1
|
Franke A, Dahl S, Funck M, Bakker H, Garbers C, Lokau J. Interleukin-2 receptor α (IL-2Rα/CD25) shedding is differentially regulated by N- and O-glycosylation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119863. [PMID: 39427744 DOI: 10.1016/j.bbamcr.2024.119863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/30/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
The cytokine interleukin-2 (IL-2) is a critical regulator of immune responses, with an especially well-characterized role in regulating T-cell homeostasis. IL-2 signaling involves three distinct receptor subunits: the IL-2Rα (CD25), IL-2Rβ, and IL-2Rγ. The intracellular transduction of IL-2-induced signals is strictly dependent on IL-2Rβ and IL-2Rγ, while the IL-2Rα is not directly involved in signaling. Instead, it has the highest affinity towards IL-2 and is thus responsible for regulating the affinity of a cell for IL-2. In addition to the membrane-bound IL-2Rα, a soluble form of the receptor (sIL-2Rα) has been described, which is present in the blood of healthy individuals, increased under various pathological conditions, and able to bind IL-2 and thus modulate its function. The sIL-2Rα is generated by proteolytic cleavage of the membrane-bound receptor. Here, we analyze whether glycosylation of the IL-2Rα regulates its proteolysis. We find that constitutive IL-2Rα shedding is affected by glycosylation and discover distinct roles for N- and O-glycosylation. Furthermore, we show that induced shedding by the metalloproteases ADAM10 and ADAM17 is also differentially regulated by distinct types of glycans. Finally, we identify a specific role for an N-glycan at an exosite in ADAM17-mediated proteolysis that does not affect ADAM10, indicating distinct substrate recognition mechanisms. These results further the understanding of the mechanisms leading to sIL-2Rα generation, and thus offer the opportunity to specifically modulate the generation of the soluble receptor.
Collapse
Affiliation(s)
- Amelie Franke
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Sophia Dahl
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Monika Funck
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Juliane Lokau
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany; Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
2
|
Li J, Liu D, Zhang Y, Jin Z, Xue Y, Sun S. High-abundance serum glycoproteins as valuable resources for glycopeptide standards. Carbohydr Polym 2025; 347:122746. [PMID: 39486975 DOI: 10.1016/j.carbpol.2024.122746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
High-abundance serum proteins, mostly modified by N-glycans, are usually depleted from human sera to achieve in-depth analyses of serum proteome and sub-proteomes. In this study, we show that these high-abundance glycoproteins (HAGPs) can be used as valuable standard glycopeptide resources, as long as the structural features of their glycans have been well defined at the glycosite-specific level. By directly analyzing intact glycopeptides enriched from serum, we identified 1322 unique glycopeptides at 48 N-glycosites from the top 12 HAGPs (19 subclasses). These HAGPs could be further classified into four major groups based on the structural features of their attached N-glycans. Immunoglobins including IGHG1/2/3/4, IGHA1/2 and IGHM were mostly modified by core fucosylated and bisected N-glycans with rarely sialic acids. Alpha-1-acid glycoproteins (ORM1/2) and haptoglobins (HP) were mainly modified by tri-and tetra-antennary (40 %) N-glycans with antenna-fucoses and sialic acids. Complement components C3 and C4A/B were highly modified by oligo-mannose glycans. The other HAGPs including SERPINA1, A2M, TF, FGB/G and APOB mainly contain bi-antennary complex glycans with the common core structure and (sialyl-) LacNAc branch structures. These HAGPs are easily detected by LC-MS analysis and therefore could be used as standard glycopeptides for glycoproteomic methodology studies as well as possible clinical utilities.
Collapse
Affiliation(s)
- Jun Li
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Didi Liu
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Yingjie Zhang
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Zhehui Jin
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Yue Xue
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Shisheng Sun
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
3
|
Wu Y, Xie L, Jiang Y, He A, Li D, Yang L, Xu Y, Liu K, Ozaki Y, Noda I. Further exploration of the physicochemical nature of μ 2-bridge-relevant deprotonations via the elucidation of four kinds of alditol complexes. Phys Chem Chem Phys 2024. [PMID: 39704137 DOI: 10.1039/d4cp03612c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Single-crystal structures of four alditol complexes are presented. In LuCl3/galactitol and ScCl3/myo-inositol complexes, μ2-bridge-relevant deprotonations were observed. The polarization from two rare earth ions in the μ2-bridge activates the chemically inert OH and promotes deprotonation. Additionally, mass spectrometry, pH experiments, and quantum chemistry calculations were conducted to enhance our understanding of the μ2-bridge-relevant deprotonations. A common structural feature of the complexes where μ2-bridge-relevant deprotonation takes place is that two metal ions and two oxygen atoms in two μ2-bridges form an M2O2 cluster. The four atoms in the M2O2 cluster make up a parallelogram. Such a structure is useful to balance the strong coulombic repulsions between two M3+ and between two O-. In the ScCl3/myo-inositol complex, the deprotonation exhibits a characteristic of regional/chiral selectivity. Galactitol is a third alditol ligand where μ2-bridge-relevant deprotonation is observed. The flexible backbone of the galactitol allows the formation of more five-membered chelating rings and six-membered chelating rings, which are used to stabilize the rare earth ions of the μ2-bridge. The coordination makes the backbone of galactitol deviate from the zigzag conformation. The above results are helpful in the rational design of high-performance catalysts.
Collapse
Affiliation(s)
- Yi Wu
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China.
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- School of Biology and Medicine, Beijing City University, Beijing 100094, China.
| | - Linchen Xie
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ye Jiang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Da Li
- School of Biology and Medicine, Beijing City University, Beijing 100094, China.
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China.
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Kexin Liu
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China.
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
4
|
Manabe Y, Takebe T, Kasahara S, Hizume K, Kabayama K, Kamada Y, Asakura A, Shinzaki S, Takamatsu S, Miyoshi E, García-García A, Vakhrushev SY, Hurtado-Guerrero R, Fukase K. Development of a FUT8 Inhibitor with Cellular Inhibitory Properties. Angew Chem Int Ed Engl 2024; 63:e202414682. [PMID: 39340265 DOI: 10.1002/anie.202414682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 09/30/2024]
Abstract
Core fucosylation is catalyzed by α-1,6-fucosyltransferase (FUT8), which fucosylates the innermost GlcNAc of N-glycans. Given the association of FUT8 with various diseases, including cancer, selective FUT8 inhibitors applicable to in vivo or cell-based systems are highly sought-after. Herein, we report the discovery of a compound that selectively inhibits FUT8 in cell-based assays. High-throughput screening revealed a FUT8-inhibiting pharmacophore, and further structural optimization yielded an inhibitor with a KD value of 49 nM. Notably, this binding occurs only in the presence of GDP (a product of the enzymatic reaction catalyzed by FUT8). Mechanistic studies suggested that this inhibitor generates a highly reactive naphthoquinone methide derivative at the binding site in FUT8, which subsequently reacts with FUT8. Furthermore, prodrug derivatization of this inhibitor improved its stability, enabling suppression of core fucose expression and subsequent EGFR and T-cell signaling in cell-based assays, paving the way for the development of drugs targeting core fucosylation.
Collapse
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Tomoyuki Takebe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Satomi Kasahara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Koki Hizume
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Interdisciplinary Research Center for Radiation Sciences, Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akiko Asakura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Gastroenterology, Faculty of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, 663-8501, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry & Clinical Investigation, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry & Clinical Investigation, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ana García-García
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
- Fundación ARAID, 50018, Zaragoza, Spain
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Center for Advanced Modalities and DDS, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Kong S, Zhang W, Cao W. Tools and techniques for quantitative glycoproteomic analysis. Biochem Soc Trans 2024; 52:2439-2453. [PMID: 39656178 DOI: 10.1042/bst20240257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Recent advances in mass spectrometry (MS)-based methods have significantly expanded the capabilities for quantitative glycoproteomics, enabling highly sensitive and accurate quantitation of glycosylation at intact glycopeptide level. These developments have provided valuable insights into the roles of glycoproteins in various biological processes and diseases. In this short review, we summarize pertinent studies on quantitative techniques and tools for site-specific glycoproteomic analysis published over the past decade. We also highlight state-of-the-art MS-based software that facilitate multi-dimension quantification of the glycoproteome, targeted quantification of specific glycopeptides, and the analysis of glycopeptide isomers. Additionally, we discuss the potential applications of these technologies in clinical biomarker discovery and the functional characterization of glycoproteins in health and disease. The review concludes with a discussion of current challenges and future perspectives in the field, emphasizing the need for more precise, high-throughput and efficient methods to further advance quantitative glycoproteomics and its applications.
Collapse
Affiliation(s)
- Siyuan Kong
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200433, China
| | - Wei Zhang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200433, China
| | - Weiqian Cao
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Kolanovic D, Pasupuleti R, Wallner J, Mlynek G, Wiltschi B. Site-Specific Immobilization Boosts the Performance of a Galectin-1 Biosensor. Bioconjug Chem 2024; 35:1944-1958. [PMID: 39625149 DOI: 10.1021/acs.bioconjchem.4c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The analysis of protein-bound glycans has gained significant attention due to their pivotal roles in physiological and pathological processes like cell-cell recognition, immune response, and disease progression. Routine methods for glycan analysis are challenged by the very similar physicochemical properties of their carbohydrate components. As an alternative, lectins, which are proteins that specifically bind to glycans, have been integrated into biosensors for glycan detection. However, the effectiveness of protein-based biosensors depends heavily on the immobilization of proteins on the sensor surface. To enhance the sensitivity and/or selectivity of lectin biosensors, it is crucial to immobilize the lectin in an optimal orientation for ligand binding without compromising its function. Random immobilization methods often result in arbitrary orientation and reduced sensitivity. To address this, we explored a directed immobilization strategy relying on a reactive noncanonical amino acid (ncAA) and bioorthogonal chemistry. In this study, we site-specifically incorporated the reactive noncanonical lysine derivative, Nε-((2-azidoethoxy)carbonyl)-l-lysine, into a cysteine-less single-chain variant of human galectin-1 (scCSGal-1). The reactive bioorthogonal azide group allowed the directed immobilization of the lectin on a biosensor surface using strain-promoted azide-alkyne cycloaddition. Biolayer interferometry data demonstrated that the controlled, directed attachment of scCSGal-1 to the biosensor surface enhanced the binding sensitivity to glycosylated von Willebrand factor by about 12-fold compared to random immobilization. These findings emphasize the importance of controlled protein orientation in biosensor design. They also highlight the power of single site-specific genetic encoding of reactive ncAAs and bioorthogonal chemistry to improve the performance of lectin-based diagnostic tools.
