1
|
Wang Y, Du ZH, Bo C, Li M, Chen F, Liu N. Synthesis of α,β-Unsaturated Carbonyl Compounds via Cu/TEMPO/O 2 Aerobic Catalytic System. Chemistry 2025:e202403950. [PMID: 39780202 DOI: 10.1002/chem.202403950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
An N,N,N-type Cu(II) complex-catalyzed desaturation method for converting alcohols, ketones, lactones, and lactams to their α,β-unsaturated carbonyl compounds is reported. The dehydrogenation reaction can be conducted with a green terminal oxidant O2 without requiring strong acid/base or stoichiometric oxidants. The Cu(II) complex/TEMPO/O2 system uses a non-noble catalyst, and a green terminal oxidant as well as demonstrates high activity and functional group tolerance. Notably, H2O is the byproduct produced and overoxidation is not observed during the reaction process. The proposed mechanism was investigated via high-resolution mass spectrometry (HRMS), in situ FT-IR spectrometry, and GC analysis, and the formation of intermediates of α,β-unsaturated carbonyl compounds from the aerobic dehydrogenation of α,β-saturated counterparts was observed.
Collapse
Affiliation(s)
- Yao Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Xinjiang, 832003, China
| | - Zhi-Hong Du
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Xinjiang, 832003, China
| | - Chunbo Bo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Xinjiang, 832003, China
| | - Min Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Xinjiang, 832003, China
| | - Fei Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Xinjiang, 832003, China
| | - Ning Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Xinjiang, 832003, China
| |
Collapse
|
2
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
3
|
Bansal D, Yadav S, Gupta R. Oxo‐bridged Tri‐ and Tetra‐nuclear Cobalt Complexes Supported with Amide‐Based Nitrogen Donor Ligands. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Deepak Bansal
- Department of Chemistry University of Delhi Delhi 110 007 India
| | - Samanta Yadav
- Department of Chemistry University of Delhi Delhi 110 007 India
| | - Rajeev Gupta
- Department of Chemistry University of Delhi Delhi 110 007 India
| |
Collapse
|
4
|
Copper Pyrithione (CuPT)-Catalyzed Oxidation of Secondary and Primary Benzyl Alcohols with Molecular oxygen or Air Under Mild Conditions. Catal Letters 2022. [DOI: 10.1007/s10562-022-04172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Tian M, He Y, Zhang G, Wang H. Oxidative Desulfurization Activity of NIT Nitroxide Radical Modified Metallophthalocyanine. Molecules 2022; 27:molecules27185964. [PMID: 36144700 PMCID: PMC9504426 DOI: 10.3390/molecules27185964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
In the present study, metallophthalocyanines were modified with NIT nitroxide radicals through chemical bonds to prepare a series of metallophthalocyanines–NIT catalysts (MPcTcCl8-NIT, M=Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) applied for oxidative desulfurization of thiophene (T) in model fuel. The MPcTcCl8-NIT catalysts were characterized by FTIR, UV-Vis, ESR, and XPS spectra. The oxidative desulfurization activity of MPcTcCl8-NIT catalysts was studied in a biomimetic catalytic system using molecular O2 as the oxidant. The MPcTcCl8-NIT catalysts exhibited high catalytic activities for the oxidation of thiophene in model fuel. The desulfurization rate of ZnPcTcCl8-NIT for thiophene reached to 99.61%, which was 20.53% higher than that of pure ZnPcTcCl8 (79.08%) under room temperature and natural light. The results demonstrated that MPcTcCl8-NIT catalysts could achieve more effective desulfurization rate under milder conditions than that of the metallophthalocyanines. The NIT nitroxide radicals also could improve the catalytic activity of metallophthalocyanine based on the synergistic oxidation effect. The stability experiments for ZnPcTcCl8-NIT showed that the catalyst still had a high desulfurization rate of 92.37% after five times recycling. All these findings indicate that the application of MPcTcCl8-NIT catalysts provides a potential new way for the desulfurization performance of thiophene in fuel.
Collapse
Affiliation(s)
- Min Tian
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
| | - Yang He
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
| | - Gai Zhang
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
- Correspondence: (G.Z.); (H.W.)
| | - Haibo Wang
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi′an 710032, China
- Correspondence: (G.Z.); (H.W.)
| |
Collapse
|
6
|
Zhang C, Huang M, Yin J, Lou F, Chen X, Zhang J. Green and practical TEMPO-functionalized activated carbon as a durable catalyst for continuous aerobic oxidation of alcohols. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Gao T, Meng L, Zeng G, Hao Z, Han Z, Feng Q, Lin J. Copper(II) complexes supported by 8-hydroxyquinoline-imine ligands: Synthesis, characterization and catalysis in aerobic alcohols oxidation. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Baek J, Si T, Kim HY, Oh K. Bioinspired o-Naphthoquinone-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones. Org Lett 2022; 24:4982-4986. [PMID: 35796666 DOI: 10.1021/acs.orglett.2c02037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A biomimetic alcohol dehydrogenase (ADH)-like oxidation protocol was developed using an ortho-naphthoquinone catalyst in the presence of a catalytic amount of base. The developed organocatalytic aerobic oxidation protocol proceeds through the intramolecular 1,5-hydrogen atom transfer of naphthalene alkoxide intermediates, a mechanistically distinctive feature from the previous alcohol dehydrogenase mimics that require metals in the active form of catalysts. The ADH-like aerobic oxidation protocol should provide green alternatives to the existing stoichiometric and metal-catalyzed alcohol oxidation reactions.
