1
|
Kim K, Islam MM, Bang S, Kim J, Lee CY, Lee JC, Shin M. H-NS is a Transcriptional Repressor of the CRISPR-Cas System in Acinetobacter baumannii ATCC 19606. J Microbiol 2024:10.1007/s12275-024-00182-5. [PMID: 39527185 DOI: 10.1007/s12275-024-00182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Acinetobacter baumannii is a multidrug-resistant opportunistic pathogen primarily associated with hospital-acquired infections. The bacterium can gain multidrug resistance through several mechanisms, including horizontal gene transfer. A CRISPR-Cas system including several Cas genes could restrict the horizontal gene transfer. However, the molecular mechanism of CRISPR- Cas transcriptional regulation remains unclear. We identified a type I-F CRISPR-Cas system in A. baumannii ATCC 19606T standard strain based on sequence analysis. We focused on the transcriptional regulation of Cas3, a key protein of the CRISPR-Cas system. We performed a DNA affinity chromatography-pulldown assay to identify transcriptional regulators of the Cas3 promoter. We identified several putative transcriptional factors, such as H-NS, integration host factor, and HU, that can bind to the promoter region of Cas3. We characterized AbH-NS using size exclusion chromatography and cross-linking experiments and demonstrated that the Cas3 promoter can be regulated by AbH-NS in a concentration-dependent manner via an in vitro transcription assay. CRISPR-Cas expression levels in wild-type and hns mutant strains in the early stationary phase were examined by qPCR and β-galactosidase assay. We found that H-NS can act as a repressor of Cas3. Our transformation efficiency results indicated that the hns mutation decreased the transformation efficiency, while the Cas3 mutation increased it. We report the existence and characterization of the CRISPR-Cas system in A. baumannii 19606T and demonstrate that AbH-NS is a transcriptional repressor of CRISPR-Cas-related genes in A. baumannii.
Collapse
Affiliation(s)
- Kyeongmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Md Maidul Islam
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Seunghyeok Bang
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jeongah Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang- Ro, Jung-gu, Daegu, 41944, Republic of Korea.
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
2
|
Zhang L, Wang H, Zeng J, Cao X, Gao Z, Liu Z, Li F, Wang J, Zhang Y, Yang M, Feng Y. Cas1 mediates the interference stage in a phage-encoded CRISPR-Cas system. Nat Chem Biol 2024; 20:1471-1481. [PMID: 38977786 DOI: 10.1038/s41589-024-01659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 05/31/2024] [Indexed: 07/10/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems are prokaryotic adaptive immune systems against invading phages and other mobile genetic elements. Notably, some phages, including the Vibrio cholerae-infecting ICP1 (International Center for Diarrheal Disease Research, Bangladesh cholera phage 1), harbor CRISPR-Cas systems to counteract host defenses. Nevertheless, ICP1 Cas8f lacks the helical bundle domain essential for recruitment of helicase-nuclease Cas2/3 during target DNA cleavage and how this system accomplishes the interference stage remains unknown. Here, we found that Cas1, a highly conserved component known to exclusively work in the adaptation stage, also mediates the interference stage through connecting Cas2/3 to the DNA-bound CRISPR-associated complex for antiviral defense (Cascade; CRISPR system yersinia, Csy) of the ICP1 CRISPR-Cas system. A series of structures of Csy, Csy-dsDNA (double-stranded DNA), Cas1-Cas2/3 and Csy-dsDNA-Cas1-Cas2/3 complexes reveal the whole process of Cas1-mediated target DNA cleavage by the ICP1 CRISPR-Cas system. Together, these data support an unprecedented model in which Cas1 mediates the interference stage in a phage-encoded CRISPR-Cas system and the study also sheds light on a unique model of primed adaptation.
Collapse
Affiliation(s)
- Laixing Zhang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jianwei Zeng
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xueli Cao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhengyu Gao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Feixue Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jiawei Wang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
- SUSTech Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen, China.
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
3
|
Ranasinghe W, Gillette D, Ho A, Cho H, Choudhary M. Taxonomic Distribution, Phylogenetic Relationship, and Domain Conservation of CRISPR-Associated Cas Proteins. Bioinform Biol Insights 2024; 18:11779322241274961. [PMID: 39397878 PMCID: PMC11468465 DOI: 10.1177/11779322241274961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024] Open
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a naturally occurring genetic defense system in bacteria and archaea. It is comprised of a series of DNA sequence repeats with spacers derived from previous exposures to plasmid or phage. Further understanding and applications of CRISPR system have revolutionized our capacity for gene or genome editing of prokaryotes and eukaryotes. The CRISPR systems are classified into 3 distinct types: type I, type II, and type III, each of which possesses an associated signature protein, Cas3, Cas9, and Cas10, respectively. As the CRISPR loci originated from earlier independent exposures of foreign genetic elements, it is likely that their associated signature proteins may have evolved rapidly. Also, their functional domain structures might have experienced different selective pressures, and therefore, they have differentially diverged in their amino acid sequences. We employed genomic, phylogenetic, and structure-function constraint analyses to reveal the evolutionary distribution, phylogenetic relationship, and structure-function constraints of Cas3, Cas9, and Cas10 proteins. Results reveal that all 3 Cas-associated proteins are highly represented in the phyla Bacteroidetes, Firmicutes, and Proteobacteria, including both pathogenic and non-pathogenic species. Genomic analysis of homologous proteins demonstrates that the proteins share 30% to 50% amino acid identity; therefore, they are low to moderately conserved and evolved rapidly. Phylogenetic analysis shows that 3 proteins originated monophyletically; however, the evolution rates were different among different branches of the clades. Furthermore, structure-function constraint analysis reveals that both Cas3 and Cas9 proteins experiences low to moderate levels of negative selection, and several protein domains of Cas3 and Cas9 proteins are highly conserved. To the contrary, most protein domains of Cas10 proteins experience neutral or positive selection, which supports rapid genetic divergence and less structure-function constraints.
Collapse
Affiliation(s)
- Weerakkody Ranasinghe
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Dorcie Gillette
- Department of Surgery, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Alexis Ho
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Hyuk Cho
- Department of Computer Science, Sam Houston State University, Huntsville, TX, USA
| | - Madhusudan Choudhary
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, USA
| |
Collapse
|
4
|
Kim D, Lee S, Ha H, Park H. Structural basis of Cas3 activation in type I-C CRISPR-Cas system. Nucleic Acids Res 2024; 52:10563-10574. [PMID: 39180405 PMCID: PMC11417383 DOI: 10.1093/nar/gkae723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024] Open
Abstract
CRISPR-Cas systems function as adaptive immune mechanisms in bacteria and archaea and offer protection against phages and other mobile genetic elements. Among many types of CRISPR-Cas systems, Type I CRISPR-Cas systems are most abundant, with target interference depending on a multi-subunit, RNA-guided complex known as Cascade that recruits a transacting helicase nuclease, Cas3, to degrade the target. While structural studies on several other types of Cas3 have been conducted long ago, it was only recently that the structural study of Type I-C Cas3 in complex with Cascade was revealed, shedding light on how Cas3 achieve its activity in the Cascade complex. In the present study, we elucidated the first structure of standalone Type I-C Cas3 from Neisseria lactamica (NlaCas3). Structural analysis revealed that the histidine-aspartate (HD) nuclease active site of NlaCas3 was bound to two Fe2+ ions that inhibited its activity. Moreover, NlaCas3 could cleave both single-stranded and double-stranded DNA in the presence of Ni2+ or Co2+, showing the highest activity in the presence of both Ni2+ and Mg2+ ions. By comparing the structural studies of various Cas3 proteins, we determined that our NlaCas3 stays in an inactive conformation, allowing us to understand the structural changes associated with its activation and their implication.
Collapse
Affiliation(s)
- Do Yeon Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - So Yeon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Ji Ha
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
5
|
Choi W, Cha S, Kim K. Navigating the CRISPR/Cas Landscape for Enhanced Diagnosis and Treatment of Wilson's Disease. Cells 2024; 13:1214. [PMID: 39056796 PMCID: PMC11274827 DOI: 10.3390/cells13141214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system continues to evolve, thereby enabling more precise detection and repair of mutagenesis. The development of CRISPR/Cas-based diagnosis holds promise for high-throughput, cost-effective, and portable nucleic acid screening and genetic disease diagnosis. In addition, advancements in transportation strategies such as adeno-associated virus (AAV), lentiviral vectors, nanoparticles, and virus-like vectors (VLPs) offer synergistic insights for gene therapeutics in vivo. Wilson's disease (WD), a copper metabolism disorder, is primarily caused by mutations in the ATPase copper transporting beta (ATP7B) gene. The condition is associated with the accumulation of copper in the body, leading to irreversible damage to various organs, including the liver, nervous system, kidneys, and eyes. However, the heterogeneous nature and individualized presentation of physical and neurological symptoms in WD patients pose significant challenges to accurate diagnosis. Furthermore, patients must consume copper-chelating medication throughout their lifetime. Herein, we provide a detailed description of WD and review the application of novel CRISPR-based strategies for its diagnosis and treatment, along with the challenges that need to be overcome.
Collapse
Affiliation(s)
- Woong Choi
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
| | - Seongkwang Cha
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Hu T, Ji Q, Ke X, Zhou H, Zhang S, Ma S, Yu C, Ju W, Lu M, Lin Y, Ou Y, Zhou Y, Xiao Y, Xu C, Hu C. Repurposing Type I-A CRISPR-Cas3 for a robust diagnosis of human papillomavirus (HPV). Commun Biol 2024; 7:858. [PMID: 39003402 PMCID: PMC11246428 DOI: 10.1038/s42003-024-06537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
R-loop-triggered collateral single-stranded DNA (ssDNA) nuclease activity within Class 1 Type I CRISPR-Cas systems holds immense potential for nucleic acid detection. However, the hyperactive ssDNase activity of Cas3 introduces unwanted noise and false-positive results. In this study, we identified a novel Type I-A Cas3 variant derived from Thermococcus siculi, which remains in an auto-inhibited state until it is triggered by Cascade complex and R-loop formation. This Type I-A CRISPR-Cas3 system not only exhibits an expanded protospacer adjacent motif (PAM) recognition capability but also demonstrates remarkable intolerance towards mismatched sequences. Furthermore, it exhibits dual activation modes-responding to both DNA and RNA targets. The culmination of our research efforts has led to the development of the Hyper-Active-Verification Establishment (HAVE, ). This innovation enables swift and precise human papillomavirus (HPV) diagnosis in clinical samples, providing a robust molecular diagnostic tool based on the Type I-A CRISPR-Cas3 system. Our findings contribute to understanding type I-A CRISPR-Cas3 system regulation and facilitate the creation of advanced diagnostic solutions with broad clinical applicability.