Collapse
Affiliation(s)
- Dajana Kolanovic
- acib - Austrian Centre of Industrial Biotechnology, Graz 8010, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz 8010, Austria
| | - Rajeev Pasupuleti
- acib - Austrian Centre of Industrial Biotechnology, Graz 8010, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz 8010, Austria
| | - Jakob Wallner
- BOKU Core Facility Biomolecular & Cellular Analysis, BOKU University, Vienna 1190, Austria
| | - Georg Mlynek
- BOKU Core Facility Biomolecular & Cellular Analysis, BOKU University, Vienna 1190, Austria
| | - Birgit Wiltschi
- acib - Austrian Centre of Industrial Biotechnology, Graz 8010, Austria
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, BOKU University, Vienna 1190, Austria
| |
Collapse
|
7
|
Lee S, Ono T, Masaaki S, Fujita A, Matsubara M, Zappa A, Yamada I, Aoki-Kinoshita KF. Updates implemented in version 4 of the GlyCosmos Glycoscience Portal. Anal Bioanal Chem 2024:10.1007/s00216-024-05692-0. [PMID: 39690313 DOI: 10.1007/s00216-024-05692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Glycosylation, characterized by its complexity and diversity, is a common system across all domains of life. The glycosylation of proteins or lipids imparts them with structural and functional roles, ranging from development to infectious or Mendelian disease. The high-throughput-based omics data has revealed that glycans are involved in important cellular processes. Comprehensive knowledge of glycosylation has contributed not only to the fundamental concepts in glycoscience but also to its applications, including the development of molecular markers for diagnosis and therapeutic tools for treating diseases. The GlyCosmos Glycoscience Portal (GlyCosmos) has undergone significant updates to better support the scientific community in studying glycosylation-related phenomena. Key enhancements include the integration of expanded datasets linking glycans to other omics fields, improved tools for glycan structure prediction and analysis, and upgraded visualization capabilities to streamline data interpretation. A strengthened focus on data standardization has also been introduced, fostering interoperability between glycoscience resources and external databases. Since its release in 2019, the portal has seen a fivefold increase in user engagement, reflecting its growing relevance. These recent advancements aim to provide researchers with a more comprehensive and user-friendly platform, enabling deeper insights into glycan roles in cellular processes and disease mechanisms. GlyCosmos will continue to evolve, prioritizing community needs and advancing the integration of glycoscience with broader biological and biomedical research.
Collapse
Affiliation(s)
- Sunmyoung Lee
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, Hachioji, Tokyo, Japan
| | - Tamiko Ono
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, Hachioji, Tokyo, Japan
| | - Shiota Masaaki
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, Hachioji, Tokyo, Japan
| | - Akihiro Fujita
- Institute for Glyco-Core Research, Nagoya University, Nagoya, Japan
| | | | - Achille Zappa
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, Hachioji, Tokyo, Japan
| | | | - Kiyoko F Aoki-Kinoshita
- Glycan and Life Systems Integration Center (GaLSIC), Soka University, Hachioji, Tokyo, Japan.
- Graduate School of Science and Engineering, Soka University, Hachioji, Tokyo, Japan.
- Institute for Glyco-Core Research, Nagoya University, Nagoya, Japan.
| |
Collapse
|
8
|
Nakisa A, Sempere LF, Chen X, Qu LT, Woldring D, Crawford HC, Huang X. Tumor-Associated Carbohydrate Antigen 19-9 (CA 19-9), a Promising Target for Antibody-Based Detection, Diagnosis, and Immunotherapy of Cancer. ChemMedChem 2024; 19:e202400491. [PMID: 39230966 DOI: 10.1002/cmdc.202400491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
Carbohydrate antigen 19-9 (CA 19-9) also known as sialyl Lewis A is a tetrasaccharide overexpressed on a wide range of cancerous cells. CA 19-9 has been detected at elevated levels in sera of patients with various types of malignancies, most prominently pancreatic ductal adenocarcinoma. After its identification in 1979, multiple studies have highlighted the significant roles of CA 19-9 in cancer progression, including facilitating extravasation and eventually metastases, proliferation of cancer cells, and suppression of the immune system. Therefore, CA 19-9 has been considered an attractive target for cancer diagnosis, prognosis, and therapy. This review discusses the synthesis of CA 19-9 antigen, elicitation of antibodies through vaccination, development of anti-CA 19-9 monoclonal antibodies, and their applications as imaging tracers and therapeutics for a variety of CA 19-9-positive cancer.
Collapse
Affiliation(s)
- Athar Nakisa
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, 48824, United States
| | - Lorenzo F Sempere
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, Michigan, 48824, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California, 95616, USA
| | - Linda T Qu
- Department of Surgery, Michigan State University, East Lansing, Michigan, 48824, United States
| | - Daniel Woldring
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, 48824, United States
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, 48824, United States
| | - Howard C Crawford
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, 48202, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, 48824, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, 48824, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, 48824, United States
| |
Collapse
|
9
|
Gao P, Chen H, Sun Y, Qian X, Sun T, Fan Y, Zhang J. ALG13-Related Epilepsy: Current Insights and Future Research Directions. Neurochem Res 2024; 50:60. [PMID: 39673593 DOI: 10.1007/s11064-024-04300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
The ALG13 gene encodes a subunit of the uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) transferase enzyme, which plays a key role in the N-linked glycosylation pathway. This pathway involves the attachment of carbohydrate structures to asparagine (Asn) residues in proteins within the endoplasmic reticulum, by which N-glycosylated proteins produced participate a wide range of processes such as electrical gradients formation and neurotransmission. Mutations in the ALG13 gene have been identified as a causative factor for congenital disorders of glycosylation (CDG) and have been frequently associated with epilepsy in affected individuals. Several studies have demonstrated a strong correlation between abnormal N-glycosylation due to ALG13 deficiency and the onset of epilepsy. Despite these findings, the precise role of ALG13 in the pathogenesis of epilepsy remains unclear. This review provides a comprehensive overview of the current literature on ALG13-related disorders, with a focus on recent evidence regarding its role in epilepsy development and progression. Future research directions are also proposed to further elucidate the molecular mechanisms underlying this association.
Collapse
Affiliation(s)
- Peng Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
- Ningxia Key Laboratory of Cerebrocranial Diseases, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
| | - Haoran Chen
- Ningxia Key Laboratory of Cerebrocranial Diseases, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
| | - Yangyang Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
| | - Xin Qian
- Ningxia Key Laboratory of Cerebrocranial Diseases, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
- Ningxia Key Laboratory of Cerebrocranial Diseases, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
| | - Yuhan Fan
- General Hospital of Ningxia Medical University, No. 804 of Shengli Street, Yinchuan, Ningxia Province, 750004, China
| | - Jing Zhang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China.
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China.
| |
Collapse
|
10
|
Ji R, Chiozzi RZ, van den Toorn H, Leung M, Zeev-Ben-Mordehai T, Burke ND, Bromfield EG, Reiding KR, Heck AJR. Spatial organization of the sperm cell glycoproteome. Mol Cell Proteomics 2024:100893. [PMID: 39674511 DOI: 10.1016/j.mcpro.2024.100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024] Open
Abstract
Sperm cells are terminally differentiated cells that are essential for reproduction in sexually reproducing species. Consistent with their highly specialized function, sperm cells harbor a unique proteome containing many proteins not expressed in somatic cells. In contrast, the post-translational landscape of the sperm proteome remains largely unexplored, limiting our understanding of how modifications such as glycosylation impact sperm function and sperm-egg interactions. Here, we used glycopeptide-centric glycoproteomics to comprehensively characterize protein N-glycosylation in sperm from three mammalian species, revealing clear conservation of glycosylation profiles. We find that glycosylation patterns in sperm proteins are distinct from those in plasma, with as clear distinctive features less sialyation and more paucimannosylation in sperm. Moreover, based on their subcellular location, sperm protein glycosylation varies, with paucimannose species enriched in the acrosomal vesicle, oligomannose species in the sperm head membrane, and complex glycan species in the acrosomal membrane.
Collapse
Affiliation(s)
- Rensong Ji
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Netherlands Proteomic Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Netherlands Proteomic Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Institute of Structural and Molecular Biology, Division of Biosciences, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom; University College London Mass Spectrometry Science Technology Platform, Division of Biosciences, University College London, London, UK
| | - Henk van den Toorn
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Netherlands Proteomic Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Miguel Leung
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Tzviya Zeev-Ben-Mordehai
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Nathan D Burke
- School of BioSciences, Faculty of Science, Bio21 Institute, University of Melbourne, Parkville, 3052, VIC, Australia; Infertility and Reproduction Research Program, School of Environment and Life Sciences, The University of Newcastle, 2308, NSW, Australia
| | - Elizabeth G Bromfield
- School of BioSciences, Faculty of Science, Bio21 Institute, University of Melbourne, Parkville, 3052, VIC, Australia; Infertility and Reproduction Research Program, School of Environment and Life Sciences, The University of Newcastle, 2308, NSW, Australia; Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Netherlands Proteomic Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Netherlands Proteomic Center, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Zhu GB, Guo C, Ren XL, Li MZ, Lu DY, Hu XL, Huang H, James TD, He XP. Non-natural sialic acid derivatives with o-nitrobenzyl alcohol substituents for light-mediated protein conjugation and cell imaging. Org Biomol Chem 2024; 22:9403-9407. [PMID: 39494475 DOI: 10.1039/d4ob01563k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
We have synthesized two sialic acid derivatives substituted with an ortho-nitrobenzyl alcohol (o-NBA) group that can undergo light-mediated conjugation with primary amines at their 5- or 9-carbon position. The o-NBA derivatives were shown to react with multiple lysine residues of human serum albumin (HSA) when exposed to 365 nm light irradiation within 10 min. The resulting sugar conjugates were characterized by mass spectroscopy and used for fluorescence-based cell imaging.