Collapse
Affiliation(s)
- Jisun Baek
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Tengda Si
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
9
|
Gram scale, metal-free and selective aerobic oxidation of alcohol and alkyl benzenes using homogeneous recyclable TAIm[MnO4] oxidative ionic liquid under mild conditions: Microwave/ ultrasonic-assisted to carboxylic acid. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Cheedarala RK, Chidambaram RR, Siva A, Song JI. An aerobic oxidation of alcohols into carbonyl synthons using bipyridyl-cinchona based palladium catalyst. RSC Adv 2021; 11:32942-32954. [PMID: 35493605 PMCID: PMC9042156 DOI: 10.1039/d1ra05855j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 12/04/2022] Open
Abstract
We have reported an aerobic oxidation of primary and secondary alcohols to respective aldehydes and ketones using a bipyridyl-cinchona alkaloid based palladium catalytic system (PdAc-5) using oxygen at moderate pressure. The PdAc-5 catalyst was analysed using SEM, EDAX, and XPS analysis. The above catalytic system is used in experiments for different oxidation systems which include different solvents, additives, and bases which are cheap, robust, non-toxic, and commercially available on the industrial bench. The obtained products are quite appreciable in both yield and selectivity (70-85%). In addition, numerous important studies, such as comparisons with various commercial catalysts, solvent systems, mixture of solvents, and catalyst mole%, were conducted using PdAc-5. The synthetic strategy of oxidation of alcohol into carbonyl compounds was well established and all the products were analysed using 1H NMR, 13CNMR and GC-mass analyses.
Collapse
Affiliation(s)
- Ravi Kumar Cheedarala
- Research Institute of Mechatronics, Department of Mechanical Engineering, Changwon National University Changwon City Republic of Korea
| | - Ramasamy R Chidambaram
- Supramolecular and Organometallic Chemistry Lab, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University Madurai 625021 Tamil Nadu India
| | - Ayyanar Siva
- Supramolecular and Organometallic Chemistry Lab, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University Madurai 625021 Tamil Nadu India
| | - Jung Il Song
- Research Institute of Mechatronics, Department of Mechanical Engineering, Changwon National University Changwon City Republic of Korea
| |
Collapse
|
11
|
Tomboc GM, Park Y, Lee K, Jin K. Directing transition metal-based oxygen-functionalization catalysis. Chem Sci 2021; 12:8967-8995. [PMID: 34276926 PMCID: PMC8261717 DOI: 10.1039/d1sc01272j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
This review presents the recent progress of oxygen functionalization reactions based on non-electrochemical (conventional organic synthesis) and electrochemical methods. Although both methods have their advantages and limitations, the former approach has been used to synthesize a broader range of organic substances as the latter is limited by several factors, such as poor selectivity and high energy cost. However, because electrochemical methods can replace harmful terminal oxidizers with external voltage, organic electrosynthesis has emerged as greener and more eco-friendly compared to conventional organic synthesis. The progress of electrochemical methods toward oxygen functionalization is presented by an in-depth discussion of different types of electrically driven-chemical organic synthesis, with particular attention to recently developed electrochemical systems and catalyst designs. We hope to direct the attention of readers to the latest breakthroughs of traditional oxygen functionalization reactions and to the potential of electrochemistry for the transformation of organic substrates to useful end products.
Collapse
Affiliation(s)
- Gracita M Tomboc
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| | - Yeji Park
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| | - Kyoungsuk Jin
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| |
Collapse
|
12
|
Takallou A, Mesgarsaravi N, Beigbaghlou SS, Sakhaee N, Halimehjani AZ. Recent Developments in Dehydrogenative Organic Transformations Catalyzed by Homogeneous Phosphine‐Free Earth‐Abundant Metal Complexes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ahmad Takallou
- Faculty of Chemistry Kharazmi University 49 Mofateh St. Tehran 15719-14911 Iran
| | | | | | - Nader Sakhaee
- Roger Adams Lab, School of Chemical Sciences University of Illinois Urbana Champaign Illinois 61801 USA
| | | |
Collapse
|
13
|
Copper(II)-Ethanolamine Triazine Complex on Chitosan-Functionalized Nanomaghemite for Catalytic Aerobic Oxidation of Benzylic Alcohols. Catal Letters 2021. [DOI: 10.1007/s10562-020-03298-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Boddapati SNM, Tamminana R, Alam MM, Gugulothu S, Varala R, Bollikolla HB. Efficient Pd( ii)-catalyzed regioselective ortho-halogenation of arylcyanamides. NEW J CHEM 2021. [DOI: 10.1039/d1nj01998h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
2-Halo arylcyanamides have been constructed from cyanamides via Pd(ii)-catalyzed selective ortho-halogenation under moderate reaction conditions.
