1
|
Gao K, Liu Y, Sun C, Wang Y, Bao H, Liu G, Ou J, Sun P. TNF-ɑ induces mitochondrial dysfunction to drive NLRP3/Caspase-1/GSDMD-mediated pyroptosis in MCF-7 cells. Sci Rep 2024; 14:25880. [PMID: 39468189 DOI: 10.1038/s41598-024-76997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Pyroptosis is a gasdermin-mediated pro-inflammatory form of programmed cell death (PCD). Tumor necrosis factor-ɑ (TNF-ɑ) is an inflammatory cytokine, and some studies have shown that TNF-ɑ can cause pyroptosis of cells and exert anti-tumor effects. However, whether TNF-ɑ exerts anti-tumor effects on breast cancer cells by inducing pyroptosis has not been reported. In this study, to explore the impact of TNF-ɑ on pyroptosis in breast cancer cells, we treated MCF-7 cells with TNF-ɑ and found that TNF-ɑ induced cell death. Moreover, we observed that the dead cells were swollen with obvious balloon-like bubbles, which was a typical sign of pyroptosis. Further studies have found that the anti-tumor effect of TNF-ɑ on breast cancer cells in vitro was achieved through the canonical pyroptosis pathway. In addition, TNF-ɑ-induced pyroptosis in MCF-7 cells was associated with mitochondrial dysfunction, in which mitochondrial membrane potential was decreased and mitochondrial ROS production was increased. After inhibiting ROS production, the activation effect of TNF-ɑ on NLRP3/Caspase-1/GSDMD pathway was weakened, and the inhibitory effect of TNF-ɑ on the growth of MCF-7 cells in vitro was also decreased, further confirming the involvement of ROS in TNF-ɑ-induced pyroptosis. Overall, our study revealed a new mechanism by which TNF-ɑ exerts an anti-tumor effect by inducing pyroptosis in MCF-7 cells through the ROS/NLRP3/Caspase-1/GSDMD pathway, which may provide new therapeutic ideas for the treatment of breast cancer.
Collapse
Affiliation(s)
- Kexin Gao
- Department of Anatomy, Mudanjiang Medical University, Mudanjiang City, 157000, Heilongjiang, China
| | - Yancui Liu
- Department of Anatomy, Mudanjiang Medical University, Mudanjiang City, 157000, Heilongjiang, China
| | - Cheng Sun
- Department of Anatomy, Mudanjiang Medical University, Mudanjiang City, 157000, Heilongjiang, China
| | - Ying Wang
- Department of Anatomy, Mudanjiang Medical University, Mudanjiang City, 157000, Heilongjiang, China
| | - Hongrong Bao
- Department of Anatomy, Mudanjiang Medical University, Mudanjiang City, 157000, Heilongjiang, China
| | - Guoyang Liu
- Department of Nuclear Medicine, Hongqi Hospital affiliated to Mudanjiang Medical University, Mudanjiang City, 157000, Heilongjiang, China
| | - Jinrui Ou
- Department of Nuclear Magnetic, the Second People's Hospital of Mudanjiang City, Mudanjiang City, 157000, Heilongjiang, China
| | - Ping Sun
- Department of Anatomy, Mudanjiang Medical University, Mudanjiang City, 157000, Heilongjiang, China.
| |
Collapse
|
2
|
Cong J, Li JY, Zou W. Mechanism and treatment of intracerebral hemorrhage focus on mitochondrial permeability transition pore. Front Mol Neurosci 2024; 17:1423132. [PMID: 39156127 PMCID: PMC11328408 DOI: 10.3389/fnmol.2024.1423132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is the second most common subtype of stroke, characterized by high mortality and a poor prognosis. Despite various treatment methods, there has been limited improvement in the prognosis of ICH over the past decades. Therefore, it is imperative to identify a feasible treatment strategy for ICH. Mitochondria are organelles present in most eukaryotic cells and serve as the primary sites for aerobic respiration and energy production. Under unfavorable cellular conditions, mitochondria can induce changes in permeability through the opening of the mitochondrial permeability transition pore (mPTP), ultimately leading to mitochondrial dysfunction and contributing to various diseases. Recent studies have demonstrated that mPTP plays a role in the pathological processes associated with several neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, Huntington's disease, ischemic stroke and ischemia-reperfusion injury, among others. However, there is limited research on mPTP involvement specifically in ICH. Therefore, this study comprehensively examines the pathological processes associated with mPTP in terms of oxidative stress, apoptosis, necrosis, autophagy, ferroptosis, and other related mechanisms to elucidate the potential mechanism underlying mPTP involvement in ICH. This research aims to provide novel insights for the treatment of secondary injury after ICH.
Collapse
Affiliation(s)
- Jing Cong
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing-Yi Li
- The Second School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Moore S, Kulkarni V, Moore A, Landes JR, Simonette R, He Q, Rady PL, Tyring SK. Tirbanibulin decreases cell proliferation and downregulates protein expression of oncogenic pathways in human papillomavirus containing HeLa cells. Arch Dermatol Res 2024; 316:455. [PMID: 38967656 DOI: 10.1007/s00403-024-03205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
Tirbanibulin 1% ointment is a synthetic antiproliferative agent approved in 2021 by the European Union for treating actinic keratoses (AK). Topical tirbanibulin has clinically resolved HPV-57 ( +) squamous cell carcinoma (SCC), HPV-16 ( +) vulvar high-grade squamous intraepithelial lesion, epidermodysplasia verruciformis, and condyloma. We examined how tirbanibulin might affect HPV oncoprotein expression and affect other cellular pathways involved in cell proliferation and transformation. We treated the HeLa cell line, containing integrated HPV-18, with increasing doses of tirbanibulin to determine the effects on cell proliferation. Immunoblotting was performed with antibodies against the Src canonical pathway, HPV 18 E6 and E7 transcription regulation, apoptosis, and invasion and metastasis pathways. Cell proliferation assays with tirbanibulin determined the half-maximal inhibitory concentration (IC50) of HeLa cells to be 31.49 nmol/L. Increasing concentrations of tirbanibulin downregulates the protein expression of Src (p < 0.001), phospho-Src (p < 0.001), Ras (p < 0.01), c-Raf (p < 0.001), ERK1 (p < 0.001), phospho-ERK1 (p < 0.001), phospho-ERK2 (p < 0.01), phospho-Mnk1 (p < 0.001), eIF4E (p < 0.01), phospho-eIF4E (p < 0.001), E6 (p < 0.01), E7 (p < 0.01), Rb (p < 0.01), phospho-Rb (p < 0.001), MDM2 (p < 0.01), E2F1 (p < 0.001), phospho-FAK (p < 0.001), phospho-p130 Cas (p < 0.001), Mcl-1 (p < 0.01), and Bcl-2 (p < 0.001), but upregulates cPARP (p < 0.001), and cPARP/fPARP (p < 0.001). These results demonstrate that tirbanibulin may impact expression of HPV oncoproteins via the Src- MEK- pathway. Tirbanibulin significantly downregulates oncogenic proteins related to cell cycle regulation and cell proliferation while upregulating apoptosis pathways.
Collapse
Affiliation(s)
- Stephen Moore
- Department of Dermatology, The University of Texas McGovern Medical School, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Veda Kulkarni
- Department of Dermatology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Angela Moore
- Department of Dermatology, Baylor University Medical Center Part of Baylor Scott and White, Dallas, TX, USA
| | - Jennifer R Landes
- Department of Dermatology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Rebecca Simonette
- Department of Dermatology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Qin He
- Department of Dermatology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Peter L Rady
- Department of Dermatology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Stephen K Tyring
- Department of Dermatology, The University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
4
|
Grant B, Sundaram Buitrago PA, Mercado BC, Yajima M. Characterization of p53/p63/p73 and Myc expressions during embryogenesis of the sea urchin. Dev Dyn 2024; 253:333-350. [PMID: 37698352 DOI: 10.1002/dvdy.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Some marine invertebrate organisms are considered not to develop tumors due to unknown mechanisms. To gain an initial insight into how tumor-related genes may be expressed and function during marine invertebrate development, we here leverage sea urchin embryos as a model system and characterize the expressions of Myc and p53/p63/p73 which are reported to function synergistically in mammalian models as an oncogene and tumor suppressor, respectively. RESULTS During sea urchin embryogenesis, a combo gene of p53/p63/p73 is found to be maternally loaded and decrease after fertilization both in transcript and protein, while Myc transcript and protein are zygotically expressed. p53/p63/p73 and Myc proteins are observed in the cytoplasm and nucleus of every blastomere, respectively, throughout embryogenesis. Both p53/p63/p73 and Myc overexpression results in compromised development with increased DNA damage after the blastula stage. p53/p63/p73 increases the expression of parp1, a DNA repair/cell death marker gene, and suppresses endomesoderm gene expressions. In contrast, Myc does not alter the expression of specification genes or oncogenes yet induces disorganized morphology. CONCLUSIONS p53/p63/p73 appears to be important for controlling cell differentiation, while Myc induces disorganized morphology yet not through conventional oncogene regulations or apoptotic pathways during embryogenesis of the sea urchin.
Collapse
Affiliation(s)
- Blaine Grant
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, Rhode Island, USA
| | | | - Beatriz C Mercado
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Mamiko Yajima
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
5
|
Xiang J, Qi XL, Cao K, Ran LY, Zeng XX, Xiao X, Liao W, He WW, Hong W, He Y, Guan ZZ. Exposure to fluoride exacerbates the cognitive deficit of diabetic patients living in areas with endemic fluorosis, as well as of rats with type 2 diabetes induced by streptozotocin via a mechanism that may involve excessive activation of the poly(ADP ribose) polymerase-1/P53 pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169512. [PMID: 38145685 DOI: 10.1016/j.scitotenv.2023.169512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
Epidemiology has shown that fluoride exposure is associated with the occurrence of diabetes. However, whether fluoride affects diabetic encephalopathy is unclear. Elderly diabetic patients in areas with endemic (n = 169) or no fluorosis (108) and controls (85) underwent Montreal Cognitive Assessment. Sprague-Dawley rats receiving streptozotocin and/or different fluoride doses were examined for spatial learning and memory, brain morphology, blood-brain barrier, fasting blood glucose and insulin. Cultured SH-SY5Y cells were treated with 50 mM glucose and/or low- or high-dose fluoride, and P53-knockdown or poly-ADP-ribose polymerase-1 (PARP-1) inhibition. The levels of PARP-1, P53, poly-ADP-ribose (PAR), apoptosis-inducing factor (AIF), and phosphorylated-histone H2A.X (ser139) were measured by Western blotting. Reactive oxygen species (ROS), 8-hydroxydeguanosine (8-OHdG), PARP-1 activity, acetyl-P53, nicotinamide adenine dinucleotide (NAD+), activities of mitochondrial hexokinase1 (HK1) and citrate synthase (CS), mitochondrial membrane potential and apoptosis were assessed biochemically. Cognition of diabetic patients in endemic fluorosis areas was poorer than in other regions. In diabetic rats, fasting blood glucose, insulin resistance and blood-brain barrier permeability were elevated, while spatial learning and memory and Nissl body numbers in neurons declined. In these animals, expression and activity of P53 and PARP-1 and levels of NAD+, PAR, ROS, 8-OHdG, p-histone H2A.X (ser139), AIF and apoptosis content increased; whereas mitochondrial HK1 and CS activities and membrane potential decreased. SH-SY5Y cells exposed to glucose exhibited changes identical to diabetic rats. The changes in diabetic rats and cells treated with glucose were aggravated by fluoride. P53-knockout or PARP-1 inhibition mitigated the effects of glucose with/without low-dose fluoride. Elevation of diabetic encephalopathy was induced by exposure to fluoride and the underlying mechanism may involve overactivation of the PARP-1/P53 pathway.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, PR China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, Guiyang 550004, PR China
| | - Kun Cao
- Department of Hepatobiliary Surgery at the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, PR China
| | - Long-Yan Ran
- Department of Medical Science and Technology at the Guiyang Healthcare Vocational University, Guiyang 550004, PR China
| | - Xiao-Xiao Zeng
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, PR China
| | - Xiao Xiao
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, PR China
| | - Wei Liao
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, PR China
| | - Wen-Wen He
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, PR China
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, Guiyang 550004, PR China
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, Guiyang 550004, PR China
| | - Zhi-Zhong Guan
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, PR China; Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University) of the Ministry of Education and Provincial Key Laboratory of Medical Molecular Biology, Guiyang 550004, PR China.
| |
Collapse
|
6
|
Zaza M, Rashed MH, Elrefaey H, Hassan MH, Abo-Salem OM, El-Sayed ESM. PRIMA-1 synergizes olaparib-induced cell death in p53 mutant triple negative human breast cancer cell line via restoring p53 function, arresting cell cycle, and inducing apoptosis. Can J Physiol Pharmacol 2024; 102:55-68. [PMID: 37818839 DOI: 10.1139/cjpp-2023-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
This study concerned with assessing the effect of restoring p53 using PRIMA-1 on the anti-cancer activity of olaparib against TP53-mutant triple negative breast cancer (TNBC) cells and exploring the optimum synergistic concentrations and the underlying mechanism. Human BC cell lines, MDA-MB-231 with mutated TP53 gene, and MCF-7 with wild-type TP53 gene were treated with olaparib and/or PRIMA-1. The IC50 value for olaparib was significantly decreased by PRIMA-1 in MDA-MB-231 cells compared to MCF-7 cells. Contrary to MCF-7 cells, co-treatment with olaparib and PRIMA-1 had a synergistic anti-proliferative effect in MDA-MB-231 at all tested concentrations with the best synergistic combination at 45 and 8.5 µM, respectively, and furthermore PRIMA-1 enhanced olaparib-induced apoptosis. This synergistic apoptotic effect was associated with a significant boost in mRNA expression of TP53 gene, cell cycle arrest at G2/M phase, modulation of BRCA-1, BAX and Bcl2 proteins expressions, and induction of active caspase-3. These results present a clue for the utility of combined olaparib and PRIMA-1 in treatment of TP53-mutant TNBC invitro. PRIMA-1 triggers olaparib-induced MDA-MB-231 cell death in a synergistic manner via restoring TP53, decreasing BRCA-1 expression, cell cycle arrest, and enhancement of apoptosis via p53/BAX/Bcl2/caspase 3 pathway.