Collapse
Affiliation(s)
- Tao Hu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang, 310052, China
| | - Quanquan Ji
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Xinxin Ke
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang, 310052, China
| | - Hufeng Zhou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Senfeng Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Shengsheng Ma
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Chenlin Yu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenjun Ju
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Meiling Lu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yu Lin
- International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Specialty, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yangjing Ou
- International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Specialty, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yingsi Zhou
- HuidaGene Therapeutics Inc., Shanghai, China.
| | - Yibei Xiao
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Chunlong Xu
- Lingang Laboratory, Shanghai, China.
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| | - Chunyi Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
7
|
Hallmark T, Williams AA, Redman O, Guinn B, Judd C, Jackson RN. The N-terminal domain of Type IV-A1 CRISPR-associated DinG is vulnerable to proteolysis. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001226. [PMID: 38911435 PMCID: PMC11193112 DOI: 10.17912/micropub.biology.001226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
CasDinG is an ATP-dependent 5'-3' DNA helicase essential for bacterial Type IV-A1 CRISPR associated immunity. CasDinG contains an essential N-terminal domain predicted to bind DNA. To better understand the role of the N-terminal domain, we attempted to co-crystallize CasDinG with DNA substrates. We successfully crystallized CasDinG in a tightly packed, crystal conformation with previously unobserved unit cell dimensions. However, the structure lacked electron density for a bound DNA substrate and the CasDinG N-terminal domain. Additionally, the tight crystal packing disallowed space for the N-terminal domain, indicating that the N-terminal domain was proteolyzed before crystallization. Follow up experiments revealed that the N-terminal domain of CasDinG is proteolyzed after a few days at room temperature, but is protected from proteolysis at 4°C. These data provide a distinct x-ray crystal structure of CasDinG and indicate the essential N-terminal domain of CasDinG is prone to proteolysis.
Collapse
Affiliation(s)
- Thomson Hallmark
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, United States
| | - Andrew A. Williams
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, United States
| | - Olivine Redman
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, United States
| | - Brendon Guinn
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, United States
| | - Calvin Judd
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, United States
| | - Ryan N. Jackson
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, United States
| |
Collapse
|
8
|
Ganguly C, Rostami S, Long K, Aribam SD, Rajan R. Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms. J Biol Chem 2024; 300:107295. [PMID: 38641067 PMCID: PMC11127173 DOI: 10.1016/j.jbc.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are adaptive immune systems that protect bacteria and archaea from invading mobile genetic elements (MGEs). The Cas protein-CRISPR RNA (crRNA) complex uses complementarity of the crRNA "guide" region to specifically recognize the invader genome. CRISPR effectors that perform targeted destruction of the foreign genome have emerged independently as multi-subunit protein complexes (Class 1 systems) and as single multi-domain proteins (Class 2). These different CRISPR-Cas systems can cleave RNA, DNA, and protein in an RNA-guided manner to eliminate the invader, and in some cases, they initiate programmed cell death/dormancy. The versatile mechanisms of the different CRISPR-Cas systems to target and destroy nucleic acids have been adapted to develop various programmable-RNA-guided tools and have revolutionized the development of fast, accurate, and accessible genomic applications. In this review, we present the structure and interference mechanisms of different CRISPR-Cas systems and an analysis of their unified features. The three types of Class 1 systems (I, III, and IV) have a conserved right-handed helical filamentous structure that provides a backbone for sequence-specific targeting while using unique proteins with distinct mechanisms to destroy the invader. Similarly, all three Class 2 types (II, V, and VI) have a bilobed architecture that binds the RNA-DNA/RNA hybrid and uses different nuclease domains to cleave invading MGEs. Additionally, we highlight the mechanistic similarities of CRISPR-Cas enzymes with other RNA-cleaving enzymes and briefly present the evolutionary routes of the different CRISPR-Cas systems.
Collapse
Affiliation(s)
- Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Kole Long
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Swarmistha Devi Aribam
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
9
|
Hesping E, Boddey JA. Whole-genome CRISPR screens to understand Apicomplexan-host interactions. Mol Microbiol 2024; 121:717-726. [PMID: 38225194 DOI: 10.1111/mmi.15221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/17/2024]
Abstract
Apicomplexan parasites are aetiological agents of numerous diseases in humans and livestock. Functional genomics studies in these parasites enable the identification of biological mechanisms and protein functions that can be targeted for therapeutic intervention. Recent improvements in forward genetics and whole-genome screens utilising CRISPR/Cas technology have revolutionised the functional analysis of genes during Apicomplexan infection of host cells. Here, we highlight key discoveries from CRISPR/Cas9 screens in Apicomplexa or their infected host cells and discuss remaining challenges to maximise this technology that may help answer fundamental questions about parasite-host interactions.
Collapse
Affiliation(s)
- Eva Hesping
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Justin A Boddey
- Infectious Diseases and Immune Defence Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Li J, Zhao D, Zhang T, Xiong H, Hu M, Liu H, Zhao F, Sun X, Fan P, Qian Y, Wang D, Lai L, Sui T, Li Z. Precise large-fragment deletions in mammalian cells and mice generated by dCas9-controlled CRISPR/Cas3. SCIENCE ADVANCES 2024; 10:eadk8052. [PMID: 38489357 PMCID: PMC10942115 DOI: 10.1126/sciadv.adk8052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
Currently, the Cas9 and Cas12a systems are widely used for genome editing, but their ability to precisely generate large chromosome fragment deletions is limited. Type I-E CRISPR mediates broad and unidirectional DNA degradation, but controlling the size of Cas3-mediated DNA deletions has proven elusive thus far. Here, we demonstrate that the endonuclease deactivation of Cas9 (dCas9) can precisely control Cas3-mediated large-fragment deletions in mammalian cells. In addition, we report the elimination of the Y chromosome and precise retention of the Sry gene in mice using CRISPR/Cas3 and dCas9-controlled CRISPR/Cas3, respectively. In conclusion, dCas9-controlled CRISPR/Cas3-mediated precise large-fragment deletion provides an approach for establishing animal models by chromosome elimination. This method also holds promise as a potential therapeutic strategy for treating fragment mutations or human aneuploidy diseases that involve additional chromosomes.
Collapse
Affiliation(s)
- Jinze Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Ding Zhao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Tao Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Haoyang Xiong
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Mingyang Hu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Hongmei Liu
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Feiyu Zhao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Xiaodi Sun
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Peng Fan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Yuqiang Qian
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Di Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Tingting Sui
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| |
Collapse
|
11
|
Hu C, Myers MT, Zhou X, Hou Z, Lozen ML, Nam KH, Zhang Y, Ke A. Exploiting activation and inactivation mechanisms in type I-C CRISPR-Cas3 for genome-editing applications. Mol Cell 2024; 84:463-475.e5. [PMID: 38242128 PMCID: PMC10857747 DOI: 10.1016/j.molcel.2023.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/26/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
Type I CRISPR-Cas systems utilize the RNA-guided Cascade complex to identify matching DNA targets and the nuclease-helicase Cas3 to degrade them. Among the seven subtypes, type I-C is compact in size and highly active in creating large-sized genome deletions in human cells. Here, we use four cryoelectron microscopy snapshots to define its RNA-guided DNA binding and cleavage mechanisms in high resolution. The non-target DNA strand (NTS) is accommodated by I-C Cascade in a continuous binding groove along the juxtaposed Cas11 subunits. Binding of Cas3 further traps a flexible bulge in NTS, enabling NTS nicking. We identified two anti-CRISPR proteins AcrIC8 and AcrIC9 that strongly inhibit Neisseria lactamica I-C function. Structural analysis showed that AcrIC8 inhibits PAM recognition through allosteric inhibition, whereas AcrIC9 achieves so through direct competition. Both Acrs potently inhibit I-C-mediated genome editing and transcriptional modulation in human cells, providing the first off-switches for type I CRISPR eukaryotic genome engineering.
Collapse
Affiliation(s)
- Chunyi Hu
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA; Department of Biological Sciences, Faculty of Science; Department of Biochemistry, Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Mason T Myers
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xufei Zhou
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhonggang Hou
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Macy L Lozen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ki Hyun Nam
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Yan Zhang
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA.
| |
Collapse
|
12
|
Wimmer F, Englert F, Wandera KG, Alkhnbashi O, Collins S, Backofen R, Beisel C. Interrogating two extensively self-targeting Type I CRISPR-Cas systems in Xanthomonas albilineans reveals distinct anti-CRISPR proteins that block DNA degradation. Nucleic Acids Res 2024; 52:769-783. [PMID: 38015466 PMCID: PMC10810201 DOI: 10.1093/nar/gkad1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
CRISPR-Cas systems store fragments of invader DNA as spacers to recognize and clear those same invaders in the future. Spacers can also be acquired from the host's genomic DNA, leading to lethal self-targeting. While self-targeting can be circumvented through different mechanisms, natural examples remain poorly explored. Here, we investigate extensive self-targeting by two CRISPR-Cas systems encoding 24 self-targeting spacers in the plant pathogen Xanthomonas albilineans. We show that the native I-C and I-F1 systems are actively expressed and that CRISPR RNAs are properly processed. When expressed in Escherichia coli, each Cascade complex binds its PAM-flanked DNA target to block transcription, while the addition of Cas3 paired with genome targeting induces cell killing. While exploring how X. albilineans survives self-targeting, we predicted putative anti-CRISPR proteins (Acrs) encoded within the bacterium's genome. Screening of identified candidates with cell-free transcription-translation systems and in E. coli revealed two Acrs, which we named AcrIC11 and AcrIF12Xal, that inhibit the activity of Cas3 but not Cascade of the respective system. While AcrF12Xal is homologous to AcrIF12, AcrIC11 shares sequence and structural homology with the anti-restriction protein KlcA. These findings help explain tolerance of self-targeting through two CRISPR-Cas systems and expand the known suite of DNA degradation-inhibiting Acrs.