Collapse
Affiliation(s)
- S. N. Murthy Boddapati
- Department of Chemistry, Acharya Nagarjuna University, N Nagar, Guntur, A. P-522510, India
- Department of Chemistry, Sir C R Reddy College, P G Courses, Eluru, A.P-534007, India
| | - Ramana Tamminana
- Department of Chemistry, GITAM Deemed to be University, Bengaluru Campus, Bengaluru Rural, Karnataka, 562163, India
| | - M. Mujahid Alam
- Department of Chemistry, College of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Sailaja Gugulothu
- Department of Chemistry, Acharya Nagarjuna University, N Nagar, Guntur, A. P-522510, India
| | | | - Hari Babu Bollikolla
- Department of Chemistry, Acharya Nagarjuna University, N Nagar, Guntur, A. P-522510, India
| |
Collapse
|
15
|
Kim S, Lee HE, Suh JM, Lim MH, Kim M. Sequential Connection of Mutually Exclusive Catalytic Reactions by a Method Controlling the Presence of an MOF Catalyst: One-Pot Oxidation of Alcohols to Carboxylic Acids. Inorg Chem 2020; 59:17573-17582. [PMID: 33216548 DOI: 10.1021/acs.inorgchem.0c02809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A functionalized metal-organic framework (MOF) catalyst applied to the sequential one-pot oxidation of alcohols to carboxylic acids controls the presence of a heterogeneous catalyst. The conversion of alcohols to aldehydes was acquired through aerobic oxidation using a well-known amino-oxy radical-functionalized MOF. In the same flask, a simple filtration of the radical MOF with mild heating of the solution completely altered the reaction media, providing radical scavenger-free conditions suitable for the autoxidation of the aldehydes formed in the first step to carboxylic acids. The mutually exclusive radical-catalyzed aerobic oxidation (the first step with MOF) and radical-inhibited autoxidation (the second step without MOF) are sequentially achieved in a one-pot manner. Overall, we demonstrate a powerful and efficient method for the sequential oxidation of alcohols to carboxylic acids by employing a readily functionalizable heterogeneous MOF. In addition, our MOF in-and-out method can be utilized in an environmentally friendly way for the oxidation of alcohols to carboxylic acids of industrial and economic value with broad functional group tolerance, including 2,5-furandicarboxylic acid and 1,4-benzenedicarboxylic acid, with good yield and reusability. Furthermore, MOF-TEMPO, as an antioxidative stabilizer, prevents the undesired oxidation of aldehydes, and the perfect "recoverability" of such a reactive MOF requires a re-evaluation of the advantages of MOFs from heterogeneity in catalytic and related applications.
Collapse
Affiliation(s)
- Seongwoo Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Ha-Eun Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Jong-Min Suh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
16
|
Salimi M, Esmaeli‐nasrabadi F, Sandaroos R. Effective and selective aerobic oxidation of primary and secondary alcohols using CoFe
2
O
4
@HT@Imine‐Cu
II
and TEMPO in the air atmosphere. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mehri Salimi
- Department of Chemistry, Faculty of Science University of Birjand Birjand Iran
| | | | - Reza Sandaroos
- Department of Chemistry, Faculty of Science University of Birjand Birjand Iran
| |
Collapse
|
17
|
Muntzeck M, Pippert F, Wilhelm R. Tetraalkylammonium-based ionic liquids for a RuCl3 catalyzed C–H activated homocoupling. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Kim S, Lee J, Jeoung S, Moon HR, Kim M. Dual-fixations of europium cations and TEMPO species on metal-organic frameworks for the aerobic oxidation of alcohols. Dalton Trans 2020; 49:8060-8066. [PMID: 32459224 DOI: 10.1039/d0dt01324b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficient and selective aerobic oxidation of alcohols has been investigated with judicious combinations of europium-incorporated and/or TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl)-functionalized zirconium-based porous metal-organic frameworks (MOFs). Although MOFs are well-known catalytic platforms for the aerobic oxidation with radical-functionalities and metal nanoparticles, these systematic approaches involving metal cations and/or radical species introduce numerous interesting aspects for cooperation between metals and TEMPO for the aerobic oxidation of alcohols. The role of TEMPO as the oxidant in the heterogeneous catalytic aerobic oxidation of alcohols was revealed through a series of comparisons between metal-anchored, TEMPO-anchored, and metal and TEMPO-anchored MOF catalysis. The fine tunability of the MOF allowed the homogeneously and doubly functionalized catalysts to undergo organic reactions in the heterogeneous media. In addition, the well-defined and carefully designed heterogeneous molecular catalysts displayed reusability along with better catalytic performance than the homogeneous systems using identical coordinating ligands. The role of metal-cation fixation should be carefully revised to control their coordination and maximize their catalytic activity. Lastly, the metal cation-fixed MOF displayed better substrate tolerance and reaction efficiencies than the TEMPO-anchored MOF or mixture MOF systems.