Collapse
Affiliation(s)
- Guo-Biao Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai 200237, China.
| | - Chen Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai 200237, China.
| | - Xue-Lian Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ming-Zhe Li
- Shanghai World Foreign Language Academy, No. 400 Baihua Street, Shanghai 200233, China
| | - Di-Ya Lu
- Shanghai World Foreign Language Academy, No. 400 Baihua Street, Shanghai 200233, China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai 200237, China.
| | - He Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai 200237, China.
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, National Center for Liver Cancer, Shanghai 200438, China
- Shanghai World Foreign Language Academy, No. 400 Baihua Street, Shanghai 200233, China
| |
Collapse
|
12
|
Haishen Y, Jiang F, Si X, Sun D, Fei H, Wang D, Li K, Du S, Hu W, Wang Z. Expression of ALG8 in hepatocellular carcinoma and its diagnostic and prognostic significance. Scand J Gastroenterol 2024:1-11. [PMID: 39648870 DOI: 10.1080/00365521.2024.2433562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Alpha-1,3-glucosyltransferase (ALG8), a key enzyme in protein glycosylation, is implicated in the oncogenesis and progression of several human malignancies. This study aimed to define the role of ALG8 in hepatocellular carcinoma (HCC) and uncover its mechanisms of action. METHODS ALG8 expression in HCC and normal tissues was analyzed using the TCGA and GEO databases, validated by RT-qPCR and western blot. Survival outcomes were evaluated via Cox analyses, and ALG8's impact on HCC behavior was examined through functional assays. GO, KEGG, and GSEA identified ALG8-related pathways, validated by biochemical assays. RESULTS In bioinformatics analyses, ALG8 was overexpressed in HCC tissues (p < 0.05 for all comparisons) and correlated with poorer survival (p = 0.006 and p = 0.025, respectively), establishing its role as an independent prognostic factor. In vitro experiments showed that knockdown of ALG8 reduced HCC cell proliferation, migration, and invasion. Using the STRING platform and TCGA-LIHC dataset, we identified ALG8-interacting genes and their associated differentially expressed genes (DEGs). GO and KEGG analyses further linked ALG8 to genes involved in glycosylation, signal release, and other processes, as well as pathways including neuroactive ligand-receptor interaction and N-Glycan biosynthesis. GSEA, corroborated by western blot and immunofluorescence, points to the Wnt/β-catenin signaling cascade as a probable mechanistic pathway through which ALG8 may modulate HCC progression. CONCLUSION Elevated ALG8 expression in HCC is linked to worse outcomes and increased tumor aggressiveness, with silencing ALG8 reducing Wnt/β-catenin signaling, highlighting ALG8 as a potential therapeutic target.
Collapse
Affiliation(s)
- Yang Haishen
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, P.R. China
| | - Feiyu Jiang
- Lianyungangshi Haibin High School, Lianyungang, P.R. China
| | - Xinxin Si
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, P.R. China
| | - Dan Sun
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, P.R. China
| | - Haoran Fei
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, P.R. China
| | - Dali Wang
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, P.R. China
| | - Kai Li
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, P.R. China
| | - Shengwang Du
- Department of General Surgery, Lianyungang Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, P.R. China
| | - Wei Hu
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, P.R. China
| | - Zhong Wang
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, P.R. China
- Department of General Surgery, Lianyungang Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, P.R. China
| |
Collapse
|
13
|
Park S, Paek JH, Colville MJ, Huang LT, Struzyk AP, Womack SJ, Neelamegham S, Reesink HL, Paszek MJ. Leucine zipper-based SAIM imaging identifies therapeutic agents to disrupt the cancer cell glycocalyx for enhanced immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627089. [PMID: 39677754 PMCID: PMC11643053 DOI: 10.1101/2024.12.05.627089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The abnormally thick glycocalyx of cancer cells can provide a physical barrier to immune cell recognition and effective immunotherapy. Here, we demonstrate an optical method based on Scanning Angle Interference Microscopy (SAIM) for the screening of therapeutic agents that can disrupt the glycocalyx layer as a strategy to improve anti-cancer immune responses. We developed a new membrane labeling strategy utilizing leucine zipper pairs to fluorescently mark the glycocalyx layer boundary for precise and robust measurement of glycocalyx thickness with SAIM. Using this platform, we evaluated the effects of glycosylation inhibitors and targeted enzymatic degraders of the glycocalyx, with particular focus on strategies for cholangiocarcinoma (CCA), a highly lethal malignancy with limited therapeutic options. We found that CCA had the highest mean expression of the cancer-associated mucin, MUC1, across all cancers represented in the cancer cell line encyclopedia. Pharmacological inhibitors of mucin-type O-glycosylation and mucin-specific proteases, such as StcE, could dramatically reduce the glycocalyx layer in the YSCCC model of intrahepatic CCA. Motivated by these findings, we engineered Natural Killer (NK) cells tethered with StcE to enhance NK cell-mediated cytotoxicity against CCA. In a CCA xenograft model, these engineered NK cells demonstrated superior anti-tumor efficacy compared to wild-type NK cells, with no observable adverse effects. Our findings not only provide a reliable imaging-based screening platform for evaluating glycocalyx-targeting pharmacological interventions but also offer mechanistic insights into how CCA may avoid immune elimination through fortification of the glycocalyx layer with mucins. Additionally, this work presents a novel therapeutic strategy for mucin-overexpressing cancers, potentially improving immunotherapy efficacy across various cancer types.
Collapse
Affiliation(s)
- Sangwoo Park
- Graduate Field of Biophysics, Cornell University, Ithaca, NY, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Current address: Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- These authors contributed equally to this work
| | - Justin H. Paek
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- These authors contributed equally to this work
| | - Marshall J. Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Ling-Ting Huang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Audrey P. Struzyk
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Sydney J. Womack
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Heidi L. Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matthew J. Paszek
- Graduate Field of Biophysics, Cornell University, Ithaca, NY, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
14
|
Geyer PE, Hornburg D, Pernemalm M, Hauck SM, Palaniappan KK, Albrecht V, Dagley LF, Moritz RL, Yu X, Edfors F, Vandenbrouck Y, Mueller-Reif JB, Sun Z, Brun V, Ahadi S, Omenn GS, Deutsch EW, Schwenk JM. The Circulating Proteome─Technological Developments, Current Challenges, and Future Trends. J Proteome Res 2024; 23:5279-5295. [PMID: 39479990 PMCID: PMC11629384 DOI: 10.1021/acs.jproteome.4c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024]
Abstract
Recent improvements in proteomics technologies have fundamentally altered our capacities to characterize human biology. There is an ever-growing interest in using these novel methods for studying the circulating proteome, as blood offers an accessible window into human health. However, every methodological innovation and analytical progress calls for reassessing our existing approaches and routines to ensure that the new data will add value to the greater biomedical research community and avoid previous errors. As representatives of HUPO's Human Plasma Proteome Project (HPPP), we present our 2024 survey of the current progress in our community, including the latest build of the Human Plasma Proteome PeptideAtlas that now comprises 4608 proteins detected in 113 data sets. We then discuss the updates of established proteomics methods, emerging technologies, and investigations of proteoforms, protein networks, extracellualr vesicles, circulating antibodies and microsamples. Finally, we provide a prospective view of using the current and emerging proteomics tools in studies of circulating proteins.
Collapse
Affiliation(s)
- Philipp E. Geyer
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Daniel Hornburg
- Seer,
Inc., Redwood City, California 94065, United States
- Bruker
Scientific, San Jose, California 95134, United States
| | - Maria Pernemalm
- Department
of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Stefanie M. Hauck
- Metabolomics
and Proteomics Core, Helmholtz Zentrum München
GmbH, German Research Center for Environmental Health, 85764 Oberschleissheim,
Munich, Germany
| | | | - Vincent Albrecht
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Laura F. Dagley
- The
Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Robert L. Moritz
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Xiaobo Yu
- State
Key Laboratory of Medical Proteomics, Beijing
Proteome Research Center, National Center for Protein Sciences-Beijing
(PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fredrik Edfors
- Science
for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | | | - Johannes B. Mueller-Reif
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Zhi Sun
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Virginie Brun
- Université Grenoble
Alpes, CEA, Leti, Clinatec, Inserm UA13
BGE, CNRS FR2048, Grenoble, France
| | - Sara Ahadi
- Alkahest, Inc., Suite
D San Carlos, California 94070, United States
| | - Gilbert S. Omenn
- Institute
for Systems Biology, Seattle, Washington 98109, United States
- Departments
of Computational Medicine & Bioinformatics, Internal Medicine,
Human Genetics and Environmental Health, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Eric W. Deutsch
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Jochen M. Schwenk
- Science
for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 17121 Solna, Sweden
| |
Collapse
|
15
|
Ogawa T, Isik M, Wu Z, Kurmi K, Meng J, Cho S, Lee G, Fernandez-Cardenas LP, Mizunuma M, Blenis J, Haigis MC, Blackwell TK. Nutrient control of growth and metabolism through mTORC1 regulation of mRNA splicing. Mol Cell 2024; 84:4558-4575.e8. [PMID: 39571580 DOI: 10.1016/j.molcel.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/30/2024] [Accepted: 10/28/2024] [Indexed: 12/08/2024]
Abstract
Cellular growth and organismal development are remarkably complex processes that require the nutrient-responsive kinase mechanistic target of rapamycin complex 1 (mTORC1). Anticipating that important mTORC1 functions remained to be identified, we employed genetic and bioinformatic screening in C. elegans to uncover mechanisms of mTORC1 action. Here, we show that during larval growth, nutrients induce an extensive reprogramming of gene expression and alternative mRNA splicing by acting through mTORC1. mTORC1 regulates mRNA splicing and the production of protein-coding mRNA isoforms largely independently of its target p70 S6 kinase (S6K) by increasing the activity of the serine/arginine-rich (SR) protein RSP-6 (SRSF3/7) and other splicing factors. mTORC1-mediated mRNA splicing regulation is critical for growth; mediates nutrient control of mechanisms that include energy, nucleotide, amino acid, and other metabolic pathways; and may be conserved in humans. Although mTORC1 inhibition delays aging, mTORC1-induced mRNA splicing promotes longevity, suggesting that when mTORC1 is inhibited, enhancement of this splicing might provide additional anti-aging benefits.