Collapse
Affiliation(s)
- Mohamed Zaza
- Department of Pharmacology and Toxic1ology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Children's Cancer Hospital Egypt (CCHE 57357), Cairo, Egypt
| | - Mohammed H Rashed
- Department of Pharmacology and Toxic1ology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hesham Elrefaey
- Department of Pharmacology and Toxic1ology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Memy H Hassan
- Department of Pharmacology and Toxic1ology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Osama M Abo-Salem
- Department of Pharmacology and Toxic1ology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - El-Sayed M El-Sayed
- Department of Pharmacology and Toxic1ology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
7
|
Sun T, Huang K, Niu K, Lin C, Liu W, Yeh C, Kuo S, Chang C. Hyperbaric oxygen therapy suppresses hypoxia and reoxygenation injury to retinal pigment epithelial cells through activating peroxisome proliferator activator receptor-alpha signalling. J Cell Mol Med 2023; 27:3189-3201. [PMID: 37731202 PMCID: PMC10568664 DOI: 10.1111/jcmm.17963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Retinal ischemia followed by reperfusion (IR) is a common cause of many ocular disorders, such as age-related macular degeneration (AMD), which leads to blindness in the elderly population, and proper therapies remain unavailable. Retinal pigment epithelial (RPE) cell death is a hallmark of AMD. Hyperbaric oxygen (HBO) therapy can improve IR tissue survival by inducing ischemic preconditioning responses. We conducted an in vitro study to examine the effects of HBO preconditioning on oxygen-glucose deprivation (OGD)-induced IR-injured RPE cells. RPE cells were treated with HBO (100% O2 at 3 atmospheres absolute for 90 min) once a day for three consecutive days before retinal IR onset. Compared with normal cells, the IR-injured RPE cells had lower cell viability, lower peroxisome proliferator activator receptor-alpha (PPAR-α) expression, more severe oxidation status, higher blood-retinal barrier disruption and more elevated apoptosis and autophagy rates. HBO preconditioning increased PPAR-α expression, improved cell viability, decreased oxidative stress, blood-retinal barrier disruption and cellular apoptosis and autophagy. A specific PPAR-α antagonist, GW6471, antagonized all the protective effects of HBO preconditioning in IR-injured RPE cells. Combining these observations, HBO therapy can reverse OGD-induced RPE cell injury by activating PPAR-α signalling.
Collapse
Affiliation(s)
- Tzong‐Bor Sun
- Department of Hyperbaric Oxygen MedicineChi Mei Medical CenterTainanTaiwan
- Division of Plastic Surgery, Department of SurgeryChi Mei Medical CenterTainanTaiwan
- Department of Biotechnology and Food TechnologySouthern Taiwan University of Science and TechnologyTainanTaiwan
| | - Kuo‐Feng Huang
- Division of Plastic Surgery, Department of SurgeryChi Mei Medical CenterTainanTaiwan
| | - Ko‐Chi Niu
- Department of Hyperbaric Oxygen MedicineChi Mei Medical CenterTainanTaiwan
| | - Cheng‐Hsien Lin
- Department of MedicineMackay Medical CollegeNew Taipei CityTaiwan
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
| | - Wen‐Pin Liu
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
| | - Chao‐Hung Yeh
- Division of Neurosurgery, Department of SurgeryChi Mei Medical CenterTainanTaiwan
- Department of OptometryChung Hwa University of Medical TechnologyTainanTaiwan
| | - Shu‐Chun Kuo
- Department of OptometryChung Hwa University of Medical TechnologyTainanTaiwan
- Department of OphthalmologyChi Mei Medical CenterTainanTaiwan
| | - Ching‐Ping Chang
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
| |
Collapse
|
8
|
Kumar A, Pecquenard F, Baydoun M, Quilbé A, Moralès O, Leroux B, Aoudjehane L, Conti F, Boleslawski E, Delhem N. An Efficient 5-Aminolevulinic Acid Photodynamic Therapy Treatment for Human Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:10426. [PMID: 37445603 DOI: 10.3390/ijms241310426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Photodynamic therapy (PDT) is a two-stage treatment relying on cytotoxicity induced by photoexcitation of a nontoxic dye, called photosensitizer (PS). Using 5-aminolevulinic acid (5-ALA), the pro-drug of PS protoporphyrin IX, we investigated the impact of PDT on hepatocellular carcinoma (HCC). Optimal 5-ALA PDT dose was determined on three HCC cell lines by analyzing cell death after treatment with varying doses. HCC-patient-derived tumor hepatocytes and healthy donor liver myofibroblasts were treated with optimal 5-ALA PDT doses. The proliferation of cancer cells and healthy donor immune cells cultured with 5-ALA-PDT-treated conditioned media was analyzed. Finally, therapy efficacy on humanized SCID mice model of HCC was investigated. 5-ALA PDT induced a dose-dependent decrease in viability, with an up-to-four-fold reduction in viability of patient tumor hepatocytes. The 5-ALA PDT treated conditioned media induced immune cell clonal expansion. 5-ALA PDT has no impact on myofibroblasts in terms of viability, while their activation decreased cancer cell proliferation and reduced the tumor growth rate of the in vivo model. For the first time, 5-ALA PDT has been validated on primary patient tumor hepatocytes and donor healthy liver myofibroblasts. 5-ALA PDT may be an effective anti-HCC therapy, which might induce an anti-tumor immune response.
Collapse
Affiliation(s)
- Abhishek Kumar
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
| | - Florian Pecquenard
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
- CHU Lille, Service de Chirurgie Digestive et Transplantations, Université de Lille, F-59037 Lille, France
| | - Martha Baydoun
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
| | - Alexandre Quilbé
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
| | - Olivier Moralès
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Bertrand Leroux
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
| | - Lynda Aoudjehane
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, F-75013 Paris, France
- INSERM, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, F-75012 Paris, France
| | - Filomena Conti
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, F-75013 Paris, France
- INSERM, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, F-75012 Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Department of Medical Liver Transplantation, F-75013 Paris, France
| | - Emmanuel Boleslawski
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
- CHU Lille, Service de Chirurgie Digestive et Transplantations, Université de Lille, F-59037 Lille, France
| | - Nadira Delhem
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
| |
Collapse
|
9
|
Yagi M, Endo K, Komori K, Sekiya I. Comparison of the effects of oxidative and inflammatory stresses on rat chondrocyte senescence. Sci Rep 2023; 13:7697. [PMID: 37169906 PMCID: PMC10175275 DOI: 10.1038/s41598-023-34825-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
Osteoarthritis (OA) is an age-related degenerative joint disease that causes progressive cartilage loss. Chondrocyte senescence is a fundamental mechanism that contributes to the imbalance of matrix homeostasis in OA by inducing senescence-associated secretory phenotype (SASP). Although OA chondrocytes are mainly exposed to oxidative and inflammatory stresses, the role of these individual stresses in chondrocyte senescence remains unclear. In this study, we compared the effects of these stresses on the senescence of rat chondrocytes. Rat chondrocytes were treated with H2O2 and a combination of IL-1β and TNF-α (IL/TNF) to compare their in vitro effect on senescent phenotypes. For in vivo evaluation, H2O2 and IL/TNF were injected into rat knee joints for 4 weeks. The in vitro results showed that H2O2 treatment increased reactive oxygen species, γ-H2AX, and p21 levels, stopped cell proliferation, and decreased glycosaminoglycan (GAG)-producing ability. In contrast, IL/TNF increased the expression of p16 and SASP factors, resulting in increased GAG degradation. Intraarticular injections of H2O2 did not cause any changes in senescent markers; however, IL/TNF injections reduced safranin O staining and increased the proportion of p16- and SASP factor-positive chondrocytes. Our results indicate that oxidative and inflammatory stresses have significantly different effects on the senescence of rat chondrocytes.
Collapse
Affiliation(s)
- Misaki Yagi
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kentaro Endo
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Keiichiro Komori
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
10
|
Yang C, Wang ZQ, Zhang ZC, Lou G, Jin WL. CBL0137 activates ROS/BAX signaling to promote caspase-3/GSDME-dependent pyroptosis in ovarian cancer cells. Biomed Pharmacother 2023; 161:114529. [PMID: 37002567 DOI: 10.1016/j.biopha.2023.114529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Curaxin CBL0137 was designed to regulate p53 and nuclear factor-κB simultaneously and exhibits antitumor activity by inhibiting tumor cell proliferation and inducing apoptosis in multiple cancers. However, whether CBL0137 can induce pyroptosis has not yet been reported. This study demonstrated that CBL0137 induces caspase-3/gasdermin E (GSDME)-dependent pyroptosis via the reactive oxygen species (ROS)/BAX pathway. In ovarian cancer cells, CBL0137 inactivated the chromatin remodeling complex which could facilitate chromatin transcription, leading to the decreased transcription of antioxidant genes and oxidation and causing increased ROS levels. BAX was recruited on the mitochondrial membrane by mitochondrial ROS and induced the release of cytochrome c to cleave caspase-3. This led to the cleavage of the N-terminal of GSDME to form pores on the cell membrane and induced pyroptosis. Results of in vivo experiments revealed that CBL0137 also had anti-tumor effects on ovarian cancer cells in vivo. Our study outcomes reveal the mechanisms and targets of CBL0137 inducing pyroptosis in ovarian cancer cells and indicate that CBL0137 is a promising therapeutic agent for ovarian cancer.
Collapse
Affiliation(s)
- Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin 150086, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
11
|
Daks A, Shuvalov O, Fedorova O, Parfenyev S, Simon HU, Barlev NA. Methyltransferase Set7/9 as a Multifaceted Regulator of ROS Response. Int J Biol Sci 2023; 19:2304-2318. [PMID: 37215983 PMCID: PMC10197882 DOI: 10.7150/ijbs.83158] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Reactive oxygen species (ROS) induce multiple signaling cascades in the cell and hence play an important role in the regulation of the cell's fate. ROS can cause irreversible damage to DNA and proteins resulting in cell death. Therefore, finely tuned regulatory mechanisms exist in evolutionarily diverse organisms that are aimed at the neutralization of ROS and its consequences with respect to cellular damage. The SET domain-containing lysine methyltransferase Set7/9 (KMT7, SETD7, SET7, SET9) post-translationally modifies several histones and non-histone proteins via monomethylation of the target lysines in a sequence-specific manner. In cellulo, the Set7/9-directed covalent modification of its substrates affects gene expression, cell cycle, energy metabolism, apoptosis, ROS, and DNA damage response. However, the in vivo role of Set7/9 remains enigmatic. In this review, we summarize the currently available information regarding the role of methyltransferase Set7/9 in the regulation of ROS-inducible molecular cascades in response to oxidative stress. We also highlight the in vivo importance of Set7/9 in ROS-related diseases.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Oleg Shuvalov
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Olga Fedorova
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Sergey Parfenyev
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
| | - Hans-Uwe Simon
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008, Kazan, Russian Federation
- Institute of Pharmacology, University of Bern, 3010, Bern, Switzerland
| | - Nickolai A. Barlev
- Institute of Cytology, Russian Academy of Sciences, 194064, St Petersburg, Russian Federation
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008, Kazan, Russian Federation
- School of Medicine, Nazarbayev University, 010000, Astana, Kazakhstan
| |
Collapse
|
12
|
Park J, Jang J, Cha SR, Baek H, Lee J, Hong SH, Lee HA, Lee TJ, Yang SR. L-carnosine Attenuates Bleomycin-Induced Oxidative Stress via NFκB Pathway in the Pathogenesis of Pulmonary Fibrosis. Antioxidants (Basel) 2022; 11:antiox11122462. [PMID: 36552670 PMCID: PMC9774395 DOI: 10.3390/antiox11122462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Idiopathic Pulmonary fibrosis (IPF), a chronic interstitial lung disease, has pulmonary manifestations clinically characterized by collagen deposition, epithelial cell injury, and a decline in lung function. L-carnosine, a dipeptide consisting of β-alanine and L-histidine, has demonstrated a therapeutic effect on various diseases because of its pivotal function. Despite the effect of L-carnosine in experimental IPF mice, its anti-oxidative effect and associated intercellular pathway, particularly alveolar epithelial cells, remain unknown. Therefore, we demonstrated the anti-fibrotic and anti-inflammatory effects of L-carnosine via Reactive oxygen species (ROS) regulation in bleomycin (BLM)-induced IPF mice. The mice were intratracheally injected with BLM (3 mg/kg) and L-carnosine (150 mg/kg) was orally administrated for 2 weeks. BLM exposure increased the protein level of Nox2, Nox4, p53, and Caspase-3, whereas L-carnosine treatment suppressed the protein level of Nox2, Nox4, p53, and Caspase-3 cleavage in mice. In addition, the total SOD activity and mRNA level of Sod2, catalase, and Nqo1 increased in mice treated with L-carnosine. At the cellular level, a human fibroblast (MRC-5) and mouse alveolar epithelial cell (MLE-12) were exposed to TGFβ1 following L-carnosine treatment to induce fibrogenesis. Moreover, MLE-12 cells were exposed to cigarette smoke extract (CSE). Consequently, L-carnosine treatment ameliorated fibrogenesis in fibroblasts and alveolar epithelial cells, and inflammation induced by ROS and CSE exposure was ameliorated. These results were associated with the inhibition of the NFκB pathway. Collectively, our data indicate that L-carnosine induces anti-inflammatory and anti-fibrotic effects on alveolar epithelial cells against the pathogenesis of IPF.