Collapse
Affiliation(s)
- Franziska Wimmer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Frank Englert
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Katharina G Wandera
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Omer S Alkhnbashi
- Information and Computer Science Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Intelligent Secure Systems (IRC-ISS), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Scott P Collins
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Rolf Backofen
- Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
13
|
Xu Z, Chen S, Wu W, Wen Y, Cao H. Type I CRISPR-Cas-mediated microbial gene editing and regulation. AIMS Microbiol 2023; 9:780-800. [PMID: 38173969 PMCID: PMC10758571 DOI: 10.3934/microbiol.2023040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
There are six major types of CRISPR-Cas systems that provide adaptive immunity in bacteria and archaea against invasive genetic elements. The discovery of CRISPR-Cas systems has revolutionized the field of genetics in many organisms. In the past few years, exploitations of the most abundant class 1 type I CRISPR-Cas systems have revealed their great potential and distinct advantages to achieve gene editing and regulation in diverse microorganisms in spite of their complicated structures. The widespread and diversified type I CRISPR-Cas systems are becoming increasingly attractive for the development of new biotechnological tools, especially in genetically recalcitrant microbial strains. In this review article, we comprehensively summarize recent advancements in microbial gene editing and regulation by utilizing type I CRISPR-Cas systems. Importantly, to expand the microbial host range of type I CRISPR-Cas-based applications, these structurally complicated systems have been improved as transferable gene-editing tools with efficient delivery methods for stable expression of CRISPR-Cas elements, as well as convenient gene-regulation tools with the prevention of DNA cleavage by obviating deletion or mutation of the Cas3 nuclease. We envision that type I CRISPR-Cas systems will largely expand the biotechnological toolbox for microbes with medical, environmental and industrial importance.
Collapse
Affiliation(s)
- Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shuzhen Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Weiyan Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yongqi Wen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Huiluo Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
14
|
Li Y, Huang B, Chen J, Huang L, Xu J, Wang Y, Cui G, Zhao H, Xin B, Song W, Zhu J, Lai J. Targeted large fragment deletion in plants using paired crRNAs with type I CRISPR system. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2196-2208. [PMID: 37641539 PMCID: PMC10579709 DOI: 10.1111/pbi.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/19/2023] [Accepted: 06/25/2023] [Indexed: 08/31/2023]
Abstract
The CRISPR-Cas systems have been widely used as genome editing tools, with type II and V systems typically introducing small indels, and type I system mediating long-range deletions. However, the precision of type I systems for large fragment deletion is still remained to be optimized. Here, we developed a compact Cascade-Cas3 Dvu I-C system with Cas11c for plant genome editing. The Dvu I-C system was efficient to introduce controllable large fragment deletion up to at least 20 kb using paired crRNAs. The paired-crRNAs design also improved the controllability of deletions for the type I-E system. Dvu I-C system was sensitive to spacer length and mismatch, which was benefit for target specificity. In addition, we showed that the Dvu I-C system was efficient for generating stable transgenic lines in maize and rice with the editing efficiency up to 86.67%. Overall, Dvu I-C system we developed here is powerful for achieving controllable large fragment deletions.
Collapse
Affiliation(s)
- Yingnan Li
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Boyu Huang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jian Chen
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Liangliang Huang
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Jianghai Xu
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yingying Wang
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Guanghui Cui
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Haiming Zhao
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Beibei Xin
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Weibin Song
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Jian‐Kang Zhu
- Institute of Advanced Biotechnology and School of Life SciencesSouthern University of Science and TechnologyShenzhenChina
- Center for Advanced Bioindustry TechnologiesChinese Academy of Agricultural SciencesBeijingChina
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
- Frontiers Science Center for Molecular Design BreedingChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
| |
Collapse
|
15
|
Yang S, Winstone L, Mondal S, Wu Y. Helicases in R-loop Formation and Resolution. J Biol Chem 2023; 299:105307. [PMID: 37778731 PMCID: PMC10641170 DOI: 10.1016/j.jbc.2023.105307] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023] Open
Abstract
With the development and wide usage of CRISPR technology, the presence of R-loop structures, which consist of an RNA-DNA hybrid and a displaced single-strand (ss) DNA, has become well accepted. R-loop structures have been implicated in a variety of circumstances and play critical roles in the metabolism of nucleic acid and relevant biological processes, including transcription, DNA repair, and telomere maintenance. Helicases are enzymes that use an ATP-driven motor force to unwind double-strand (ds) DNA, dsRNA, or RNA-DNA hybrids. Additionally, certain helicases have strand-annealing activity. Thus, helicases possess unique positions for R-loop biogenesis: they utilize their strand-annealing activity to promote the hybridization of RNA to DNA, leading to the formation of R-loops; conversely, they utilize their unwinding activity to separate RNA-DNA hybrids and resolve R-loops. Indeed, numerous helicases such as senataxin (SETX), Aquarius (AQR), WRN, BLM, RTEL1, PIF1, FANCM, ATRX (alpha-thalassemia/mental retardation, X-linked), CasDinG, and several DEAD/H-box proteins are reported to resolve R-loops; while other helicases, such as Cas3 and UPF1, are reported to stimulate R-loop formation. Moreover, helicases like DDX1, DDX17, and DHX9 have been identified in both R-loop formation and resolution. In this review, we will summarize the latest understandings regarding the roles of helicases in R-loop metabolism. Additionally, we will highlight challenges associated with drug discovery in the context of targeting these R-loop helicases.
Collapse
Affiliation(s)
- Shizhuo Yang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lacey Winstone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sohaumn Mondal
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
16
|
Santiago-Frangos A, Henriques WS, Wiegand T, Gauvin CC, Buyukyoruk M, Graham AB, Wilkinson RA, Triem L, Neselu K, Eng ET, Lander GC, Wiedenheft B. Structure reveals why genome folding is necessary for site-specific integration of foreign DNA into CRISPR arrays. Nat Struct Mol Biol 2023; 30:1675-1685. [PMID: 37710013 PMCID: PMC10872659 DOI: 10.1038/s41594-023-01097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
Bacteria and archaea acquire resistance to viruses and plasmids by integrating fragments of foreign DNA into the first repeat of a CRISPR array. However, the mechanism of site-specific integration remains poorly understood. Here, we determine a 560-kDa integration complex structure that explains how Pseudomonas aeruginosa Cas (Cas1-Cas2/3) and non-Cas proteins (for example, integration host factor) fold 150 base pairs of host DNA into a U-shaped bend and a loop that protrude from Cas1-2/3 at right angles. The U-shaped bend traps foreign DNA on one face of the Cas1-2/3 integrase, while the loop places the first CRISPR repeat in the Cas1 active site. Both Cas3 proteins rotate 100 degrees to expose DNA-binding sites on either side of the Cas2 homodimer, which each bind an inverted repeat motif in the leader. Leader sequence motifs direct Cas1-2/3-mediated integration to diverse repeat sequences that have a 5'-GT. Collectively, this work reveals new DNA-binding surfaces on Cas2 that are critical for DNA folding and site-specific delivery of foreign DNA.
Collapse
Affiliation(s)
| | - William S Henriques
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Tanner Wiegand
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Colin C Gauvin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Murat Buyukyoruk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Ava B Graham
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Royce A Wilkinson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Lenny Triem
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Kasahun Neselu
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, NY, USA
| | - Edward T Eng
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, NY, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
17
|
Aquino-Jarquin G. Genome and transcriptome engineering by compact and versatile CRISPR-Cas systems. Drug Discov Today 2023; 28:103793. [PMID: 37797813 DOI: 10.1016/j.drudis.2023.103793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Comparative genomics has enabled the discovery of tiny clustered regularly interspaced short palindromic repeat (CRISPR) bacterial immune system effectors with enormous potential for manipulating eukaryotic genomes. Recently, smaller Cas proteins, including miniature Cas9, Cas12, and Cas13 proteins, have been identified and validated as efficient genome editing and base editing tools in human cells. The compact size of these novel CRISPR effectors is highly desirable for generating CRISPR-based therapeutic approaches, mainly to overcome in vivo delivery constraints, providing a promising opportunity for editing pathogenic mutations of clinical relevance and knocking down RNAs in human cells without inducing chromosomal insertions or genome alterations. Thus, these tiny CRISPR-Cas systems represent new and highly programmable, specific, and efficient platforms, which expand the CRISPR toolkit for potential therapeutic opportunities.
Collapse
Affiliation(s)
- Guillermo Aquino-Jarquin
- RNA Biology and Genome Editing Section. Research on Genomics, Genetics, and Bioinformatics Laboratory. Hemato-Oncology Building, 4th Floor, Section 2. Children's Hospital of Mexico, Federico Gómez, Mexico City, Mexico.
| |
Collapse
|
18
|
Hu C, Myers MT, Zhou X, Hou Z, Lozen ML, Zhang Y, Ke A. Exploiting Activation and Inactivation Mechanisms in Type I-C CRISPR-Cas3 for Genome Editing Applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.05.552134. [PMID: 37577534 PMCID: PMC10418205 DOI: 10.1101/2023.08.05.552134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Type I CRISPR-Cas systems utilize the RNA-guided Cascade complex to identify matching DNA targets, and the nuclease-helicase Cas3 to degrade them. Among seven subtypes, Type I-C is compact in size and highly active in creating large-sized genome deletions in human cells. Here we use four cryo-electron microscopy snapshots to define its RNA-guided DNA binding and cleavage mechanisms in high resolution. The non-target DNA strand (NTS) is accommodated by I-C Cascade in a continuous binding groove along the juxtaposed Cas11 subunits. Binding of Cas3 further traps a flexible bulge in NTS, enabling efficient NTS nicking. We identified two anti-CRISPR proteins AcrIC8 and AcrIC9, that strongly inhibit N. lactamica I-C function. Structural analysis showed that AcrIC8 inhibits PAM recognition through direct competition, whereas AcrIC9 achieves so through allosteric inhibition. Both Acrs potently inhibit I-C-mediated genome editing and transcriptional modulation in human cells, providing the first off-switches for controllable Type I CRISPR genome engineering.
Collapse
|
19
|
Shangguan Q, White MF. Repurposing the atypical type I-G CRISPR system for bacterial genome engineering. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001373. [PMID: 37526970 PMCID: PMC10482374 DOI: 10.1099/mic.0.001373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The CRISPR-Cas system functions as a prokaryotic immune system and is highly diverse, with six major types and numerous sub-types. The most abundant are type I CRISPR systems, which utilize a multi-subunit effector, Cascade, and a CRISPR RNA (crRNA) to detect invading DNA species. Detection leads to DNA loading of the Cas3 helicase-nuclease, leading to long-range deletions in the targeted DNA, thus providing immunity against mobile genetic elements (MGE). Here, we focus on the type I-G system, a streamlined, 4-subunit complex with an atypical Cas3 enzyme. We demonstrate that Cas3 helicase activity is not essential for immunity against MGE in vivo and explore applications of the Thioalkalivibrio sulfidiphilus Cascade effector for genome engineering in Escherichia coli. Long-range, bidirectional deletions were observed when the lacZ gene was targeted. Deactivation of the Cas3 helicase activity dramatically altered the types of deletions observed, with small deletions flanked by direct repeats that are suggestive of microhomology mediated end joining. When donor DNA templates were present, both the wild-type and helicase-deficient systems promoted homology-directed repair (HDR), with the latter system providing improvements in editing efficiency, suggesting that a single nick in the target site may promote HDR in E. coli using the type I-G system. These findings open the way for further application of the type I-G CRISPR systems in genome engineering.