Collapse
Affiliation(s)
- Takafumi Ogawa
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - Meltem Isik
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ziyun Wu
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kiran Kurmi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Meng
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sungyun Cho
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Gina Lee
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA; Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - L Paulette Fernandez-Cardenas
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Masaki Mizunuma
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan
| | - John Blenis
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center, Harvard Medical School, Boston, MA 02115, USA
| | - T Keith Blackwell
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
16
|
Malamud M, Brown GD. The Dectin-1 and Dectin-2 clusters: C-type lectin receptors with fundamental roles in immunity. EMBO Rep 2024; 25:5239-5264. [PMID: 39482490 PMCID: PMC11624271 DOI: 10.1038/s44319-024-00296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
The ability of myeloid cells to recognize and differentiate endogenous or exogenous ligands rely on the presence of different transmembrane protein receptors. C-type lectin receptors (CLRs), defined by the presence of a conserved structural motif called C-type lectin-like domain (CTLD), are a crucial family of receptors involved in this process, being able to recognize a diverse range of ligands from glycans to proteins or lipids and capable of initiating an immune response. The Dectin-1 and Dectin-2 clusters involve two groups of CLRs, with genes genomically linked within the natural killer cluster of genes in both humans and mice, and all characterized by the presence of a single extracellular CTLD. Fundamental immune cell functions such as antimicrobial effector mechanisms as well as internalization and presentation of antigens are induced and/or regulated through activatory, or inhibitory signalling pathways triggered by these receptors after ligand binding. In this review, we will discuss the most recent concepts regarding expression, ligands, signaling pathways and functions of each member of the Dectin clusters of CLRs, highlighting the importance and diversity of their functions.
Collapse
Affiliation(s)
- Mariano Malamud
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Gordon D Brown
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| |
Collapse
|
17
|
Mach N. The forecasting power of the mucin-microbiome interplay in livestock respiratory diseases. Vet Q 2024; 44:1-18. [PMID: 38606662 PMCID: PMC11018052 DOI: 10.1080/01652176.2024.2340003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Complex respiratory diseases are a significant challenge for the livestock industry worldwide. These diseases considerably impact animal health and welfare and cause severe economic losses. One of the first lines of pathogen defense combines the respiratory tract mucus, a highly viscous material primarily composed of mucins, and a thriving multi-kingdom microbial ecosystem. The microbiome-mucin interplay protects from unwanted substances and organisms, but its dysfunction may enable pathogenic infections and the onset of respiratory disease. Emerging evidence also shows that noncoding regulatory RNAs might modulate the structure and function of the microbiome-mucin relationship. This opinion paper unearths the current understanding of the triangular relationship between mucins, the microbiome, and noncoding RNAs in the context of respiratory infections in animals of veterinary interest. There is a need to look at these molecular underpinnings that dictate distinct health and disease outcomes to implement effective prevention, surveillance, and timely intervention strategies tailored to the different epidemiological contexts.
Collapse
Affiliation(s)
- Núria Mach
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
18
|
Dong HJ, Li XH, Gu QX, Ma CF, Yuan MX, Wang ZZ, Su JR, Xu L, Chen CY, Ebule Q, Zhuang H, Liu XE. N-glycan as new potential biomarker for predicting treatment response in patients with type 2 diabetes mellitus. Biomark Med 2024; 18:1113-1122. [PMID: 39582293 DOI: 10.1080/17520363.2024.2432309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
AIMS To investigate the N-glycans related to the metformin efficacy in patients with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS We enrolled 141 healthy controls and 195 newly diagnosed T2DM patients treated with metformin for 3 months. Serum N-glycan profile was determined by DNA sequencer - assisted fluorophore-assisted carbohydrate electrophoresis (DSA-FACE). The N-glycan model was established by logistic regression analysis. Receiver operating characteristic curve (ROC) analysis was used to analyze the predictive power of the N-glycan model for metformin efficacy. RESULTS The abundances of several N-glycans in serum of T2DM patients at baseline were significantly different from those of healthy controls and tended to recover the N-glycan of controls after 3 months treatment. Serum N-glycans changes were more significant in the good response group (FPG <7 mmol/L) after metformin treatment. In addition, the abundance of peak9 at baseline had an opposite tendency between HbA1c increased and decreased groups post-treatment, which could be a biomarker for predicting metformin efficacy. Peak9 combined with other 11 N-glycans at baseline was used to establish the predictive model to distinguish non-response from response patients (AUROC = 0.780, sensitivity = 70.6% and specificity = 77.5%). CONCLUSIONS Serum N-glycans may have potential value as biomarkers for indicating the efficacy of metformin.
Collapse
Affiliation(s)
- Hui-Jun Dong
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiao-Hui Li
- Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qi-Xin Gu
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chi-Fa Ma
- Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ming-Xia Yuan
- Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhen-Zi Wang
- Department of laboratory medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian-Rong Su
- Department of laboratory medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lei Xu
- Department of Research and Development, Sysdiagno (Nanjing) Biotech Co., Ltd, Nanjing, Jiangsu Province, China
| | - Cui-Ying Chen
- Department of Research and Development, Sysdiagno (Nanjing) Biotech Co., Ltd, Nanjing, Jiangsu Province, China
| | - Qiqige Ebule
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hui Zhuang
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xue-En Liu
- Department of Microbiology and Center of Infectious Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
19
|
Wang Q, Liu X, Li Y, Wang Z, Fang Z, Wang Y, Guo X, Dong M, Ye M, Jia L. Rational development of functional hydrophilic polymer to characterize site-specific glycan differences between bovine milk and colostrum. Food Chem 2024; 460:140669. [PMID: 39094346 DOI: 10.1016/j.foodchem.2024.140669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
As vastly modified on secreted proteins, N-glycosylation is found on milk proteins and undergo dynamic changes during lactation, characterizing milk protein glycosylation would benefit the elucidation of glycosylation pattern differences between samples. However, their low abundance required specific enrichment. Herein, through rational design and controllable synthesis, we developed a novel multi-functional polymer for the isolation of protein glycosylation. It efficiently separated glycopeptides from complex background inferences with mutual efforts of hydrophilic interaction chromatography (HILIC), metal ion affinity and ion exchange. By fine-tuning Ca2+ as regulators of aldehyde hyaluronic acid (HA) conformation, the grafting density of HA was remarkably improved. Moreover, grafting Ti4+ further enhanced the enrichment performance. Application of this material to characterize bovine milk and colostrum proteins yields 479 and 611 intact glycopeptides, respectively. Comparative analysis unraveled the distinct glycosylation pattern as well the different distribution of glycoprotein abundances between the two samples, offering insights for functional food development.
Collapse
Affiliation(s)
- Qi Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China; State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoyan Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Li
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhongyu Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Fang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yan Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xin Guo
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China
| | - Mingming Dong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China.
| | - Mingliang Ye
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Lingyun Jia
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China.
| |
Collapse
|
20
|
Zhang ZT, Qi Y, Chen P, Chen L, Jiang Y, Fan Z, Guan H, Bai L, Liu J, Zhao D, Yan G. Dang-Gui-Bu-Xue decoction against diabetic nephropathy via modulating the carbonyl compounds metabolic profile and AGEs/RAGE pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156104. [PMID: 39378693 DOI: 10.1016/j.phymed.2024.156104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Dang-Gui-Bu-Xue decoction (DBD) is a traditional Chinese medicine prescription clinically employed for diabetic nephropathy (DN). However, the components and pharmacological mechanisms of DBD against DN remain incompletely understood. PURPOSE To clarify the beneficial effect of DBD on DN and to explore its nephroprotective effect's probable mechanism and the main components. METHODS A diabetic mice model was established by feeding a high-fat diet (HFD) and intraperitoneal injections of streptozotocin (STZ, 40 mg‧kg-1). Subsequently, the mice were maintained on a HFD and administered with DBD. The benefits of DBD against DN were comprehensively assessed by monitoring energy and water intake, blood glucose and lipids, renal functions and pathological status. The UPLC-MS/MS was measured to detect chemical constituents in DBD and absorbed components in DBD-treated plasma under physiological and pathological states. Network pharmacology was employed to forecast the probable pathways of DBD intervention in DN, with subsequent validation of these predictions through testing biochemical parameters, anti-glycation and ELISA assays, immunofluorescence, immunohistochemistry, and western blotting. Then, a chemical derivatization method paired with UPLC-MS/MS analysis was performed to detect the carbonyl compounds in renal tissue. Finally, the main components of DBD against DN were screened by anti-glycation and MTT assays. RESULTS DBD regulated energy and water intakes, glucose and lipid metabolism disorders, renal dysfunction, glomerular filtration rate, renal interstitial glycogen accumulation and fibrosis in HFD/STZ-induced DN mice. A total of 129 distinct chemical constituents in DBD were characterized, of which 28 were detected in the DBD-treated plasma under a pathological state. The network pharmacological results suggested AGEs/RAGE and its downstream pathway may be a potential pathway for DBD intervention in DN. Further experiments confirmed that DBD reduced renal oxidative stress by modulating the AGEs/RAGE pathway. Moreover, 21 differential carbonyl compounds were detected between normal and DN mice, and DBD significantly modulated 16. Ultimately, seven components were screened out in DBD, which may be the main components of DBD regulating carbonyl compounds metabolic profile and AGEs/RAGE pathway. CONCLUSION Our findings suggested for the first time that DBD could regulate the carbonyl compounds metabolic profile and AGEs/RAGE signaling pathway to ameliorate DN.
