (BBLs), are Zn(II)-containing enzymes able to inactivate a broad range of β-lactams, the most commonly used antibiotics, including life-saving carbapenems. They have been known for about six decades, yet they have only gained much attention as a clinical problem for about three decades. The naming conventions of these enzymes have changed over time and followed various strategies, sometimes leading to confusion. We are summarizing the naming strategies of the currently known MBLs. These enzymes are quite diverse on the amino acid sequence level but structurally similar. Problems trying to describe conserved residues, such as Zn(II) ligands and other catalytically important residues, which have different numbers in different sequences, have led to the establishment of a standard numbering scheme for BBLs. While well intended, the standard numbering scheme is not trivial and has not been applied consistently. We revisit this standard numbering scheme and suggest some strategies for how its implementation could be made more accessible to researchers. Standard numbering facilitates the comparison of different enzymes as well as their interaction with novel antibiotics and BBL inhibitors.
Collapse
Affiliation(s)
- Peter Oelschlaeger
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (H.K.)
| | - Heba Kaadan
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (H.K.)
| | - Rinku Dhungana
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (H.K.)
- Department of Biological Sciences, Kenneth P. Dietrich School of Arts & Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Hinchliffe P, Calvopiña K, Rabe P, Mojica MF, Schofield CJ, Dmitrienko GI, Bonomo RA, Vila AJ, Spencer J. Interactions of hydrolyzed β-lactams with the L1 metallo-β-lactamase: Crystallography supports stereoselective binding of cephem/carbapenem products. J Biol Chem 2023; 299:104606. [PMID: 36924941 PMCID: PMC10148155 DOI: 10.1016/j.jbc.2023.104606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/15/2023] Open
Abstract
L1 is a dizinc subclass B3 metallo-β-lactamase (MBL) that hydrolyzes most β-lactam antibiotics and is a key resistance determinant in the Gram-negative pathogen Stenotrophomonas maltophilia, an important cause of nosocomial infections in immunocompromised patients. L1 is not usefully inhibited by MBL inhibitors in clinical trials, underlying the need for further studies on L1 structure and mechanism. We describe kinetic studies and crystal structures of L1 in complex with hydrolyzed β-lactams from the penam (mecillinam), cephem (cefoxitin/cefmetazole), and carbapenem (tebipenem, doripenem, and panipenem) classes. Despite differences in their structures, all the β-lactam-derived products hydrogen bond to Tyr33, Ser221, and Ser225 and are stabilized by interactions with a conserved hydrophobic pocket. The carbapenem products were modeled as Δ1-imines, with (2S)-stereochemistry. Their binding mode is determined by the presence of a 1β-methyl substituent: the Zn-bridging hydroxide either interacts with the C-6 hydroxyethyl group (1β-hydrogen-containing carbapenems) or is displaced by the C-6 carboxylate (1β-methyl-containing carbapenems). Unexpectedly, the mecillinam product is a rearranged N-formyl amide rather than penicilloic acid, with the N-formyl oxygen interacting with the Zn-bridging hydroxide. NMR studies imply mecillinam rearrangement can occur nonenzymatically in solution. Cephem-derived imine products are bound with (3R)-stereochemistry and retain their 3' leaving groups, likely representing stable endpoints, rather than intermediates, in MBL-catalyzed hydrolysis. Our structures show preferential complex formation by carbapenem- and cephem-derived species protonated on the equivalent (β) faces and so identify interactions that stabilize diverse hydrolyzed antibiotics. These results may be exploited in developing antibiotics, and β-lactamase inhibitors, that form long-lasting complexes with dizinc MBLs.
Collapse
Affiliation(s)
- Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Karina Calvopiña
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Maria F Mojica
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; U.S. Department of Veterans Affairs, CWRU-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA; Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Gary I Dmitrienko
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada; School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Robert A Bonomo
- U.S. Department of Veterans Affairs, CWRU-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA; Departments of Medicine, Biochemistry, Pharmacology, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Alejandro J Vila
- U.S. Department of Veterans Affairs, CWRU-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Laboratorio de Metaloproteínas, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom.
| |
Collapse
|
3
|
Zhao Z, Shen X, Chen S, Gu J, Wang H, Mojica MF, Samanta M, Bhowmik D, Vila AJ, Bonomo RA, Haider S. Gating interactions steer loop conformational changes in the active site of the L1 metallo-β-lactamase. eLife 2023; 12:e83928. [PMID: 36826989 PMCID: PMC9977270 DOI: 10.7554/elife.83928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
β-Lactam antibiotics are the most important and widely used antibacterial agents across the world. However, the widespread dissemination of β-lactamases among pathogenic bacteria limits the efficacy of β-lactam antibiotics. This has created a major public health crisis. The use of β-lactamase inhibitors has proven useful in restoring the activity of β-lactam antibiotics, yet, effective clinically approved inhibitors against class B metallo-β-lactamases are not available. L1, a class B3 enzyme expressed by Stenotrophomonas maltophilia, is a significant contributor to the β-lactam resistance displayed by this opportunistic pathogen. Structurally, L1 is a tetramer with two elongated loops, α3-β7 and β12-α5, present around the active site of each monomer. Residues in these two loops influence substrate/inhibitor binding. To study how the conformational changes of the elongated loops affect the active site in each monomer, enhanced sampling molecular dynamics simulations were performed, Markov State Models were built, and convolutional variational autoencoder-based deep learning was applied. The key identified residues (D150a, H151, P225, Y227, and R236) were mutated and the activity of the generated L1 variants was evaluated in cell-based experiments. The results demonstrate that there are extremely significant gating interactions between α3-β7 and β12-α5 loops. Taken together, the gating interactions with the conformational changes of the key residues play an important role in the structural remodeling of the active site. These observations offer insights into the potential for novel drug development exploiting these gating interactions.
Collapse
Affiliation(s)
- Zhuoran Zhao
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Xiayu Shen
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Shuang Chen
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Jing Gu
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Haun Wang
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Maria F Mojica
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of MedicineClevelandUnited States
- Louis Stokes Cleveland Department of Veterans Affairs Medical CenterClevelandUnited States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES)ClevelandUnited States
| | - Moumita Samanta
- College of Computing, Georgia Institute of TechnologyAtlantaUnited States
| | - Debsindhu Bhowmik
- Computer Science and Engineering Division, Oak Ridge National LaboratoriesOak RidgeUnited States
| | - Alejandro J Vila
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES)ClevelandUnited States
- Laboratorio de Metaloproteínas, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR)RosarioArgentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosarioArgentina
| | - Robert A Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of MedicineClevelandUnited States
- Louis Stokes Cleveland Department of Veterans Affairs Medical CenterClevelandUnited States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES)ClevelandUnited States
- Departments of Medicine, Biochemistry, Pharmacology, and Proteomics and Bioinformatics, Case Western Reserve University School of MedicineClevelandUnited States
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
- UCL Centre for Advanced Research Computing, University College LondonLondonUnited Kingdom
| |
Collapse
|
4
|
Krivitskaya AV, Khrenova MG. Interplay between the Enamine and Imine Forms of the Hydrolyzed Imipenem in the Active Sites of Metallo-β-lactamases and in Water Solution. J Chem Inf Model 2022; 62:6519-6529. [PMID: 35758922 DOI: 10.1021/acs.jcim.2c00539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Deactivation of the β-lactam antibiotics in the active sites of the β-lactamases is among the main mechanisms of bacterial antibiotic resistance. As drugs of last resort, carbapenems are efficiently hydrolyzed by metallo-β-lactamases, presenting a serious threat to human health. Our study reveals mechanistic aspects of the imipenem hydrolysis by bizinc metallo-β-lactamases, NDM-1 and L1, belonging to the B1 and the B3 subclasses, respectively. The results of QM(PBE0-D3/6-31G**)/MM simulations show that the enamine product with the protonated nitrogen atom is formed as the major product in NDM-1 and as the only product in the L1 active site. In NDM-1, there is also another reaction pathway that leads to the formation of the (S)-enantiomer of the imine form of the hydrolyzed imipenem; this process occurs with the higher energy barriers. The absence of the second pathway in L1 is due to the different amino acid composition of the active site loop. In L1, the hydrophobic Pro226 residue is located above the pyrroline ring of imipenem that blocks protonation of the carbon atom. Electron density analysis is performed at the stationary points to compare reaction pathways in L1 and NDM-1. Tautomerization from the enamine to the imine form likely happens in solution after the dissociation of the hydrolyzed imipenem from the active site of the enzyme. Classical molecular dynamics simulations of the hydrolyzed imipenem in solution, both with the neutral enamine and the negatively charged N-C2-C3 fragment, demonstrate a huge diversity of conformations. The vast majority of conformations blocks the C3-atom from the side required for the (S)-imine formation upon tautomerization. Thus, according to our calculations, formation of the (R)-imine is more likely. QM(PBE0-D3/6-31G**)/MM molecular dynamics simulations of the hydrolyzed imipenem with the negatively charged N-C2-C3 fragment followed by the Laplacian bond order analysis demonstrate that the N═C2-C3- resonance structure is the most pronounced that facilitates formation of the imine form. The proposed mechanism of the enzymatic enamine formation and its subsequent tautomerization to the imine form in solution is in agreement with the recent spectroscopic and NMR studies.
Collapse
Affiliation(s)
- Alexandra V Krivitskaya
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Maria G Khrenova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow 119071, Russia.,Department of Chemistry, Interdisciplinary Scientific and Educational School of Moscow University "Brain, Cognitive Systems, Artificial Intelligence", Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
5
|
Wilamowski M, Sherrell DA, Kim Y, Lavens A, Henning RW, Lazarski K, Shigemoto A, Endres M, Maltseva N, Babnigg G, Burdette SC, Srajer V, Joachimiak A. Time-resolved β-lactam cleavage by L1 metallo-β-lactamase. Nat Commun 2022; 13:7379. [PMID: 36450742 PMCID: PMC9712583 DOI: 10.1038/s41467-022-35029-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Serial x-ray crystallography can uncover binding events, and subsequent chemical conversions occurring during enzymatic reaction. Here, we reveal the structure, binding and cleavage of moxalactam antibiotic bound to L1 metallo-β-lactamase (MBL) from Stenotrophomonas maltophilia. Using time-resolved serial synchrotron crystallography, we show the time course of β-lactam hydrolysis and determine ten snapshots (20, 40, 60, 80, 100, 150, 300, 500, 2000 and 4000 ms) at 2.20 Å resolution. The reaction is initiated by laser pulse releasing Zn2+ ions from a UV-labile photocage. Two metal ions bind to the active site, followed by binding of moxalactam and the intact β-lactam ring is observed for 100 ms after photolysis. Cleavage of β-lactam is detected at 150 ms and the ligand is significantly displaced. The reaction product adjusts its conformation reaching steady state at 2000 ms corresponding to the relaxed state of the enzyme. Only small changes are observed in the positions of Zn2+ ions and the active site residues. Mechanistic details captured here can be generalized to other MBLs.