Collapse
Affiliation(s)
- Qilin Shangguan
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Malcolm F. White
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| |
Collapse
|
20
|
Aldag P, Rutkauskas M, Madariaga-Marcos J, Songailiene I, Sinkunas T, Kemmerich F, Kauert D, Siksnys V, Seidel R. Dynamic interplay between target search and recognition for a Type I CRISPR-Cas system. Nat Commun 2023; 14:3654. [PMID: 37339984 PMCID: PMC10281945 DOI: 10.1038/s41467-023-38790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
CRISPR-Cas effector complexes enable the defense against foreign nucleic acids and have recently been exploited as molecular tools for precise genome editing at a target locus. To bind and cleave their target, the CRISPR-Cas effectors have to interrogate the entire genome for the presence of a matching sequence. Here we dissect the target search and recognition process of the Type I CRISPR-Cas complex Cascade by simultaneously monitoring DNA binding and R-loop formation by the complex. We directly quantify the effect of DNA supercoiling on the target recognition probability and demonstrate that Cascade uses facilitated diffusion for its target search. We show that target search and target recognition are tightly linked and that DNA supercoiling and limited 1D diffusion need to be considered when understanding target recognition and target search by CRISPR-Cas enzymes and engineering more efficient and precise variants.
Collapse
Affiliation(s)
- Pierre Aldag
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| | - Marius Rutkauskas
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| | | | - Inga Songailiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekis ave. 7, Vilnius, 10257, Lithuania
| | - Tomas Sinkunas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekis ave. 7, Vilnius, 10257, Lithuania
| | - Felix Kemmerich
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| | - Dominik Kauert
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| | - Virginijus Siksnys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekis ave. 7, Vilnius, 10257, Lithuania.
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
21
|
Cui N, Zhang JT, Liu Y, Liu Y, Liu XY, Wang C, Huang H, Jia N. Type IV-A CRISPR-Csf complex: Assembly, dsDNA targeting, and CasDinG recruitment. Mol Cell 2023:S1097-2765(23)00420-3. [PMID: 37343553 DOI: 10.1016/j.molcel.2023.05.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/19/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023]
Abstract
Type IV CRISPR-Cas systems, which are primarily found on plasmids and exhibit a strong plasmid-targeting preference, are the only one of the six known CRISPR-Cas types for which the mechanistic details of their function remain unknown. Here, we provide high-resolution functional snapshots of type IV-A Csf complexes before and after target dsDNA binding, either in the absence or presence of CasDinG, revealing the mechanisms underlying CsfcrRNA complex assembly, "DWN" PAM-dependent dsDNA targeting, R-loop formation, and CasDinG recruitment. Furthermore, we establish that CasDinG, a signature DinG family helicase, harbors ssDNA-stimulated ATPase activity and ATP-dependent 5'-3' DNA helicase activity. In addition, we show that CasDinG unwinds the non-target strand (NTS) and target strand (TS) of target dsDNA from the CsfcrRNA complex. These molecular details advance our mechanistic understanding of type IV-A CRISPR-Csf function and should enable Csf complexes to be harnessed as genome-engineering tools for biotechnological applications.
Collapse
Affiliation(s)
- Ning Cui
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Tao Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yongrui Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanhong Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao-Yu Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chongyuan Wang
- Faculty of Pharmaceutical Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China; Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
| | - Hongda Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ning Jia
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
22
|
Zhang F, Neik TX, Thomas WJW, Batley J. CRISPR-Based Genome Editing Tools: An Accelerator in Crop Breeding for a Changing Future. Int J Mol Sci 2023; 24:8623. [PMID: 37239967 PMCID: PMC10218198 DOI: 10.3390/ijms24108623] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Genome editing is an important strategy to maintain global food security and achieve sustainable agricultural development. Among all genome editing tools, CRISPR-Cas is currently the most prevalent and offers the most promise. In this review, we summarize the development of CRISPR-Cas systems, outline their classification and distinctive features, delineate their natural mechanisms in plant genome editing and exemplify the applications in plant research. Both classical and recently discovered CRISPR-Cas systems are included, detailing the class, type, structures and functions of each. We conclude by highlighting the challenges that come with CRISPR-Cas and offer suggestions on how to tackle them. We believe the gene editing toolbox will be greatly enriched, providing new avenues for a more efficient and precise breeding of climate-resilient crops.
Collapse
Affiliation(s)
- Fangning Zhang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ting Xiang Neik
- School of Biosciences, University of Nottingham Malaysia, Semenyih 43500, Malaysia
| | - William J. W. Thomas
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
23
|
Seo PW, Gu DH, Kim JW, Kim JH, Park SY, Kim JS. Structural characterization of the type I-B CRISPR Cas7 from Thermobaculum terrenum. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140900. [PMID: 36682394 DOI: 10.1016/j.bbapap.2023.140900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) in many prokaryotes functions as an adaptive immune system against mobile genetic elements. A heterologous ribonucleoprotein silencing complex composed of CRISPR-associated (Cas) proteins and a CRISPR RNA (crRNA) neutralizes the incoming mobile genetic elements. The type I and III silencing complexes commonly include a protein-helical backbone of several copies of identical subunits, for example, Cas7 in the type I silencing complex. In this study, we structurally characterized type I-B Cas7 (Csh2 from Thermobaculum terrenum; TterCsh2). The revealed crystal structure of TterCsh2 shows a typical glove-like architecture of Cas7, which consists of a palm, a thumb, and a finger domain. Csh2 proteins have 5 conserved sequence motifs that are arranged to form a presumable crRNA-binding site in the TterCsh2 structure. This crRNA binding site of TterCsh2 is structurally and potentially comparable to those observed in helix-forming Cas7 structures in other sub-types. Analysis of the reported Cas7 structures and their sequences suggests that Cas7s can be divided into at least two sub-classes. These data will broaden our understanding on the Cascade complex of CRISPR/Cas systems.
Collapse
Affiliation(s)
- Pil-Won Seo
- Department of Chemistry, Chonnam National University, Gwangju, South Korea
| | - Do-Heon Gu
- Pohang Accelerator Laboratory, Pohang, South Korea
| | - Ji-Won Kim
- Department of Chemistry, Chonnam National University, Gwangju, South Korea
| | - Jun-Hong Kim
- Department of Chemistry, Chonnam National University, Gwangju, South Korea
| | | | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju, South Korea.
| |
Collapse
|
24
|
McBride TM, Cameron SC, Fineran PC, Fagerlund RD. The biology and type I/III hybrid nature of type I-D CRISPR-Cas systems. Biochem J 2023; 480:471-488. [PMID: 37052300 PMCID: PMC10212523 DOI: 10.1042/bcj20220073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 04/14/2023]
Abstract
Prokaryotes have adaptive defence mechanisms that protect them from mobile genetic elements and viral infection. One defence mechanism is called CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins). There are six different types of CRISPR-Cas systems and multiple subtypes that vary in composition and mode of action. Type I and III CRISPR-Cas systems utilise multi-protein complexes, which differ in structure, nucleic acid binding and cleaving preference. The type I-D system is a chimera of type I and III systems. Recently, there has been a burst of research on the type I-D CRISPR-Cas system. Here, we review the mechanism, evolution and biotechnological applications of the type I-D CRISPR-Cas system.
Collapse
Affiliation(s)
- Tess M. McBride
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Shaharn C. Cameron
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Robert D. Fagerlund
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
25
|
Huang J, Liu X, Sun Y, Li Z, Lin MH, Hamilton K, Mandel CR, Sandmeir F, Conti E, Oyala PH, Tong L. An examination of the metal ion content in the active sites of human endonucleases CPSF73 and INTS11. J Biol Chem 2023; 299:103047. [PMID: 36822327 PMCID: PMC10064220 DOI: 10.1016/j.jbc.2023.103047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Human cleavage and polyadenylation specificity factor (CPSF)73 (also known as CPSF3) is the endoribonuclease that catalyzes the cleavage reaction for the 3'-end processing of pre-mRNAs. The active site of CPSF73 is located at the interface between a metallo-β-lactamase domain and a β-CASP domain. Two metal ions are coordinated by conserved residues, five His and two Asp, in the active site, and they are critical for the nuclease reaction. The metal ions have long been thought to be zinc ions, but their exact identity has not been examined. Here we present evidence from inductively coupled plasma mass spectrometry and X-ray diffraction analyses that a mixture of metal ions, including Fe, Zn, and Mn, is present in the active site of CPSF73. The abundance of the various metal ions is different in samples prepared from different expression hosts. Zinc is present at less than 20% abundance in a sample expressed in insect cells, but the sample is active in cleaving a pre-mRNA substrate in a reconstituted canonical 3'-end processing machinery. Zinc is present at 75% abundance in a sample expressed in human cells, which has comparable endonuclease activity. We also observe a mixture of metal ions in the active site of the CPSF73 homolog INTS11, the endonuclease for Integrator. Taken together, our results provide further insights into the role of metal ions in the activity of CPSF73 and INTS11 for RNA 3'-end processing.
Collapse
Affiliation(s)
- Ji Huang
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Xiangyang Liu
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Yadong Sun
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Zhuang Li
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Min-Han Lin
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Keith Hamilton
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Corey R Mandel
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Felix Sandmeir
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York, USA.
| |
Collapse
|
26
|
Arif T, Farooq A, Ahmad FJ, Akhtar M, Choudhery MS. Prime editing: A potential treatment option for β-thalassemia. Cell Biol Int 2023; 47:699-713. [PMID: 36480796 DOI: 10.1002/cbin.11972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
The potential to therapeutically alter the genome is one of the remarkable scientific developments in recent years. Genome editing technologies have provided an opportunity to precisely alter genomic sequence(s) in eukaryotic cells as a treatment option for various genetic disorders. These technologies allow the correction of harmful mutations in patients by precise nucleotide editing. Genome editing technologies such as CRISPR (clustered regularly interspaced short palindromic repeat) and base editors have greatly contributed to the practical applications of gene editing. However, these technologies have certain limitations, including imperfect editing, undesirable mutations, off-target effects, and lack of potential to simultaneously edit multiple loci. Recently, prime editing (PE) has emerged as a new gene editing technology with the potential to overcome the above-mentioned limitations. Interestingly, PE not only has higher specificity but also does not require double-strand breaks. In addition, a minimum possibility of potential off-target mutant sites makes PE a preferred choice for therapeutic gene editing. Furthermore, PE has the potential to introduce insertion and deletions of all 12 single-base mutations at target sequences. Considering its potential, PE has been applied as a treatment option for genetic diseases including hemoglobinopathies. β-Thalassemia, for example, one of the most significant blood disorders characterized by reduced levels of functional hemoglobin, could potentially be treated using PE. Therapeutic reactivation of the γ-globin gene in adult β-thalassemia patients through PE technology is considered a promising therapeutic strategy. The current review aims to briefly discuss the genome editing strategies and potential applications of PE for the treatment of β-thalassemia. In addition, the review will also focus on challenges associated with the use of PE.