Collapse
Affiliation(s)
- Zhi-Tong Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Engineering Research Center for Development and Application of External Drugs in Traditional Chinese Medicine, Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Yali Qi
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Engineering Research Center for Development and Application of External Drugs in Traditional Chinese Medicine, Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Pan Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Engineering Research Center for Development and Application of External Drugs in Traditional Chinese Medicine, Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Li Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Engineering Research Center for Development and Application of External Drugs in Traditional Chinese Medicine, Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Yue Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Engineering Research Center for Development and Application of External Drugs in Traditional Chinese Medicine, Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Zhiliang Fan
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550000, China
| | - Huanhuan Guan
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Engineering Research Center for Development and Application of External Drugs in Traditional Chinese Medicine, Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Lei Bai
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Engineering Research Center for Development and Application of External Drugs in Traditional Chinese Medicine, Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Jie Liu
- Department of Radiotherapy, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Di Zhao
- Department of Radiotherapy, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Guojun Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Engineering Research Center for Development and Application of External Drugs in Traditional Chinese Medicine, Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China.
| |
Collapse
|
21
|
Xu R, Balmer L, Chen G, Song M. Role of N-Glycosylation in Gastrointestinal Cancers. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:596-607. [PMID: 39514331 DOI: 10.1089/omi.2024.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Gastrointestinal cancers pose a significant global health challenge. N-glycosylation modulates various cellular processes, including key cancer-related mechanisms. Elucidating its involvement in the onset and advancement of these cancers can offer critical insights for enhancing diagnostic and therapeutic approaches. This review outlines the core process of protein N-glycosylation and highlights its contribution to the progression of gastrointestinal cancers, encompassing cell proliferation, survival, invasion, metastasis, and immune evasion, mainly through its impact on critical signaling pathways. Notably, aberrant N-glycosylation patterns have emerged as crucial biomarkers for the diagnosis and prognosis of various gastrointestinal cancers, providing the foundation for more personalized therapeutic approaches. Therapeutic strategies targeting N-glycosylation, such as glycosyltransferase inhibitors and glycoengineering, show significant promise in mitigating tumor aggressiveness and enhancing immune recognition. However, the clinical implementation of N-glycosylation biomarkers requires the standardization of glycosylation analysis techniques and solutions to challenges in sample processing and data interpretation. Future research efforts should concentrate on overcoming these obstacles to unlock the full potential of N-glycosylation in enhancing cancer management and advancing patient outcomes.
Collapse
Affiliation(s)
- Ruirui Xu
- Center for Precision Health, Edith Cowan University, Western Australia, Australia
- School of Medical and Health Science, Edith Cowan University, Western Australia, Australia
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Shantou University Medical College, Guangdong, China
| | - Lois Balmer
- Center for Precision Health, Edith Cowan University, Western Australia, Australia
- School of Medical and Health Science, Edith Cowan University, Western Australia, Australia
| | - Gengzhen Chen
- Digestive Disease Prevention and Treatment Center, Chenghai District People's Hospital, Guangdong, China
| | - Manshu Song
- School of Medical and Health Science, Edith Cowan University, Western Australia, Australia
| |
Collapse
|
22
|
Chrysinas P, Venkatesan S, Ang I, Ghosh V, Chen C, Neelamegham S, Gunawan R. Cell- and tissue-specific glycosylation pathways informed by single-cell transcriptomics. NAR Genom Bioinform 2024; 6:lqae169. [PMID: 39703423 PMCID: PMC11655298 DOI: 10.1093/nargab/lqae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
While single-cell studies have made significant impacts in various subfields of biology, they lag in the Glycosciences. To address this gap, we analyzed single-cell glycogene expressions in the Tabula Sapiens dataset of human tissues and cell types using a recent glycosylation-specific gene ontology (GlycoEnzOnto). At the median sequencing (count) depth, ∼40-50 out of 400 glycogenes were detected in individual cells. Upon increasing the sequencing depth, the number of detectable glycogenes saturates at ∼200 glycogenes, suggesting that the average human cell expresses about half of the glycogene repertoire. Hierarchies in glycogene and glycopathway expressions emerged from our analysis: nucleotide-sugar synthesis and transport exhibited the highest gene expressions, followed by genes for core enzymes, glycan modification and extensions, and finally terminal modifications. Interestingly, the same cell types showed variable glycopathway expressions based on their organ or tissue origin, suggesting nuanced cell- and tissue-specific glycosylation patterns. Probing deeper into the transcription factors (TFs) of glycogenes, we identified distinct groupings of TFs controlling different aspects of glycosylation: core biosynthesis, terminal modifications, etc. We present webtools to explore the interconnections across glycogenes, glycopathways and TFs regulating glycosylation in human cell/tissue types. Overall, the study presents an overview of glycosylation across multiple human organ systems.
Collapse
Affiliation(s)
- Panagiotis Chrysinas
- Department of Chemical and Biological Engineering, University at Buffalo-SUNY, 308 Furnas Hall, Buffalo, NY 14260, USA
| | - Shriramprasad Venkatesan
- Department of Chemical and Biological Engineering, University at Buffalo-SUNY, 308 Furnas Hall, Buffalo, NY 14260, USA
| | - Isaac Ang
- Department of Computer Science, University of Illinois Urbana-Champaign, 201 North Goodwin Avenue, Urbana, IL 61801, USA
| | - Vishnu Ghosh
- Department of Chemical and Biological Engineering, University at Buffalo-SUNY, 308 Furnas Hall, Buffalo, NY 14260, USA
| | - Changyou Chen
- Department of Computer Science and Engineering, University at Buffalo-SUNY, 338 Davis Hall, Buffalo, NY 14260, USA
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, University at Buffalo-SUNY, 308 Furnas Hall, Buffalo, NY 14260, USA
| | - Rudiyanto Gunawan
- Department of Chemical and Biological Engineering, University at Buffalo-SUNY, 308 Furnas Hall, Buffalo, NY 14260, USA
| |
Collapse
|
23
|
Pasquale EB. Eph receptor signaling complexes in the plasma membrane. Trends Biochem Sci 2024; 49:1079-1096. [PMID: 39537538 DOI: 10.1016/j.tibs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Eph receptor tyrosine kinases, together with their cell surface-anchored ephrin ligands, constitute an important cell-cell communication system that regulates physiological and pathological processes in most cell types. This review focuses on the multiple mechanisms by which Eph receptors initiate signaling via the formation of protein complexes in the plasma membrane. Upon ephrin binding, Eph receptors assemble into oligomers that can further aggregate into large complexes. Eph receptors also mediate ephrin-independent signaling through interplay with intracellular kinases or other cell-surface receptors. The distinct characteristics of Eph receptor family members, as well as their conserved domain structure, provide a framework for understanding their functional differences and redundancies. Possible areas of interest for future investigations of Eph receptor signaling complexes are also highlighted.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
24
|
Murcy F, Borowczyk C, Gourion-Arsiquaud S, Torrino S, Ouahrouche N, Barouillet T, Dussaud S, Couralet M, Vaillant N, Merlin J, Berquand A, Kaikkonen MU, McClelland RL, Tressel W, Stein J, Thorp EB, Bertero T, Barbry P, Bailly-Maitre B, Gautier EL, Karjalainen MK, Kettunen J, Duca L, Shea S, Yvan-Charvet L. GLS2 links glutamine metabolism and atherosclerosis by remodeling artery walls. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1454-1467. [PMID: 39562782 DOI: 10.1038/s44161-024-00566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2024] [Indexed: 11/21/2024]
Abstract
Metabolic dysregulation, including perturbed glutamine-glutamate homeostasis, is common among patients with cardiovascular diseases, but the underlying mechanisms remain largely unknown. Using the human MESA cohort, here we show that plasma glutamine-glutamate ratio is an independent risk factor for carotid plaque progression. Mice deficient in glutaminase-2 (Gls2), the enzyme that mediates hepatic glutaminolysis, developed accelerated atherosclerosis and susceptibility to catastrophic cardiac events, while Gls2 overexpression partially protected from disease progression. High-throughput transcriptional profiling and high-resolution structural biology imaging of aortas showed that Gls2 deficiency perturbed extracellular matrix composition and increased vessel stiffness. This results from an imbalance of glutamine- and glutamate-dependent cross-linked proteins within atherosclerotic lesions and cellular remodeling of plaques. Thus, hepatic glutaminolysis functions as a potent regulator of glutamine homeostasis, which affects the aortic wall structure during atherosclerotic plaque progression.