Collapse
Affiliation(s)
- Jaehyun Park
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Gangwondaehakgil l, Chuncheon 24341, Gangwon, Republic of Korea
| | - Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Gangwondaehakgil l, Chuncheon 24341, Gangwon, Republic of Korea
| | - Sang-Ryul Cha
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Gangwondaehakgil l, Chuncheon 24341, Gangwon, Republic of Korea
| | - Hyosin Baek
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Gangwondaehakgil l, Chuncheon 24341, Gangwon, Republic of Korea
| | - Jooyeon Lee
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Gangwondaehakgil l, Chuncheon 24341, Gangwon, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Gangwondaehakgil 1, Chuncheon 24341, Gangwon, Republic of Korea
| | - Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Gangwondaehakgil 1, Chuncheon 24341, Gangwon, Republic of Korea
| | - Tae-Jin Lee
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
- Correspondence: (T.-J.L.); (S.-R.Y.); Tel.: +82-33-250-6481 (T.-J.L.); 82-33-250-7883 (S.-R.Y.)
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Gangwondaehakgil l, Chuncheon 24341, Gangwon, Republic of Korea
- Correspondence: (T.-J.L.); (S.-R.Y.); Tel.: +82-33-250-6481 (T.-J.L.); 82-33-250-7883 (S.-R.Y.)
| |
Collapse
|
13
|
Lundine D, Annor GK, Chavez V, Maimos S, Syed Z, Jiang S, Ellison V, Bargonetti J. The C-terminus of Gain-of-Function Mutant p53 R273H Is Required for Association with PARP1 and Poly-ADP-Ribose. Mol Cancer Res 2022; 20:1799-1810. [PMID: 36074101 PMCID: PMC9716242 DOI: 10.1158/1541-7786.mcr-22-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/02/2022] [Accepted: 09/02/2022] [Indexed: 01/15/2023]
Abstract
The TP53 gene is mutated in 80% of triple-negative breast cancers. Cells that harbor the hot-spot p53 gene mutation R273H produce an oncogenic mutant p53 (mtp53) that enhances cell proliferative and metastatic properties. The enhanced activities of mtp53 are collectively referred to as gain-of-function (GOF), and may include transcription-independent chromatin-based activities shared with wild-type p53 (wtp53) such as association with replicating DNA and DNA replication associated proteins like PARP1. However, how mtp53 upregulates cell proliferation is not well understood. wtp53 interacts with PARP1 using a portion of its C-terminus. The wtp53 oligomerization and far C-terminal domain (CTD) located within the C-terminus constitute putative GOF-associated domains, because mtp53 R273H expressing breast cancer cells lacking both domains manifest slow proliferation phenotypes. We addressed if the C-terminal region of mtp53 R273H is important for chromatin interaction and breast cancer cell proliferation using CRISPR-Cas9 mutated MDA-MB-468 cells endogenously expressing mtp53 R273H C-terminal deleted isoforms (R273HΔ381-388 and R273HΔ347-393). The mtp53 R273HΔ347-393 lacks the CTD and a portion of the oligomerization domain. We observed that cells harboring mtp53 R273HΔ347-393 (compared with mtp53 R273H full-length) manifest a significant reduction in chromatin, PARP1, poly-ADP-ribose (PAR), and replicating DNA binding. These cells also exhibited impaired response to hydroxyurea replicative stress, decreased sensitivity to the PARP-trapping drug combination temozolomide-talazoparib, and increased phosphorylated 53BP1 foci, suggesting reduced Okazaki fragment processing. IMPLICATIONS The C-terminal region of mtp53 confers GOF activity that mediates mtp53-PARP1 and PAR interactions assisting DNA replication, thus implicating new biomarkers for PARP inhibitor therapy.
Collapse
Affiliation(s)
- Devon Lundine
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
- The Graduate Center Biology and Biochemistry Programs, City University of New York, New York
| | - George K. Annor
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
- The Graduate Center Biology and Biochemistry Programs, City University of New York, New York
| | - Valery Chavez
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
- The Graduate Center Biology and Biochemistry Programs, City University of New York, New York
| | - Styliana Maimos
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
| | - Zafar Syed
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
| | - Shuhong Jiang
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
| | - Viola Ellison
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
| | - Jill Bargonetti
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
- The Graduate Center Biology and Biochemistry Programs, City University of New York, New York
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
14
|
Tsymbal SA, Refeld AG, Kuchur OA. The p53 Tumor Suppressor and Copper Metabolism: An Unrevealed but Important Link. Mol Biol 2022. [DOI: 10.1134/s0026893322060188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Zhang X, Wang L, Chen S, Huang P, Ma L, Ding H, Basappa B, Zhu T, Lobie PE, Pandey V. Combined inhibition of BADSer99 phosphorylation and PARP ablates models of recurrent ovarian carcinoma. COMMUNICATIONS MEDICINE 2022; 2:82. [PMID: 35791346 PMCID: PMC9250505 DOI: 10.1038/s43856-022-00142-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
Background Poly (ADP-ribose) polymerase inhibitors (PARPis) have been approved for the treatment of recurrent epithelial ovarian cancer (EOC), regardless of BRCA status or homologous recombination repair deficiency. However, the low response of platinum-resistant EOC, the emergence of resistance in BRCA-deficient cancer, and therapy-associated toxicities in patients limit the clinical utility of PARPis in recurrent EOC. Methods The association of phosphorylated (p) BADS99 with clinicopathological parameters and survival outcomes in an EOC cohort was assessed by immunohistochemistry. The therapeutic synergy, and mechanisms thereof, between a pBADS99 inhibitor and PARPis in EOC was determined in vitro and in vivo using cell line and patient-derived models. Results A positive correlation between pBADS99 in EOC with higher disease stage and poorer survival is observed. Increased pBADS99 in EOC cells is significantly associated with BRCA-deficiency and decreased Cisplatin or Olaparib sensitivity. Pharmacological inhibition of pBADS99 synergizes with PARPis to enhance PARPi IC50 and decreases survival, foci formation, and growth in ex vivo culture of EOC cells and patient-derived organoids (PDOs). Combined inhibition of pBADS99 and PARP in EOC cells or PDOs enhances DNA damage but impairs PARPi stimulated DNA repair with a consequent increase in apoptosis. Inhibition of BADS99 phosphorylation synergizes with Olaparib to suppress the xenograft growth of platinum-sensitive and resistant EOC. Combined pBADS99-PARP inhibition produces a complete response in a PDX derived from a patient with metastatic and chemoresistant EOC. Conclusions A rational and efficacious combination strategy involving combined inhibition of pBADS99 and PARP for the treatment of recurrent EOC is presented. Ovarian cancer is difficult to successfully treat because it often recurs as the cancer becomes resistant to drugs used to treat it. As such, new drugs or combinations of drugs are needed to treat patients with recurrent ovarian cancer. Here, a drug combination is reported that is effective in experimental models of ovarian cancer, including those derived from patients. The combination approach uses drugs that have previously been approved for use in patients, known as PARP inhibitors, and another drug to inhibit cancer cell survival by targeting activation of a specific protein involved in cancer cell survival. The net effect of this drug combination in ovarian cancer models is greater than the sum of the drugs used individually. With further testing, this combination may offer a potential strategy to treat patients with recurrent ovarian cancer. Zhang et al. test the therapeutic potential of an inhibitor of BAD phosphorylation, NPB, in epithelial ovarian cancer. The authors show that the small molecule synergises with PARP inhibition to kill patient-derived ovarian cancer organoids and suppress the growth of xenograft tumours, including a cisplatin-resistant model.
Collapse
|
16
|
Derepression of the USP22-FASN axis by p53 loss under oxidative stress drives lipogenesis and tumorigenesis. Cell Death Dis 2022; 8:445. [PMID: 36333288 PMCID: PMC9636132 DOI: 10.1038/s41420-022-01241-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Overproduction of reactive oxygen species (ROS) and aberrant lipid metabolism are established hallmarks of cancer; however, the role of ROS in lipid synthesis during tumorigenesis is almost unknown. Herein, we show that ROS regulates lipid synthesis and thus controls colorectal tumorigenesis through a p53-dependent mechanism. In p53 wild-type colorectal cancer (CRC) cells, hydrogen peroxide (H2O2)-induced p53 expression represses the transcription of deubiquitinase USP22, which otherwise deubiquitinates and stabilizes Fatty Acid Synthase (FASN), and thus inhibits fatty acid synthesis. Whereas, in p53-deficient CRC cells, ROS-mediated inhibition of USP22 is relieved, leading to FASN stabilization, which thus promotes lipid synthesis and tumor growth. In human CRC specimens, USP22 expression is positively correlated with FASN expression. Our study demonstrates that ROS critically regulates lipid synthesis and tumorigenesis through the USP22-FASN axis in a p53-dependent manner, and targeting the USP22-FASN axis may represent a potential strategy for the treatment of colorectal cancer.
Collapse
|
17
|
Nrf2 signaling activation by a small molecule activator compound 16 inhibits hydrogen peroxide-induced oxidative injury and death in osteoblasts. Cell Death Dis 2022; 8:353. [PMID: 35941127 PMCID: PMC9360014 DOI: 10.1038/s41420-022-01146-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/08/2022]
Abstract
We explored the potential activity of compound 16 (Cpd16), a novel small molecule Nrf2 activator, in hydrogen peroxide (H2O2)-stimulated osteoblasts. In the primary murine/human osteoblasts and MC3T3-E1 murine osteoblastic cells, Cpd16 treatment at micro-molar concentrations caused disassociation of Keap1-Nrf2 and Nrf2 cascade activation. Cpd16 induced stabilization of Nrf2 protein and its nuclear translocation, thereby increasing the antioxidant response elements (ARE) reporter activity and Nrf2 response genes transcription in murine and human osteoblasts. Significantly, Cpd16 mitigated oxidative injury in H2O2-stimulited osteoblasts. H2O2-provoked apoptosis as well as programmed necrosis in osteoblasts were significantly alleviated by the novel Nrf2 activator. Cpd16-induced Nrf2 activation and osteoblasts protection were stronger than other known Nrf2 activators. Dexamethasone- and nicotine-caused oxidative stress and death in osteoblasts were attenuated by Cpd16 as well. Cpd16-induced osteoblast cytoprotection was abolished by Nrf2 short hairpin RNA or knockout, but was mimicked by Keap1 knockout. Keap1 Cys151S mutation abolished Cpd16-induced Nrf2 cascade activation and osteoblasts protection against H2O2. Importantly, weekly Cpd16 administration largely ameliorated trabecular bone loss in ovariectomy mice. Together, Cpd16 alleviates H2O2-induced oxidative stress and death in osteoblasts by activating Nrf2 cascade.
Collapse
|
18
|
Zhang Y, Zhang C, Li J, Jiang M, Guo S, Yang G, Zhang L, Wang F, Yi S, Wang J, Fu Y, Zhang Y. Inhibition of AKT induces p53/SIRT6/PARP1-dependent parthanatos to suppress tumor growth. Cell Commun Signal 2022; 20:93. [PMID: 35715817 PMCID: PMC9205131 DOI: 10.1186/s12964-022-00897-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/09/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Targeting AKT suppresses tumor growth through inducing apoptosis, however, during which whether other forms of cell death occurring is poorly understood. METHODS The effects of increasing PARP1 dependent cell death (parthanatos) induced by inhibiting AKT on cell proliferation were determined by CCK-8 assay, colony formation assay, Hoechst 33,258 staining and analysis of apoptotic cells by flow cytometry. For the detailed mechanisms during this process, Western blot analysis, qRT-PCR analysis, immunofluorescence and co-immunoprecipitation were performed. Moreover, the inhibition of tumor growth by inducing p53/SIRT6/PARP1-dependent parthanatos was further verified in the xenograft mouse model. RESULTS For the first time, we identified that inhibiting AKT triggered parthanatos, a new form of regulated cell death, leading to colon cancer growth suppression. For the mechanism investigation, we found that after pharmacological or genetic AKT inhibition, p53 interacted with SIRT6 and PARP1 directly to activate it, and promoted the formation of PAR polymer. Subsequently, PAR polymer transported to outer membrane of mitochondria and resulted in AIF releasing and translocating to nucleus thus promoting cell death. While, blocking PARP1 activity significantly rescued colon cancer from death. Furthermore, p53 deletion or mutation eliminated PAR polymer formation, AIF translocation, and PARP1 dependent cell death, which was promoted by overexpression of SIRT6. Meanwhile, reactive oxygen species production was elevated after inhibition of AKT, which might also play a role in the occurrence of parthanatos. In addition, inhibiting AKT initiated protective autophagy simultaneously, which advanced tumor survival and growth. CONCLUSION Our findings demonstrated that AKT inhibition induced p53-SIRT6-PARP1 complex formation and the activation of parthanatos, which can be recognized as a novel potential therapeutic strategy for cancer. Video Abstract.