Collapse
Affiliation(s)
- Taqdees Arif
- Department of Human Genetics and Molecular Biology, University of Health Sciences Lahore, Lahore, Punjab, Pakistan
| | - Aroosa Farooq
- Department of Human Genetics and Molecular Biology, University of Health Sciences Lahore, Lahore, Punjab, Pakistan
| | - Fridoon Jawad Ahmad
- Department of Human Genetics and Molecular Biology, University of Health Sciences Lahore, Lahore, Punjab, Pakistan
| | - Muhammad Akhtar
- School of Biological Sciences, University of Punjab Lahore, Lahore, Punjab, Pakistan
| | - Mahmood S Choudhery
- Department of Human Genetics and Molecular Biology, University of Health Sciences Lahore, Lahore, Punjab, Pakistan
| |
Collapse
|
27
|
Yang H, Zhang Y, Teng X, Hou H, Deng R, Li J. CRISPR-based nucleic acid diagnostics for pathogens. Trends Analyt Chem 2023; 160:116980. [PMID: 36818498 PMCID: PMC9922438 DOI: 10.1016/j.trac.2023.116980] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Pathogenic infection remains the primary threat to human health, such as the global COVID-19 pandemic. It is important to develop rapid, sensitive and multiplexed tools for detecting pathogens and their mutated variants, particularly the tailor-made strategies for point-of-care diagnosis allowing for use in resource-constrained settings. The rapidly evolving CRISPR/Cas systems have provided a powerful toolbox for pathogenic diagnostics via nucleic acid tests. In this review, we firstly describe the resultant promising class 2 (single, multidomain effector) and recently explored class 1 (multisubunit effector complexes) CRISPR tools. We present diverse engineering nucleic acid diagnostics based on CRISPR/Cas systems for pathogenic viruses, bacteria and fungi, and highlight the application for detecting viral variants and drug-resistant bacteria enabled by CRISPR-based mutation profiling. Finally, we discuss the challenges involved in on-site diagnostic assays and present emerging CRISPR systems and CRISPR cascade that potentially enable multiplexed and preamplification-free pathogenic diagnostics.
Collapse
Affiliation(s)
- Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China,Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yong Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China,Beijing Institute of Life Science and Technology, Beijing, 102206, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, Sichuan, 610065, China,Corresponding author
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China,Corresponding author
| |
Collapse
|
28
|
Flusche T, Rajan R. Molecular Details of DNA Integration by CRISPR-Associated Proteins During Adaptation in Bacteria and Archaea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1414:27-43. [PMID: 35852729 DOI: 10.1007/5584_2022_730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute an adaptive immune system in bacteria and archaea, where immunological memory is retained in the CRISPR locus as short pieces of the intruding nucleic acid, termed spacers. The adaptation to new infections occurs through the integration of a new spacer into the CRISPR array. For immune protection, spacers are transcribed into CRISPR RNAs (crRNA) that are used to guide the effector nuclease of the system in sequence-dependent target cleavage. Spacers originate as a prespacer from either DNA or RNA depending on the CRISPR-Cas system being observed, and the nearly universal Cas proteins, Cas1 and Cas2, insert the prespacer into the CRISPR locus during adaptation in all systems that contain them. The mechanism of site-specific prespacer integration varies across CRISPR classes and types, and distinct differences can even be found within the same subtype. In this review, the current knowledge on the mechanisms of prespacer integration in type II-A CRISPR-Cas systems will be described. Comparisons of the currently characterized type II-A systems show that distinct mechanisms exist within different members of this subtype and are correlated to sequence-specific interactions of Cas proteins and the DNA elements present in the CRISPR array. These observations indicate that nature has fine-tuned the mechanistic details while performing the basic step of DNA integration by Cas proteins, which offers unique advantages to develop Cas1-Cas2-based biotechnology.
Collapse
Affiliation(s)
- Tamara Flusche
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
29
|
Yoshimi K, Takeshita K, Kodera N, Shibumura S, Yamauchi Y, Omatsu M, Umeda K, Kunihiro Y, Yamamoto M, Mashimo T. Dynamic mechanisms of CRISPR interference by Escherichia coli CRISPR-Cas3. Nat Commun 2022; 13:4917. [PMID: 36042215 PMCID: PMC9427990 DOI: 10.1038/s41467-022-32618-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Type I CRISPR-Cas3 uses an RNA-guided multi Cas-protein complex, Cascade, which detects and degrades foreign nucleic acids via the helicase-nuclease Cas3 protein. Despite many studies using cryoEM and smFRET, the precise mechanism of Cas3-mediated cleavage and degradation of target DNA remains elusive. Here we reconstitute the CRISPR-Cas3 system in vitro to show how the Escherichia coli Cas3 (EcoCas3) with EcoCascade exhibits collateral non-specific single-stranded DNA (ssDNA) cleavage and target specific DNA degradation. Partial binding of EcoCascade to target DNA with tolerated mismatches within the spacer sequence, but not the PAM, elicits collateral ssDNA cleavage activity of recruited EcoCas3. Conversely, stable binding with complete R-loop formation drives EcoCas3 to nick the non-target strand (NTS) in the bound DNA. Helicase-dependent unwinding then combines with trans ssDNA cleavage of the target strand and repetitive cis cleavage of the NTS to degrade the target double-stranded DNA (dsDNA) substrate. High-speed atomic force microscopy demonstrates that EcoCas3 bound to EcoCascade repeatedly reels and releases the target DNA, followed by target fragmentation. Together, these results provide a revised model for collateral ssDNA cleavage and target dsDNA degradation by CRISPR-Cas3, furthering understanding of type I CRISPR priming and interference and informing future genome editing tools.
Collapse
Affiliation(s)
- Kazuto Yoshimi
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan.,Division of Genome Engineering, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Kohei Takeshita
- Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, Hyogo, 679-5148, Japan
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | | | - Yuko Yamauchi
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Mine Omatsu
- Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, Hyogo, 679-5148, Japan.,Laboratory of Macromolecular Dynamics and X-ray Crystallography, Department of Life Science, University of Hyogo, Hyogo, 678-1297, Japan
| | - Kenichi Umeda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | | | - Masaki Yamamoto
- Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center, Hyogo, 679-5148, Japan.,Laboratory of Macromolecular Dynamics and X-ray Crystallography, Department of Life Science, University of Hyogo, Hyogo, 678-1297, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan. .,Division of Genome Engineering, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
30
|
Ghosh S, Lahiri D, Nag M, Sarkar T, Pati S, Edinur HA, Kumar M, Mohd Zain MRA, Ray RR. Precision targeting of food biofilm-forming genes by microbial scissors: CRISPR-Cas as an effective modulator. Front Microbiol 2022; 13:964848. [PMID: 36016778 PMCID: PMC9396135 DOI: 10.3389/fmicb.2022.964848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The abrupt emergence of antimicrobial resistant (AMR) bacterial strains has been recognized as one of the biggest public health threats affecting the human race and food processing industries. One of the causes for the emergence of AMR is the ability of the microorganisms to form biofilm as a defense strategy that restricts the penetration of antimicrobial agents into bacterial cells. About 80% of human diseases are caused by biofilm-associated sessile microbes. Bacterial biofilm formation involves a cascade of genes that are regulated via the mechanism of quorum sensing (QS) and signaling pathways that control the production of the extracellular polymeric matrix (EPS), responsible for the three-dimensional architecture of the biofilm. Another defense strategy utilized commonly by various bacteria includes clustered regularly interspaced short palindromic repeats interference (CRISPRi) system that prevents the bacterial cell from viral invasion. Since multigenic signaling pathways and controlling systems are involved in each and every step of biofilm formation, the CRISPRi system can be adopted as an effective strategy to target the genomic system involved in biofilm formation. Overall, this technology enables site-specific integration of genes into the host enabling the development of paratransgenic control strategies to interfere with pathogenic bacterial strains. CRISPR-RNA-guided Cas9 endonuclease, being a promising genome editing tool, can be effectively programmed to re-sensitize the bacteria by targeting AMR-encoding plasmid genes involved in biofilm formation and virulence to revert bacterial resistance to antibiotics. CRISPRi-facilitated silencing of genes encoding regulatory proteins associated with biofilm production is considered by researchers as a dependable approach for editing gene networks in various biofilm-forming bacteria either by inactivating biofilm-forming genes or by integrating genes corresponding to antibiotic resistance or fluorescent markers into the host genome for better analysis of its functions both in vitro and in vivo or by editing genes to stop the secretion of toxins as harmful metabolites in food industries, thereby upgrading the human health status.
Collapse
Affiliation(s)
- Sreejita Ghosh
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, India
| | - Siddhartha Pati
- Skills Innovation and Academic Network (SIAN) Institute, Association for Biodiversity Conservation and Research (ABC), Balasore, India
- NatNov Bioscience Private Limited, Balasore, India
| | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Muhammad R. A. Mohd Zain
- Department of Orthopaedics, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- *Correspondence: Muhammad R. A. Mohd Zain
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Kolkata, India
- Rina Rani Ray
| |
Collapse
|
31
|
Hu C, Ni D, Nam KH, Majumdar S, McLean J, Stahlberg H, Terns MP, Ke A. Allosteric control of type I-A CRISPR-Cas3 complexes and establishment as effective nucleic acid detection and human genome editing tools. Mol Cell 2022; 82:2754-2768.e5. [PMID: 35835111 PMCID: PMC9357151 DOI: 10.1016/j.molcel.2022.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Accepted: 06/06/2022] [Indexed: 12/26/2022]
Abstract
Type I CRISPR-Cas systems typically rely on a two-step process to degrade DNA. First, an RNA-guided complex named Cascade identifies the complementary DNA target. The helicase-nuclease fusion enzyme Cas3 is then recruited in trans for processive DNA degradation. Contrary to this model, here, we show that type I-A Cascade and Cas3 function as an integral effector complex. We provide four cryoelectron microscopy (cryo-EM) snapshots of the Pyrococcus furiosus (Pfu) type I-A effector complex in different stages of DNA recognition and degradation. The HD nuclease of Cas3 is autoinhibited inside the effector complex. It is only allosterically activated upon full R-loop formation, when the entire targeted region has been validated by the RNA guide. The mechanistic insights inspired us to convert Pfu Cascade-Cas3 into a high-sensitivity, low-background, and temperature-activated nucleic acid detection tool. Moreover, Pfu CRISPR-Cas3 shows robust bi-directional deletion-editing activity in human cells, which could find usage in allele-specific inactivation of disease-causing mutations.