Collapse
Grants
- ERC2016COG724838 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 25-CE14-Glutacare Agence Nationale de la Recherche (French National Research Agency)
- 75N92020D00001 NHLBI NIH HHS
- 75N92020D00004 NHLBI NIH HHS
- N01-HC-95164 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 75N92020D00007 NHLBI NIH HHS
- N01-HC-95165 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01-HC-95166 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01-HC-95167 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- N01-HC-95169 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 75N92020D00001 NHLBI NIH HHS
- 75N92020D00004 NHLBI NIH HHS
- 75N92020D00007 NHLBI NIH HHS
Collapse
Affiliation(s)
- Florent Murcy
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France
| | - Coraline Borowczyk
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France
| | | | - Stéphanie Torrino
- Université Côte d'Azur, CNRS, Inserm, IPMC, IHU-RespirERA, Valbonne, France
| | | | - Thibault Barouillet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France
| | | | - Marie Couralet
- Université Côte d'Azur, CNRS, Inserm, IPMC, IHU-RespirERA, Valbonne, France
| | - Nathalie Vaillant
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France
| | - Johanna Merlin
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France
| | | | - Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - William Tressel
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - James Stein
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, Inserm, IPMC, IHU-RespirERA, Valbonne, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS, Inserm, IPMC, IHU-RespirERA, Valbonne, France
| | - Béatrice Bailly-Maitre
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France
| | | | - Minna K Karjalainen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Northern Finland Birth Cohorts, Arctic Biobank, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Johannes Kettunen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | | | - Steven Shea
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France.
| |
Collapse
|
25
|
Wu Q, Niu Y, Li H, Pan Y, Li C. Comprehensive Analysis of Sialylation-Related Gene Profiles and Their Impact on the Immune Microenvironment in Periodontitis. Inflammation 2024:10.1007/s10753-024-02177-1. [PMID: 39609348 DOI: 10.1007/s10753-024-02177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/30/2024]
Abstract
Periodontitis is a chronic inflammatory disease strongly influenced by host's immune response. Aberrant sialylation on cell surface plays a key role in inflammation and immunity. This study aims to identify sialylation-related genes associated with periodontitis and explore their impact on periodontal immune microenvironment. Differential expression analysis and machine learning were employed to determine core sialylation-related genes after datasets were retrieved and integrated. A diagnostic model incorporating these genes was constructed, following the immune cell infiltration analysis. Consensus clustering and weighted gene co-expression network analysis stratified periodontitis patients into subgroups and identified associated module genes. Single-cell sequencing data was further utilized to investigate the impact of sialylation on the periodontal immune microenvironment with pseudo-time series analysis and cell communication analysis. Periodontitis had a higher sialylation score with six key sialylation genes (CHST2, SELP, ST6GAL1, ST3GAL1, NEU1, FCN1) identified. The multi-gene diagnostic model demonstrated high accuracy and efficacy. Significant associations were observed between the key genes and immune cell populations, such as monocytes and B cells, in the periodontal immune microenvironment. Clustering analysis revealed two distinct sialylation-related subgroups with differential immune profiles. Single-cell data showed a significantly higher expression of sialylation-related genes in monocytes, which was found to significantly impact their developmental processes as well as their intercellular communication with B cells. The six identified sialylation-related genes hold potential as periodontitis biomarkers. High sialylation expression can impact the differentiation and cell-cell communication of monocytes. Sialylation-related genes are closely associated with alterations in the periodontal immune microenvironment.
Collapse
Affiliation(s)
- Qibing Wu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yixi Niu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Hanmo Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China
| | - Yaping Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China
| | - Chen Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
| |
Collapse
|
26
|
Chen J, Martin R. Ni-Catalyzed Stereodivergent Synthesis of N-Glycosides. Chemistry 2024:e202403822. [PMID: 39612346 DOI: 10.1002/chem.202403822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024]
Abstract
Herein, we describe a stereoselective Ni-catalyzed N-glycosylation of glycals. The reaction is enabled by addition of an in situ generated nickel hydride across an olefin prior to C-N bond-formation. Stereodivergence can be accomplished on kinetic or thermodynamic grounds, thus giving access to either α- or β-N-glycosides with equal ease. The protocol is distinguished by its operational simplicity, generality and exquisite selectivity, thus offering a new gateway to expedite the synthesis of N-glycosides.
Collapse
Affiliation(s)
- Jinhong Chen
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
27
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
28
|
Reyes-Oliveras A, Ellis AE, Sheldon RD, Haab B. Metabolomics and 13C labelled glucose tracing to identify carbon incorporation into aberrant cell membrane glycans in cancer. Commun Biol 2024; 7:1576. [PMID: 39592729 PMCID: PMC11599571 DOI: 10.1038/s42003-024-07277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Cell membrane glycans contribute to immune recognition, signaling, and cellular adhesion and migration, and altered membrane glycosylation is a feature of cancer cells that contributes to cancer progression. The uptake and metabolism of glucose and other nutrients essential for glycan synthesis could underlie altered membrane glycosylation, but the relationship between shifts in nutrient metabolism and the effects on glycans have not been directly examined. We developed a method that combines stable isotope tracing with metabolomics to enable direct observations of glucose allocation to nucleotide sugars and cell-membrane glycans. We compared the glucose allocation to membrane glycans of two pancreatic cancer cell lines that are genetically identical but have differing energy requirements. The 8988-S cells had higher glucose allocation to membrane glycans and intracellular pathways relating to glycan synthesis, but the 8988-T cells had higher glucose uptake and commitment of glucose to non-glycosylation pathways. The cell lines differed in the requirements of glucose for energy production, resulting in differences in glucose bioavailability for glycan synthesis. The workflow demonstrated here enables studies on the effects of metabolic shifts on the commitment of nutrients to cell-membrane glycans. The results suggest that cell-membrane glycans are remodeled through shifts in glucose commitment to non-glycosylation pathways.
Collapse
Affiliation(s)
- Alfredo Reyes-Oliveras
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA
| | - Abigail E Ellis
- Mass Spectrometry Core, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA
| | - Ryan D Sheldon
- Mass Spectrometry Core, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA
| | - Brian Haab
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, USA.
| |
Collapse
|
29
|
Tian W, Zagami C, Chen J, Blomberg AL, Guiu LS, Skovbakke SL, Goletz S. Cell-based glycoengineering of extracellular vesicles through precise genome editing. N Biotechnol 2024; 83:101-109. [PMID: 39079597 DOI: 10.1016/j.nbt.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Engineering of extracellular vesicles (EVs) towards more efficient targeting and uptake to specific cells has large potentials for their application as therapeutics. Carbohydrates play key roles in various biological interactions and are essential for EV biology. The extent to which glycan modification of EVs can be achieved through genetic glycoengineering of their parental cells has not been explored yet. Here we introduce targeted glycan modification of EVs through cell-based glycoengineering via modification of various enzymes in the glycosylation machinery. In a "simple cell" strategy, we modified major glycosylation pathways by knocking-out (KO) essential genes for N-glycosylation (MGAT1), O-GalNAc glycosylation (C1GALT1C1), glycosphingolipids (B4GALT5/6), glycosaminoglycans (B4GALT7) and sialylation (GNE) involved in the elongation or biosynthesis of the glycans in HEK293F cells. The gene editing led to corresponding glycan changes on the cells as demonstrated by differential lectin staining. Small EVs (sEVs) isolated from the cells showed overall corresponding glycan changes, but also some unexpected differences to their parental cell including enrichment preference for certain glycan structures and absence of other glycan types. The genetic glycoengineering did not significantly impact sEVs production, size distribution, or syntenin-1 biomarker expression, while a clonal influence on sEVs production yields was observed. Our findings demonstrate the successful implementation of sEVs glycoengineering via genetic modification of the parental cell and a stable source for generation of glycoengineered sEVs. The utilization of glycoengineered sEVs offers a promising opportunity to study the role of glycosylation in EV biology, as well as to facilitate the optimization of sEVs for therapeutic purposes.
Collapse
Affiliation(s)
- Weihua Tian
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Chiara Zagami
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jiasi Chen
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne Louise Blomberg
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Laura Salse Guiu
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sarah Line Skovbakke
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
30
|
Wang Z, Zhang J, Li L. Recent Advances in Labeling-Based Quantitative Glycomics: From High-Throughput Quantification to Structural Elucidation. Proteomics 2024:e202400057. [PMID: 39580675 DOI: 10.1002/pmic.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Glycosylation, a crucial posttranslational modification (PTM), plays important roles in numerous biological processes and is linked to various diseases. Despite its significance, the structural complexity and diversity of glycans present significant challenges for mass spectrometry (MS)-based quantitative analysis. This review aims to provide an in-depth overview of recent advancements in labeling strategies for N-glycomics and O-glycomics, with a specific focus on enhancing the sensitivity, specificity, and throughput of MS analyses. We categorize these advancements into three major areas: (1) the development of isotopic/isobaric labeling techniques that significantly improve multiplexing capacity and throughput for glycan quantification; (2) novel methods that aid in the structural elucidation of complex glycans, particularly sialylated and fucosylated glycans; and (3) labeling techniques that enhance detection ionization efficiency, separation, and sensitivity for matrix-assisted laser desorption/ionization (MALDI)-MS and capillary electrophoresis (CE)-based glycan analysis. In addition, we highlight emerging trends in single-cell glycomics and bioinformatics tools that have the potential to revolutionize glycan quantification. These developments not only expand our understanding of glycan structures and functions but also open new avenues for biomarker discovery and therapeutic applications. Through detailed discussions of methodological advancements, this review underscores the critical role of derivatization methods in advancing glycan identification and quantification.