Collapse
Affiliation(s)
- Seongwoo Kim
- Department of Chemistry and BK21Plus Research Team, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | | | | | | | | |
Collapse
|
19
|
Takallou A, Habibi A, Halimehjan AZ, Balalaie S. NHC‐assisted Ni(II)‐catalyzed acceptorless dehydrogenation of amines and secondary alcohols. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ahmad Takallou
- Faculty of ChemistryKharazmi University No. 43. Mofatteh Street, Enghelab Ave 15719‐14911 Tehran Iran
| | - Azizollah Habibi
- Faculty of ChemistryKharazmi University No. 43. Mofatteh Street, Enghelab Ave 15719‐14911 Tehran Iran
| | - Azim Ziyaei Halimehjan
- Faculty of ChemistryKharazmi University No. 43. Mofatteh Street, Enghelab Ave 15719‐14911 Tehran Iran
| | - Saeed Balalaie
- Department of ChemistryK.N.Toosi University of Technology P.O.Box 15875 – 4416 Tehran Iran
| |
Collapse
|
20
|
Pavithra D, Ethiraj KR. Tetrabutylammonium Bromide (TBAB) Promoted Metal-Free Synthesis of 2H-Indazolo[1,2-b]Phthalazinetriones and Pyrazolo[1,2-b]Phthalazines from Benzylalcohol through Aerobic Oxidation, Sequential Addition-Cyclization with Phthalhydrazide and β-Diketones. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1732430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Dalavai Pavithra
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - K. R. Ethiraj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| |
Collapse
|
21
|
Zhang Y, Wang W, Sun J, Liu Y. TEMPO‐catalyzed decarboxylation reactions for the synthesis of 1,2‐unsubstituted indolizines. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuxuan Zhang
- School of Chemistry and Material ScienceJiangsu Normal University Xuzhou China
| | - Wenhui Wang
- School of Chemistry and Material ScienceJiangsu Normal University Xuzhou China
| | - Jinwei Sun
- School of Chemistry and Material ScienceJiangsu Normal University Xuzhou China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution ControlNanjing University of Information Science & Technology Nanjing China
| | - Yun Liu
- School of Chemistry and Material ScienceJiangsu Normal University Xuzhou China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution ControlNanjing University of Information Science & Technology Nanjing China
| |
Collapse
|
22
|
Ghatta AA, Wilton-Ely JDET, Hallett JP. Rapid, High-Yield Fructose Dehydration to 5-Hydroxymethylfurfural in Mixtures of Water and the Noncoordinating Ionic Liquid [bmim][OTf]. CHEMSUSCHEM 2019; 12:4452-4460. [PMID: 31356732 DOI: 10.1002/cssc.201901529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The noncoordinating ionic liquid [bmim][OTf] (bmim=1-butyl-3-methylimidazolium) is an effective and versatile solvent for the high-yield dehydration of fructose to the platform chemical 5-hydroxymethylfurfural (HMF) over short reaction times. In contrast to prior studies in which low yields were obtained for this transformation in ionic liquids (ILs) with noncoordinating anions, this contribution reveals that the water content is an essential parameter for an efficient reaction in ILs. Achieving the optimum amount of water can increase the yield dramatically by regulating the acidity of the catalyst and partially suppressing the side reaction caused by self-condensation of HMF. Using acid catalysis in [bmim][OTf] with 3.5 % water content, yields above 80 % can be achieved at 100 °C in only 10 min, even at high (14 %) fructose loading. These results also suggest that [bmim][OTf] represents a superior medium for solvent extraction of HMF compared to halide-based ILs, allowing the option of isolation or further valorization of the HMF formed.
Collapse
Affiliation(s)
- Amir Al Ghatta
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - James D E T Wilton-Ely
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Jason P Hallett
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
23
|
Vadivelu M, Sampath S, Muthu K, Karthikeyan K, Praveen C. Harnessing the TEMPO-Catalyzed Aerobic Oxidation for Machetti-De Sarlo Reaction toward Sustainable Synthesis of Isoxazole Libraries. J Org Chem 2019; 84:13636-13645. [PMID: 31557022 DOI: 10.1021/acs.joc.9b01896] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A practical synthesis of isoxazole/isoxazoline derivatives via Machetti-De Sarlo reaction under sustainable conditions has been accomplished. This protocol involves the use of readily available 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) to catalyze the cyclocondensation of primary nitroalkanes with alkynes/alkenes to afford a library of isoxazole/isoxazoline products. From an eco-benign perspective, notable advantages of this method are as follows: (i) water as the solvent, (ii) air as the oxidant, (iii) transition metal-free, (iv) no base required, (v) no toxic byproduct, (vi) no need of solvent extraction, (vii) diverse substrate scope, (viii) high chemical yields, (ix) excellent chemo- and regioselectivity, (x) short reaction time, (xi) gram-scale synthesis, (xii) extension to heterogeneous version, and (xiii) catalyst recyclability. For these reasons, the developed method is appropriate for safe laboratory use and can be expected to inspire the progress of TEMPO-based organocatalysis for the preparation of isoxazole/isoxazoline moieties in an environmentally benign fashion.