Collapse
Affiliation(s)
- Yizheng Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,School of Biomedical Sciences, Hunan University, Changsha, 410082, China.,Department of Pathology and Neuropathology, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Chuchu Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Jiehan Li
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Meimei Jiang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Shuning Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ge Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lingling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Feng Wang
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, 200072, China
| | - Shiqi Yi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiangang Wang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yingjie Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China. .,School of Biomedical Sciences, Hunan University, Changsha, 410082, China. .,College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
19
|
At the Crossroads of Life and Death: The Proteins That Influence Cell Fate Decisions. Cancers (Basel) 2022; 14:cancers14112745. [PMID: 35681725 PMCID: PMC9179324 DOI: 10.3390/cancers14112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cellular senescence and apoptosis were historically thought of as two distinct cell fate pathways. However, many of the proteins involved are integral to both pathways. In particular, the ability of p53 to regulate both senescence and apoptosis meant it was seen as the decisive factor in these decisions, yet questions remain about its ability to select on its own the most appropriate cell fate according to each situation. Therefore, cell fates are no longer considered fixed endpoints but dynamic states that can be shifted given the right combination of activation and/or inhibitions of cofactors. Abstract When a cell is damaged, it must decide how to respond. As a consequence of a variety of stresses, cells can induce well-regulated programmes such as senescence, a persistent proliferative arrest that limits their replication. Alternatively, regulated programmed cell death can be induced to remove the irreversibly damaged cells in a controlled manner. These programmes are mainly triggered and controlled by the tumour suppressor protein p53 and its complex network of effectors, but how it decides between these wildly different responses is not fully understood. This review focuses on the key proteins involved both in the regulation and induction of apoptosis and senescence to examine the key events that determine cell fate following damage. Furthermore, we examine how the regulation and activity of these proteins are altered during the progression of many chronic diseases, including cancer.
Collapse
|
20
|
Nishida T, Naguro I, Ichijo H. NAMPT-dependent NAD + salvage is crucial for the decision between apoptotic and necrotic cell death under oxidative stress. Cell Death Dis 2022; 8:195. [PMID: 35410407 PMCID: PMC9001718 DOI: 10.1038/s41420-022-01007-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 12/03/2022]
Abstract
Oxidative stress is a state in which the accumulation of reactive oxygen species exceeds the capacity of cellular antioxidant systems. Both apoptosis and necrosis are observed under oxidative stress, and we have reported that these two forms of cell death are induced in H2O2-stimulated HeLa cells depending on the concentration of H2O2. Weak H2O2 stimulation induces apoptosis, while strong H2O2 stimulation induces necrosis. However, the detailed mechanisms controlling the switching between these forms of cell death depending on the level of oxidative stress remain elusive. Here, we found that NAD+ metabolism is a key factor in determining the form of cell death in H2O2-stimulated HeLa cells. Under both weak and strong H2O2 stimulation, intracellular nicotinamide adenine dinucleotide (NAD+) was depleted to a similar extent by poly (ADP-ribose) (PAR) polymerase 1 (PARP1)-dependent consumption. However, the intracellular NAD+ concentration recovered under weak H2O2 stimulation but not under strong H2O2 stimulation. NAD+ recovery was mediated by nicotinamide (NAM) phosphoribosyltransferase (NAMPT)-dependent synthesis via the NAD+ salvage pathway, which was suggested to be impaired only under strong H2O2 stimulation. Furthermore, downstream of NAD+, the dynamics of the intracellular ATP concentration paralleled those of NAD+, and ATP-dependent caspase-9 activation via apoptosome formation was thus impaired under strong H2O2 stimulation. Collectively, these findings suggest that NAD+ dynamics balanced by PARP1-dependent consumption and NAMPT-dependent production are important to determine the form of cell death activated under oxidative stress.
Collapse
Affiliation(s)
- Takuto Nishida
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
21
|
Chung CC, Huang TY, Chu HR, De Luca R, Candelotti E, Huang CH, Yang YCSH, Incerpi S, Pedersen JZ, Lin CY, Huang HM, Lee SY, Li ZL, ChangOu CA, Li WS, Davis PJ, Lin HY, Whang-Peng J, Wang K. Heteronemin and tetrac derivatives suppress non-small cell lung cancer growth via ERK1/2 inhibition. Food Chem Toxicol 2022; 161:112850. [PMID: 35151786 DOI: 10.1016/j.fct.2022.112850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022]
Abstract
The most common cancer, lung cancer, causes deaths worldwide. Most lung cancer patients have non-small cell lung carcinomas (NSCLCs) with a poor prognosis. The chemotherapies frequently cause resistance therefore search for new effective drugs for NSCLC patients is an urgent and essential issue. Deaminated thyroxine, tetraiodothyroacetic acid (tetrac), and its nano-analogue (NDAT) exhibit antiproliferative properties in several types of cancers. On the other hand, the most abundant secondary metabolite in the sponge Hippospongia sp., heteronemin, shows effective cytotoxic activity against different types of cancer cells. In the current study, we investigated the anticancer effects of heteronemin against two NSCLC cell lines, A549 and H1299 cells in vitro. Combined treatment with heteronemin and tetrac derivatives synergistically inhibited cancer cell growth and significantly modulated the ERK1/2 and STAT3 pathways in A549 cells but only ERK1/2 in H1299 cells. The combination treatments induce apoptosis via the caspases pathway in A549 cells but promote cell cycle arrest via CCND1 and PCNA inhibition in H1299 cells. In summary, these results suggest that combined treatment with heteronemin and tetrac derivatives could suppress signal transduction pathways essential for NSCLC cell growth. The synergetic effects can be used potentially as a therapeutic procedure for NSCLC patients.
Collapse
Affiliation(s)
- Cheng-Chin Chung
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan; Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Tung-Yung Huang
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan.
| | - Hung-Ru Chu
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan.
| | | | | | - Chi-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan.
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan.
| | - Sandra Incerpi
- Department of Sciences, University Roma Tre, Rome, Italy.
| | - Jens Z Pedersen
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| | - Chi-Yu Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei, Taiwan.
| | - Zi-Lin Li
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan.
| | - Chun A ChangOu
- Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan; Laboratory of Chemical Biology and Medicinal Chemistry, Institute of Chemistry, Academia Sinica, Taipei, Taiwan.
| | - Wen-Shan Li
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA; Department of Medicine, Albany Medical College, Albany, NY, USA.
| | - Hung-Yun Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Jacqueline Whang-Peng
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
22
|
Luo S, Wang F, Chen S, Chen A, Wang Z, Gao X, Kong X, Zuo G, Zhou W, Gu Y, Ge Z, Zhang J. NRP2 promotes atherosclerosis by upregulating PARP1 expression and enhancing low shear stress-induced endothelial cell apoptosis. FASEB J 2022; 36:e22079. [PMID: 35028975 DOI: 10.1096/fj.202101250rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/13/2023]
Abstract
Atherosclerosis-related cardiovascular diseases are leading causes of mortality worldwide, characterized by the development of endothelial cell dysfunction, increased oxidized low-density lipoprotein uptake by macrophages, and the ensuing formation of atherosclerotic plaque. Local blood flow patterns cause uneven atherosclerotic lesion distribution, and endothelial dysfunction caused by disturbed flow is an early step in the development of atherosclerosis. The present research aims to elucidate the mechanism underlying the regulation of Neuropilin 2 (NRP2) under low shear stress (LSS) in the atheroprone phenotype of endothelial cells. We observed that NRP2 expression was significantly upregulated in LSS-stimulated human umbilical vein endothelial cells (HUVECs) and in mouse aortic endothelial cells. Knockdown of NRP2 in HUVECs significantly ameliorated cell apoptosis induced by LSS. Conversely, overexpression of NRP2 had the opposite effect on HUVEC apoptosis. Animal experiments suggest that NRP2 knockdown markedly mitigated the development of atherosclerosis in Apoe-/- mice. Mechanistically, NRP2 knockdown and overexpression regulated PARP1 protein expression in the condition of LSS, which in turn affected the expression of apoptosis-related genes. Moreover, the upstream transcription factor GATA2 was found to regulate NRP2 expression in the progression of atherosclerosis. These findings suggest that NRP2 plays an essential proatherosclerotic role through the regulation of cell apoptosis, and the results reveal that NRP2 is a promising therapeutic target for the treatment of atherosclerotic disorders.
Collapse
Affiliation(s)
- Shuai Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Siyu Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Aiqun Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhimei Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaofei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| | - Xiangquan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guangfeng Zuo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wenying Zhou
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhen Ge
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junjie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| |
Collapse
|
23
|
Cross-Talk between Oxidative Stress and m 6A RNA Methylation in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6545728. [PMID: 34484567 PMCID: PMC8416400 DOI: 10.1155/2021/6545728] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/03/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress is a state of imbalance between oxidation and antioxidation. Excessive ROS levels are an important factor in tumor development. Damage stimulation and excessive activation of oncogenes cause elevated ROS production in cancer, accompanied by an increase in the antioxidant capacity to retain redox homeostasis in tumor cells at an increased level. Although moderate concentrations of ROS produced in cancer cells contribute to maintaining cell survival and cancer progression, massive ROS accumulation can exert toxicity, leading to cancer cell death. RNA modification is a posttranscriptional control mechanism that regulates gene expression and RNA metabolism, and m6A RNA methylation is the most common type of RNA modification in eukaryotes. m6A modifications can modulate cellular ROS levels through different mechanisms. It is worth noting that ROS signaling also plays a regulatory role in m6A modifications. In this review, we concluded the effects of m6A modification and oxidative stress on tumor biological functions. In particular, we discuss the interplay between oxidative stress and m6A modifications.
Collapse
|
24
|
Zhai L, Liang H, Du J, Sun M, Qiu W, Tang H, Luo H. PARP-1 via regulation of p53 and p16, is involved in the hydroquinone-induced malignant transformation of TK6 cells by decelerating the cell cycle. Toxicol In Vitro 2021; 74:105153. [PMID: 33771647 DOI: 10.1016/j.tiv.2021.105153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/23/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
Poly(ADP-ribose)polymerase-1 (PARP-1) plays a crucial role in DNA damage repair and could be viewed as both a tumor promoter and tumor-suppressor gene. However, the effects of PARP-1 in hydroquinone-induced malignant transformation of TK6 cells remain to be further elucidated. The present research evaluated the potential mechanism of PARP-1 in hydroquinone-induced malignant transformation of TK6 cells. The results indicated that high PARP-1 inhibited TK6 cells malignant transformation after chronic exposure to HQ. We further confirmed that PARP-1 overexpression blocked cell proliferation, and decelerated cell cycle progression in vitro and in vivo. The immunoblotting analysis indicated that PARP-1 regulated cell cycle progression via p16/Rb and p53. Therefore, we conclude that PARP-1 is involved in HQ-induced malignant transformation associated with increasing p16/Rb and p53 which resulting in decelerating the cell cycle progression.
Collapse
Affiliation(s)
- Lu Zhai
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hairong Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jinlin Du
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Mingwei Sun
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Weifeng Qiu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| | - Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
25
|
Yuan R, Zhao W, Wang QQ, He J, Han S, Gao H, Feng Y, Yang S. Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis. Pharmacol Res 2021; 170:105748. [PMID: 34217831 DOI: 10.1016/j.phrs.2021.105748] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/27/2021] [Indexed: 12/21/2022]
Abstract
Pyroptosis, a type of programmed cell death (PCD), is characterized by cell swelling with bubbles, and the release of inflammatory cell cytokines. Cucurbitacin B (CuB), extracted from muskmelon pedicel, is a natural bioactive product that could effectively exert anti-tumor activities in lung cancer. However, the exact molecular mechanisms and the direct targets of CuB in non-small cell lung cancer (NSCLC) remain to be discovered. Here, we firstly found that CuB exerted an anti-tumor effect via pyroptosis in NSCLC cells and NSCLC mice models. Next, based on the molecular docking and cellular thermal shift assay (CETSA), we identified that CuB directly bound to Toll-like receptor 4 (TLR4) to activate the NLRP3 inflammasome, which further caused the separation of N- and C-terminals of Gasdermin D (GSDMD) to execute pyroptosis. Moreover, CuB enhanced the mitochondrial reactive oxygen species (ROS), mitochondrial membrane protein Tom20 accumulation, and cytosolic calcium (Ca2+) release, leading to pyroptosis in NSCLC cells. Silencing of TLR4 inhibited CuB-induced pyroptosis and decreased the level of ROS and Ca2+ in A549 cells. In vivo study showed that CuB treatment suppressed lung tumor growth in mice via pyroptosis without dose-dependent manner, and CuB at 0.75 mg/kg had a better anti-tumor effect compared to the Gefitinib group. Taken together, our findings revealed the mechanisms and targets of CuB triggering pyroptosis in NSCLC, thus supporting the notion of developing CuB as a promising therapeutic agent for NSCLC.