Collapse
Affiliation(s)
- Zicong Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jingwei Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
31
|
Wang W, Zhang L, Liu Y, Liu X, Liu X. Oriental covalent immobilization of N-glycan binding protein via N-terminal selective modification. Anal Chim Acta 2024; 1330:343311. [PMID: 39489947 DOI: 10.1016/j.aca.2024.343311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/17/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024]
Abstract
Lectin affinity chromatography is one of powerful tools for the study of protein glycosylation. Different lectin proteins can recognize different structures of monosaccharides or oligosaccharide units, allowing for the selective separation of glycopeptides or glycoproteins containing different polysaccharide structures. However, the N-glycans were only partially captured by most of common lectins, reducing the coverage rate of identifying N-glycoconjugates. Recently, it has been reported that the engineering variant of glycan binding protein Fbs1 has a high affinity for innermost Man3GlcNAc2 structure and is able to bind diverse types of N-glycans, which can be suitable for the analysis of protein N-glycosylation. However, efficient immobilization of protein to separation matrix is particularly challenging as it requires the functionality and integrity of the protein to be preserved. Herein, we describe a simple and robust strategy for oriental covalent immobilization of proteins on magnetic nanoparticles by N-terminal selective labeling techniques. We inserted the enterokinase cleavage site to produce the specific N- terminal glycine of protein. Under physiological conditions, the protein was immobilized on the surface of the MNPs by this glycine tag, and the enrichment process could be completed within 30 min. A whole enrichment and purification of glycan and glycopeptides were completed and analyzed by MALDI TOF-MS. The functional materials achieved stable enrichment of glycan structure in different enzyme digestion systems or complex samples, showing excellent anti-interference and applicability.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Zhang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China
| | - Yuanyuan Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiang Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Xin Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
32
|
Lei C, Li X, Li W, Chen Z, Liu S, Cheng B, Hu Y, Song Q, Qiu Y, Zhou Y, Meng X, Yu H, Zhou W, Chen X, Li J. Chemical glycoproteomic profiling in rice seedlings reveals N-glycosylation in the ERAD-L machinery. Mol Cell Proteomics 2024:100883. [PMID: 39577566 DOI: 10.1016/j.mcpro.2024.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
As a ubiquitous and essential posttranslational modification occurring in both plants and animals, protein N-linked glycosylation regulates various important biological processes. Unlike the well-studied animal N-glycoproteomes, the landscape of rice N-glycoproteome remains largely unexplored. Here, by developing a chemical glycoproteomic strategy based on metabolic glycan labeling (MGL), we report a comprehensive profiling of the N-glycoproteome in rice seedlings. The rice seedlings are incubated with N-azidoacetylgalactosamine (GalNAz) - a monosaccharide analog containing a bioorthogonal functional group - to metabolically label N-glycans, followed by conjugation with an affinity probe via click chemistry for enrichment of the N-glycoproteins. Subsequent mass spectrometry analyses identify a total of 403 N-glycosylation sites and 673 N-glycosylated proteins, which are involved in various important biological processes. In particular, the core components of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) machinery are N-glycosylated, and the N-glycosylation is important for the ERAD-L function. This work not only provides an invaluable resource for studying rice N-glycosylation, but also demonstrates the applicability of MGL in glycoproteomic profiling for crop species.
Collapse
Affiliation(s)
- Cong Lei
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China; Yazhouwan National Laboratory, Sanya, China
| | - Xilong Li
- Yazhouwan National Laboratory, Sanya, China.
| | - Wenjia Li
- Yazhouwan National Laboratory, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Zihan Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Simiao Liu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bo Cheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Yili Hu
- Yazhouwan National Laboratory, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Qitao Song
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yahong Qiu
- Yazhouwan National Laboratory, Sanya, China
| | - Yilan Zhou
- Yazhouwan National Laboratory, Sanya, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong Yu
- Yazhouwan National Laboratory, Sanya, China
| | - Wen Zhou
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Synthetic and Functional Biomolecules Center, Peking University, Beijing, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China.
| | - Jiayang Li
- Yazhouwan National Laboratory, Sanya, China; State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
33
|
Archambault MJ, Tshibwabwa LM, Côté-Cyr M, Moffet S, Shiao TC, Bourgault S. Nanoparticles as Delivery Systems for Antigenic Saccharides: From Conjugation Chemistry to Vaccine Design. Vaccines (Basel) 2024; 12:1290. [PMID: 39591192 PMCID: PMC11598982 DOI: 10.3390/vaccines12111290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Glycoconjugate vaccines have been effective in preventing numerous bacterial infectious diseases and have shown recent potential to treat cancers through active immunotherapy. Soluble polysaccharides elicit short-lasting immune responses and are usually covalently linked to immunogenic carrier proteins to enhance the antigen-specific immune response by stimulating T-cell-dependent mechanisms. Nonetheless, the conjugation of purified polysaccharides to carrier proteins complexifies vaccine production, and immunization with protein glycoconjugates can lead to the undesirable immunogenic interference of the carrier. Recently, the use of nanoparticles and nanoassemblies for the delivery of antigenic saccharides has gathered attention from the scientific community. Nanoparticles can be easily functionalized with a diversity of functionalities, including T-cell epitope, immunomodulator and synthetic saccharides, allowing for the modulation and polarization of the glycoantigen-specific immune response. Notably, the conjugation of glycan to nanoparticles protects the antigens from degradation and enhances their uptake by immune cells. Different types of nanoparticles, such as liposomes assembled from lipids, inorganic nanoparticles, virus-like particles and dendrimers, have been explored for glycovaccine design. The versatility of nanoparticles and their ability to induce robust immune responses make them attractive delivery platforms for antigenic saccharides. The present review aims at summarizing recent advancements in the use of nano-scaled systems for the delivery of synthetic glycoantigens. After briefly presenting the immunological mechanisms required to promote a robust immune response against antigenic saccharides, this review will offer an overview of the current trends in the nanoparticle-based delivery of glycoantigens.
Collapse
Affiliation(s)
- Marie-Jeanne Archambault
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montreal, QC H3C 3P8, Canada (L.M.T.)
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC H3C 3P8, Canada
- The Center of Excellence in Research on Orphan Diseases-Fondation Courtois (CERMO-FC), Montreal, QC H3C 3P8, Canada
| | - Laetitia Mwadi Tshibwabwa
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montreal, QC H3C 3P8, Canada (L.M.T.)
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC H3C 3P8, Canada
- The Center of Excellence in Research on Orphan Diseases-Fondation Courtois (CERMO-FC), Montreal, QC H3C 3P8, Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montreal, QC H3C 3P8, Canada (L.M.T.)
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC H3C 3P8, Canada
- The Center of Excellence in Research on Orphan Diseases-Fondation Courtois (CERMO-FC), Montreal, QC H3C 3P8, Canada
| | - Serge Moffet
- Glycovax Pharma Inc., Laval, QC H7V 5B7, Canada; (S.M.); (T.C.S.)
| | - Tze Chieh Shiao
- Glycovax Pharma Inc., Laval, QC H7V 5B7, Canada; (S.M.); (T.C.S.)
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montreal, QC H3C 3P8, Canada (L.M.T.)
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC H3C 3P8, Canada
- The Center of Excellence in Research on Orphan Diseases-Fondation Courtois (CERMO-FC), Montreal, QC H3C 3P8, Canada
| |
Collapse
|
34
|
Hristova SH, Popov TT, Zhivkov AM. Rabbit and Human Angiotensin-Converting Enzyme-2: Structure and Electric Properties. Int J Mol Sci 2024; 25:12393. [PMID: 39596458 PMCID: PMC11594707 DOI: 10.3390/ijms252212393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
The angiotensin-converting enzyme-2 (ACE2) is a transmembrane glycoprotein, consisting of two segments: a large carboxypeptidase catalytic domain and a small transmembrane collectrin-like segment. This protein plays an essential role in blood pressure regulation, transforming the peptides angiotensin-I and angiotensin-II (vasoconstrictors) into angiotensin-1-9 and angiotensin-1-7 (vasodilators). During the COVID-19 pandemic, ACE2 became best known as the receptor of the S-protein of SARS-CoV-2 coronavirus. The purpose of the following research is to reconstruct the 3D structure of the catalytic domain of the rabbit enzyme rACE2 using its primary amino acid sequence, and then to compare it with the human analog hACE2. For this purpose, we have calculated the electric properties and thermodynamic stability of the two protein globules employing computer programs for protein electrostatics. The analysis of the amino acid content and sequence demonstrates an 85% identity between the two polypeptide chains. The 3D alignment of the catalytic domains of the two enzymes shows coincidence of the α-helix segments, and a small difference in two unstructured segments of the chain. The electric charge of the catalytic domain of rACE2, determined by 70 positively chargeable amino acid residues, 114 negatively chargeable ones, and two positive charges of the Zn2+ atom in the active center exceeds that of hACE2 by one positively and four negatively chargeable groups; however, in 3D conformation, their isoelectric points pI 5.21 coincide. The surface electrostatic potential is similarly distributed on the surface of the two catalytic globules, but it strongly depends on the pH of the extracellular medium: it is almost positive at pH 5.0 but strongly negative at pH 7.4. The pH dependence of the electrostatic component of the free energy discloses that the 3D structure of the two enzymes is maximally stable at pH 6.5. The high similarity in the 3D structure, as well as in the electrostatic and thermodynamic properties, suggests that rabbit can be successfully used as an animal model to study blood pressure regulation and coronavirus infection, and the results can be extrapolated to humans.
Collapse
Affiliation(s)
- Svetlana H. Hristova
- Department of Medical Physics and Biophysics, Medical Faculty, Medical University—Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Trifon T. Popov
- Medical Faculty, Medical University—Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Alexandar M. Zhivkov
- Scientific Research Center, “St. Kliment Ohridski” Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
35
|
Lay AC, Tran VDT, Nair V, Betin V, Hurcombe JA, Barrington AF, Pope RJ, Burdet F, Mehl F, Kryvokhyzha D, Ahmad A, Sinton MC, Lewis P, Wilson MC, Menon R, Otto E, Heesom KJ, Ibberson M, Looker HC, Nelson RG, Ju W, Kretzler M, Satchell SC, Gomez MF, Coward RJM. Profiling of insulin-resistant kidney models and human biopsies reveals common and cell-type-specific mechanisms underpinning Diabetic Kidney Disease. Nat Commun 2024; 15:10018. [PMID: 39562547 PMCID: PMC11576882 DOI: 10.1038/s41467-024-54089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end stage kidney failure worldwide, of which cellular insulin resistance is a major driver. Here, we study key human kidney cell types implicated in DKD (podocytes, glomerular endothelial, mesangial and proximal tubular cells) in insulin sensitive and resistant conditions, and perform simultaneous transcriptomics and proteomics for integrated analysis. Our data is further compared with bulk- and single-cell transcriptomic kidney biopsy data from early- and advanced-stage DKD patient cohorts. We identify several consistent changes (individual genes, proteins, and molecular pathways) occurring across all insulin-resistant kidney cell types, together with cell-line-specific changes occurring in response to insulin resistance, which are replicated in DKD biopsies. This study provides a rich data resource to direct future studies in elucidating underlying kidney signalling pathways and potential therapeutic targets in DKD.