Collapse
Affiliation(s)
- M Wilamowski
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, 30387, Krakow, Poland
| | - D A Sherrell
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Y Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - A Lavens
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - R W Henning
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, 60637, USA
| | - K Lazarski
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - A Shigemoto
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - M Endres
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
| | - N Maltseva
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
| | - G Babnigg
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
| | - S C Burdette
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - V Srajer
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, 60637, USA
| | - A Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA.
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA.
| |
Collapse
|
6
|
Yun Y, Han S, Park YS, Park H, Kim D, Kim Y, Kwon Y, Kim S, Lee JH, Jeon JH, Lee SH, Kang LW. Structural Insights for Core Scaffold and Substrate Specificity of B1, B2, and B3 Metallo-β-Lactamases. Front Microbiol 2022; 12:752535. [PMID: 35095785 PMCID: PMC8792953 DOI: 10.3389/fmicb.2021.752535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
Metallo-β-lactamases (MBLs) hydrolyze almost all β-lactam antibiotics, including penicillins, cephalosporins, and carbapenems; however, no effective inhibitors are currently clinically available. MBLs are classified into three subclasses: B1, B2, and B3. Although the amino acid sequences of MBLs are varied, their overall scaffold is well conserved. In this study, we systematically studied the primary sequences and crystal structures of all subclasses of MBLs, especially the core scaffold, the zinc-coordinating residues in the active site, and the substrate-binding pocket. We presented the conserved structural features of MBLs in the same subclass and the characteristics of MBLs of each subclass. The catalytic zinc ions are bound with four loops from the two central β-sheets in the conserved αβ/βα sandwich fold of MBLs. The three external loops cover the zinc site(s) from the outside and simultaneously form a substrate-binding pocket. In the overall structure, B1 and B2 MBLs are more closely related to each other than they are to B3 MBLs. However, B1 and B3 MBLs have two zinc ions in the active site, while B2 MBLs have one. The substrate-binding pocket is different among all three subclasses, which is especially important for substrate specificity and drug resistance. Thus far, various classes of β-lactam antibiotics have been developed to have modified ring structures and substituted R groups. Currently available structures of β-lactam-bound MBLs show that the binding of β-lactams is well conserved according to the overall chemical structure in the substrate-binding pocket. Besides β-lactam substrates, B1 and cross-class MBL inhibitors also have distinguished differences in the chemical structure, which fit well to the substrate-binding pocket of MBLs within their inhibitory spectrum. The systematic structural comparison among B1, B2, and B3 MBLs provides in-depth insight into their substrate specificity, which will be useful for developing a clinical inhibitor targeting MBLs.
Collapse
Affiliation(s)
- Yeongjin Yun
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Sangjun Han
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Yoon Sik Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Dogyeong Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Yeseul Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Yongdae Kwon
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Sumin Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Jeong Ho Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
- *Correspondence: Sang Hee Lee,
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
- Lin-Woo Kang,
| |
Collapse
|
7
|
Twidale RM, Hinchliffe P, Spencer J, Mulholland AJ. Crystallography and QM/MM Simulations Identify Preferential Binding of Hydrolyzed Carbapenem and Penem Antibiotics to the L1 Metallo-β-Lactamase in the Imine Form. J Chem Inf Model 2021; 61:5988-5999. [PMID: 34637298 DOI: 10.1021/acs.jcim.1c00663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Widespread bacterial resistance to carbapenem antibiotics is an increasing global health concern. Resistance has emerged due to carbapenem-hydrolyzing enzymes, including metallo-β-lactamases (MβLs), but despite their prevalence and clinical importance, MβL mechanisms are still not fully understood. Carbapenem hydrolysis by MβLs can yield alternative product tautomers with the potential to access different binding modes. Here, we show that a combined approach employing crystallography and quantum mechanics/molecular mechanics (QM/MM) simulations allow tautomer assignment in MβL:hydrolyzed antibiotic complexes. Molecular simulations also examine (meta)stable species of alternative protonation and tautomeric states, providing mechanistic insights into β-lactam hydrolysis. We report the crystal structure of the hydrolyzed carbapenem ertapenem bound to the L1 MβL from Stenotrophomonas maltophilia and model alternative tautomeric and protonation states of both hydrolyzed ertapenem and faropenem (a related penem antibiotic), which display different binding modes with L1. We show how the structures of both complexed β-lactams are best described as the (2S)-imine tautomer with the carboxylate formed after β-lactam ring cleavage deprotonated. Simulations show that enamine tautomer complexes are significantly less stable (e.g., showing partial loss of interactions with the L1 binuclear zinc center) and not consistent with experimental data. Strong interactions of Tyr32 and one zinc ion (Zn1) with ertapenem prevent a C6 group rotation, explaining the different binding modes of the two β-lactams. Our findings establish the relative stability of different hydrolyzed (carba)penem forms in the L1 active site and identify interactions important to stable complex formation, information that should assist inhibitor design for this important antibiotic resistance determinant.
Collapse
Affiliation(s)
- Rebecca M Twidale
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, U.K
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, U.K
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
8
|
Yan YH, Li W, Chen W, Li C, Zhu KR, Deng J, Dai QQ, Yang LL, Wang Z, Li GB. Structure-guided optimization of 1H-imidazole-2-carboxylic acid derivatives affording potent VIM-Type metallo-β-lactamase inhibitors. Eur J Med Chem 2021; 228:113965. [PMID: 34763944 DOI: 10.1016/j.ejmech.2021.113965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023]
Abstract
Production of metallo-β-lactamases (MBLs) in bacterial pathogens is an important cause of resistance to the 'last-resort' carbapenem antibiotics. Development of effective MBL inhibitors to reverse carbapenem resistance in Gram-negative bacteria is still needed. We herein report X-ray structure-guided optimization of 1H-imidazole-2-carboxylic acid (ICA) derivatives by considering how to engage with the active-site flexible loops and improve penetration into Gram-negative bacteria. Structure-activity relationship studies revealed the importance of appropriate substituents at ICA 1-position to achieve potent inhibition to class B1 MBLs, particularly the Verona Integron-encoded MBLs (VIMs), mainly by involving ingenious interactions with the flexible active site loops as observed by crystallographic analyses. Of the tested ICA inhibitors, 55 displayed potent synergistic antibacterial activity with meropenem against engineered Escherichia coli strains and even intractable clinically isolated Pseudomonas aeruginosa producing VIM-2 MBL. The morphologic and internal structural changes of bacterial cells after treatment further demonstrated that 55 crossed the outer membrane and reversed the activity of meropenem. Moreover, 55 showed good pharmacokinetic and safety profile in vivo, which could be a potential candidate for combating VIM-mediated Gram-negative carbapenem resistance.
Collapse
Affiliation(s)
- Yu-Hang Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China
| | - Wenfang Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Chen
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Chao Li
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Kai-Rong Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China
| | - Ji Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China
| | - Qing-Qing Dai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China
| | - Ling-Ling Yang
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Zhenling Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Sichuan, 610041, China.
| |
Collapse
|
9
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
10
|
Tehrani KHME, Wade N, Mashayekhi V, Brüchle NC, Jespers W, Voskuil K, Pesce D, van Haren MJ, van Westen GJP, Martin NI. Novel Cephalosporin Conjugates Display Potent and Selective Inhibition of Imipenemase-Type Metallo-β-Lactamases. J Med Chem 2021; 64:9141-9151. [PMID: 34182755 PMCID: PMC8273888 DOI: 10.1021/acs.jmedchem.1c00362] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In an attempt to exploit the hydrolytic mechanism by which β-lactamases degrade cephalosporins, we designed and synthesized a series of novel cephalosporin prodrugs aimed at delivering thiol-based inhibitors of metallo-β-lactamases (MBLs) in a spatiotemporally controlled fashion. While enzymatic hydrolysis of the β-lactam ring was observed, it was not accompanied by inhibitor release. Nonetheless, the cephalosporin prodrugs, especially thiomandelic acid conjugate (8), demonstrated potent inhibition of IMP-type MBLs. In addition, conjugate 8 was also found to greatly reduce the minimum inhibitory concentration of meropenem against IMP-producing bacteria. The results of kinetic experiments indicate that these prodrugs inhibit IMP-type MBLs by acting as slowly turned-over substrates. Structure-activity relationship studies revealed that both phenyl and carboxyl moieties of 8 are crucial for its potency. Furthermore, modeling studies indicate that productive interactions of the thiomandelic acid moiety of 8 with Trp28 within the IMP active site may contribute to its potency and selectivity.
Collapse
Affiliation(s)
- Kamaleddin H M E Tehrani
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Nicola Wade
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Vida Mashayekhi
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Nora C Brüchle
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Willem Jespers
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden.,Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Koen Voskuil
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Diego Pesce
- Laboratory of Genetics, Wageningen University and Research, 6700 AA Wageningen, The Netherlands.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthijs J van Haren
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Gerard J P van Westen
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
11
|
Levina EO, Khrenova MG. Metallo-β-Lactamases: Influence of the Active Site Structure on the Mechanisms of Antibiotic Resistance and Inhibition. BIOCHEMISTRY (MOSCOW) 2021; 86:S24-S37. [PMID: 33827398 DOI: 10.1134/s0006297921140030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review focuses on bacterial metallo-β-lactamases (MβLs) responsible for the inactivation of β-lactams and associated antibiotic resistance. The diversity of the active site structure in the members of different MβL subclasses explains different mechanisms of antibiotic hydrolysis and should be taken into account when searching for potential MβL inhibitors. The review describes the features of the antibiotic inactivation mechanisms by various MβLs studied by X-ray crystallography, NMR, kinetic measurements, and molecular modeling. The mechanisms of enzyme inhibition for each MβL subclass are discussed.