Collapse
Affiliation(s)
- Renyikun Yuan
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Wentong Zhao
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Jia He
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China.
| | - Yulin Feng
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530020, China
| |
Collapse
|
26
|
Demény MA, Virág L. The PARP Enzyme Family and the Hallmarks of Cancer Part 1. Cell Intrinsic Hallmarks. Cancers (Basel) 2021; 13:cancers13092042. [PMID: 33922595 PMCID: PMC8122967 DOI: 10.3390/cancers13092042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/02/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
The 17-member poly (ADP-ribose) polymerase enzyme family, also known as the ADP-ribosyl transferase diphtheria toxin-like (ARTD) enzyme family, contains DNA damage-responsive and nonresponsive members. Only PARP1, 2, 5a, and 5b are capable of modifying their targets with poly ADP-ribose (PAR) polymers; the other PARP family members function as mono-ADP-ribosyl transferases. In the last decade, PARP1 has taken center stage in oncology treatments. New PARP inhibitors (PARPi) have been introduced for the targeted treatment of breast cancer 1 or 2 (BRCA1/2)-deficient ovarian and breast cancers, and this novel therapy represents the prototype of the synthetic lethality paradigm. Much less attention has been paid to other PARPs and their potential roles in cancer biology. In this review, we summarize the roles played by all PARP enzyme family members in six intrinsic hallmarks of cancer: uncontrolled proliferation, evasion of growth suppressors, cell death resistance, genome instability, reprogrammed energy metabolism, and escape from replicative senescence. In a companion paper, we will discuss the roles of PARP enzymes in cancer hallmarks related to cancer-host interactions, including angiogenesis, invasion and metastasis, evasion of the anticancer immune response, and tumor-promoting inflammation. While PARP1 is clearly involved in all ten cancer hallmarks, an increasing body of evidence supports the role of other PARPs in modifying these cancer hallmarks (e.g., PARP5a and 5b in replicative immortality and PARP2 in cancer metabolism). We also highlight controversies, open questions, and discuss prospects of recent developments related to the wide range of roles played by PARPs in cancer biology. Some of the summarized findings may explain resistance to PARPi therapy or highlight novel biological roles of PARPs that can be therapeutically exploited in novel anticancer treatment paradigms.
Collapse
Affiliation(s)
- Máté A. Demény
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (M.A.D.); (L.V.)
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (M.A.D.); (L.V.)
| |
Collapse
|
27
|
Watanabe K, Shibuya S, Ozawa Y, Toda T, Shimizu T. Pathological Relationship between Intracellular Superoxide Metabolism and p53 Signaling in Mice. Int J Mol Sci 2021; 22:3548. [PMID: 33805584 PMCID: PMC8037821 DOI: 10.3390/ijms22073548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Intracellular superoxide dismutases (SODs) maintain tissue homeostasis via superoxide metabolism. We previously reported that intracellular reactive oxygen species (ROS), including superoxide accumulation caused by cytoplasmic SOD (SOD1) or mitochondrial SOD (SOD2) insufficiency, induced p53 activation in cells. SOD1 loss also induced several age-related pathological changes associated with increased oxidative molecules in mice. To evaluate the contribution of p53 activation for SOD1 knockout (KO) (Sod1-/-) mice, we generated SOD1 and p53 KO (double-knockout (DKO)) mice. DKO fibroblasts showed increased cell viability with decreased apoptosis compared with Sod1-/- fibroblasts. In vivo experiments revealed that p53 insufficiency was not a great contributor to aging-like tissue changes but accelerated tumorigenesis in Sod1-/- mice. Furthermore, p53 loss failed to improve dilated cardiomyopathy or the survival in heart-specific SOD2 conditional KO mice. These data indicated that p53 regulated ROS-mediated apoptotic cell death and tumorigenesis but not ROS-mediated tissue degeneration in SOD-deficient models.
Collapse
Affiliation(s)
- Kenji Watanabe
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu 474-8511, Aichi, Japan; (K.W.); (S.S.)
| | - Shuichi Shibuya
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu 474-8511, Aichi, Japan; (K.W.); (S.S.)
| | - Yusuke Ozawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba 260-8677, Chiba, Japan; (Y.O.); (T.T.)
| | - Toshihiko Toda
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba 260-8677, Chiba, Japan; (Y.O.); (T.T.)
| | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu 474-8511, Aichi, Japan; (K.W.); (S.S.)
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba 260-8677, Chiba, Japan; (Y.O.); (T.T.)
| |
Collapse
|
28
|
Huang J, Pan H, Wang J, Wang T, Huo X, Ma Y, Lu Z, Sun B, Jiang H. Unfolded protein response in colorectal cancer. Cell Biosci 2021; 11:26. [PMID: 33514437 PMCID: PMC7844992 DOI: 10.1186/s13578-021-00538-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a gastrointestinal malignancy originating from either the colon or the rectum. A growing number of researches prove that the unfolded protein response (UPR) is closely related to the occurrence and progression of colorectal cancer. The UPR has three canonical endoplasmic reticulum (ER) transmembrane protein sensors: inositol requiring kinase 1 (IRE1), pancreatic ER eIF2α kinase (PERK), and activating transcription factor 6 (ATF6). Each of the three pathways is closely associated with CRC development. The three pathways are relatively independent as well as interrelated. Under ER stress, the activated UPR boosts the protein folding capacity to maximize cell adaptation and survival, whereas sustained or excessive ER triggers cell apoptosis conversely. The UPR involves different stages of CRC pathogenesis, promotes or hinders the progression of CRC, and will pave the way for novel therapeutic and diagnostic approaches. Meanwhile, the correlation between different signal branches in UPR and the switch between the adaptation and apoptosis pathways still need to be further investigated in the future.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Huayang Pan
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Jinge Wang
- The Second Affiliated Hospital & College of Nursing, Harbin Medical University, Harbin, People's Republic of China
| | - Tong Wang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Xiaoyan Huo
- Pediatrics Department of The First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Yong Ma
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Zhaoyang Lu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Bei Sun
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China
| | - Hongchi Jiang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, People's Republic of China.
| |
Collapse
|
29
|
Mfouo-Tynga IS, Dias LD, Inada NM, Kurachi C. Features of third generation photosensitizers used in anticancer photodynamic therapy: Review. Photodiagnosis Photodyn Ther 2021; 34:102091. [PMID: 33453423 DOI: 10.1016/j.pdpdt.2020.102091] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 01/02/2023]
Abstract
Cancer remains a main public health issue and the second cause of mortality worldwide. Photodynamic therapy is a clinically approved therapeutic option. Effective photodynamic therapy induces cancer damage and death through a multifactorial manner including reactive oxygen species-mediated damage and killing, vasculature damage, and immune defense activation. Anticancer efficiency depends on the improvement of photosensitizers drugs used in photodynamic therapy, their selectivity, enhanced photoproduction of reactive species, absorption at near-infrared spectrum, and drug-delivery strategies. Both experimental and clinical studies using first- and second-generation photosensitizers had pointed out the need for developing improved photosensitizers for photodynamic applications and achieving better therapeutic outcomes. Bioconjugation and encapsulation with targeting moieties appear as a main strategies for the development of photosensitizers from their precursors. Factors influencing cellular biodistribution and uptake are briefly discussed, as well as their roles as cancer diagnostic and therapeutic (theranostics) agents. The two-photon photodynamic approach using third-generation photosensitizers is present as an attempt in treating deeper tumors. Although significant advances had been made over the last decade, the development of next-generation photosensitizers is still mainly in the developmental stage.
Collapse
Affiliation(s)
- Ivan S Mfouo-Tynga
- São Carlos Institute of Physics, University of São Paulo, 13566-590, São Carlos, Brazil.
| | - Lucas D Dias
- São Carlos Institute of Physics, University of São Paulo, 13566-590, São Carlos, Brazil
| | - Natalia M Inada
- São Carlos Institute of Physics, University of São Paulo, 13566-590, São Carlos, Brazil
| | - Cristina Kurachi
- São Carlos Institute of Physics, University of São Paulo, 13566-590, São Carlos, Brazil
| |
Collapse
|
30
|
Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang J, Chen Y, Zhuo W, Mao M, Zhang X, Xu L, Wang L, Zhou J. Targeting ferroptosis in breast cancer. Biomark Res 2020; 8:58. [PMID: 33292585 PMCID: PMC7643412 DOI: 10.1186/s40364-020-00230-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a recently discovered distinct type of regulated cell death caused by the accumulation of lipid-based ROS. Metabolism and expression of specific genes affect the occurrence of ferroptosis, making it a promising therapeutic target to manage cancer. Here, we describe the current status of ferroptosis studies in breast cancer and trace the key regulators of ferroptosis back to previous studies. We also compare ferroptosis to common regulated cell death patterns and discuss the sensitivity to ferroptosis in different subtypes of breast cancer. We propose that viewing ferroptosis-related studies from a historical angle will accelerate the development of ferroptosis-based biomarkers and therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Hangzhou, Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yulu Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Dengdi Hu
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Wenying Zhuo
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| |
Collapse
|
31
|
Horizontal Combination of MEK and PI3K/mTOR Inhibition in BRAF Mutant Tumor Cells with or without Concomitant PI3K Pathway Mutations. Int J Mol Sci 2020; 21:ijms21207649. [PMID: 33081092 PMCID: PMC7589607 DOI: 10.3390/ijms21207649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/22/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
The RAS/RAF and PI3K/Akt pathways play a key regulatory role in cancer and are often hit by oncogenic mutations. Despite molecular targeting, the long-term success of monotherapy is often hampered by de novo or acquired resistance. In the case of concurrent mutations in both pathways, horizontal combination could be a reasonable approach. In our study, we investigated the MEK inhibitor selumetinib and PI3K/mTOR dual inhibitor BEZ235 alone and in combination in BRAF-only mutant and BRAF + PI3K/PTEN double mutant cancer cells using short- and long-term 2D viability assays, spheroid assays, and immunoblots. In the 2D assays, selumetinib was more effective on BRAF-only mutant lines when compared to BRAF + PI3K/PTEN double mutants. Furthermore, combination therapy had an additive effect in most of the lines while synergism was observed in two of the double mutants. Importantly, in the SW1417 BRAF + PI3K double mutant cells, synergism was also confirmed in the spheroid and in the in vivo model. Mechanistically, p-Akt level decreased only in the SW1417 cell line after combination treatment. In conclusion, the presence of concurrent mutations alone did not predict a stronger response to combination treatment. Therefore, additional investigations are warranted to identify predictive factors that can select patients who can benefit from the horizontal combinational inhibition of these two pathways.
Collapse
|
32
|
Fadel F, Al-Kandari N, Khashab F, Al-Saleh F, Al-Maghrebi M. JNK inhibition alleviates oxidative DNA damage, germ cell apoptosis, and mitochondrial dysfunction in testicular ischemia reperfusion injury. Acta Biochim Biophys Sin (Shanghai) 2020; 52:891-900. [PMID: 32662511 DOI: 10.1093/abbs/gmaa074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 01/05/2023] Open
Abstract
The aim of this study is to determine whether the c-Jun N-terminal kinase (JNK) signaling is a regulator of oxidative DNA damage, germ cell apoptosis (GCA), and mitochondrial dysfunction during testicular ischemia reperfusion injury (tIRI) using the JNK inhibitor SP600125. Male Sprague Dawley rats (n = 36) were equally divided into three groups: sham, tIRI only, and tIRI + SP600125 (15 mg/kg). Testicular ischemia was induced for 1 h followed by 4 h of reperfusion prior to animal sacrifice. Spermatogenesis was evaluated by light microscopy, while expression of oxidative stress and GCA-related mRNAs and proteins were evaluated by real-time polymerase chain reaction and colorimetric assays, respectively. Expressions of JNK, p53, and survivin were detected by immunofluorescence (IF) staining. Indicators of mitochondrial dysfunction were examined by western blot analysis and colorimetric assay. In comparison to sham, the tIRI testes showed a significant increase in lipid and protein oxidation products. Oxidative DNA damage was reflected by a significant increase in the number of DNA strand breaks, increased concentration of 8-OHdG, and elevated poly (ADP-ribose) polymerase activity. Spermatogenic damage was associated with the activation of caspase 3 and elevated Bax to Bcl2 ratio. This was also accompanied by a significantly heightened IF expression of the phosphorylated forms of JNK and p53 paralled with the suppression of survivin. Mitochondrial dysfunction was reflected by NAD+ depletion, overexpression of uncoupling protein 2, and increased level of cytochrome c. Such tIRI-induced modulations were all attenuated by SP600125 treatment prior to reperfusion. In conclusion, JNK signaling regulates oxidative DNA damage, GCA, and mitochondrial dysfunction through activation of p53 and suppression of survivin during tIRI.