Collapse
Affiliation(s)
- Chunyi Hu
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA
| | - Dongchun Ni
- Laboratory of Biological Electron Microscopy, Institute of Physics, Faculty of Basic Sciences, Swiss Federal Institute of Technology (EPFL), Cubotron, Route de la Sorge, 1015 Lausanne, Switzerland; Department of Fundamental Biology, Faculty of Biology and Medicine, University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Ki Hyun Nam
- Department of Life Science, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Sonali Majumdar
- Department of Biochemistry and Molecular Biology, Department of Genetics, and Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Justin McLean
- Department of Biochemistry and Molecular Biology, Department of Genetics, and Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, Institute of Physics, Faculty of Basic Sciences, Swiss Federal Institute of Technology (EPFL), Cubotron, Route de la Sorge, 1015 Lausanne, Switzerland; Department of Fundamental Biology, Faculty of Biology and Medicine, University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Michael P Terns
- Department of Biochemistry and Molecular Biology, Department of Genetics, and Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA.
| |
Collapse
|
32
|
Sun S, Wang R, Pandelia ME. Vibrio cholerae V-cGAP3 Is an HD-GYP Phosphodiesterase with a Metal Tunable Substrate Selectivity. Biochemistry 2022; 61:1801-1809. [PMID: 35901269 DOI: 10.1021/acs.biochem.2c00269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclic dinucleotides (CDNs) are signaling molecules involved in the immune response and virulence factor production. CDN cellular levels are fine-tuned by metal-dependent phosphodiesterases (PDEs), among which HD-GYPs make up a subclass of the larger HD-domain protein superfamily. The human pathogen Vibrio cholerae (Vc) encodes nine HD-GYPs, one of which is V-cGAP3 (or VCA0931). V-cGAP3 acts on c-di-GMP and 3'3'c-GAMP, and this activity is related to bacterial infectivity. However, the extant chemical makeup of the V-cGAP3 cofactor and steady state parameters have not been established. Employing electron paramagnetic resonance and Mössbauer spectroscopy in tandem with elemental analyses and activity assays, we demonstrate that V-cGAP3 coordinates different dimetal cofactors with variable activities. MnII and FeII afford c-di-GMP hydrolysis with the highest observed rates, while c-GAMP hydrolysis is selectively dependent on Mn. V-cGAP3 has a single functional domain, and this simple architecture allows us to examine the roles of characteristic conserved residues in catalysis. Substitution of the adjacent to the active site GYP residue triad and the specifically conserved in HD-domain PDEs fifth histidine ligand (i.e., H371 in V-cGAP3) with alanines severely compromises CDN hydrolysis but only modestly affects cofactor incorporation. Our data are consistent with V-cGAP3 being the major regulator of 3'3'c-GAMP hydrolysis in Vc and delineate the importance of specific residues in tuning activity in HD-GYPs in general. We propose that HD-GYPs exhibit diversity in their metallocofactors and substrates, which may serve to increase their functional potential in regulatory pathways or allow for PDE activity upon adaptation of the parent organism to diverse environmental niches.
Collapse
Affiliation(s)
- Sining Sun
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Richard Wang
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Maria-Eirini Pandelia
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
33
|
Habimana JDD, Huang R, Muhoza B, Kalisa YN, Han X, Deng W, Li Z. Mechanistic insights of CRISPR/Cas nucleases for programmable targeting and early-stage diagnosis: A review. Biosens Bioelectron 2022; 203:114033. [DOI: 10.1016/j.bios.2022.114033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/21/2022]
|
34
|
Han X, Zhou X, Pei Z, Stanton C, Ross RP, Zhao J, Zhang H, Yang B, Chen W. Characterization of CRISPR-Cas systems in Bifidobacterium breve. Microb Genom 2022; 8. [PMID: 35451949 PMCID: PMC9453068 DOI: 10.1099/mgen.0.000812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) system is an important adaptive immune system for bacteria to resist foreign DNA infection, which has been widely used in genotyping and gene editing. To provide a theoretical basis for the application of the CRISPR-Cas system in Bifidobacterium breve, the occurrence and diversity of CRISPR-Cas systems were analysed in 150 B. breve strains. Specifically, 47 % (71/150) of B. breve genomes possessed the CRISPR-Cas system, and type I-C CRISPR-Cas system was the most widely distributed among those strains. The spacer sequences present in B. breve can be used as a genotyping marker. Additionally, the phage assembly-related proteins were important targets of the type I-C CRISPR-Cas system in B. breve, and the protospacer adjacent motif sequences were further characterized in B. breve type I-C system as 5'-TTC-3'. All these results might provide a molecular basis for the development of endogenous genome editing tools in B. breve.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Xingya Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Catherine Stanton
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, PR China.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Co., Cork, Ireland
| | - R Paul Ross
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, PR China.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, PR China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China.,International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China
| |
Collapse
|
35
|
Sun S, He Z, Jiang P, Baral R, Pandelia ME. Metal Dependence and Functional Diversity of Type I Cas3 Nucleases. Biochemistry 2022; 61:327-338. [PMID: 35184547 DOI: 10.1021/acs.biochem.1c00779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Type I CRISPR-Cas systems provide prokaryotes with protection from parasitic genetic elements by cleaving foreign DNA. In addition, they impact bacterial physiology by regulating pathogenicity and virulence, making them key players in adaptability and evolution. The signature nuclease Cas3 is a phosphodiesterase belonging to the HD-domain metalloprotein superfamily. By directing specific metal incorporation, we map a promiscuous metal ion cofactor profile for Cas3 from Thermobifida fusca (Tf). Tf Cas3 affords significant ssDNA cleavage with four homo-dimetal centers (Fe2+, Co2+, Mn2+, and Ni2+), while the diferrous form is the most active and likely biologically relevant in vivo. Electron paramagnetic resonance (EPR) spectroscopy and Mössbauer spectroscopy show that the diiron cofactor can access three redox forms, while the diferrous form can be readily obtained with mild reductants. We further employ EPR and Mössbauer on Fe-enriched proteins to establish that Cas3″ enzymes harbor a dinuclear cofactor, which was not previously confirmed. We demonstrate that the ancillary His ligand is critical for efficient ssDNA cleavage but not for diiron assembly or small molecule hydrolysis. We further explore the ability of Cas3 to hydrolyze cyclic mononucleotides and show that Tf Cas3 hydrolyzes 2'3'-cAMP with catalytic efficiency comparable to that of the conserved virulence factor A (CvfA), an HD-domain protein hydrolyzing 2'3'-cylic phosphodiester bonds at RNA 3'-termini. Because this CvfA activity is linked to virulence regulation, Cas3 may also utilize 2'3'-cAMP hydrolysis as a possible molecular route to control virulence.
Collapse
Affiliation(s)
- Sining Sun
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Zunyu He
- Yale University, New Haven, Connecticut 06520-8055, United States
| | - Paul Jiang
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Rishika Baral
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Maria-Eirini Pandelia
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
36
|
Tan R, Krueger RK, Gramelspacher MJ, Zhou X, Xiao Y, Ke A, Hou Z, Zhang Y. Cas11 enables genome engineering in human cells with compact CRISPR-Cas3 systems. Mol Cell 2022; 82:852-867.e5. [PMID: 35051351 PMCID: PMC8964063 DOI: 10.1016/j.molcel.2021.12.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022]
Abstract
Leading CRISPR-Cas technologies employ Cas9 and Cas12 enzymes that generate RNA-guided dsDNA breaks. Yet, the most abundant microbial adaptive immune systems, Type I CRISPRs, are under-exploited for eukaryotic applications. Here, we report the adoption of a minimal CRISPR-Cas3 from Neisseria lactamica (Nla) type I-C system to create targeted large deletions in the human genome. RNP delivery of its processive Cas3 nuclease and target recognition complex Cascade can confer ∼95% editing efficiency. Unexpectedly, NlaCascade assembly in bacteria requires internal translation of a hidden component Cas11 from within the cas8 gene. Furthermore, expressing a separately encoded NlaCas11 is the key to enable plasmid- and mRNA-based editing in human cells. Finally, we demonstrate that supplying cas11 is a universal strategy to systematically implement divergent I-C, I-D, and I-B CRISPR-Cas3 editors with compact sizes, distinct PAM preferences, and guide orthogonality. These findings greatly expand our ability to engineer long-range genome edits.
Collapse
Affiliation(s)
- Renke Tan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA,These authors contributed equally
| | - Ryan K Krueger
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA,These authors contributed equally
| | - Max J Gramelspacher
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Xufei Zhou
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Zhonggang Hou
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Yan Zhang
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
37
|
Wimmer F, Mougiakos I, Englert F, Beisel CL. Rapid cell-free characterization of multi-subunit CRISPR effectors and transposons. Mol Cell 2022; 82:1210-1224.e6. [PMID: 35216669 DOI: 10.1016/j.molcel.2022.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/30/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022]
Abstract
CRISPR-Cas biology and technologies have been largely shaped to date by the characterization and use of single-effector nucleases. By contrast, multi-subunit effectors dominate natural systems, represent emerging technologies, and were recently associated with RNA-guided DNA transposition. This disconnect stems from the challenge of working with multiple protein subunits in vitro and in vivo. Here, we apply cell-free transcription-translation (TXTL) systems to radically accelerate the characterization of multi-subunit CRISPR effectors and transposons. Numerous DNA constructs can be combined in one TXTL reaction, yielding defined biomolecular readouts in hours. Using TXTL, we mined phylogenetically diverse I-E effectors, interrogated extensively self-targeting I-C and I-F systems, and elucidated targeting rules for I-B and I-F CRISPR transposons using only DNA-binding components. We further recapitulated DNA transposition in TXTL, which helped reveal a distinct branch of I-B CRISPR transposons. These capabilities will facilitate the study and exploitation of the broad yet underexplored diversity of CRISPR-Cas systems and transposons.