Collapse
Affiliation(s)
- Elena O Levina
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - Maria G Khrenova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia. .,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
12
|
Lucic A, Hinchliffe P, Malla TR, Tooke CL, Brem J, Calvopiña K, Lohans CT, Rabe P, McDonough MA, Armistead T, Orville AM, Spencer J, Schofield CJ. Faropenem reacts with serine and metallo-β-lactamases to give multiple products. Eur J Med Chem 2021; 215:113257. [PMID: 33618159 PMCID: PMC7614720 DOI: 10.1016/j.ejmech.2021.113257] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/23/2021] [Accepted: 01/30/2021] [Indexed: 11/30/2022]
Abstract
Penems have demonstrated potential as antibacterials and β-lactamase inhibitors; however, their clinical use has been limited, especially in comparison with the structurally related carbapenems. Faropenem is an orally active antibiotic with a C-2 tetrahydrofuran (THF) ring, which is resistant to hydrolysis by some β-lactamases. We report studies on the reactions of faropenem with carbapenem-hydrolysing β-lactamases, focusing on the class A serine β-lactamase KPC-2 and the metallo β-lactamases (MBLs) VIM-2 (a subclass B1 MBL) and L1 (a B3 MBL). Kinetic studies show that faropenem is a substrate for all three β-lactamases, though it is less efficiently hydrolysed by KPC-2. Crystallographic analyses on faropenem-derived complexes reveal opening of the β-lactam ring with formation of an imine with KPC-2, VIM-2, and L1. In the cases of the KPC-2 and VIM-2 structures, the THF ring is opened to give an alkene, but with L1 the THF ring remains intact. Solution state studies, employing NMR, were performed on L1, KPC-2, VIM-2, VIM-1, NDM-1, OXA-23, OXA-10, and OXA-48. The solution results reveal, in all cases, formation of imine products in which the THF ring is opened; formation of a THF ring-closed imine product was only observed with VIM-1 and VIM-2. An enamine product with a closed THF ring was also observed in all cases, at varying levels. Combined with previous reports, the results exemplify the potential for different outcomes in the reactions of penems with MBLs and SBLs and imply further structure-activity relationship studies are worthwhile to optimise the interactions of penems with β-lactamases. They also exemplify how crystal structures of β-lactamase substrate/inhibitor complexes do not always reflect reaction outcomes in solution.
Collapse
Affiliation(s)
- Anka Lucic
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Philip Hinchliffe
- Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Tika R Malla
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Catherine L Tooke
- Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Jürgen Brem
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Karina Calvopiña
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | | | - Patrick Rabe
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Michael A McDonough
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Timothy Armistead
- Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Allen M Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom.
| | - James Spencer
- Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom.
| | - Christopher J Schofield
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom.
| |
Collapse
|
13
|
Rossi MA, Martinez V, Hinchliffe P, Mojica MF, Castillo V, Moreno DM, Smith R, Spellberg B, Drusano GL, Banchio C, Bonomo RA, Spencer J, Vila AJ, Mahler G. 2-Mercaptomethyl-thiazolidines use conserved aromatic-S interactions to achieve broad-range inhibition of metallo-β-lactamases. Chem Sci 2021; 12:2898-2908. [PMID: 34164056 PMCID: PMC8179362 DOI: 10.1039/d0sc05172a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Infections caused by multidrug resistant (MDR) bacteria are a major public health threat. Carbapenems are among the most potent antimicrobial agents that are commercially available to treat MDR bacteria. Bacterial production of carbapenem-hydrolysing metallo-β-lactamases (MBLs) challenges their safety and efficacy, with subclass B1 MBLs hydrolysing almost all β-lactam antibiotics. MBL inhibitors would fulfil an urgent clinical need by prolonging the lifetime of these life-saving drugs. Here we report the synthesis and activity of a series of 2-mercaptomethyl-thiazolidines (MMTZs), designed to replicate MBL interactions with reaction intermediates or hydrolysis products. MMTZs are potent competitive inhibitors of B1 MBLs in vitro (e.g., K i = 0.44 μM vs. NDM-1). Crystal structures of MMTZ complexes reveal similar binding patterns to the most clinically important B1 MBLs (NDM-1, VIM-2 and IMP-1), contrasting with previously studied thiol-based MBL inhibitors, such as bisthiazolidines (BTZs) or captopril stereoisomers, which exhibit lower, more variable potencies and multiple binding modes. MMTZ binding involves thiol coordination to the Zn(ii) site and extensive hydrophobic interactions, burying the inhibitor more deeply within the active site than d/l-captopril. Unexpectedly, MMTZ binding features a thioether-π interaction with a conserved active-site aromatic residue, consistent with their equipotent inhibition and similar binding to multiple MBLs. MMTZs penetrate multiple Enterobacterales, inhibit NDM-1 in situ, and restore carbapenem potency against clinical isolates expressing B1 MBLs. Based on their inhibitory profile and lack of eukaryotic cell toxicity, MMTZs represent a promising scaffold for MBL inhibitor development. These results also suggest sulphur-π interactions can be exploited for general ligand design in medicinal chemistry.
Collapse
Affiliation(s)
- Maria-Agustina Rossi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) Ocampo and Esmeralda S2002LRK Rosario Argentina
| | - Veronica Martinez
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR) Avda. General Flores 2124 CC1157 Montevideo Uruguay
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Maria F Mojica
- Infectious Diseases Department, School of Medicine, Case Western Reserve University Cleveland OH USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Cleveland OH USA
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque Bogotá DC Colombia
| | - Valerie Castillo
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR) Avda. General Flores 2124 CC1157 Montevideo Uruguay
| | - Diego M Moreno
- Instituto de Química de Rosario (IQUIR, CONICET-UNR) Suipacha 570 S2002LRK Rosario Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario S2002LRK Rosario Argentina
| | - Ryan Smith
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Brad Spellberg
- Los Angeles County and University of Southern California (LAC + USC) Medical Center Los Angeles CA USA
| | - George L Drusano
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida Orlando FL USA
| | - Claudia Banchio
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) Ocampo and Esmeralda S2002LRK Rosario Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario S2002LRK Rosario Argentina
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Cleveland OH USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine Cleveland OH USA
- Medical Service, GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Cleveland OH USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland OH USA
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) Ocampo and Esmeralda S2002LRK Rosario Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario S2002LRK Rosario Argentina
| | - Graciela Mahler
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR) Avda. General Flores 2124 CC1157 Montevideo Uruguay
| |
Collapse
|
14
|
Selleck C, Pedroso MM, Wilson L, Krco S, Knaven EG, Miraula M, Mitić N, Larrabee JA, Brück T, Clark A, Guddat LW, Schenk G. Structure and mechanism of potent bifunctional β-lactam- and homoserine lactone-degrading enzymes from marine microorganisms. Sci Rep 2020; 10:12882. [PMID: 32732933 PMCID: PMC7392888 DOI: 10.1038/s41598-020-68612-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/26/2020] [Indexed: 11/11/2022] Open
Abstract
Genes that confer antibiotic resistance can rapidly be disseminated from one microorganism to another by mobile genetic elements, thus transferring resistance to previously susceptible bacterial strains. The misuse of antibiotics in health care and agriculture has provided a powerful evolutionary pressure to accelerate the spread of resistance genes, including those encoding β-lactamases. These are enzymes that are highly efficient in inactivating most of the commonly used β-lactam antibiotics. However, genes that confer antibiotic resistance are not only associated with pathogenic microorganisms, but are also found in non-pathogenic (i.e. environmental) microorganisms. Two recent examples are metal-dependent β-lactamases (MBLs) from the marine organisms Novosphingobium pentaromativorans and Simiduia agarivorans. Previous studies have demonstrated that their β-lactamase activity is comparable to those of well-known MBLs from pathogenic sources (e.g. NDM-1, AIM-1) but that they also possess efficient lactonase activity, an activity associated with quorum sensing. Here, we probed the structure and mechanism of these two enzymes using crystallographic, spectroscopic and fast kinetics techniques. Despite highly conserved active sites both enzymes demonstrate significant variations in their reaction mechanisms, highlighting both the extraordinary ability of MBLs to adapt to changing environmental conditions and the rather promiscuous acceptance of diverse substrates by these enzymes.
Collapse
Affiliation(s)
- Christopher Selleck
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Sustainable Minerals Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Liam Wilson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Stefan Krco
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Esmée Gianna Knaven
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Manfredi Miraula
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Department of Chemistry, Maynooth University, Maynooth, County Kildare, Ireland
| | - Nataša Mitić
- Department of Chemistry, Maynooth University, Maynooth, County Kildare, Ireland
| | - James A Larrabee
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748, Garching, Germany
| | - Alice Clark
- Sustainable Minerals Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Sustainable Minerals Institute, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
15
|
Palacios AR, Rossi MA, Mahler GS, Vila AJ. Metallo-β-Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism. Biomolecules 2020; 10:E854. [PMID: 32503337 PMCID: PMC7356002 DOI: 10.3390/biom10060854] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
β-Lactam antibiotics are the most widely prescribed antibacterial drugs due to their low toxicity and broad spectrum. Their action is counteracted by different resistance mechanisms developed by bacteria. Among them, the most common strategy is the expression of β-lactamases, enzymes that hydrolyze the amide bond present in all β-lactam compounds. There are several inhibitors against serine-β-lactamases (SBLs). Metallo-β-lactamases (MBLs) are Zn(II)-dependent enzymes able to hydrolyze most β-lactam antibiotics, and no clinically useful inhibitors against them have yet been approved. Despite their large structural diversity, MBLs have a common catalytic mechanism with similar reaction species. Here, we describe a number of MBL inhibitors that mimic different species formed during the hydrolysis process: substrate, transition state, intermediate, or product. Recent advances in the development of boron-based and thiol-based inhibitors are discussed in the light of the mechanism of MBLs. We also discuss the use of chelators as a possible strategy, since Zn(II) ions are essential for substrate binding and catalysis.
Collapse
Affiliation(s)
- Antonela R. Palacios
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
| | - María-Agustina Rossi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
| | - Graciela S. Mahler
- Laboratorio de Química Farmacéutica, Facultad de Química, Universidad de la Republica (UdelaR), Montevideo 11800, Uruguay;
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| |
Collapse
|
16
|
Mu X, Xu D. QM/MM investigation of substrate binding of subclass B3 metallo-β-lactamase SMB-1 from Serratia marcescents: insights into catalytic mechanism. J Mol Model 2020; 26:71. [PMID: 32146530 DOI: 10.1007/s00894-020-4330-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/23/2020] [Indexed: 11/25/2022]
Abstract
Metallo-β-lactamases (MβLs) can hydrolyze and deactivate lactam-containing antibiotics, which are the major mechanism to cause drug resistance in the treatment of bacterial infections. This has become a global concern due to the lack of clinically approved inhibitors so far. SMB-1 from Serratia marcescents is a novel B3 subclass MβL, which could inactivate nearly all β-lactam-containing antibiotics, e.g., cephalosporins and carbapenems. It represents a new round of worrisome bacterial resistance. In this work, the Michaelis model of SMB-1 in complex with ampicillin was simulated using combined quantum mechanical and molecular mechanical method. Similar with other dizinc MβLs, a Zn-bridged hydroxide ion was simulated as the nucleophile for the hydrolysis reaction assisted by D120. The protonation of D120 could lead to the loss of Oδ2-Zn2 coordination bond, whereas the C3 carboxylate group moves down to become a new ligand to Zn2. The initial β-lactam ring-opening reaction leads to a conserved nitrogen anionic intermediate, which forms a new ligation between the resulted nitrogen anion and Zn2. The corresponding reaction free energy barrier for the first step of lactam ring-opening reaction was calculated to be 19.2 kcal/mol. During the reaction, Q157 serves as the putative "oxyanion hole" rather than Zn1 in L1 enzyme, which was confirmed via the site-directed mutagenesis simulation of Q157A. Our theoretical studies showed some insights into the substrate binding and catalytic mechanism of the SMB-1 metallo-β-lactamase.