Collapse
Affiliation(s)
- Fatemah Fadel
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah 13110, Kuwait
| | - Nora Al-Kandari
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah 13110, Kuwait
| | - Farah Khashab
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah 13110, Kuwait
| | - Farah Al-Saleh
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah 13110, Kuwait
| | - May Al-Maghrebi
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah 13110, Kuwait
| |
Collapse
|
33
|
Norouzi S, Yazdian Robati R, Ghandadi M, Abnous K, Behravan J, Mosaffa F. Comparative proteomics study of proteins involved in induction of higher rates of cell death in mitoxantrone-resistant breast cancer cells MCF-7/MX exposed to TNF-α. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:663-672. [PMID: 32742605 PMCID: PMC7374993 DOI: 10.22038/ijbms.2020.40029.9486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Objective(s): Resistance to medications is one of the main complications in chemotherapy of cancer. It has been shown that some multidrug resistant cancer cells indicate more sensitivity against cytotoxic effects of TNF-α compared to their parental cells. Our previous findings indicated vulnerability of the mitoxantrone-resistant breast cancer cells MCF-7/MX to cell death induced by TNF-α compared to the parent cells MCF-7. In this study, we performed a comparative proteomics analysis for identification of proteins involved in induction of higher susceptibility of MCF-7/MX cells to cytotoxic effect of TNF-α. Materials and Methods: Intensity of protein spots in 2D gel electrophoresis profiles of MCF-7 and MCF-7/MX cells were compared with Image Master Platinum 6.0 software. Selected differential protein-spots were identified with MALDI-TOF/TOF mass spectrometry and database searching. Pathway analyses of identified proteins were performed using PANTHER, KEGG PATHWAY, Gene MANIA and STRING databases. Western blot was performed for confirmation of the proteomics results. Results: Our results indicated that 48 hr exposure to TNF-α induced 87% death in MCF-7/MX cells compared to 19% death in MCF-7 cells. Forty landmarks per 2D gel electrophoresis were matched by Image Master Software. Six proteins were identified with mass spectrometry. Western blot showed that 14-3-3γ and p53 proteins were expressed higher in MCF-7/MX cells treated with TNF-α compared to MCF-7 cells treated with TNF-α. Conclusion: Our results showed that 14-3-3 γ, prohibitin, peroxiredoxin 2 and P53 proteins which were expressed differentially in MCF-7/MX cells treated with TNF-α may involve in the induction of higher rates of cell death in these cells compared to TNF-α-treated MCF-7 cells.
Collapse
Affiliation(s)
- Saeed Norouzi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Yazdian Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Morteza Ghandadi
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
In Vitro and In Vivo Efficacy of DNA Damage Repair Inhibitor Veliparib in Combination with Artesunate against Echinococcus granulosus. DISEASE MARKERS 2020; 2020:8259820. [PMID: 32714467 PMCID: PMC7355356 DOI: 10.1155/2020/8259820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 12/28/2022]
Abstract
Cystic echinococcosis (CE), caused by the cestode Echinococcus granulosus, is a worldwide chronic zoonosis. Albendazole (ABZ) and mebendazole are effective against CE, but a high dosage in a long-term period is usually required. In this study, we evaluate the effects of DNA damage repair inhibitor (i.e., Veliparib) in combination with artesunate (AS) on hydatid cysts. For the in vitro assay, protoscoleces of E. granulosus (E.g PSCs) were incubated with low AS (AS-L, 65 μM), moderate AS (AS-M, 130 μM), and high AS (AS-H, 325 μM), AS-L/M/H+Veliparib (10 μM), and ABZ (25 μM), respectively. The AS-H+Veliparib group showed the maximal protoscolicidal effects. Ultrastructural change revealed that germinal layer (GL) cells were reduced, and lipid droplets appeared. AS could induce DNA injuries in PSCs. The 8-OHdG was expressed in the PSCs and GL of the cysts in mice, especially in the presence of Veliparib. The most severe DNA damages were observed in the AS-H+Veliparib group. Meanwhile, the expression of ribosomal protein S9 (RPS9) gene in the AS-H+Veliparib group was significantly lower than that in the AS-H group. The in vivo chemotherapeutic effects of AS-L (50 mg/kg), AS-H (200 mg/kg), and AS-H+Veliparib (25 mg/kg) were assessed in experimentally infected mice. Upon 6 weeks of oral administration, ultrasonography was used to monitor the volume change of vesicles. Maximum potentiation was seen on day 15 with values (versus AS) of 34 (P < 0.05) for AS-H + Veliparib. It led to the reduction of cyst weight (55.40%) compared with the model group (P < 0.01), which was better than AS alone (52.84%) and ABZ-treated mice (55.35%). Analysis of cysts collected from AS-H+Veliparib-treated mice by transmission electron microscopy revealed a drug-induced structural destruction. The structural integrity of the germinal layer was lost, and the majority of the microtriches disappeared. In conclusion, our study demonstrates that AS or AS in combination with Veliparib is effective for treating CE, especially the combination group. On this basis, AS represented promising drug candidates in anti-CE chemotherapy.
Collapse
|
35
|
Curia MC, Catalano T, Aceto GM. MUTYH: Not just polyposis. World J Clin Oncol 2020; 11:428-449. [PMID: 32821650 PMCID: PMC7407923 DOI: 10.5306/wjco.v11.i7.428] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
MUTYH is a base excision repair enzyme, it plays a crucial role in the correction of DNA errors from guanine oxidation and may be considered a cell protective factor. In humans it is an adenine DNA glycosylase that removes adenine misincorporated in 7,8-dihydro-8-oxoguanine (8-oxoG) pairs, inducing G:C to T:A transversions. MUTYH functionally cooperates with OGG1 that eliminates 8-oxodG derived from excessive reactive oxygen species production. MUTYH mutations have been linked to MUTYH associated polyposis syndrome (MAP), an autosomal recessive disorder characterized by multiple colorectal adenomas. MAP patients show a greatly increased lifetime risk for gastrointestinal cancers. The cancer risk in mono-allelic carriers associated with one MUTYH mutant allele is controversial and it remains to be clarified whether the altered functions of this protein may have a pathophysiological involvement in other diseases besides familial gastrointestinal diseases. This review evaluates the role of MUTYH, focusing on current studies of human neoplastic and non-neoplastic diseases different to colon polyposis and colorectal cancer. This will provide novel insights into the understanding of the molecular basis underlying MUTYH-related pathogenesis. Furthermore, we describe the association between MUTYH single nucleotide polymorphisms (SNPs) and different cancer and non-cancer diseases. We address the utility to increase our knowledge regarding MUTYH in the light of recent advances in the literature with the aim of a better understanding of the potential for identifying new therapeutic targets. Considering the multiple functions and interactions of MUTYH protein, its involvement in pathologies based on oxidative stress damage could be hypothesized. Although the development of extraintestinal cancer in MUTYH heterozygotes is not completely defined, the risk for malignancies of the duodenum, ovary, and bladder is also increased as well as the onset of benign and malignant endocrine tumors. The presence of MUTYH pathogenic variants is an independent predictor of poor prognosis in sporadic gastric cancer and in salivary gland secretory carcinoma, while its inhibition has been shown to reduce the survival of pancreatic ductal adenocarcinoma cells. Furthermore, some MUTYH SNPs have been associated with lung, hepatocellular and cervical cancer risk. An additional role of MUTYH seems to contribute to the prevention of numerous other disorders with an inflammatory/degenerative basis, including neurological and ocular diseases. Finally, it is interesting to note that MUTYH could be a new therapeutic target and future studies will shed light on its specific functions in the prevention of diseases and in the improvement of the chemo-sensitivity of cancer cells.
Collapse
Affiliation(s)
- Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Via dei Vestini 66100, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Via Consolare Valeria 98125, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Via dei Vestini 66100, Italy
| |
Collapse
|
36
|
Sandag Z, Jung S, Quynh NTN, Myagmarjav D, Anh NH, Le DDT, Lee BS, Mongre RK, Jo T, Lee M. Inhibitory Role of TRIP-Br1/XIAP in Necroptosis under Nutrient/Serum Starvation. Mol Cells 2020; 43:236-250. [PMID: 32050753 PMCID: PMC7103882 DOI: 10.14348/molcells.2020.2193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022] Open
Abstract
Currently, many available anti-cancer therapies are targeting apoptosis. However, many cancer cells have acquired resistance to apoptosis. To overcome this problem, simultaneous induction of other types of programmed cell death in addition to apoptosis of cancer cells might be an attractive strategy. For this purpose, we initially investigated the inhibitory role of TRIP-Br1/XIAP in necroptosis, a regulated form of necrosis, under nutrient/serum starvation. Our data showed that necroptosis was significantly induced in all tested 9 different types of cancer cell lines in response to prolonged serum starvation. Among them, necroptosis was induced at a relatively lower level in MCF-7 breast cancer line that was highly resistant to apoptosis than that in other cancer cell lines. Interestingly, TRIP-Br1 oncogenic protein level was found to be very high in this cell line. Upregulated TRIP-Br1 suppressed necroptosis by repressing reactive oxygen species generation. Such suppression of necroptosis was greatly enhanced by XIAP, a potent inhibitor of apoptosis. Our data also showed that TRIP-Br1 increased XIAP phosphorylation at serine87, an active form of XIAP. Our mitochondrial fractionation data revealed that TRIPBr1 protein level was greatly increased in the mitochondria upon serum starvation. It suppressed the export of CypD, a vital regulator in mitochondria-mediated necroptosis, from mitochondria to cytosol. TRIP-Br1 also suppressed shikoninmediated necroptosis, but not TNF-α-mediated necroptosis, implying possible presence of another signaling pathway in necroptosis. Taken together, our results suggest that TRIPBr1/XIAP can function as onco-proteins by suppressing necroptosis of cancer cells under nutrient/serum starvation.
Collapse
Affiliation(s)
- Zolzaya Sandag
- Department of Biological Science, Sookmyung Women’s University, Seoul 430, Korea
| | - Samil Jung
- Department of Biological Science, Sookmyung Women’s University, Seoul 430, Korea
| | | | | | - Nguyen Hai Anh
- Department of Biological Science, Sookmyung Women’s University, Seoul 430, Korea
| | - Dan-Diem Thi Le
- Department of Biological Science, Sookmyung Women’s University, Seoul 430, Korea
| | - Beom Suk Lee
- Department of Biological Science, Sookmyung Women’s University, Seoul 430, Korea
| | - Raj Kumar Mongre
- Department of Biological Science, Sookmyung Women’s University, Seoul 430, Korea
| | - Taeyeon Jo
- Department of Biological Science, Sookmyung Women’s University, Seoul 430, Korea
| | - MyeongSok Lee
- Department of Biological Science, Sookmyung Women’s University, Seoul 430, Korea
| |
Collapse
|
37
|
Ramazani M, Jaktaji RP, Shirazi FH, Tavakoli-Ardakani M, Salimi A, Pourahmad J. Analysis of apoptosis related genes in nurses exposed to anti-neoplastic drugs. BMC Pharmacol Toxicol 2019; 20:74. [PMID: 31791417 PMCID: PMC6889625 DOI: 10.1186/s40360-019-0372-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anti-neoplastic agents are widely used in the treatment of cancer and some non-neoplastic diseases. These drugs have been proved to be carcinogens, teratogens, and mutagens. Concern exists regarding the possible dangers of the staff handling anti-cancer drugs. The long-term exposure of nurses to anti-neoplastic drugs is still a controversial issue. The purpose of this study was to monitor cellular toxicity parameters and gene expression in nurses who work in chemotherapy wards and compare them to nurses who work in other wards. METHODS To analyze the apoptosis-related genes overexpression and cytotoxicity effects, peripheral blood lymphocytes obtained from oncology nurses and the control group. THE RESULTS Significant alterations in four analyzed apoptosis-related genes were observed in oncology nurses. In most individual samples being excavated, Bcl-2 overexpression is superior to that of Bax. Prominent P53 and Hif-1α up-regulation were observed in oncology nurses. Moreover, all cytotoxicity parameters (cell viability, ROS formation, MMP collapse, Lysosomal membrane damage, Lipid peroxidation, Caspase 3 activity and Apoptosis phenotype) in exposed oncology nurses were significantly (p < 0.001) higher than those of unexposed control nurses. Up-regulation of three analyzed apoptosis-related genes were observed in nurses occupationally exposed to anti-cancer drugs. CONCLUSION Our data show that oxidative stress and mitochondrial toxicity induced by anti-neoplastic drugs lead to overexpression of apoptosis-related genes in oncology nurses.