Collapse
Affiliation(s)
- Murugan Vadivelu
- Department of Chemistry , B. S. Abdur Rahman Crescent Institute of Science and Technology , Vandalur , Chennai 600048 , Tamil Nadu , India
| | - Sugirdha Sampath
- Department of Chemistry , B. S. Abdur Rahman Crescent Institute of Science and Technology , Vandalur , Chennai 600048 , Tamil Nadu , India.,Department of Metallurgical & Materials Engineering , Indian Institute of Technology-Madras (IITM) , Chennai 600036 , Tamil Nadu , India
| | - Kesavan Muthu
- Interdisplinary Institute of Indian System of Medicine (IIISM) , SRM Institute of Science and Technology , Kattankulathur 603203 , Tamil Nadu , India
| | - Kesavan Karthikeyan
- Department of Chemistry , B. S. Abdur Rahman Crescent Institute of Science and Technology , Vandalur , Chennai 600048 , Tamil Nadu , India
| | - Chandrasekar Praveen
- Materials Electrochemistry Division , Central Electrochemical Research Institute (CSIR-Laboratory) , Alagappapuram , Karaikudi 630003 , Tamil Nadu , India.,Academy of Scientific and Innovative Research (AcSIR) , CECRI campus, Alagappapuram , Karaikudi 630003 , Tamil Nadu , India
| |
Collapse
|
24
|
Sethi S, Jena S, Das PK, Behera N. Synthetic approach and structural diversities of pyridylpyrazole derived late transition metal complexes. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Abstract
The oxidation of alcohols to the corresponding carbonyl products is an important organic transformation and the products are used in a variety of applications. The development of catalytic methods for selective alcohol oxidation have garnered significant attention in an attempt to find a more sustainable method without any limitations. Copper, in combination with 2,2,6,6-tetramethyl-1-piperidine N-oxyl (TEMPO) and supported by organic ligands, have emerged as the most effective catalysts for selective alcohol oxidation and these catalyst systems are frequently compared to galactose oxidase (GOase). The efficiency of GOase has led to extensive research to mimic the active sites of these enzymes, leading to a variety of Cu/TEMPO· catalyst systems being reported over the years. The mechanistic pathway by which Cu/TEMPO· catalyst systems operate has been investigated by several research groups, which led to partially contradicting mechanistic description. Due to the disadvantages and limitations of employing TEMPO· as co-catalyst, alternative nitroxyl radicals or in situ formed radicals, as co-catalysts, have been successfully evaluated in alcohol oxidation. Herein we discuss the development and mechanistic elucidation of Cu/TEMPO· catalyst systems as biomimetic alcohol oxidation catalysts.
Collapse
|
26
|
Nasseri MA, Hemmat K, Allahresani A, Hamidi‐Hajiabadi E. CoFe
2
O
4
@SiO
2
@ Co (III) salen complex nanoparticle as a green and efficient magnetic nanocatalyst for the oxidation of benzyl alcohols by molecular O
2. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4809] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mohammad A. Nasseri
- Department of Chemistry, College of SciencesUniversity of Birjand Birjand 97175‐615 Iran
| | - Kaveh Hemmat
- Department of Chemistry, College of SciencesUniversity of Birjand Birjand 97175‐615 Iran
| | - Ali Allahresani
- Department of Chemistry, College of SciencesUniversity of Birjand Birjand 97175‐615 Iran
| | | |
Collapse
|
27
|
Abstract
Abstract
In China, the rapid development greatly promotes the national economic power and living standard but also inevitably brings a series of environmental problems. In order to resolve these problems fundamentally, Chinese scientists have been undertaking research in the area of green chemical engineering (GCE) for many years and achieved great progresses. In this paper, we reviewed the research progresses related to GCE in China and screened four typical topics related to the Chinese resources characteristics and environmental requirements, i.e. ionic liquids and their applications, biomass utilization and bio-based materials/products, green solvent-mediated extraction technologies, and cold plasmas for coal conversion. Afterwards, the perspectives and development tendencies of GCE were proposed, and the challenges which will be faced while developing available industrial technologies in China were mentioned.
Collapse
|
28
|
Beejapur HA, Zhang Q, Hu K, Zhu L, Wang J, Ye Z. TEMPO in Chemical Transformations: From Homogeneous to Heterogeneous. ACS Catal 2019. [DOI: 10.1021/acscatal.8b05001] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hazi Ahmad Beejapur
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qi Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Kecheng Hu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Li Zhu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jianli Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhibin Ye
- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
| |
Collapse
|
29
|
Usman M, Zhang XW, Wu D, Guan ZH, Liu WB. Application of dialkyl azodicarboxylate frameworks featuring multi-functional properties. Org Chem Front 2019. [DOI: 10.1039/c9qo00017h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The application of dialkyl azodicarboxylates as versatile reagents in Mitsunobu, oxidation, electrophilic, amination and carbonylation reactions is reviewed.
Collapse
Affiliation(s)
- Muhammad Usman
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Department of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- Shaanxi, China
| | - Xiao-Wen Zhang
- Engineering Research Center of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
| | - Di Wu
- Engineering Research Center of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Department of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- Shaanxi, China
| | - Wen-Bo Liu
- Engineering Research Center of Organosilicon Compounds & Materials
- Ministry of Education
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
| |
Collapse
|
30
|
Zhai D, Ma S. Copper catalysis for highly selective aerobic oxidation of alcohols to aldehydes/ketones. Org Chem Front 2019. [DOI: 10.1039/c9qo00740g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and practical room temperature aerobic oxidation of different types of alcohols using Cu(NO3)2·3H2O and TEMPO or 4-HO-TEMPO as the catalysts forming aldehydes or ketones with an excellent selectivity has been developed.