Collapse
Affiliation(s)
- Xia Mu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China. .,Research Center for Material Genome Engineering, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
17
|
Yan Y, Li G, Li G. Principles and current strategies targeting metallo‐β‐lactamase mediated antibacterial resistance. Med Res Rev 2020; 40:1558-1592. [PMID: 32100311 DOI: 10.1002/med.21665] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/18/2019] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Yu‐Hang Yan
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengdu Sichuan China
| | - Gen Li
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengdu Sichuan China
| | - Guo‐Bo Li
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of PharmacySichuan UniversityChengdu Sichuan China
| |
Collapse
|
18
|
Kim Y, Maltseva N, Wilamowski M, Tesar C, Endres M, Joachimiak A. Structural and biochemical analysis of the metallo-β-lactamase L1 from emerging pathogen Stenotrophomonas maltophilia revealed the subtle but distinct di-metal scaffold for catalytic activity. Protein Sci 2019; 29:723-743. [PMID: 31846104 PMCID: PMC7020990 DOI: 10.1002/pro.3804] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/05/2023]
Abstract
Emergence of Enterobacteriaceae harboring metallo‐β‐lactamases (MBL) has raised global threats due to their broad antibiotic resistance profiles and the lack of effective inhibitors against them. We have been studied one of the emerging environmental MBL, the L1 from Stenotrophomonas maltophilia K279a. We determined several crystal structures of L1 complexes with three different classes of β‐lactam antibiotics (penicillin G, moxalactam, meropenem, and imipenem), with the inhibitor captopril and different metal ions (Zn+2, Cd+2, and Cu+2). All hydrolyzed antibiotics and the inhibitor were found binding to two Zn+2 ions mainly through the opened lactam ring and some hydrophobic interactions with the binding pocket atoms. Without a metal ion, the active site is very similarly maintained as that of the native form with two Zn+2 ions, however, the protein does not bind the substrate moxalactam. When two Zn+2 ions were replaced with other metal ions, the same di‐metal scaffold was maintained and the added moxalactam was found hydrolyzed in the active site. Differential scanning fluorimetry and isothermal titration calorimetry were used to study thermodynamic properties of L1 MBL compared with New Deli Metallo‐β‐lactamase‐1 (NDM‐1). Both enzymes are significantly stabilized by Zn+2 and other divalent metals but showed different dependency. These studies also suggest that moxalactam and its hydrolyzed form may bind and dissociate with different kinetic modes with or without Zn+2 for each of L1 and NDM‐1. Our analysis implicates metal ions, in forming a distinct di‐metal scaffold, which is central to the enzyme stability, promiscuous substrate binding and versatile catalytic activity. Statement The L1 metallo‐β‐lactamase from an environmental multidrug‐resistant opportunistic pathogen Stenotrophomonas maltophilia K279a has been studied by determining 3D structures of L1 enzyme in the complexes with several β‐lactam antibiotics and different divalent metals and characterizing its biochemical and ligand binding properties. We found that the two‐metal center in the active site is critical in the enzymatic process including antibiotics recognition and binding, which explains the enzyme's activity toward diverse antibiotic substrates. This study provides the critical information for understanding the ligand recognition and for advanced drug development.
Collapse
Affiliation(s)
- Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, the University of Chicago, Chicago, Illinois.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois
| | - Natalia Maltseva
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, the University of Chicago, Chicago, Illinois
| | - Mateusz Wilamowski
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, the University of Chicago, Chicago, Illinois
| | - Christine Tesar
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois
| | - Michael Endres
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, the University of Chicago, Chicago, Illinois.,Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois
| |
Collapse
|
19
|
Ge Y, Xu LW, Liu Y, Sun LY, Gao H, Li JQ, Yang K. Dithiocarbamate as a Valuable Scaffold for the Inhibition of Metallo-β-Lactmases. Biomolecules 2019; 9:E699. [PMID: 31694268 PMCID: PMC6920875 DOI: 10.3390/biom9110699] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 01/02/2023] Open
Abstract
The 'superbug' infection caused by metallo-β-lactamases (MβLs) has grown into an emergent health threat. Given the clinical importance of MβLs, a novel scaffold, dithiocarbamate, was constructed. The obtained molecules, DC1, DC8 and DC10, inhibited MβLs NDM-1, VIM-2, IMP-1, ImiS and L1 from all three subclasses, exhibiting an IC50 < 26 μM. DC1 was found to be the best inhibitor of ImiS (IC50 < 0.22 μM). DC1-2, DC4, DC8 and DC10 restored antimicrobial effects of cefazolin and imipenem against E. coli-BL21, producing NDM-1, ImiS or L1, and DC1 showed the best inhibition of E. coli cells, expressing the three MβLs, resulting in a 2-16-fold reduction in the minimum inhibitory concentrations (MICs) of both antibiotics. Kinetics and isothermal titration calorimetry (ITC) assays showed that DC1 exhibited a reversible, and partially mixed inhibition, of NDM-1, ImiS and L1, with Ki values of 0.29, 0.14 and 5.06 µM, respectively. Docking studies suggest that the hydroxyl and carbonyl groups of DC1 form coordinate bonds with the Zn (II) ions, in the active center of NDM-1, ImiS and L1, thereby inhibiting the activity of the enzymes. Cytotoxicity assays showed that DC1, DC3, DC7 and DC9 have low toxicity in L929 mouse fibroblastic cells, at a dose of up to 250 μM. These studies revealed that the dithiocarbamate is a valuable scaffold for the development of MβLs inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kewu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, the College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China; (Y.G.); (L.-W.X.); (Y.L.); (L.-Y.S.); (H.G.); (J.-Q.L.)
| |
Collapse
|
20
|
The assemblage of covalent and metal binding dual functional scaffold for cross-class metallo-β-lactamases inhibition. Future Med Chem 2019; 11:2381-2394. [PMID: 31544522 DOI: 10.4155/fmc-2019-0008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: The discovery and development of novel broad-spectrum MβLs inhibitors are urgent to overcome antibiotic resistance mediated by MβLs. Methods & results: Herein, the synthesized 21 compounds exhibited potent inhibition to the clinically important MβLs (NDM-1, IMP-1 and ImiS) and effectively restored the antibacterial efficacy of cefazolin and imipenem against Escherichia coli harboring MβLs. 5b was first identified to be dual functional broad-spectrum MβLs inhibitor through assemblage of covalent and metal binding scaffold, which irreversibly inhibited B1, B2 MβLs via forming a Se–S covalent bond, and competitively inhibited B3 MβLs by coordinating the metals at active site. Conclusion: The designed compounds can serve as potent broad-spectrum MβLs inhibitors and combat MβLs-producing ‘superbug’ in combination with β-lactams.
Collapse
|
21
|
Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, Spencer J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J Mol Biol 2019; 431:3472-3500. [PMID: 30959050 PMCID: PMC6723624 DOI: 10.1016/j.jmb.2019.04.002] [Citation(s) in RCA: 459] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022]
Abstract
The β-lactams retain a central place in the antibacterial armamentarium. In Gram-negative bacteria, β-lactamase enzymes that hydrolyze the amide bond of the four-membered β-lactam ring are the primary resistance mechanism, with multiple enzymes disseminating on mobile genetic elements across opportunistic pathogens such as Enterobacteriaceae (e.g., Escherichia coli) and non-fermenting organisms (e.g., Pseudomonas aeruginosa). β-Lactamases divide into four classes; the active-site serine β-lactamases (classes A, C and D) and the zinc-dependent or metallo-β-lactamases (MBLs; class B). Here we review recent advances in mechanistic understanding of each class, focusing upon how growing numbers of crystal structures, in particular for β-lactam complexes, and methods such as neutron diffraction and molecular simulations, have improved understanding of the biochemistry of β-lactam breakdown. A second focus is β-lactamase interactions with carbapenems, as carbapenem-resistant bacteria are of grave clinical concern and carbapenem-hydrolyzing enzymes such as KPC (class A) NDM (class B) and OXA-48 (class D) are proliferating worldwide. An overview is provided of the changing landscape of β-lactamase inhibitors, exemplified by the introduction to the clinic of combinations of β-lactams with diazabicyclooctanone and cyclic boronate serine β-lactamase inhibitors, and of progress and strategies toward clinically useful MBL inhibitors. Despite the long history of β-lactamase research, we contend that issues including continuing unresolved questions around mechanism; opportunities afforded by new technologies such as serial femtosecond crystallography; the need for new inhibitors, particularly for MBLs; the likely impact of new β-lactam:inhibitor combinations and the continuing clinical importance of β-lactams mean that this remains a rewarding research area.
Collapse
Affiliation(s)
- Catherine L Tooke
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Eilis C Bragginton
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Charlotte K Colenso
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Viivi H A Hirvonen
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Yuiko Takebayashi
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
22
|
Mojica MF, Rutter JD, Taracila M, Abriata LA, Fouts DE, Papp-Wallace KM, Walsh TJ, LiPuma JJ, Vila AJ, Bonomo RA. Population Structure, Molecular Epidemiology, and β-Lactamase Diversity among Stenotrophomonas maltophilia Isolates in the United States. mBio 2019; 10:e00405-19. [PMID: 31266860 PMCID: PMC6606795 DOI: 10.1128/mbio.00405-19] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/03/2019] [Indexed: 01/06/2023] Open
Abstract
Stenotrophomonas maltophilia is a Gram-negative, nonfermenting, environmental bacillus that is an important cause of nosocomial infections, primarily associated with the respiratory tract in the immunocompromised population. Aiming to understand the population structure, microbiological characteristics and impact of allelic variation on β-lactamase structure and function, we collected 130 clinical isolates from across the United States. Identification of 90 different sequence types (STs), of which 63 are new allelic combinations, demonstrates the high diversity of this species. The majority of the isolates (45%) belong to genomic group 6. We also report excellent activity of the ceftazidime-avibactam and aztreonam combination, especially against strains recovered from blood and respiratory infections for which the susceptibility is higher than the susceptibility to trimethoprim-sulfamethoxazole, considered the "first-line" antibiotic to treat S. maltophilia Analysis of 73 blaL1 and 116 blaL2 genes identified 35 and 43 novel variants of L1 and L2 β-lactamases, respectively. Investigation of the derived amino acid sequences showed that substitutions are mostly conservative and scattered throughout the protein, preferentially affecting positions that do not compromise enzyme function but that may have an impact on substrate and inhibitor binding. Interestingly, we detected a probable association between a specific type of L1 and L2 and genomic group 6. Taken together, our results provide an overview of the molecular epidemiology of S. maltophilia clinical strains from the United States. In particular, the discovery of new L1 and L2 variants warrants further study to fully understand the relationship between them and the β-lactam resistance phenotype in this pathogen.IMPORTANCE Multiple antibiotic resistance mechanisms, including two β-lactamases, L1, a metallo-β-lactamase, and L2, a class A cephalosporinase, make S. maltophilia naturally multidrug resistant. Thus, infections caused by S. maltophilia pose a big therapeutic challenge. Our study aims to understand the microbiological and molecular characteristics of S. maltophilia isolates recovered from human sources. A highlight of the resistance profile of this collection is the excellent activity of the ceftazidime-avibactam and aztreonam combination. We hope this result prompts controlled and observational studies to add clinical data on the utility and safety of this therapy. We also identify 35 and 43 novel variants of L1 and L2, respectively, some of which harbor novel substitutions that could potentially affect substrate and/or inhibitor binding. We believe our results provide valuable knowledge to understand the epidemiology of this species and to advance mechanism-based inhibitor design to add to the limited arsenal of antibiotics active against this pathogen.