Collapse
Affiliation(s)
- Franziska Wimmer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Ioannis Mougiakos
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Frank Englert
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany; Medical Faculty, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
38
|
Hou Z, Hu C, Ke A, Zhang Y. Introducing Large Genomic Deletions in Human Pluripotent Stem Cells Using CRISPR-Cas3. Curr Protoc 2022; 2:e361. [PMID: 35129865 PMCID: PMC8843033 DOI: 10.1002/cpz1.361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CRISPR-Cas systems provide researchers with eukaryotic genome editing tools and therapeutic platforms that make it possible to target disease mutations in somatic organs. Most of these tools employ Type II (e.g., Cas9) or Type V (e.g., Cas12a) CRISPR enzymes to create RNA-guided precise double-strand breaks in the genome. However, such technologies are limited in their capacity to make targeted large deletions. Recently, the Type I CRISPR system, which is prevalent in microbes and displays unique enzymatic features, has been harnessed to effectively create large chromosomal deletions in human cells. Type I CRISPR first uses a multisubunit ribonucleoprotein (RNP) complex called Cascade to find its guide-complementary target site, and then recruits a helicase-nuclease enzyme, Cas3, to travel along and shred the target DNA over a long distance with high processivity. When introduced into human cells as purified RNPs, the CRISPR-Cas3 complex can efficiently induce large genomic deletions of varying lengths (1-100 kb) from the CRISPR-targeted site. Because of this unique editing outcome, CRISPR-Cas3 holds great promise for tasks such as the removal of integrated viral genomes and the interrogation of structural variants affecting gene function and human disease. Here, we provide detailed protocols for introducing large deletions using CRISPR-Cas3. We describe step-by-step procedures for purifying the Type I-E CRISPR proteins Cascade and Cas3 from Thermobifida fusca, electroporating RNPs into human cells, and characterizing DNA deletions using PCR and sequencing. We focus here on human pluripotent stem cells due to their clinical potential, but these protocols will be broadly useful for other cell lines and model organisms for applications including large genomic deletion, full-gene or -chromosome removal, and CRISPR screening for noncoding elements, among others. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Expression and purification of Tfu Cascade RNP Support Protocol 1: Expression and purification of TfuCas3 protein Support Protocol 2: Culture of human pluripotent stem cells Basic Protocol 2: Introduction of Tfu Cascade RNP and Cas3 protein into hPSCs via electroporation Basic Protocol 3: Characterization of genomic DNA lesions using long-range PCR, TOPO cloning, and Sanger sequencing Alternate Protocol: Comprehensive analysis of genomic lesions by Tn5-based next-generation sequencing Support Protocol 3: Single-cell clonal isolation.
Collapse
Affiliation(s)
- Zhonggang Hou
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA.,These authors contributed equally to the work
| | - Chunyi Hu
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA.,These authors contributed equally to the work
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA., Correspondence: (A.K.), (Y.Z.)
| | - Yan Zhang
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA., Correspondence: (A.K.), (Y.Z.)
| |
Collapse
|
39
|
Hu C, Ke A. Reconstitution and biochemical characterization of the RNA-guided helicase-nuclease protein Cas3 from type I-A CRISPR–Cas system. Methods Enzymol 2022; 673:405-424. [DOI: 10.1016/bs.mie.2022.03.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Malone LM, Hampton HG, Morgan XC, Fineran PC. Type I CRISPR-Cas provides robust immunity but incomplete attenuation of phage-induced cellular stress. Nucleic Acids Res 2021; 50:160-174. [PMID: 34928385 PMCID: PMC8754663 DOI: 10.1093/nar/gkab1210] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 11/14/2022] Open
Abstract
During infection, phages manipulate bacteria to redirect metabolism towards viral proliferation. To counteract phages, some bacteria employ CRISPR-Cas systems that provide adaptive immunity. While CRISPR-Cas mechanisms have been studied extensively, their effects on both the phage and the host during phage infection remains poorly understood. Here, we analysed the infection of Serratia by a siphovirus (JS26) and the transcriptomic response with, or without type I-E or I-F CRISPR-Cas immunity. In non-immune Serratia, phage infection altered bacterial metabolism by upregulating anaerobic respiration and amino acid biosynthesis genes, while flagella production was suppressed. Furthermore, phage proliferation required a late-expressed viral Cas4 homologue, which did not influence CRISPR adaptation. While type I-E and I-F immunity provided robust defence against phage infection, phage development still impacted the bacterial host. Moreover, DNA repair and SOS response pathways were upregulated during type I immunity. We also discovered that the type I-F system is controlled by a positive autoregulatory feedback loop that is activated upon phage targeting during type I-F immunity, leading to a controlled anti-phage response. Overall, our results provide new insight into phage-host dynamics and the impact of CRISPR immunity within the infected cell.
Collapse
Affiliation(s)
- Lucia M Malone
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Hannah G Hampton
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Xochitl C Morgan
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
41
|
Matturro B, Zeppilli M, Lai A, Majone M, Rossetti S. Metagenomic Analysis Reveals Microbial Interactions at the Biocathode of a Bioelectrochemical System Capable of Simultaneous Trichloroethylene and Cr(VI) Reduction. Front Microbiol 2021; 12:747670. [PMID: 34659183 PMCID: PMC8516407 DOI: 10.3389/fmicb.2021.747670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023] Open
Abstract
Bioelectrochemical systems (BES) are attractive and versatile options for the bioremediation of organic or inorganic pollutants, including trichloroethylene (TCE) and Cr(VI), often found as co-contaminants in the environment. The elucidation of the microbial players' role in the bioelectroremediation processes for treating multicontaminated groundwater is still a research need that attracts scientific interest. In this study, 16S rRNA gene amplicon sequencing and whole shotgun metagenomics revealed the leading microbial players and the primary metabolic interactions occurring in the biofilm growing at the biocathode where TCE reductive dechlorination (RD), hydrogenotrophic methanogenesis, and Cr(VI) reduction occurred. The presence of Cr(VI) did not negatively affect the TCE degradation, as evidenced by the RD rates estimated during the reactor operation with TCE (111±2 μeq/Ld) and TCE/Cr(VI) (146±2 μeq/Ld). Accordingly, Dehalococcoides mccartyi, the primary biomarker of the RD process, was found on the biocathode treating both TCE (7.82E+04±2.9E+04 16S rRNA gene copies g-1 graphite) and TCE/Cr(VI) (3.2E+07±2.37E+0716S rRNA gene copies g-1 graphite) contamination. The metagenomic analysis revealed a selected microbial consortium on the TCE/Cr(VI) biocathode. D. mccartyi was the sole dechlorinating microbe with H2 uptake as the only electron supply mechanism, suggesting that electroactivity is not a property of this microorganism. Methanobrevibacter arboriphilus and Methanobacterium formicicum also colonized the biocathode as H2 consumers for the CH4 production and cofactor suppliers for D. mccartyi cobalamin biosynthesis. Interestingly, M. formicicum also harbors gene complexes involved in the Cr(VI) reduction through extracellular and intracellular mechanisms.
Collapse
Affiliation(s)
| | - Marco Zeppilli
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Agnese Lai
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Mauro Majone
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
42
|
Jia N, Patel DJ. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Nat Rev Mol Cell Biol 2021; 22:563-579. [PMID: 34089013 DOI: 10.1038/s41580-021-00371-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2021] [Indexed: 02/03/2023]
Abstract
CRISPR loci and Cas proteins provide adaptive immunity in prokaryotes against invading bacteriophages and plasmids. In response, bacteriophages have evolved a broad spectrum of anti-CRISPR proteins (anti-CRISPRs) to counteract and overcome this immunity pathway. Numerous anti-CRISPRs have been identified to date, which suppress single-subunit Cas effectors (in CRISPR class 2, type II, V and VI systems) and multisubunit Cascade effectors (in CRISPR class 1, type I and III systems). Crystallography and cryo-electron microscopy structural studies of anti-CRISPRs bound to effector complexes, complemented by functional experiments in vitro and in vivo, have identified four major CRISPR-Cas suppression mechanisms: inhibition of CRISPR-Cas complex assembly, blocking of target binding, prevention of target cleavage, and degradation of cyclic oligonucleotide signalling molecules. In this Review, we discuss novel mechanistic insights into anti-CRISPR function that have emerged from X-ray crystallography and cryo-electron microscopy studies, and how these structures in combination with function studies provide valuable tools for the ever-growing CRISPR-Cas biotechnology toolbox, to be used for precise and robust genome editing and other applications.
Collapse
Affiliation(s)
- Ning Jia
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
43
|
Butiuc-Keul A, Farkas A, Carpa R, Iordache D. CRISPR-Cas System: The Powerful Modulator of Accessory Genomes in Prokaryotes. Microb Physiol 2021; 32:2-17. [PMID: 34192695 DOI: 10.1159/000516643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/16/2021] [Indexed: 11/19/2022]
Abstract
Being frequently exposed to foreign nucleic acids, bacteria and archaea have developed an ingenious adaptive defense system, called CRISPR-Cas. The system is composed of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) array, together with CRISPR (cas)-associated genes. This system consists of a complex machinery that integrates fragments of foreign nucleic acids from viruses and mobile genetic elements (MGEs), into CRISPR arrays. The inserted segments (spacers) are transcribed and then used by cas proteins as guide RNAs for recognition and inactivation of the targets. Different types and families of CRISPR-Cas systems consist of distinct adaptation and effector modules with evolutionary trajectories, partially independent. The origin of the effector modules and the mechanism of spacer integration/deletion is far less clear. A review of the most recent data regarding the structure, ecology, and evolution of CRISPR-Cas systems and their role in the modulation of accessory genomes in prokaryotes is proposed in this article. The CRISPR-Cas system's impact on the physiology and ecology of prokaryotes, modulation of horizontal gene transfer events, is also discussed here. This system gained popularity after it was proposed as a tool for plant and animal embryo editing, in cancer therapy, as antimicrobial against pathogenic bacteria, and even for combating the novel coronavirus - SARS-CoV-2; thus, the newest and promising applications are reviewed as well.
Collapse
Affiliation(s)
- Anca Butiuc-Keul
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania.,Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Anca Farkas
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania.,Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania.,Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Dumitrana Iordache
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
44
|
Osakabe K, Wada N, Murakami E, Miyashita N, Osakabe Y. Genome editing in mammalian cells using the CRISPR type I-D nuclease. Nucleic Acids Res 2021; 49:6347-6363. [PMID: 34076237 PMCID: PMC8216271 DOI: 10.1093/nar/gkab348] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 04/15/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
Adoption of CRISPR-Cas systems, such as CRISPR-Cas9 and CRISPR-Cas12a, has revolutionized genome engineering in recent years; however, application of genome editing with CRISPR type I-the most abundant CRISPR system in bacteria-remains less developed. Type I systems, such as type I-E, and I-F, comprise the CRISPR-associated complex for antiviral defense ('Cascade': Cas5, Cas6, Cas7, Cas8 and the small subunit) and Cas3, which degrades the target DNA; in contrast, for the sub-type CRISPR-Cas type I-D, which lacks a typical Cas3 nuclease in its CRISPR locus, the mechanism of target DNA degradation remains unknown. Here, we found that Cas10d is a functional nuclease in the type I-D system, performing the role played by Cas3 in other CRISPR-Cas type I systems. The type I-D system can be used for targeted mutagenesis of genomic DNA in human cells, directing both bi-directional long-range deletions and short insertions/deletions. Our findings suggest the CRISPR-Cas type I-D system as a unique effector pathway in CRISPR that can be repurposed for genome engineering in eukaryotic cells.