Collapse
Affiliation(s)
- Di Zhai
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
31
|
Syiemlieh I, Asthana M, Asthana SK, Kurbah SD, Koch A, Lal RA. Water soluble new bimetallic catalyst [CuZn(bz)3(bpy)2]PF6 in hydrogen peroxide mediated oxidation of alcohols to aldehydes/ketones and C-N functional groups. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
32
|
Mohammadian R, Karimi Alavijeh M, Kamyar N, Amini MM, Shaabani A. Metal–organic frameworks as a new platform for molecular oxygen and aerobic oxidation of organic substrates: Recent advances. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.09.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Dutta A, Chetia M, Ali AA, Bordoloi A, Gehlot PS, Kumar A, Sarma D. Copper Nanoparticles Immobilized on Nanocellulose: A Novel and Efficient Heterogeneous Catalyst for Controlled and Selective Oxidation of Sulfides and Alcohols. Catal Letters 2018. [DOI: 10.1007/s10562-018-2615-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Salonen HEP, Mecke CPA, Karjomaa MI, Joensuu PM, Koskinen AMP. Copper Catalyzed Alcohol Oxidation and Cleavage of β-O-4 Lignin Model Systems: From Development to Mechanistic Examination. ChemistrySelect 2018. [DOI: 10.1002/slct.201802715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- H. Eemil P. Salonen
- Department of Chemistry and Materials Science; Aalto University School of Chemical Engineering; Espoo Finland
| | - Carsten P. A. Mecke
- Department of Chemistry and Materials Science; Aalto University School of Chemical Engineering; Espoo Finland
| | - Miika I. Karjomaa
- Department of Chemistry and Materials Science; Aalto University School of Chemical Engineering; Espoo Finland
| | - Pekka M. Joensuu
- Department of Chemistry and Materials Science; Aalto University School of Chemical Engineering; Espoo Finland
| | - Ari M. P. Koskinen
- Department of Chemistry and Materials Science; Aalto University School of Chemical Engineering; Espoo Finland
| |
Collapse
|
35
|
Sodium Copper Chlorophyllin Catalyzed Chemoselective Oxidation of Benzylic Alcohols and Diarylmethanes in Water. Molecules 2018; 23:molecules23081883. [PMID: 30060516 PMCID: PMC6222594 DOI: 10.3390/molecules23081883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/16/2018] [Accepted: 07/26/2018] [Indexed: 11/24/2022] Open
Abstract
We report the highly efficient and chemoselective oxidation of benzylic alcohols catalyzed by sodium copper chlorophyllin in water, producing corresponding arylcarbonyl compounds. Importantly, the catalytic system exhibits a wide substrate scope and high functional group tolerance. Moreover, secondary alcohols and even diarylmethanes were smoothly oxidized to the desired aryl ketones with excellent yields.
Collapse
|
36
|
Maleki A, Kari T. Novel Leaking-Free, Green, Double Core/Shell, Palladium-Loaded Magnetic Heterogeneous Nanocatalyst for Selective Aerobic Oxidation. Catal Letters 2018. [DOI: 10.1007/s10562-018-2492-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Kataoka K, Wachi K, Jin X, Suzuki K, Sasano Y, Iwabuchi Y, Hasegawa JY, Mizuno N, Yamaguchi K. CuCl/TMEDA/nor-AZADO-catalyzed aerobic oxidative acylation of amides with alcohols to produce imides. Chem Sci 2018; 9:4756-4768. [PMID: 29910926 PMCID: PMC5982222 DOI: 10.1039/c8sc01410h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/05/2018] [Indexed: 01/25/2023] Open
Abstract
Although aerobic oxidative acylation of amides with alcohols would be a good complement to classical synthetic methods for imides (e.g., acylation of amides with activated forms of carboxylic acids), to date, there have been no reports on oxidative acylation to produce imides. In this study, we successfully developed, for the first time, an efficient method for the synthesis of imides through aerobic oxidative acylation of amides with alcohols by employing a CuCl/TMEDA/nor-AZADO catalyst system (TMEDA = teramethylethylendiamine; nor-AZADO = 9-azanoradamantane N-oxyl). The proposed acylation proceeds through the following sequential reactions: aerobic oxidation of alcohols to aldehydes, nucleophilic addition of amides to the aldehydes to form hemiamidal intermediates, and aerobic oxidation of the hemiamidal intermediates to give the corresponding imides. This catalytic system utilizes O2 as the terminal oxidant and produces water as the sole by-product. An important point for realizing this efficient acylation system is the utilization of a TMEDA ligand, which, to the best of our knowledge, has not been employed in previously reported Cu/ligand/N-oxyl systems. Based on experimental evidence, we consider that plausible roles of TMEDA involve the promotion of both hemiamidal oxidation and regeneration of an active CuII-OH species from a CuI species. Here promotion of hemiamidal oxidation is particularly important. Employing the proposed system, various types of structurally diverse imides could be synthesized from various combinations of alcohols and amides, and gram-scale acylation was also successful. In addition, the proposed system was further applicable to the synthesis of α-ketocarbonyl compounds (i.e., α-ketoimides, α-ketoamides, and α-ketoesters) from 1,2-diols and nucleophiles (i.e., amides, amines, and alcohols).