Collapse
Affiliation(s)
- Maria F Mojica
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Joseph D Rutter
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Magdalena Taracila
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Luciano A Abriata
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Krisztina M Papp-Wallace
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Thomas J Walsh
- Transplantation Oncology Infectious Diseases Program, Weill Cornell Medical Center, New York, New York, USA
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Medical Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
- GRECC, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
23
|
Differential active site requirements for NDM-1 β-lactamase hydrolysis of carbapenem versus penicillin and cephalosporin antibiotics. Nat Commun 2018; 9:4524. [PMID: 30375382 PMCID: PMC6207675 DOI: 10.1038/s41467-018-06839-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 09/24/2018] [Indexed: 01/26/2023] Open
Abstract
New Delhi metallo-β-lactamase-1 exhibits a broad substrate profile for hydrolysis of the penicillin, cephalosporin and 'last resort' carbapenems, and thus confers bacterial resistance to nearly all β-lactam antibiotics. Here we address whether the high catalytic efficiency for hydrolysis of these diverse substrates is reflected by similar sequence and structural requirements for catalysis, i.e., whether the same catalytic machinery is used to achieve hydrolysis of each class. Deep sequencing of randomized single codon mutation libraries that were selected for resistance to representative antibiotics reveal stringent sequence requirements for carbapenem versus penicillin or cephalosporin hydrolysis. Further, the residue positions required for hydrolysis of penicillins and cephalosporins are a subset of those required for carbapenem hydrolysis. Thus, while a common core of residues is used for catalysis of all substrates, carbapenem hydrolysis requires an additional set of residues to achieve catalytic efficiency comparable to that for penicillins and cephalosporins.
Collapse
|
24
|
Yarlagadda V, Sarkar P, Samaddar S, Manjunath GB, Mitra SD, Paramanandham K, Shome BR, Haldar J. Vancomycin Analogue Restores Meropenem Activity against NDM-1 Gram-Negative Pathogens. ACS Infect Dis 2018; 4:1093-1101. [PMID: 29726673 DOI: 10.1021/acsinfecdis.8b00011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) is the major contributor to the emergence of carbapenem resistance in Gram-negative pathogens (GNPs) and has caused many clinically available β-lactam antibiotics to become obsolete. A clinically approved inhibitor of metallo-β-lactamase (MBL) that could restore the activity of carbapenems against resistant GNPs has not yet been found, making NDM-1 a serious threat to human health. Here, we have rationally developed an inhibitor for the NDM-1 enzyme, which has the ability to penetrate the outer membrane of GNPs and inactivate the enzyme by depleting the metal ion (Zn2+) from the active site. The inhibitor reinstated the activity of meropenem against NDM-1 producing clinical isolates of GNPs like Klebsiella pneumoniae and Escherichia coli. Further, the inhibitor efficiently restored meropenem activity against NDM-1 producing K. pneumoniae in a murine sepsis infection model. These findings demonstrate that a combination of the present inhibitor and meropenem has high potential to be translated clinically to combat carbapenem-resistant GNPs.
Collapse
Affiliation(s)
- Venkateswarlu Yarlagadda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Sandip Samaddar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Goutham Belagula Manjunath
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Susweta Das Mitra
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka 560064, India
| | - Krishnamoorthy Paramanandham
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka 560064, India
| | - Bibek Ranjan Shome
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka 560064, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| |
Collapse
|
25
|
Chen C, Xiang Y, Liu Y, Hu X, Yang KW. Mercaptoacetate thioesters and their hydrolysate mercaptoacetic acids jointly inhibit metallo-β-lactamase L1. MEDCHEMCOMM 2018; 9:1172-1177. [PMID: 30109005 DOI: 10.1039/c8md00091c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/04/2018] [Indexed: 11/21/2022]
Abstract
The 'superbug' infection caused by metallo-β-lactamases (MβLs) including L1 has grown into an emerging threat. To probe whether mercaptoacetate thioesters inhibiting L1 is a contribution of the thioester itself or its hydrolysate, ten mercaptoacetate thioesters 1-10 were synthesized, which specifically inhibited L1, exhibiting IC50 values ranging from 0.17 to 1.2 μM, and 8 was found to be the best inhibitor (IC50 = 0.17 μM). These thioesters restored the antimicrobial activity of cefazolin against E. coli expressing L1 by 2-4-fold. UV-vis monitoring showed that 1, 8 and 9 were unhydrolyzed in Tris buffer (pH 6.0-8.5), but hydrolyzed by L1; further HPLC monitoring indicated that 1/3 of the thioester 9 was converted to mercaptoacetic acid. STD-NMR monitoring suggested that both the thioester and its hydrolysate mercaptoacetic acid jointly inhibited L1.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education , Innovation Laboratory of Chemical Biology , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , P. R. China .
| | - Yang Xiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education , Innovation Laboratory of Chemical Biology , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , P. R. China .
| | - Ya Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education , Innovation Laboratory of Chemical Biology , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , P. R. China .
| | - Xiangdong Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education , Innovation Laboratory of Chemical Biology , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , P. R. China .
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education , Innovation Laboratory of Chemical Biology , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , P. R. China .
| |
Collapse
|
26
|
Hinchliffe P, Tanner CA, Krismanich AP, Labbé G, Goodfellow VJ, Marrone L, Desoky AY, Calvopiña K, Whittle EE, Zeng F, Avison MB, Bols NC, Siemann S, Spencer J, Dmitrienko GI. Structural and Kinetic Studies of the Potent Inhibition of Metallo-β-lactamases by 6-Phosphonomethylpyridine-2-carboxylates. Biochemistry 2018; 57:1880-1892. [PMID: 29485857 PMCID: PMC6007964 DOI: 10.1021/acs.biochem.7b01299] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/15/2018] [Indexed: 01/05/2023]
Abstract
There are currently no clinically available inhibitors of metallo-β-lactamases (MBLs), enzymes that hydrolyze β-lactam antibiotics and confer resistance to Gram-negative bacteria. Here we present 6-phosphonomethylpyridine-2-carboxylates (PMPCs) as potent inhibitors of subclass B1 (IMP-1, VIM-2, and NDM-1) and B3 (L1) MBLs. Inhibition followed a competitive, slow-binding model without an isomerization step (IC50 values of 0.3-7.2 μM; Ki values of 0.03-1.5 μM). Minimum inhibitory concentration assays demonstrated potentiation of β-lactam (Meropenem) activity against MBL-producing bacteria, including clinical isolates, at concentrations at which eukaryotic cells remain viable. Crystal structures revealed unprecedented modes of binding of inhibitor to B1 (IMP-1) and B3 (L1) MBLs. In IMP-1, binding does not replace the nucleophilic hydroxide, and the PMPC carboxylate and pyridine nitrogen interact closely (2.3 and 2.7 Å, respectively) with the Zn2 ion of the binuclear metal site. The phosphonate group makes limited interactions but is 2.6 Å from the nucleophilic hydroxide. Furthermore, the presence of a water molecule interacting with the PMPC phosphonate and pyridine N-C2 π-bond, as well as the nucleophilic hydroxide, suggests that the PMPC binds to the MBL active site as its hydrate. Binding is markedly different in L1, with the phosphonate displacing both Zn2, forming a monozinc enzyme, and the nucleophilic hydroxide, while also making multiple interactions with the protein main chain and Zn1. The carboxylate and pyridine nitrogen interact with Ser221 and -223, respectively (3 Å distance). The potency, low toxicity, cellular activity, and amenability to further modification of PMPCs indicate these and similar phosphonate compounds can be further considered for future MBL inhibitor development.
Collapse
Affiliation(s)
- Philip Hinchliffe
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Carol A. Tanner
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | - Geneviève Labbé
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | - Laura Marrone
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Ahmed Y. Desoky
- Department
of Chemistry, College of Science, University
of Hail, Saudi Arabia
| | - Karina Calvopiña
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Emily E. Whittle
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Fanxing Zeng
- Department
of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Matthew B. Avison
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Niels C. Bols
- Department
of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Stefan Siemann
- Department
of Chemistry and Biochemistry, Laurentian
University, Sudbury, Ontario, Canada P3E 2C6
| | - James Spencer
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Gary I. Dmitrienko
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- School
of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
27
|
Das CK, Nair NN. Hydrolysis of cephalexin and meropenem by New Delhi metallo-β-lactamase: the substrate protonation mechanism is drug dependent. Phys Chem Chem Phys 2018; 19:13111-13121. [PMID: 28489087 DOI: 10.1039/c6cp08769h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Emergence of antibiotic resistance due to New Delhi metallo-β-lactamase (NDM-1) bacterial enzymes is of great concern due to their ability to hydrolyze a wide range of antibiotics. There are ongoing efforts to obtain the atomistic details of the hydrolysis mechanism in order to develop inhibitors for NDM-1. In particular, it remains elusive how drug molecules of different families of antibiotics are hydrolyzed by NDM-1 in an efficient manner. Here we report the detailed molecular mechanism of NDM-1 catalyzed hydrolysis of cephalexin, a cephalosporin family drug, and meropenem, a carbapenem family drug. This study employs molecular dynamics (MD) simulations using hybrid quantum mechanical/molecular mechanical (QM/MM) methods at the density functional theory (DFT) level, based on which reaction pathways and the associated free energies are obtained. We find that the mechanism and the free energy barrier for the ring-opening step are the same for both the drug molecules, while the subsequent protonation step differs. In particular, we observe that the mechanism of the protonation step depends on the R2 group of the drug molecule. Our simulations show that allylic carbon protonation occurs in the case of the cephalexin drug molecule where Lys211 is the proton donor, and the proton transfer occurs via a water chain formed (only) at the ring-opened intermediate structure. Based on the free energy profiles, the overall kinetics of drug hydrolysis is discussed. Finally, we show that the proposed mechanisms and free energy profiles could explain various experimental observations.