Collapse
Affiliation(s)
- Maral Ramazani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Farshad H Shirazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maria Tavakoli-Ardakani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Costantini F, Di Leo F, Di Sano C, Fiore T, Pellerito C, Barbieri G. Dibutyltin(IV) and Tributyltin(IV) Derivatives of meso-Tetra(4-sulfonatophenyl)porphine Inhibit the Growth and the Migration of Human Melanoma Cells. Cells 2019; 8:E1547. [PMID: 31801187 PMCID: PMC6952936 DOI: 10.3390/cells8121547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer, which is largely due to its propensity to metastasize. Therefore, with the aim to inhibit the growth and the metastatic dissemination of melanoma cells and to provide a novel treatment option, we studied the effects of the melanoma treatment with two organotin(IV) complexes of the meso-tetra(4-sulfonato-phenyl)porphine, namely (Bu2Sn)2TPPS and (Bu3Sn)4TPPS. In particular, we showed that nanomolar concentrations of (Bu2Sn)2TPPS and (Bu3Sn)4TPPS are sufficient to inhibit melanoma cell growth, to increase the expression of the full-length poly (ADP-ribose) polymerase (PARP-1), to induce the cell cycle arrest respectively at G2/M and G0/G1 through the inhibition of the Cyclin D1 expression and to inhibit cell colony formation. Nanomolar concentrations of (Bu2Sn)2TPPS and (Bu3Sn)4TPPS are also sufficient to inhibit the melanoma cell migration and the expression of some adhesion receptors. Moreover, we report that (Bu2Sn)2TPPS and (Bu3Sn)4TPPS act downstream of BRAF, mainly bypassing its functions, but targeting the STAT3 signalling protein. Finally, these results suggest that (Bu2Sn)2TPPS and (Bu3Sn)4TPPS may be effective therapeutic strategies for their role in the inhibition of melanoma growth and migration.
Collapse
Affiliation(s)
- Francesca Costantini
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy; (F.C.); (F.D.L.); (C.D.S.)
| | - Fabiana Di Leo
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy; (F.C.); (F.D.L.); (C.D.S.)
| | - Caterina Di Sano
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy; (F.C.); (F.D.L.); (C.D.S.)
| | - Tiziana Fiore
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, 90128 Palermo, Italy; (T.F.); (C.P.)
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (C.I.R.C.M.S.B.), 1-70121 Bari, Italy
| | - Claudia Pellerito
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, 90128 Palermo, Italy; (T.F.); (C.P.)
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (C.I.R.C.M.S.B.), 1-70121 Bari, Italy
| | - Giovanna Barbieri
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy; (F.C.); (F.D.L.); (C.D.S.)
| |
Collapse
|
39
|
Shukla A, Bunkar N, Kumar R, Bhargava A, Tiwari R, Chaudhury K, Goryacheva IY, Mishra PK. Air pollution associated epigenetic modifications: Transgenerational inheritance and underlying molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:760-777. [PMID: 30530146 DOI: 10.1016/j.scitotenv.2018.11.381] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/23/2018] [Accepted: 11/25/2018] [Indexed: 05/28/2023]
Abstract
Air pollution is one of the leading causes of deaths in Southeast Asian countries including India. Exposure to air pollutants affects vital cellular mechanisms and is intimately linked with the etiology of a number of chronic diseases. Earlier work from our laboratory has shown that airborne particulate matter disturbs the mitochondrial machinery and causes significant damage to the epigenome. Mitochondrial reactive oxygen species possess the ability to trigger redox-sensitive signaling mechanisms and induce irreversible epigenomic changes. The electrophilic nature of reactive metabolites can directly result in deprotonation of cytosine at C-5 position or interfere with the DNA methyltransferases activity to cause alterations in DNA methylation. In addition, it also perturbs level of cellular metabolites critically involved in different epigenetic processes like acetylation and methylation of histone code and DNA hypo or hypermethylation. Interestingly, these modifications may persist through downstream generations and result in the transgenerational epigenomic inheritance. This phenomenon of subsequent transfer of epigenetic modifications is mainly associated with the germ cells and relies on the germline stability of the epigenetic states. Overall, the recent literature supports, and arguably strengthens, the contention that air pollution might contribute to transmission of epimutations from gametes to zygotes by involving mitochondrial DNA, parental allele imprinting, histone withholding and non-coding RNAs. However, larger prospective studies using innovative, integrated epigenome-wide metabolomic strategy are highly warranted to assess the air pollution induced transgenerational epigenetic inheritance and associated human health effects.
Collapse
Affiliation(s)
- Anushi Shukla
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajat Kumar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science & Technology, Indian Institute of Technology, Kharagpur, India
| | - Irina Y Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
40
|
The Selective Acetamidine-Based iNOS Inhibitor CM544 Reduces Glioma Cell Proliferation by Enhancing PARP-1 Cleavage In Vitro. Int J Mol Sci 2019; 20:ijms20030495. [PMID: 30678338 PMCID: PMC6387310 DOI: 10.3390/ijms20030495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 01/31/2023] Open
Abstract
Gliomas are the most aggressive adult primary brain tumors. Expression of inducible Nitric Oxide Synthase has been reported as a hallmark of chemoresistance in gliomas and several studies have reported that inhibition of inducible Nitric Oxide Synthase could be related to a decreased proliferation of glioma cells. The present work was to analyze the molecular effects of the acetamidine derivative compound 39 (formally CM544, N-(3-{[(1-iminioethyl)amino]methyl}benzyl) prolinamide dihydrochloride), a newly synthetized iNOS inhibitor, in a C6 rat glioma cell model. There is evidence of CM544 selective binding to the iNOS, an event that triggers the accumulation of ROS/RNS, the expression of Nrf-2 and the phosphorylation of MAPKs after 3 h of treatment. In the long run, CM544 leads to the dephosphorylation of p38 and to a massive cleavage of PARP-1, confirming the block of C6 rat glioma cell proliferation in the G1/S checkpoint and the occurrence of necrotic cell death.
Collapse
|
41
|
Biamonte F, Battaglia AM, Zolea F, Oliveira DM, Aversa I, Santamaria G, Giovannone ED, Rocco G, Viglietto G, Costanzo F. Ferritin heavy subunit enhances apoptosis of non-small cell lung cancer cells through modulation of miR-125b/p53 axis. Cell Death Dis 2018; 9:1174. [PMID: 30518922 PMCID: PMC6281584 DOI: 10.1038/s41419-018-1216-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/03/2018] [Accepted: 11/12/2018] [Indexed: 01/03/2023]
Abstract
Ferritin is a nanocage protein composed by the variable assembly of 24 heavy and light subunits. As major intracellular iron storage protein, ferritin has been studied for many years in the context of iron metabolism. However, recent evidences have highlighted its role, in particular that of the heavy subunit (FHC), in pathways related to cancer development and progression, such as cell proliferation, growth suppressor evasion, cell death inhibition, and angiogenesis. At least partly, the involvement in these pathways is due to the ability of FHC to control the expression of a repertoire of oncogenes and oncomiRNAs. Moreover, the existence of a feedback loop between FHC and the tumor suppressor p53 has been demonstrated in different cell types. Here, we show that ectopic over-expression of FHC induces the promoter hypermethylation and the down-regulation of miR-125b that, in turn, enhances p53 protein expression in non-small cell lung cancer (NSCLC) cell lines. Notably, analysis by absolute quantitative RT-PCR of FHC, miR-125b, and p53 strongly suggests that this axis might be active in human NSCLC tissue specimens. In vitro, FHC over-expression attenuates survival of NSCLC cells by inducing p53-mediated intrinsic apoptosis that is partially abrogated upon miR-125b re-expression. Overall, our findings demonstrate that FHC acts as a tumor suppressor gene, thus providing a potential molecular strategy for induction of NSCLC apoptotic cell death.
Collapse
Affiliation(s)
- Flavia Biamonte
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy.
| | - Anna Martina Battaglia
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
| | - Fabiana Zolea
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
| | - Duarte Mendes Oliveira
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
| | - Ilenia Aversa
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
| | - Gianluca Santamaria
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
| | - Emilia Dora Giovannone
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
| | - Gaetano Rocco
- Department of Thoracic Surgical and Medical Oncology, Division of Thoracic Surgery, Istituto Nazionale Tumori, IRCCS, Pascale Foundation, Naples, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Costanzo
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), University Magna Graecia of Catanzaro, Campus Salvatore Venuta -Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
42
|
Le DDT, Jung S, Quynh NTN, Sandag Z, Lee BS, Kim S, Lee H, Lee H, Lee MS. Inhibitory role of AMP‑activated protein kinase in necroptosis of HCT116 colon cancer cells with p53 null mutation under nutrient starvation. Int J Oncol 2018; 54:702-712. [PMID: 30431068 DOI: 10.3892/ijo.2018.4634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/12/2018] [Indexed: 11/06/2022] Open
Abstract
Simultaneous induction of other types of programmed cell death, alongside apoptosis, in cancer cells may be considered an attractive strategy for the development of more effective anticancer therapies. The present study aimed to investigate the role of AMP‑activated protein kinase (AMPK) in nutrient/serum starvation‑induced necroptosis, which is a programmed form of necrosis, in the presence or absence of p53. The present study detected higher cell proliferation and lower cell death rates in the HCT116 human colon cancer cell line containing a p53 null mutation (HCT116 p53‑/‑) compared with in HCT116 cells harboring wild‑type p53 (HCT116 p53+/+), as determined using a cell viability assay. Notably, western blot analysis revealed a relatively lower level of necroptosis in HCT116 p53‑/‑ cells compared with in HCT116 p53+/+ cells. Investigating the mechanism, it was revealed that necroptosis may be induced in HCT116 p53+/+ cells by significantly increasing reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP), whereas little alterations were detected in HCT116 p53‑/‑ cells. Unexpectedly, a much lower level of ATP was detected in HCT116 p53‑/‑ cells compared with in HCT116 p53+/+ cells. Accordingly, AMPK phosphorylation on the Thr172 residue was markedly increased in HCT116 p53‑/‑ cells. Furthermore, western blot analysis and ROS measurements indicated that AMPK inhibition, using dorsomorphin dihydrochloride, accelerated necroptosis by increasing ROS generation in HCT116 p53‑/‑ cells. However, AMPK activation by AICAR did not suppress necroptosis in HCT116 p53+/+ cells. In conclusion, these data strongly suggested that AMPK activation may be enhanced in HCT116 p53‑/‑ cells under serum‑depleted conditions via a drop in cellular ATP levels. In addition, activated AMPK may be at least partially responsible for the inhibition of necroptosis in HCT116 p53‑/‑ cells, but not in HCT116 p53+/+cells.
Collapse
Affiliation(s)
- Dan-Diem Thi Le
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Samil Jung
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Nguyen Thi Ngoc Quynh
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Zolzaya Sandag
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Beom Suk Lee
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Subeen Kim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hyegyeong Lee
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hyojeong Lee
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Myeong-Sok Lee
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
43
|
Goto T, Itoh M, Suganami T, Kanai S, Shirakawa I, Sakai T, Asakawa M, Yoneyama T, Kai T, Ogawa Y. Obeticholic acid protects against hepatocyte death and liver fibrosis in a murine model of nonalcoholic steatohepatitis. Sci Rep 2018; 8:8157. [PMID: 29802399 PMCID: PMC5970222 DOI: 10.1038/s41598-018-26383-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 04/17/2018] [Indexed: 02/08/2023] Open
Abstract
Accumulating evidence has suggested that farnesoid X receptor (FXR) agonists, such as obeticholic acid (OCA) are therapeutically useful for non-alcoholic steatohepatitis (NASH). However, it is still unclear how FXR agonists protect against NASH and which cell type is the main target of FXR agonists. In this study, we examined the effects of OCA on the development of NASH using melanocortin 4 receptor-deficient (MC4R-KO) mice that progressively developed hepatic steatosis and NASH on Western diet (WD). Treatment with OCA effectively prevented chronic inflammation and liver fibrosis in WD-fed MC4R-KO mice with only marginal effect on body weight and hepatic steatosis. Hepatic crown-like structure (hCLS) is a unique histological structure characteristic of NASH, which triggers hepatocyte death-induced interstitial fibrosis. Intriguingly, treatment with OCA markedly reduced hCLS formation even after MC4R-KO mice developed NASH, thereby inhibiting the progression of liver fibrosis. As its mechanism of action, OCA suppressed metabolic stress-induced p53 activation and cell death in hepatocytes. Our findings in this study highlight the role of FXR in hepatocytes in the pathogenesis of NASH. Collectively, this study demonstrates the anti-fibrotic effect of OCA in a murine model of NASH with obesity and insulin resistance, which suggests the clinical implication for human NASH.