Collapse
Affiliation(s)
- Kengo Kataoka
- Department of Applied Chemistry , School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Keiju Wachi
- Department of Applied Chemistry , School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Xiongjie Jin
- Department of Chemistry and Biotechnology , School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Kosuke Suzuki
- Department of Applied Chemistry , School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Yusuke Sasano
- Department of Organic Chemistry , Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aza-Aoba, Aramaki, Aoba-ku , Sendai 980-8578 , Japan
| | - Yoshiharu Iwabuchi
- Department of Organic Chemistry , Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aza-Aoba, Aramaki, Aoba-ku , Sendai 980-8578 , Japan
| | - Jun-Ya Hasegawa
- Institute for Catalysis , Hokkaido University , Kita 21 Nishi 10 , Kita-ku , Sapporo 001-0021 , Japan
| | - Noritaka Mizuno
- Department of Applied Chemistry , School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Kazuya Yamaguchi
- Department of Applied Chemistry , School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan .
| |
Collapse
|
38
|
Kong Y, Wumaier K, Liu Y, Jiang C, Wang S, Liu L, Chang W, Li J. Cu(OAc) 2 /TEMPO Cooperative Promoted Hydroamination Cyclization and Oxidative Dehydrogenation Cascade Reaction of Homopropargylic Amines. Chem Asian J 2018; 13:46-54. [PMID: 29178594 DOI: 10.1002/asia.201701386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/23/2017] [Indexed: 12/15/2022]
Abstract
A novel and efficient Cu(OAc)2 -catalyzed hydroamination cyclization and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidative dehydrogenation cascade reaction of homopropargylic amines has been developed. A library of 1,2-disubstituted pyrrole derivatives were obtained in good-to-high yields in one pot with no step-by-step feeding process. This reaction involved TEMPO playing dual roles as both an oxidative dehydrogenation reagent and a ligand. An insight into the reaction mechanism was obtained by using several analytical determination methods.
Collapse
Affiliation(s)
- Yuanfang Kong
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Kediliya Wumaier
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yingze Liu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Chunhui Jiang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Shuai Wang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Lingyan Liu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Weixing Chang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jing Li
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 94#, Nankai District, Tianjin, 300071, China
| |
Collapse
|
39
|
del Mar Conejo M, Cantero J, Pastor A, Álvarez E, Galindo A. Synthesis, structure and properties of nickel and copper complexes containing N,O -hydrazone Schiff base ligand. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.04.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
Mahesh D, Satheesh V, Kumar SV, Punniyamurthy T. Copper(II)-Catalyzed Oxidative Coupling of Anilines, Methyl Arenes, and TMSN3 via C(sp3/sp2)–H Functionalization and C–N Bond Formation. Org Lett 2017; 19:6554-6557. [DOI: 10.1021/acs.orglett.7b03264] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Devulapally Mahesh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Vanaparthi Satheesh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sundaravel Vivek Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
41
|
Laeini MS, Shaabani A. A Transition-Metal-Free Homogeneous TEMPO-Based Catalyst: Aerobic Oxidation of Alcohols in Aqueous Media. ChemistrySelect 2017. [DOI: 10.1002/slct.201701428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mohammad Sadegh Laeini
- Department of Chemistry; Shahid Beheshti University, G. C., P. O. Box; 19396-4716 Tehran Iran
| | - Ahmad Shaabani
- Department of Chemistry; Shahid Beheshti University, G. C., P. O. Box; 19396-4716 Tehran Iran
| |
Collapse
|
42
|
Marais L, Burés J, Jordaan JHL, Mapolie S, Swarts AJ. A bis(pyridyl)-N-alkylamine/Cu(i) catalyst system for aerobic alcohol oxidation. Org Biomol Chem 2017; 15:6926-6933. [PMID: 28776055 DOI: 10.1039/c7ob01383c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein a bis(pyridyl)-N-alkylamine/CuI/TEMPO/NMI catalyst system is reported for aerobic oxidation of a variety of primary alcohols to the corresponding aldehydes using readily available reagents, at room temperature and ambient air as the oxidant. ESI-MS analysis of the reaction showed the formation of a [(L1)(NMI)CuII-OOH]+ species, which is a key intermediate in the alcohol oxidation reaction. Evaluation of the effect of reaction parameters on the initial rate of the reaction allowed us to obtain the optimum conditions for catalytic activity. The careful choice of reaction solvent allowed for the oxidation of 4-hydroxybenzyl alcohol, a substrate which proved problematic in previous studies. In the case of 2-pyridinemethanol as substrate, experimental evidence shows that catalytic activity is diminished due to competitive inhibition of the catalyst by the alcohol substrate.
Collapse
Affiliation(s)
- Lindie Marais
- Catalysis and Synthesis Research Group, Focus Area for Chemical Resource Beneficiation, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa.
| | | | | | | | | |
Collapse
|
43
|
Rapeyko A, Arias KS, Climent MJ, Corma A, Iborra S. Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivatives with MIL-100(Fe) catalyst. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00463j] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monomers from biomass have been prepared from HMF and methylene active compounds through a one pot process using MIL-100(Fe)/TEMPO/NaNO2as the catalytic system.