Collapse
Affiliation(s)
- Chandan Kumar Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | | |
Collapse
|
28
|
Valasatava Y, Rosato A, Furnham N, Thornton JM, Andreini C. To what extent do structural changes in catalytic metal sites affect enzyme function? J Inorg Biochem 2018; 179:40-53. [PMID: 29161638 PMCID: PMC5760197 DOI: 10.1016/j.jinorgbio.2017.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 01/09/2023]
Abstract
About half of known enzymatic reactions involve metals. Enzymes belonging to the same superfamily often evolve to catalyze different reactions on the same structural scaffold. The work presented here investigates how functional differentiation, within superfamilies that contain metalloenzymes, relates to structural changes at the catalytic metal site. In general, when the catalytic metal site is unchanged across the enzymes of a superfamily, the functional differentiation within the superfamily tends to be low and the mechanism conserved. Conversely, all types of structural changes in the metal binding site are observed for superfamilies with high functional differentiation. Overall, the catalytic role of the metal ions appears to be one of the most conserved features of the enzyme mechanism within metalloenzyme superfamilies. In particular, when the catalytic role of the metal ion does not involve a redox reaction (i.e. there is no exchange of electrons with the substrate), this role is almost always maintained even when the site undergoes significant structural changes. In these enzymes, functional diversification is most often associated with modifications in the surrounding protein matrix, which has changed so much that the enzyme chemistry is significantly altered. On the other hand, in more than 50% of the examples where the metal has a redox role in catalysis, changes at the metal site modify its catalytic role. Further, we find that there are no examples in our dataset where metal sites with a redox role are lost during evolution. SYNOPSIS In this paper we investigate how functional diversity within superfamilies of metalloenzymes relates to structural changes at the catalytic metal site. Evolution tends to strictly conserve the metal site. When changes occur, they do not modify the catalytic role of non-redox metals whereas they affect the role of redox-active metals.
Collapse
Affiliation(s)
- Yana Valasatava
- Magnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Nicholas Furnham
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Janet M Thornton
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Claudia Andreini
- Magnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
29
|
Khrenova MG, Nemukhin AV. Modeling the Transient Kinetics of the L1 Metallo-β-Lactamase. J Phys Chem B 2018; 122:1378-1386. [DOI: 10.1021/acs.jpcb.7b10188] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Maria G. Khrenova
- Department
of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander V. Nemukhin
- Department
of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Emanuel
Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
30
|
Di Pisa F, Pozzi C, Benvenuti M, Docquier JD, De Luca F, Mangani S. Boric acid and acetate anion binding to subclass B3 metallo-β-lactamase BJP-1 provides clues for mechanism of action and inhibitor design. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.07.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Mojica MF, Bonomo RA, Fast W. B1-Metallo-β-Lactamases: Where Do We Stand? Curr Drug Targets 2017; 17:1029-50. [PMID: 26424398 DOI: 10.2174/1389450116666151001105622] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 12/31/1969] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
Metallo-β-Lactamases (MBLs) are class Bβ-lactamases that hydrolyze almost all clinically-availableβ-lactam antibiotics. MBLs feature the distinctive αβ/βα sandwich fold of the metallo-hydrolase/oxidoreductase superfamily and possess a shallow active-site groove containing one or two divalent zinc ions, flanked by flexible loops. According to sequence identity and zinc ion dependence, MBLs are classified into three subclasses (B1, B2 and B3), of which the B1 subclass enzymes have emerged as the most clinically significant. Differences among the active site architectures, the nature of zinc ligands, and the catalytic mechanisms have limited the development of a common inhibitor. In this review, we will describe the molecular epidemiology and structural studies of the most prominent representatives of class B1 MBLs (NDM-1, IMP-1 and VIM-2) and describe the implications for inhibitor design to counter this growing clinical threat.
Collapse
Affiliation(s)
| | - Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA.
| | - Walter Fast
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin TX, 78712, USA.
| |
Collapse
|
32
|
Chang YN, Xiang Y, Zhang YJ, Wang WM, Chen C, Oelschlaeger P, Yang KW. Carbamylmethyl Mercaptoacetate Thioether: A Novel Scaffold for the Development of L1 Metallo-β-lactamase Inhibitors. ACS Med Chem Lett 2017; 8:527-532. [PMID: 28523105 DOI: 10.1021/acsmedchemlett.7b00058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/24/2017] [Indexed: 12/30/2022] Open
Abstract
Given the clinical importance of metallo-β-lactamases (MβLs), a new scaffold, N-substituted carbamylmethyl mercaptoacetate thioether, was constructed. The obtained molecules 1-16 inhibited MβLs from all three subclasses, but preferentially L1 from subclass B3. Compound 9 with a p-carboxyphenyl substituent exhibited the broadest spectrum with at least 70% inhibition of enzymes from all subclasses at 100 μM, while compound 5 with a p-methylphenyl substituent was the most potent inhibitor of any individual enzyme, with 97% inhibition at 100 μM and an IC50 value of 0.41 μM against L1. Isothermal titration calorimetry assays corroborate findings from UV-vis spectrophotometric assays that the inhibition of L1 by 5 is dose-dependent. Docking studies suggest that the carboxyl group, the sulfide atom, and the carbonyl group of the carbamyl coordinate Zn2 in a chelating fashion. Using E. coli cells expressing L1, 6 and 8 were able to decrease cefazolin minimum inhibitory concentration 8-fold.
Collapse
Affiliation(s)
- Ya-Nan Chang
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, Chemical Biology Innovation Laboratory,
College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Yang Xiang
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, Chemical Biology Innovation Laboratory,
College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Yue-Juan Zhang
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, Chemical Biology Innovation Laboratory,
College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Wen-Ming Wang
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, Chemical Biology Innovation Laboratory,
College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Cheng Chen
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, Chemical Biology Innovation Laboratory,
College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Peter Oelschlaeger
- Department
of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 East Second Street, Pomona, California 91766, United States
| | - Ke-Wu Yang
- Key
Laboratory of Synthetic and Natural Functional Molecule Chemistry
of Ministry of Education, Chemical Biology Innovation Laboratory,
College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
33
|
Abstract
The global overuse of antibiotics has led to the emergence of drug-resistant pathogenic bacteria. Bacteria can combat β-lactams by expressing β-lactamases. Inhibitors of one class of β-lactamase, the serine-β-lactamases, are used clinically to prevent degradation of β-lactam antibiotics. However, a second class of β-lactamase, the metallo-β-lactamases (MBLs), function by a different mechanism to serine-β-lactamases and no inhibitors of MBLs have progressed to be used in the clinic. Bacteria that express MBLs are an increasingly important threat to human health. This review outlines various approaches taken to discover MBL inhibitors, with an emphasis on the different chemical classes of inhibitors. Recent progress, particularly new screening methods and the rational design of potent MBL inhibitors are discussed.
Collapse
|
34
|
Hou CFD, Liu JW, Collyer C, Mitić N, Pedroso MM, Schenk G, Ollis DL. Insights into an evolutionary strategy leading to antibiotic resistance. Sci Rep 2017; 7:40357. [PMID: 28074907 PMCID: PMC5225480 DOI: 10.1038/srep40357] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
Metallo-β-lactamases (MBLs) with activity towards a broad-spectrum of β-lactam antibiotics have become a major threat to public health, not least due to their ability to rapidly adapt their substrate preference. In this study, the capability of the MBL AIM-1 to evade antibiotic pressure by introducing specific mutations was probed by two alternative methods, i.e. site-saturation mutagenesis (SSM) of active site residues and in vitro evolution. Both approaches demonstrated that a single mutation in AIM-1 can greatly enhance a pathogen's resistance towards broad spectrum antibiotics without significantly compromising the catalytic efficiency of the enzyme. Importantly, the evolution experiments demonstrated that relevant amino acids are not necessarily in close proximity to the catalytic centre of the enzyme. This observation is a powerful demonstration that MBLs have a diverse array of possibilities to adapt to new selection pressures, avenues that cannot easily be predicted from a crystal structure alone.
Collapse
Affiliation(s)
- Chun-Feng D Hou
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Jian-Wei Liu
- CSIRO Entomology, Black Mountain, ACT 2601, Australia
| | - Charles Collyer
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Nataša Mitić
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David L Ollis
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
35
|
Salimraj R, Zhang L, Hinchliffe P, Wellington EMH, Brem J, Schofield CJ, Gaze WH, Spencer J. Structural and Biochemical Characterization of Rm3, a Subclass B3 Metallo-β-Lactamase Identified from a Functional Metagenomic Study. Antimicrob Agents Chemother 2016; 60:5828-40. [PMID: 27431213 PMCID: PMC5038237 DOI: 10.1128/aac.00750-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/08/2016] [Indexed: 11/20/2022] Open
Abstract
β-Lactamase production increasingly threatens the effectiveness of β-lactams, which remain a mainstay of antimicrobial chemotherapy. New activities emerge through both mutation of previously known β-lactamases and mobilization from environmental reservoirs. The spread of metallo-β-lactamases (MBLs) represents a particular challenge because of their typically broad-spectrum activities encompassing carbapenems, in addition to other β-lactam classes. Increasingly, genomic and metagenomic studies have revealed the distribution of putative MBLs in the environment, but in most cases their activity against clinically relevant β-lactams and, hence, the extent to which they can be considered a resistance reservoir remain uncharacterized. Here we characterize the product of one such gene, blaRm3, identified through functional metagenomic sampling of an environment with high levels of biocide exposure. blaRm3 encodes a subclass B3 MBL that, when expressed in a recombinant Escherichia coli strain, is exported to the bacterial periplasm and hydrolyzes clinically used penicillins, cephalosporins, and carbapenems with an efficiency limited by high Km values. An Rm3 crystal structure reveals the MBL superfamily αβ/βα fold, which more closely resembles that in mobilized B3 MBLs (AIM-1 and SMB-1) than other chromosomal enzymes (L1 or FEZ-1). A binuclear zinc site sits in a deep channel that is in part defined by a relatively extended N terminus. Structural comparisons suggest that the steric constraints imposed by the N terminus may limit its affinity for β-lactams. Sequence comparisons identify Rm3-like MBLs in numerous other environmental samples and species. Our data suggest that Rm3-like enzymes represent a distinct group of B3 MBLs with a wide distribution and can be considered an environmental reservoir of determinants of β-lactam resistance.