Collapse
Affiliation(s)
- Toshihiro Goto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Specialty Medicine Group, Drug Development Research Laboratories, Sumitomo Dainippon Pharma. Co., Ltd, Osaka, Japan
| | - Michiko Itoh
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.
| | - Sayaka Kanai
- Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ibuki Shirakawa
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeru Sakai
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Asakawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiro Yoneyama
- Omics Group, Genomic Science Laboratories, Sumitomo Dainippon Pharma. Co., Ltd, Osaka, Japan
| | - Toshihiro Kai
- Omics Group, Genomic Science Laboratories, Sumitomo Dainippon Pharma. Co., Ltd, Osaka, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. .,Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan. .,Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. .,Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. .,Japan Agency for Medical Research and Development, CREST, Tokyo, Japan.
| |
Collapse
|
44
|
Arneth B. Comparison of Burnet's clonal selection theory with tumor cell-clone development. Theranostics 2018; 8:3392-3399. [PMID: 29930737 PMCID: PMC6010991 DOI: 10.7150/thno.24083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/10/2018] [Indexed: 01/06/2023] Open
Abstract
Increasing evidence has shown that Darwin's theory of evolution provides vital insights into the emergence and etiology of different types of cancer. On a microscopic scale, cancer stem cells meet the conditions for the Darwinian process of natural selection. In particular, cancer stem cells undergo cell reproduction characterized by the emergence of heritable variability that promotes replication and cell survival. Methods: Evidence from previous studies was gathered to compare Burnet's clonal selection theory with the tumor evolution theory. Results: The findings show that the Darwinian theory offers a general framework for understanding fundamental aspects of cancer. As fundamental theoretical frameworks, Burnet's clonal selection theory and the tumor evolution theory can be used to explain cancer cell evolution and identify the beneficial adaptations that contribute to cell survival in tissue landscapes and tissue ecosystems. Conclusions: In conclusion, this study shows that both Burnet's clonal selection theory and the tumor evolution theory postulate that cancer cells in tissue ecosystems evolve through reiterative processes, such as clonal expansion, clonal selection, and genetic diversification. Therefore, both theories provide insights into the complexities and dynamics of cancer, including its development and progression. Finally, we take into account the occurrence of biologic variation in both tumor cells and lymphocytes. It is important to note that the presence of lymphocyte variations appears to be advantageous in the framework of tumor defense but also dangerous within the framework of autoimmune disease development.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, University Hospital of the Universities of Giessen and Marburg UKGM, Justus Liebig University, Giessen, Giessen Germany
| |
Collapse
|
45
|
Simabuco FM, Morale MG, Pavan IC, Morelli AP, Silva FR, Tamura RE. p53 and metabolism: from mechanism to therapeutics. Oncotarget 2018; 9:23780-23823. [PMID: 29805774 PMCID: PMC5955117 DOI: 10.18632/oncotarget.25267] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022] Open
Abstract
The tumor cell changes itself and its microenvironment to adapt to different situations, including action of drugs and other agents targeting tumor control. Therefore, metabolism plays an important role in the activation of survival mechanisms to keep the cell proliferative potential. The Warburg effect directs the cellular metabolism towards an aerobic glycolytic pathway, despite the fact that it generates less adenosine triphosphate than oxidative phosphorylation; because it creates the building blocks necessary for cell proliferation. The transcription factor p53 is the master tumor suppressor; it binds to more than 4,000 sites in the genome and regulates the expression of more than 500 genes. Among these genes are important regulators of metabolism, affecting glucose, lipids and amino acids metabolism, oxidative phosphorylation, reactive oxygen species (ROS) generation and growth factors signaling. Wild-type and mutant p53 may have opposing effects in the expression of these metabolic genes. Therefore, depending on the p53 status of the cell, drugs that target metabolism may have different outcomes and metabolism may modulate drug resistance. Conversely, induction of p53 expression may regulate differently the tumor cell metabolism, inducing senescence, autophagy and apoptosis, which are dependent on the regulation of the PI3K/AKT/mTOR pathway and/or ROS induction. The interplay between p53 and metabolism is essential in the decision of cell fate and for cancer therapeutics.
Collapse
Affiliation(s)
- Fernando M. Simabuco
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Mirian G. Morale
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Isadora C.B. Pavan
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana P. Morelli
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando R. Silva
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rodrigo E. Tamura
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Heterochromatin protects retinal pigment epithelium cells from oxidative damage by silencing p53 target genes. Proc Natl Acad Sci U S A 2018; 115:E3987-E3995. [PMID: 29622681 PMCID: PMC5924883 DOI: 10.1073/pnas.1715237115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress (OS)-induced retinal pigment epithelium (RPE) cell apoptosis is critically implicated in the pathogenesis of age-related macular degeneration (AMD), a leading cause of blindness in the elderly. Heterochromatin, a compact and transcriptional inert chromatin structure, has been recently shown to be dynamically regulated in response to stress stimuli. The functional mechanism of heterochromatin on OS exposure is unclear, however. Here we show that OS increases heterochromatin formation both in vivo and in vitro, which is essential for protecting RPE cells from oxidative damage. Mechanistically, OS-induced heterochromatin selectively accumulates at p53-regulated proapoptotic target promoters and inhibits their transcription. Furthermore, OS-induced desumoylation of p53 promotes p53-heterochromatin interaction and regulates p53 promoter selection, resulting in the locus-specific recruitment of heterochromatin and transcription repression. Together, our findings demonstrate a protective function of OS-induced heterochromatin formation in which p53 desumoylation-guided promoter selection and subsequent heterochromatin recruitment play a critical role. We propose that targeting heterochromatin provides a plausible therapeutic strategy for the treatment of AMD.
Collapse
|
47
|
Chen F, Wang X, Jin X, Zhao J, Gou S. Oxidative DNA double strand breaks and autophagy in the antitumor effect of sterically hindered platinum(II) complexes in NSCLCs. Oncotarget 2018; 8:30933-30955. [PMID: 28427237 PMCID: PMC5458179 DOI: 10.18632/oncotarget.15944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/23/2017] [Indexed: 12/31/2022] Open
Abstract
A series of novel platinum(II) complexes with (1R,2R)-N1,N2-diisobutyl-1,2-diaminocyclohexane as a carrier ligand, while N1,N2-diisobutyl moiety serving as steric hindrance were designed, synthesized and characterized. The in vitro biological assays demonstrated that complex 3 had increased cytotoxicity against lung cancer cells, especially non-small-cell lung cancer (NSCLC) compared to its mono-substituted complex 3a, indicating that the sterically hindered alkyl moieties have significant influences on its antitumor property. However, the mechanism still remains unclear. The further studies revealed that complex 3 could induce ROS overproduction, severe DNA double strands breaks and inhibit the activation of DNA damage repair proteins within nucleus, leading to cell-cycle arrest and cell death. Moreover, complex 3 could induce autophagy via the accumulation of autophagic vacuoles and alterations of autophagic protein expression. Interestingly, the ROS scavengers, N-acetyl-cysteine (NAC) could reverse complex 3-induced DNA double strands breaks and autophagic responses more significantly compared to complex 3a. The results demonstrated that the ROS generation plays an important role in the DNA double strands breaks and autophagic responses in the antitumor effect of complex 3 with N1,N2-diisobutyl moiety. Our study offered a novel therapeutic strategy and put new insights into the anticancer research of the complexes with N1,N2-diisobutyl moiety served as steric hindrance.
Collapse
Affiliation(s)
- Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Xinyi Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Xiufeng Jin
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Jian Zhao
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
48
|
Fernandez-Rojo MA, Deplazes E, Pineda SS, Brust A, Marth T, Wilhelm P, Martel N, Ramm GA, Mancera RL, Alewood PF, Woods GM, Belov K, Miles JJ, King GF, Ikonomopoulou MP. Gomesin peptides prevent proliferation and lead to the cell death of devil facial tumour disease cells. Cell Death Discov 2018. [PMID: 29531816 PMCID: PMC5841354 DOI: 10.1038/s41420-018-0030-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Tasmanian devil faces extinction due to devil facial tumour disease (DFTD), a highly transmittable clonal form of cancer without available treatment. In this study, we report the cell-autonomous antiproliferative and cytotoxic activities exhibited by the spider peptide gomesin (AgGom) and gomesin-like homologue (HiGom) in DFTD cells. Mechanistically, both peptides caused a significant reduction at G0/G1 phase, in correlation with an augmented expression of the cell cycle inhibitory proteins p53, p27, p21, necrosis, exacerbated generation of reactive oxygen species and diminished mitochondrial membrane potential, all hallmarks of cellular stress. The screening of a novel panel of AgGom-analogues revealed that, unlike changes in the hydrophobicity and electrostatic surface, the cytotoxic potential of the gomesin analogues in DFTD cells lies on specific arginine substitutions in the eight and nine positions and alanine replacement in three, five and 12 positions. In conclusion, the evidence supports gomesin as a potential antiproliferative compound against DFTD disease.
Collapse
Affiliation(s)
- Manuel A Fernandez-Rojo
- 1QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006 Australia.,2Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006 Australia.,3Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, 28049 Spain
| | - Evelyne Deplazes
- 4School of Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, Perth, WA 6845 Australia
| | - Sandy S Pineda
- 5Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Andreas Brust
- 5Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Tano Marth
- 5Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Patrick Wilhelm
- 5Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Nick Martel
- 5Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Grant A Ramm
- 1QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006 Australia.,2Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006 Australia
| | - Ricardo L Mancera
- 4School of Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, Perth, WA 6845 Australia
| | - Paul F Alewood
- 5Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Gregory M Woods
- 6Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000 Australia
| | - Katherine Belov
- 7School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006 Australia
| | - John J Miles
- 1QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006 Australia.,2Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006 Australia.,8Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, 4870 Australia
| | - Glenn F King
- 5Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Maria P Ikonomopoulou
- 1QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006 Australia.,2Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006 Australia.,3Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, 28049 Spain
| |
Collapse
|
49
|
Kim EH, Jang H, Shin D, Baek SH, Roh JL. Targeting Nrf2 with wogonin overcomes cisplatin resistance in head and neck cancer. Apoptosis 2018; 21:1265-1278. [PMID: 27544755 DOI: 10.1007/s10495-016-1284-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A principal limitation to the clinical use of cisplatin is the high incidence of chemoresistance to this drug. Combination treatments with other drugs may help to circumvent this problem. Wogonin, one of the major natural flavonoids, is known to reverse multidrug resistance in several types of cancers. We investigated the ability of wogonin to overcome cisplatin resistance in head and neck cancer (HNC) cells and further clarified its molecular mechanisms of action. Two cisplatin-resistant HNC cell lines (AMC-HN4R and -HN9R) and their parental and other human HNC cell lines were used. The effects of wogonin, either alone or in combination with cisplatin, were assessed in HNC cells and normal cells using cell cycle and death assays and by measuring cell viability, reactive oxygen species (ROS) production, and protein expression, and in tumor xenograft mouse models. Wogonin selectively killed HNC cells but spared normal cells. It inhibited nuclear factor erythroid 2-related factor 2 and glutathione S-transferase P in cisplatin-resistant HNC cells, resulting in increased ROS accumulation in HNC cells, an effect that could be blocked by the antioxidant N-acetyl-L-cysteine. Wogonin also induced selective cell death by targeting the antioxidant defense mechanisms enhanced in the resistant HNC cells and activating cell death pathways involving PUMA and PARP. Hence, wogonin significantly sensitized resistant HNC cells to cisplatin both in vitro and in vivo. Wogonin is a promising anticancer candidate that induces ROS accumulation and selective cytotoxicity in HNC cells and can help to overcome cisplatin-resistance in this cancer.
Collapse
Affiliation(s)
- Eun Hye Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyejin Jang
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Daiha Shin
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seung Ho Baek
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
50
|
Abstract
Beneficial symbiotic associations, ubiquitously found in nature, have led to the emergence of eukaryotic cells, the bacteriocytes, specialized in harboring microbial partners. One of the most fundamental questions concerning these enigmatic cells is how organismal homeostasis controls their elimination. Here we report that aphid bacteriocytes have evolved a form of cell death distinct from the conserved cell-death mechanisms hitherto characterized. This cell-death mechanism is a nonapoptotic multistep process that starts with the hypervacuolation of the endoplasmic reticulum, followed by a cascade of cellular stress responses. Our findings provide a framework to study biological functioning of bacteriocytes and the cellular mechanisms associated with symbiosis and contribute to the understanding of eukaryotic cell-death diversity. Symbiotic associations play a pivotal role in multicellular life by facilitating acquisition of new traits and expanding the ecological capabilities of organisms. In insects that are obligatorily dependent on intracellular bacterial symbionts, novel host cells (bacteriocytes) or organs (bacteriomes) have evolved for harboring beneficial microbial partners. The processes regulating the cellular life cycle of these endosymbiont-bearing cells, such as the cell-death mechanisms controlling their fate and elimination in response to host physiology, are fundamental questions in the biology of symbiosis. Here we report the discovery of a cell-death process involved in the degeneration of bacteriocytes in the hemipteran insect Acyrthosiphon pisum. This process is activated progressively throughout aphid adulthood and exhibits morphological features distinct from known cell-death pathways. By combining electron microscopy, immunohistochemistry, and molecular analyses, we demonstrated that the initial event of bacteriocyte cell death is the cytoplasmic accumulation of nonautophagic vacuoles, followed by a sequence of cellular stress responses including the formation of autophagosomes in intervacuolar spaces, activation of reactive oxygen species, and Buchnera endosymbiont degradation by the lysosomal system. We showed that this multistep cell-death process originates from the endoplasmic reticulum, an organelle exhibiting a unique reticular network organization spread throughout the entire cytoplasm and surrounding Buchnera aphidicola endosymbionts. Our findings provide insights into the cellular and molecular processes that coordinate eukaryotic host and endosymbiont homeostasis and death in a symbiotic system and shed light on previously unknown aspects of bacteriocyte biological functioning.
Collapse
|