Collapse
Affiliation(s)
- Anastasia Rapeyko
- Instituto de Tecnología Química
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas
- 46022 Valencia
- Spain
| | - Karen S. Arias
- Instituto de Tecnología Química
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas
- 46022 Valencia
- Spain
| | - Maria J. Climent
- Instituto de Tecnología Química
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas
- 46022 Valencia
- Spain
| | - Avelino Corma
- Instituto de Tecnología Química
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas
- 46022 Valencia
- Spain
| | - Sara Iborra
- Instituto de Tecnología Química
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas
- 46022 Valencia
- Spain
| |
Collapse
|
44
|
Conejo MDM, Ávila P, Álvarez E, Galindo A. Synthesis and structure of nickel and copper complexes containing the N-allyl-o-hydroxyacetophenoniminato ligand and the application of copper complex as catalyst for aerobic alcohol oxidations. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.04.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Su DS, Wen G, Wu S, Peng F, Schlögl R. Carbocatalysis in Liquid-Phase Reactions. Angew Chem Int Ed Engl 2016; 56:936-964. [DOI: 10.1002/anie.201600906] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Dang Sheng Su
- Shenyang National Laboratory for Materials Science; Institute of Metal Research, Chinese Academy of Sciences; 72 Wenhua Road Shenyang 110016 China
| | - Guodong Wen
- Shenyang National Laboratory for Materials Science; Institute of Metal Research, Chinese Academy of Sciences; 72 Wenhua Road Shenyang 110016 China
| | - Shuchang Wu
- Max-Planck-Institut für chemische Energiekonversion; Stiftstrasse 34-36 45470 Mülheim a.d. Ruhr Germany
| | - Feng Peng
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Robert Schlögl
- Max-Planck-Institut für chemische Energiekonversion; Stiftstrasse 34-36 45470 Mülheim a.d. Ruhr Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 Berlin 14195 Germany
| |
Collapse
|
46
|
Su DS, Wen G, Wu S, Peng F, Schlögl R. Carbokatalyse in Flüssigphasenreaktionen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600906] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dang Sheng Su
- Shenyang National Laboratory for Materials Science; Institute of Metal Research, Chinese Academy of Sciences; 72 Wenhua Road Shenyang 110016 China
| | - Guodong Wen
- Shenyang National Laboratory for Materials Science; Institute of Metal Research, Chinese Academy of Sciences; 72 Wenhua Road Shenyang 110016 China
| | - Shuchang Wu
- Max-Planck-Institut für chemische Energiekonversion; Stiftstraße 34-36 45470 Mülheim an der Ruhr Deutschland
| | - Feng Peng
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Robert Schlögl
- Max-Planck-Institut für chemische Energiekonversion; Stiftstraße 34-36 45470 Mülheim an der Ruhr Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft; Faradayweg 4-6 Berlin 14195 Deutschland
| |
Collapse
|
47
|
Hirashita T, Nakanishi M, Uchida T, Yamamoto M, Araki S, Arends IWCE, Sheldon RA. Ionic TEMPO in Ionic Liquids: Specific Promotion of the Aerobic Oxidation of Alcohols. ChemCatChem 2016. [DOI: 10.1002/cctc.201600491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tsunehisa Hirashita
- Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Makoto Nakanishi
- Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Tomoya Uchida
- Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Masakazu Yamamoto
- Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Shuki Araki
- Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Isabel W. C. E. Arends
- Biocatalysis and Organic Chemistry; Delft University of Technology; Julianalaan 136 2628 BL Delft The Netherlands
| | - Roger A. Sheldon
- Biocatalysis and Organic Chemistry; Delft University of Technology; Julianalaan 136 2628 BL Delft The Netherlands
- School of Chemistry; University of the Witwatersrand; Johannesburg 2050 Republic of South Africa
| |
Collapse
|
48
|
Diaz J, Rich K, Munie S, Zoch CR, Hubbard JL, Larsen AS. Reactivity of electrophilic Cp*Ru(NO) complex towards alcohols. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Abdel-Rahman LH, Abu-Dief AM, Adam MSS, Hamdan SK. Some New Nano-sized Mononuclear Cu(II) Schiff Base Complexes: Design, Characterization, Molecular Modeling and Catalytic Potentials in Benzyl Alcohol Oxidation. Catal Letters 2016. [DOI: 10.1007/s10562-016-1755-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
50
|
You Q, Wang F, Wu C, Shi T, Min D, Chen H, Zhang W. Synthesis of 1,3,5-triazines via Cu(OAc)2-catalyzed aerobic oxidative coupling of alcohols and amidine hydrochlorides. Org Biomol Chem 2016; 13:6723-7. [PMID: 25991063 DOI: 10.1039/c5ob00724k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cu(OAc)2 was found to be an efficient catalyst for dehydrogenative synthesis of 1,3,5-triazine derivatives via oxidative coupling reaction of amidine hydrochlorides and alcohols in air. Both aromatic and aliphatic alcohols can be involved in the reaction and thirty-three products were obtained with good to excellent yields. Moreover, the use of a ligand, strong base and organic oxidant is unnecessary.
Collapse
Affiliation(s)
- Qing You
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|