Collapse
Affiliation(s)
- Ramya Salimraj
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Lihong Zhang
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Jürgen Brem
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | | | - William H Gaze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
36
|
Crystal Structure of the Metallo-β-Lactamase GOB in the Periplasmic Dizinc Form Reveals an Unusual Metal Site. Antimicrob Agents Chemother 2016; 60:6013-22. [PMID: 27458232 DOI: 10.1128/aac.01067-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/17/2016] [Indexed: 11/20/2022] Open
Abstract
Metallo-beta-lactamases (MBLs) are broad-spectrum, Zn(II)-dependent lactamases able to confer resistance to virtually every β-lactam antibiotic currently available. The large diversity of active-site structures and metal content among MBLs from different sources has limited the design of a pan-MBL inhibitor. GOB-18 is a divergent MBL from subclass B3 that is expressed by the opportunistic Gram-negative pathogen Elizabethkingia meningoseptica This MBL is atypical, since several residues conserved in B3 enzymes (such as a metal ligand His) are substituted in GOB enzymes. Here, we report the crystal structure of the periplasmic di-Zn(II) form of GOB-18. This enzyme displays a unique active-site structure, with residue Gln116 coordinating the Zn1 ion through its terminal amide moiety, replacing a ubiquitous His residue. This situation contrasts with that of B2 MBLs, where an equivalent His116Asn substitution leads to a di-Zn(II) inactive species. Instead, both the mono- and di-Zn(II) forms of GOB-18 are active against penicillins, cephalosporins, and carbapenems. In silico docking and molecular dynamics simulations indicate that residue Met221 is not involved in substrate binding, in contrast to Ser221, which otherwise is conserved in most B3 enzymes. These distinctive features are conserved in recently reported GOB orthologues in environmental bacteria. These findings provide valuable information for inhibitor design and also posit that GOB enzymes have alternative functions.
Collapse
|
37
|
Liu XL, Yang KW, Zhang YJ, Ge Y, Xiang Y, Chang YN, Oelschlaeger P. Optimization of amino acid thioesters as inhibitors of metallo-β-lactamase L1. Bioorg Med Chem Lett 2016; 26:4698-4701. [PMID: 27595424 DOI: 10.1016/j.bmcl.2016.08.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/11/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
The emergence of antibiotic resistance caused by metallo-β-lactamases (MβLs) is a global public health problem. Recently, we found amino acid thioesters to be a highly promising scaffold for inhibitors of the MβL L1. In order to optimize this series of inhibitors, nine new amino acid thioesters were developed by modifying the substituents on the N-terminus of the thioesters and the groups representing the amino acid side chain. Biological activity assays indicate that all of them are very potent inhibitors of L1 with an IC50 value range of 20-600nM, lower than those of most of the previously reported inhibitors of this scaffold. Analysis of structure-activity relationship reveals that big hydrophobic substituents on the N-terminus and a methionine amino acid side chain improves inhibitory activity of the thioesters. All these inhibitors are able to restore antibacterial activity of a β-lactam antibiotic against Escherichia coli BL21(DE3) cells producing L1 to that against E. coli cells lacking a β-lactamase. Docking studies reveal that a large N-terminal hydrophobic group results in a slightly different binding mode than smaller hydrophobic groups at the same position.
Collapse
Affiliation(s)
- Xiao-Long Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Lab, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Lab, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Yue-Juan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Lab, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Ying Ge
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Lab, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Yang Xiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Lab, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Ya-Nan Chang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Lab, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Peter Oelschlaeger
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA
| |
Collapse
|
38
|
Structural Insights into Recognition of Hydrolyzed Carbapenems and Inhibitors by Subclass B3 Metallo-β-Lactamase SMB-1. Antimicrob Agents Chemother 2016; 60:4274-82. [PMID: 27161644 DOI: 10.1128/aac.03108-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/27/2016] [Indexed: 11/20/2022] Open
Abstract
Metallo-β-lactamases (MBLs) confer resistance to carbapenems, and their increasing global prevalence is a growing clinical concern. To elucidate the mechanisms by which these enzymes recognize and hydrolyze carbapenems, we solved 1.4 to 1.6 Å crystal structures of SMB-1 (Serratia metallo-β-lactamase 1), a subclass B3 MBL, bound to hydrolyzed carbapenems (doripenem, meropenem, and imipenem). In these structures, SMB-1 interacts mainly with the carbapenem core structure via elements in the active site, including a zinc ion (Zn-2), Q157[113] (where the position in the SMB-1 sequence is in brackets after the BBL number), S221[175], and T223[177]. There is less contact with the carbapenem R2 side chains, strongly indicating that SMB-1 primarily recognizes the carbapenem core structure. This is the first report describing how a subclass B3 MBL recognizes carbapenems. We also solved the crystal structure of SMB-1 in complex with the approved drugs captopril, an inhibitor of the angiotensin-converting enzyme, and 2-mercaptoethanesulfonate, a chemoprotectant. These drugs are inhibitors of SMB-1 with Ki values of 8.9 and 184 μM, respectively. Like carbapenems, these inhibitors interact with Q157[113] and T223[177] and their thiol groups coordinate the zinc ions in the active site. Taken together, the data indicate that Q157[113], S221[175], T223[177], and the two zinc ions in the active site are key targets in the design of SMB-1 inhibitors with enhanced affinity. The structural data provide a solid foundation for the development of effective inhibitors that would overcome the carbapenem resistance of MBL-producing multidrug-resistant microbes.
Collapse
|
39
|
Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes. Proc Natl Acad Sci U S A 2016; 113:E3745-54. [PMID: 27303030 DOI: 10.1073/pnas.1601368113] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metallo-β-lactamases (MBLs) hydrolyze almost all β-lactam antibiotics and are unaffected by clinically available β-lactamase inhibitors (βLIs). Active-site architecture divides MBLs into three classes (B1, B2, and B3), complicating development of βLIs effective against all enzymes. Bisthiazolidines (BTZs) are carboxylate-containing, bicyclic compounds, considered as penicillin analogs with an additional free thiol. Here, we show both l- and d-BTZ enantiomers are micromolar competitive βLIs of all MBL classes in vitro, with Kis of 6-15 µM or 36-84 µM for subclass B1 MBLs (IMP-1 and BcII, respectively), and 10-12 µM for the B3 enzyme L1. Against the B2 MBL Sfh-I, the l-BTZ enantiomers exhibit 100-fold lower Kis (0.26-0.36 µM) than d-BTZs (26-29 µM). Importantly, cell-based time-kill assays show BTZs restore β-lactam susceptibility of Escherichia coli-producing MBLs (IMP-1, Sfh-1, BcII, and GOB-18) and, significantly, an extensively drug-resistant Stenotrophomonas maltophilia clinical isolate expressing L1. BTZs therefore inhibit the full range of MBLs and potentiate β-lactam activity against producer pathogens. X-ray crystal structures reveal insights into diverse BTZ binding modes, varying with orientation of the carboxylate and thiol moieties. BTZs bind the di-zinc centers of B1 (IMP-1; BcII) and B3 (L1) MBLs via the free thiol, but orient differently depending upon stereochemistry. In contrast, the l-BTZ carboxylate dominates interactions with the monozinc B2 MBL Sfh-I, with the thiol uninvolved. d-BTZ complexes most closely resemble β-lactam binding to B1 MBLs, but feature an unprecedented disruption of the D120-zinc interaction. Cross-class MBL inhibition therefore arises from the unexpected versatility of BTZ binding.
Collapse
|
40
|
Aitha M, Al-Adbul-Wahid S, Tierney DL, Crowder MW. Probing substrate binding to the metal binding sites in metallo-β-lactamase L1 during catalysis. MEDCHEMCOMM 2016; 7:194-201. [PMID: 27087914 DOI: 10.1039/c5md00358j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal ions in metallo-β-lactamases (MBLs) play a major role in catalysis. In this study we investigated the role of the metal ions in the Zn1 and Zn2 sites of MBL L1 during catalysis. A ZnCo (with Zn(II) in the invariant Zn1 site and Co(II) in the Zn2 site) analog of MBL L1 was prepared by using a biological incorporation method. Extended X-ray Absorption Fine Structure (EXAFS) spectroscopic studies were used to confirm that the ZnCo analog was prepared. To study the roles of the Zn(II) and Co(II) ions during catalysis, rapid freeze quench (RFQ)-EXAFS studies were used to probe the reaction of the ZnCo-L1 analog with chromacef when quenched at 10 ms, 50 ms, and 100 ms. The L1-product complex was also analyzed with EXAFS spectroscopy. The data show that the Zn-Co distance is 3.49 Å in the resting enzyme and that this distance increases by 0.3 Å in the sample that was quenched at 10 ms. The average Zn-Co distance decreases at the other time points until reaching a distance of 3.58 Å in the L1-product complex. The data also show that a Co-S interaction is present in the 100 ms quenched sample and in the L1-product complex, which suggests that there is a significant rearrangement of product in the active site.
Collapse
Affiliation(s)
- Mahesh Aitha
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - Sameer Al-Adbul-Wahid
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - David L Tierney
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| |
Collapse
|
41
|
González MM, Vila AJ. An Elusive Task: A Clinically Useful Inhibitor of Metallo-β-Lactamases. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
42
|
Meini MR, Llarrull LI, Vila AJ. Overcoming differences: The catalytic mechanism of metallo-β-lactamases. FEBS Lett 2015; 589:3419-32. [PMID: 26297824 DOI: 10.1016/j.febslet.2015.08.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/27/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
Metallo-β-lactamases are the latest resistance mechanism of pathogenic and opportunistic bacteria against carbapenems, considered as last resort drugs. The worldwide spread of genes coding for these enzymes, together with the lack of a clinically useful inhibitor, have raised a sign of alarm. Inhibitor design has been mostly impeded by the structural diversity of these enzymes. Here we provide a critical review of mechanistic studies of the three known subclasses of metallo-β-lactamases, analyzed at the light of structural and mutagenesis investigations. We propose that these enzymes present a modular structure in their active sites that can be dissected into two halves: one providing the attacking nucleophile, and the second one stabilizing a negatively charged reaction intermediate. These are common mechanistic elements in all metallo-β-lactamases. Nucleophile activation does not necessarily requires a Zn(II) ion, but a Zn(II) center is essential for stabilization of the anionic intermediate. Design of a common inhibitor could be therefore approached based in these convergent mechanistic features despite the structural differences.