Collapse
Affiliation(s)
- Keishi Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Tokushima 770-8503, Japan
| | - Naoki Wada
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Tokushima 770-8503, Japan
| | - Emi Murakami
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Tokushima 770-8503, Japan
| | - Naoyuki Miyashita
- Department of Computational Systems Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Yuriko Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Tokushima 770-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan
| |
Collapse
|
45
|
Thompson MK, Sobol RW, Prakash A. Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. BIOLOGY 2021; 10:530. [PMID: 34198612 PMCID: PMC8232306 DOI: 10.3390/biology10060530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
The earliest methods of genome editing, such as zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALENs), utilize customizable DNA-binding motifs to target the genome at specific loci. While these approaches provided sequence-specific gene-editing capacity, the laborious process of designing and synthesizing recombinant nucleases to recognize a specific target sequence, combined with limited target choices and poor editing efficiency, ultimately minimized the broad utility of these systems. The discovery of clustered regularly interspaced short palindromic repeat sequences (CRISPR) in Escherichia coli dates to 1987, yet it was another 20 years before CRISPR and the CRISPR-associated (Cas) proteins were identified as part of the microbial adaptive immune system, by targeting phage DNA, to fight bacteriophage reinfection. By 2013, CRISPR/Cas9 systems had been engineered to allow gene editing in mammalian cells. The ease of design, low cytotoxicity, and increased efficiency have made CRISPR/Cas9 and its related systems the designer nucleases of choice for many. In this review, we discuss the various CRISPR systems and their broad utility in genome manipulation. We will explore how CRISPR-controlled modifications have advanced our understanding of the mechanisms of genome stability, using the modulation of DNA repair genes as examples.
Collapse
Affiliation(s)
- Marlo K. Thompson
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Robert W. Sobol
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Aishwarya Prakash
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
46
|
Prespacers formed during primed adaptation associate with the Cas1-Cas2 adaptation complex and the Cas3 interference nuclease-helicase. Proc Natl Acad Sci U S A 2021; 118:2021291118. [PMID: 34035168 PMCID: PMC8179228 DOI: 10.1073/pnas.2021291118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Primed adaptation allows rapid acquisition of protective spacers derived from foreign mobile genetic elements into CRISPR arrays of the host. Primed adaptation requires ongoing CRISPR interference that destroys foreign genetic elements, but the nature of this requirement is unknown. Using the Escherichia coli I-E CRISPR-Cas as a model, we show that prespacers, short fragments of foreign DNA on their way to become incorporated into CRISPR arrays as spacers, are associated with both the adaptation integrase Cas1 and the interference nuclease Cas3, implying physical association of the interference and adaptation machineries during priming. For Type I CRISPR-Cas systems, a mode of CRISPR adaptation named priming has been described. Priming allows specific and highly efficient acquisition of new spacers from DNA recognized (primed) by the Cascade-crRNA (CRISPR RNA) effector complex. Recognition of the priming protospacer by Cascade-crRNA serves as a signal for engaging the Cas3 nuclease–helicase required for both interference and primed adaptation, suggesting the existence of a primed adaptation complex (PAC) containing the Cas1–Cas2 adaptation integrase and Cas3. To detect this complex in vivo, we here performed chromatin immunoprecipitation with Cas3-specific and Cas1-specific antibodies using cells undergoing primed adaptation. We found that prespacers are bound by both Cas1 (presumably, as part of the Cas1–Cas2 integrase) and Cas3, implying direct physical association of the interference and adaptation machineries as part of PAC.
Collapse
|
47
|
A Tryptophan 'Gate' in the CRISPR-Cas3 Nuclease Controls ssDNA Entry into the Nuclease Site, That When Removed Results in Nuclease Hyperactivity. Int J Mol Sci 2021; 22:ijms22062848. [PMID: 33799639 PMCID: PMC8001533 DOI: 10.3390/ijms22062848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Cas3 is a ssDNA-targeting nuclease-helicase essential for class 1 prokaryotic CRISPR immunity systems, which has been utilized for genome editing in human cells. Cas3-DNA crystal structures show that ssDNA follows a pathway from helicase domains into a HD-nuclease active site, requiring protein conformational flexibility during DNA translocation. In genetic studies, we had noted that the efficacy of Cas3 in CRISPR immunity was drastically reduced when temperature was increased from 30 °C to 37 °C, caused by an unknown mechanism. Here, using E. coli Cas3 proteins, we show that reduced nuclease activity at higher temperature corresponds with measurable changes in protein structure. This effect of temperature on Cas3 was alleviated by changing a single highly conserved tryptophan residue (Trp-406) into an alanine. This Cas3W406A protein is a hyperactive nuclease that functions independently from temperature and from the interference effector module Cascade. Trp-406 is situated at the interface of Cas3 HD and RecA1 domains that is important for maneuvering DNA into the nuclease active site. Molecular dynamics simulations based on the experimental data showed temperature-induced changes in positioning of Trp-406 that either blocked or cleared the ssDNA pathway. We propose that Trp-406 forms a 'gate' for controlling Cas3 nuclease activity via access of ssDNA to the nuclease active site. The effect of temperature in these experiments may indicate allosteric control of Cas3 nuclease activity caused by changes in protein conformations. The hyperactive Cas3W406A protein may offer improved Cas3-based genetic editing in human cells.
Collapse
|
48
|
Newsom S, Parameshwaran HP, Martin L, Rajan R. The CRISPR-Cas Mechanism for Adaptive Immunity and Alternate Bacterial Functions Fuels Diverse Biotechnologies. Front Cell Infect Microbiol 2021; 10:619763. [PMID: 33585286 PMCID: PMC7876343 DOI: 10.3389/fcimb.2020.619763] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
Bacterial and archaeal CRISPR-Cas systems offer adaptive immune protection against foreign mobile genetic elements (MGEs). This function is regulated by sequence specific binding of CRISPR RNA (crRNA) to target DNA/RNA, with an additional requirement of a flanking DNA motif called the protospacer adjacent motif (PAM) in certain CRISPR systems. In this review, we discuss how the same fundamental mechanism of RNA-DNA and/or RNA-RNA complementarity is utilized by bacteria to regulate two distinct functions: to ward off intruding genetic materials and to modulate diverse physiological functions. The best documented examples of alternate functions are bacterial virulence, biofilm formation, adherence, programmed cell death, and quorum sensing. While extensive complementarity between the crRNA and the targeted DNA and/or RNA seems to constitute an efficient phage protection system, partial complementarity seems to be the key for several of the characterized alternate functions. Cas proteins are also involved in sequence-specific and non-specific RNA cleavage and control of transcriptional regulator expression, the mechanisms of which are still elusive. Over the past decade, the mechanisms of RNA-guided targeting and auxiliary functions of several Cas proteins have been transformed into powerful gene editing and biotechnological tools. We provide a synopsis of CRISPR technologies in this review. Even with the abundant mechanistic insights and biotechnology tools that are currently available, the discovery of new and diverse CRISPR types holds promise for future technological innovations, which will pave the way for precision genome medicine.
Collapse
Affiliation(s)
- Sydney Newsom
- Department of Chemistry and Biochemistry, Price Family Foundation Structural Biology Center, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| | - Hari Priya Parameshwaran
- Department of Chemistry and Biochemistry, Price Family Foundation Structural Biology Center, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| | - Lindsie Martin
- Department of Chemistry and Biochemistry, Price Family Foundation Structural Biology Center, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Structural Biology Center, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
49
|
Manav MC, Van LB, Lin J, Fuglsang A, Peng X, Brodersen DE. Structural basis for inhibition of an archaeal CRISPR-Cas type I-D large subunit by an anti-CRISPR protein. Nat Commun 2020; 11:5993. [PMID: 33239638 PMCID: PMC7689449 DOI: 10.1038/s41467-020-19847-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
A hallmark of type I CRISPR-Cas systems is the presence of Cas3, which contains both the nuclease and helicase activities required for DNA cleavage during interference. In subtype I-D systems, however, the histidine-aspartate (HD) nuclease domain is encoded as part of a Cas10-like large effector complex subunit and the helicase activity in a separate Cas3' subunit, but the functional and mechanistic consequences of this organisation are not currently understood. Here we show that the Sulfolobus islandicus type I-D Cas10d large subunit exhibits an unusual domain architecture consisting of a Cas3-like HD nuclease domain fused to a degenerate polymerase fold and a C-terminal domain structurally similar to Cas11. Crystal structures of Cas10d both in isolation and bound to S. islandicus rod-shaped virus 3 AcrID1 reveal that the anti-CRISPR protein sequesters the large subunit in a non-functional state unable to form a cleavage-competent effector complex. The architecture of Cas10d suggests that the type I-D effector complex is similar to those found in type III CRISPR-Cas systems and that this feature is specifically exploited by phages for anti-CRISPR defence.
Collapse
Affiliation(s)
- M Cemre Manav
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000, Aarhus C, Denmark
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Lan B Van
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000, Aarhus C, Denmark
| | - Jinzhong Lin
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, København N, Denmark
| | - Anders Fuglsang
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, København N, Denmark
| | - Xu Peng
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, København N, Denmark.
| | - Ditlev E Brodersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
50
|
Abstract
Prokaryotes have developed numerous defense strategies to combat the constant threat posed by the diverse genetic parasites that endanger them. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas loci guard their hosts with an adaptive immune system against foreign nucleic acids. Protection starts with an immunization phase, in which short pieces of the invader's genome, known as spacers, are captured and integrated into the CRISPR locus after infection. Next, during the targeting phase, spacers are transcribed into CRISPR RNAs (crRNAs) that guide CRISPR-associated (Cas) nucleases to destroy the invader's DNA or RNA. Here we describe the many different molecular mechanisms of CRISPR targeting and how they are interconnected with the immunization phase through a third phase of the CRISPR-Cas immune response: primed spacer acquisition. In this phase, Cas proteins direct the crRNA-guided acquisition of additional spacers to achieve a more rapid and robust immunization of the population.
Collapse
Affiliation(s)
- Philip M. Nussenzweig
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Luciano A. Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|