Collapse
Affiliation(s)
- María-Rocío Meini
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 200 Rosario, Argentina
| | - Leticia I Llarrull
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 200 Rosario, Argentina; Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 2000 Rosario, Argentina.
| | - Alejandro J Vila
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 200 Rosario, Argentina; Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 2000 Rosario, Argentina.
| |
Collapse
|
43
|
Baier F, Chen J, Solomonson M, Strynadka NC, Tokuriki N. Distinct Metal Isoforms Underlie Promiscuous Activity Profiles of Metalloenzymes. ACS Chem Biol 2015; 10:1684-93. [PMID: 25856271 DOI: 10.1021/acschembio.5b00068] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Within a superfamily, functionally diverged metalloenzymes often favor different metals as cofactors for catalysis. One hypothesis is that incorporation of alternative metals expands the catalytic repertoire of metalloenzymes and provides evolutionary springboards toward new catalytic functions. However, there is little experimental evidence that incorporation of alternative metals changes the activity profile of metalloenzymes. Here, we systematically investigate how metals alter the activity profiles of five functionally diverged enzymes of the metallo-β-lactamase (MBL) superfamily. Each enzyme was reconstituted in vitro with six different metals, Cd(2+), Co(2+), Fe(2+), Mn(2+), Ni(2+), and Zn(2+), and assayed against eight catalytically distinct hydrolytic reactions (representing native functions of MBL enzymes). We reveal that each enzyme metal isoform has a significantly different activity level for native and promiscuous reactions. Moreover, metal preferences for native versus promiscuous activities are not correlated and, in some cases, are mutually exclusive; only particular metal isoforms disclose cryptic promiscuous activities but often at the expense of the native activity. For example, the L1 B3 β-lactamase displays a 1000-fold catalytic preference for Zn(2+) over Ni(2+) for its native activity but exhibits promiscuous thioester, phosphodiester, phosphotriester, and lactonase activity only with Ni(2+). Furthermore, we find that the five MBL enzymes exist as an ensemble of various metal isoforms in vivo, and this heterogeneity results in an expanded activity profile compared to a single metal isoform. Our study suggests that promiscuous activities of metalloenzymes can stem from an ensemble of metal isoforms in the cell, which could facilitate the functional divergence of metalloenzymes.
Collapse
Affiliation(s)
- Florian Baier
- Michael
Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Chen
- Michael
Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew Solomonson
- Center
for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department
of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Natalie C.J. Strynadka
- Center
for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department
of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nobuhiko Tokuriki
- Michael
Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
44
|
Liu XL, Shi Y, Kang JS, Oelschlaeger P, Yang KW. Amino Acid Thioester Derivatives: A Highly Promising Scaffold for the Development of Metallo-β-lactamase L1 Inhibitors. ACS Med Chem Lett 2015; 6:660-4. [PMID: 26101570 DOI: 10.1021/acsmedchemlett.5b00098] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/23/2015] [Indexed: 11/29/2022] Open
Abstract
In light of the biomedical significance of metallo-β-lactamases (MβLs), ten new mercaptoacetic acid thioester amino acid derivatives were synthesized and characterized. Biological activity assays indicated that all these synthesized compounds are very potent inhibitors of L1, exhibiting an IC50 value range of 0.018-2.9 μM and a K i value range of 0.11-0.95 μM using cefazolin as substrate. Partial thioesters also showed effective inhibitory activities against NDM-1 and ImiS with an IC50 value range of 12-96 and 3.6-65 μM, respectively. Also, all these thioesters increased susceptibility of E. coli cells expressing L1 to cefazolin, indicated by a 2-4-fold reduction in MIC of the antibiotic. Docking studies revealed potential binding modes of the two most potent L1 inhibitors to the active site in which the carboxylate group interacts with both Zn(II) ions and Ser221. This work introduces a highly promising scaffold for the development of metallo-β-lactamase L1 inhibitors.
Collapse
Affiliation(s)
- Xiao-Long Liu
- Key Laboratory of Synthetic and Natural Functional Molecule
Chemistry of Ministry of Education, College of Chemistry and Materials
Science, Northwest University, Xi’an 710127, P. R. China
| | - Ying Shi
- Key Laboratory of Synthetic and Natural Functional Molecule
Chemistry of Ministry of Education, College of Chemistry and Materials
Science, Northwest University, Xi’an 710127, P. R. China
| | - Joon S. Kang
- Department of Biological Sciences, California State Polytechnic University, Pomona, 3801 West Temple Avenue, Pomona, California 91768, United States
| | - Peter Oelschlaeger
- Department
of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 East Second Street, Pomona, California 91766, United States
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule
Chemistry of Ministry of Education, College of Chemistry and Materials
Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
45
|
Affiliation(s)
- Ravi Tripathi
- Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nisanth N. Nair
- Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
46
|
Targeting metallo-carbapenemases via modulation of electronic properties of cephalosporins. Biochem J 2015; 464:271-9. [PMID: 25220027 DOI: 10.1042/bj20140364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The global proliferation of metallo-carbapenemase-producing Enterobacteriaceae has created an unmet need for inhibitors of these enzymes. The rational design of metallo-carbapenemase inhibitors requires detailed knowledge of their catalytic mechanisms. Nine cephalosporins, structurally identical except for the systematic substitution of electron-donating and withdrawing groups in the para position of the styrylbenzene ring, were synthesized and utilized to probe the catalytic mechanism of New Delhi metallo-β-lactamase (NDM-1). Under steady-state conditions, K(m) values were all in the micromolar range (1.5-8.1 μM), whereas k(cat) values varied widely (17-220 s(-1)). There were large solvent deuterium isotope effects for all substrates under saturating conditions, suggesting a proton transfer is involved in the rate-limiting step. Pre-steady-state UV-visible scans demonstrated the formation of short-lived intermediates for all compounds. Hammett plots yielded reaction constants (ρ) of -0.34 ± 0.02 and -1.15 ± 0.08 for intermediate formation and breakdown, respectively. Temperature-dependence experiments yielded ΔG(‡) values that were consistent with the Hammett results. These results establish the commonality of the formation of an azanide intermediate in the NDM-1-catalysed hydrolysis of a range cephalosporins with differing electronic properties. This intermediate is a promising target for judiciously designed β-lactam antibiotics that are poor NDM-1 substrates and inhibitors with enhanced active-site residence times.
Collapse
|
47
|
Leiros HKS, Edvardsen KSW, Bjerga GEK, Samuelsen Ø. Structural and biochemical characterization of VIM-26 shows that Leu224 has implications for the substrate specificity of VIM metallo-β-lactamases. FEBS J 2015; 282:1031-42. [DOI: 10.1111/febs.13200] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Hanna-Kirsti S. Leiros
- Norwegian Structural Biology Centre; Department of Chemistry; UiT The Arctic University of Norway; Tromsø Norway
| | - Kine Susann Waade Edvardsen
- Norwegian Structural Biology Centre; Department of Chemistry; UiT The Arctic University of Norway; Tromsø Norway
| | - Gro Elin Kjaereng Bjerga
- Norwegian Structural Biology Centre; Department of Chemistry; UiT The Arctic University of Norway; Tromsø Norway
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance; Department of Microbiology and Infection Control; University Hospital of North Norway; Tromsø Norway
| |
Collapse
|
48
|
Theoretical studies of the hydrolysis of antibiotics catalyzed by a metallo-β-lactamase. Arch Biochem Biophys 2015; 582:116-26. [PMID: 25622886 DOI: 10.1016/j.abb.2015.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/27/2022]
Abstract
In this paper, hybrid QM/MM molecular dynamics (MD) simulations have been performed to explore the mechanisms of hydrolysis of two antibiotics, Imipenen (IMI), an antibiotic belonging to the subgroup of carbapenems, and the Cefotaxime (CEF), a third-generation cephalosporin antibiotic, in the active site of a mono-nuclear β-lactamase, CphA from Aeromonas hydrophila. Significant different transition state structures are obtained for the hydrolysis of both antibiotics: while the TS of the CEF is an ionic species with negative charge on nitrogen, the IMI TS presents a tetrahedral-like character with negative charge on oxygen atom of the carbonyl group of the lactam ring. Thus, dramatic conformational changes can take place in the cavity of CphA to accommodate different substrates, which would be the origin of its substrate promiscuity. Since CphA shows only activity against carbapenem antibiotic, this study sheds some light into the origin of the selectivity of the different MbL and, as a consequence, into the discovery of specific and potent MβL inhibitors against a broad spectrum of bacterial pathogens. We have finally probed that a re-parametrization of semiempirical methods should be done to properly describe the behavior the metal cation in active site, Zn(2+), when used in QM/MM calculations.
Collapse
|
49
|
Alderson RG, Barker D, Mitchell JBO. One origin for metallo-β-lactamase activity, or two? An investigation assessing a diverse set of reconstructed ancestral sequences based on a sample of phylogenetic trees. J Mol Evol 2014; 79:117-29. [PMID: 25185655 PMCID: PMC4185109 DOI: 10.1007/s00239-014-9639-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/11/2014] [Indexed: 01/04/2023]
Abstract
Bacteria use metallo-β-lactamase enzymes to hydrolyse lactam rings found in many antibiotics, rendering them ineffective. Metallo-β-lactamase activity is thought to be polyphyletic, having arisen on more than one occasion within a single functionally diverse homologous superfamily. Since discovery of multiple origins of enzymatic activity conferring antibiotic resistance has broad implications for the continued clinical use of antibiotics, we test the hypothesis of polyphyly further; if lactamase function has arisen twice independently, the most recent common ancestor (MRCA) is not expected to possess lactam-hydrolysing activity. Two major problems present themselves. Firstly, even with a perfectly known phylogeny, ancestral sequence reconstruction is error prone. Secondly, the phylogeny is not known, and in fact reconstructing a single, unambiguous phylogeny for the superfamily has proven impossible. To obtain a more statistical view of the strength of evidence for or against MRCA lactamase function, we reconstructed a sample of 98 MRCAs of the metallo-β-lactamases, each based on a different tree in a bootstrap sample of reconstructed phylogenies. InterPro sequence signatures and homology modelling were then used to assess our sample of MRCAs for lactamase functionality. Only 5 % of these models conform to our criteria for metallo-β-lactamase functionality, suggesting that the ancestor was unlikely to have been a metallo-β-lactamase. On the other hand, given that ancestral proteins may have had metallo-β-lactamase functionality with variation in sequence and structural properties compared with extant enzymes, our criteria are conservative, estimating a lower bound of evidence for metallo-β-lactamase functionality but not an upper bound.
Collapse
Affiliation(s)
- Rosanna G. Alderson
- Biomedical Sciences Research Complex and EaStCHEM School of Chemistry, Purdie Building, University of St Andrews, North Haugh, St Andrews, KY16 9ST Scotland, UK
| | - Daniel Barker
- Sir Harold Mitchell Building, School of Biology, University of St Andrews, St Andrews, KY16 9TH Scotland, UK
| | - John B. O. Mitchell
- Biomedical Sciences Research Complex and EaStCHEM School of Chemistry, Purdie Building, University of St Andrews, North Haugh, St Andrews, KY16 9ST Scotland, UK
| |
Collapse
|
50
|
Zhang YL, Yang KW, Zhou YJ, LaCuran AE, Oelschlaeger P, Crowder MW. Diaryl-Substituted Azolylthioacetamides: Inhibitor Discovery of New Delhi Metallo-β-Lactamase-1 (NDM-1). ChemMedChem 2014; 9:2445-8. [DOI: 10.1002/cmdc.201402249] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Indexed: 11/09/2022]
|