Collapse
Affiliation(s)
- Abigail C Lay
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Van Du T Tran
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Virginie Betin
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | | | | | - Robert Jp Pope
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Frédéric Burdet
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Florence Mehl
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dmytro Kryvokhyzha
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Abrar Ahmad
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Matthew C Sinton
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Philip Lewis
- Proteomics Facility, University of Bristol, Bristol, UK
| | | | - Rajasree Menon
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Edgar Otto
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kate J Heesom
- Proteomics Facility, University of Bristol, Bristol, UK
| | - Mark Ibberson
- Vital-IT group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Phoenix, AZ, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Phoenix, AZ, USA
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Simon C Satchell
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Maria F Gomez
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Richard J M Coward
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
36
|
Tsui CK, Twells N, Durieux J, Doan E, Woo J, Khosrojerdi N, Brooks J, Kulepa A, Webster B, Mahal LK, Dillin A. CRISPR screens and lectin microarrays identify high mannose N-glycan regulators. Nat Commun 2024; 15:9970. [PMID: 39557836 PMCID: PMC11574202 DOI: 10.1038/s41467-024-53225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 11/20/2024] Open
Abstract
Glycans play critical roles in cellular signaling and function. Unlike proteins, glycan structures are not templated from genetic sequences but synthesized by the concerted activity of many genes, making them historically challenging to study. Here, we present a strategy that utilizes CRISPR screens and lectin microarrays to uncover and characterize regulators of glycosylation. We applied this approach to study the regulation of high mannose glycans - the starting structure of all asparagine(N)-linked-glycans. We used CRISPR screens to uncover the expanded network of genes controlling high mannose levels, followed by lectin microarrays to fully measure the complex effect of select regulators on glycosylation globally. Through this, we elucidated how two high mannose regulators - TM9SF3 and the CCC complex - control complex N-glycosylation via regulating Golgi morphology and function. Notably, this allows us to interrogate Golgi function in-depth and reveals that similar disruption to Golgi morphology can lead to drastically different glycosylation outcomes. Collectively, this work demonstrates a generalizable approach for systematically dissecting the regulatory network underlying glycosylation.
Collapse
Affiliation(s)
- C Kimberly Tsui
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Nicholas Twells
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Jenni Durieux
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Emma Doan
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Jacqueline Woo
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Noosha Khosrojerdi
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Janiya Brooks
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Ayodeji Kulepa
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Brant Webster
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
37
|
Lin DC, Lih TM, Liu H, Zhang H. Characterization of Cell Surface Glycoproteins Using Enzymatic Treatment and Mass Spectrometry. Anal Chem 2024. [PMID: 39556700 DOI: 10.1021/acs.analchem.4c04286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Almost all proteins on the cell surface are modified by glycosylation. Cell surface glycoproteins participate in various cellular pathways, such as cell adhesion, cell-cell communication, and immune response. Due to their functional importance, glycoproteins on the cell surface often serve as potential therapeutic targets. Recent advancements in mass spectrometry (MS) have facilitated the characterization of glycoproteins that are generally localized on the cell surface, secreted to the extracellular environment, or found in intracellular organelles such as the endoplasmic reticulum, Golgi apparatus, and peroxisome. However, the selective characterization of glycoproteins on the cell surface remains challenging. In this study, we applied enzymatic treatment to live cells, followed by MS-based glycoproteomics analysis, to assess changes in protein glycosylation at different treatment time points as a method to identify cell surface glycoproteins. To demonstrate this approach, a renal cell carcinoma cell line, A498, was treated with glycosidases, sialidase and PNGase F, over two treatment time intervals, 2 and 24 h. Glycoproteins were identified as cell surface glycoproteins from A498 cells when enzyme treatment altered the glycosylation of the glycoproteins. The results revealed the effectiveness of integrating enzymatic treatment with MS-based glycoproteomics for analyzing cell surface glycoproteins. Our established method has demonstrated the potential applications for assessing accessibility of therapeutic targets on the cell surface over time and supporting the development of new targeted therapies.
Collapse
Affiliation(s)
- Ding Chiao Lin
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - T Mamie Lih
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Hongyi Liu
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Hui Zhang
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| |
Collapse
|
38
|
Li MY, Jiang J, Li JG, Niu H, Ying YL, Tian R, Long YT. Nanopore approaches for single-molecule temporal omics: promises and challenges. Nat Methods 2024:10.1038/s41592-024-02492-3. [PMID: 39558099 DOI: 10.1038/s41592-024-02492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 09/18/2024] [Indexed: 11/20/2024]
Abstract
The great molecular heterogeneity within single cells demands omics analysis from a single-molecule perspective. Moreover, considering the perpetual metabolism and communication within cells, it is essential to determine the time-series changes of the molecular library, rather than obtaining data at only one time point. Thus, there is an urgent need to develop a single-molecule strategy for this omics analysis to elucidate the biosystem heterogeneity and temporal dynamics. In this Perspective, we explore the potential application of nanopores for single-molecule temporal omics to characterize individual molecules beyond mass, in both a single-molecule and high-throughput manner. Accordingly, recent advances in nanopores available for single-molecule temporal omics are reviewed from the view of single-molecule mass identification, revealing single-molecule heterogeneity and illustrating temporal evolution. Furthermore, we discuss the primary challenges associated with using nanopores for single-molecule temporal omics in complex biological samples, and present the potential strategies and notes to respond to these challenges.
Collapse
Affiliation(s)
- Meng-Yin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
| | - Jie Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jun-Ge Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hongyan Niu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Ruijun Tian
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen, China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
39
|
Du C, Guo W, Wang M, Zhou Z, Zhou T, Liu M, Dong N, Wu Q. O-glycosylation is essential for cell surface expression of the transcobalamin receptor CD320. J Biol Chem 2024; 300:107997. [PMID: 39551142 DOI: 10.1016/j.jbc.2024.107997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
CD320 is a cell surface receptor that mediates vitamin B12 uptake in most tissues. To date, the mechanisms that regulate CD320 expression on the cell surface are not fully understood. In this work, we studied CD320 expression in transfected human embryonic kidney (HEK) 293 and hepatoma HepG2 cells. By glycosidase and trypsin digestion, monensin and brefeldin treatment, western blotting, flow cytometry, and lectin binding, we found that CD320 underwent N- and O-glycosylation and sialylation, resulting in a ∼70-kDa band that formed a high-molecular-weight complex on the cell surface. Site-directed mutagenesis altering Asn126, Asn195, and Asn213 residues, individually or together, abolished N-glycosylation in CD320 but did not block its intracellular trafficking and expression on the cell surface in HEK293 and HepG2 cells. In contrast, treatment of the cells with Ben-gal, a structural analog of GalNAc-α-1-O-Ser/Thr, inhibited O-glycosylation and cell surface expression of CD320 and decreased vitamin B12 uptake. Analysis of CD320 deletion mutants indicated that O-glycosylation sites in a Ser/Thr-rich region near the transmembrane domain were important for CD320 expression on the cell surface. These results reveal an important role of O-glycans, but not N-glycans, in the intracellular trafficking and cell surface expression of CD320, providing new insights into the cellular mechanisms in regulating CD320 function and vitamin B12 metabolism.
Collapse
Affiliation(s)
- Chunyu Du
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University Suzhou Medical College, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Wenjun Guo
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University Suzhou Medical College, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Mengting Wang
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University Suzhou Medical College, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Zibin Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Ningzheng Dong
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Soochow University Suzhou Medical College, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| |
Collapse
|
40
|
Ghosh P. Deciphering the Cell Surface Sugar-Coating via Biochemical Pathways. Chemistry 2024; 30:e202401983. [PMID: 39215611 DOI: 10.1002/chem.202401983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cell surface components, specifically glycans, play a significant role in several biological functions like cell structure, crosstalk between cells, and eventual target recognition of the cells for therapeutics. The dense layer of glycans, i. e., glycocalyx, could differ in taxon, species, and cell type. Glycans are coupled with lipids and proteins to form glycolipids, glycoproteins, proteoglycans, and glycosylphosphatidylinositol-anchored proteins, making their study challenging. However, understanding glycosylation at the cellular level is vital for fundamental research and advancing glycan-targeted therapy. Among different pathways, metabolic glycan labelling uses the natural metabolic processes of the cell to introduce abiotic functionality into glycan residues. The Bertozzi group pioneered metabolic oligosaccharide engineering using glycan salvage pathways to convert monosaccharides with unnatural modifications. This eventually results in the probe becoming part of the complex cellular glycan structures via click chemistry using copper. On the other hand, the boronic acid-based probe can recognise carbohydrates in a single step without any chemical modification of the surface. This review discusses the significance of glycans as biomarkers for different diseases and the necessity to evaluate them in situ within the physiological environment. The review also discusses the prospect of this field and its potential applications.
Collapse
Affiliation(s)
- Pritam Ghosh
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
41
|
Hashimoto N, Ito S, Harazono A, Tsuchida A, Mouri Y, Yamamoto A, Okajima T, Ohmi Y, Furukawa K, Kudo Y, Kawasaki N, Furukawa K. Bidirectional signals generated by Siglec-7 and its crucial ligand tri-sialylated T to escape of cancer cells from immune surveillance. iScience 2024; 27:111139. [PMID: 39507251 PMCID: PMC11539641 DOI: 10.1016/j.isci.2024.111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/05/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Siglec-7, an inhibitory receptor expressed on natural killer (NK) cells, recognizes sialic acid-containing glycans. However, the ligand glycan structures of Siglec-7 and its carrier proteins have not been comprehensively investigated. Here, we identified four sialyltransferases that are used for the synthesis of ligand glycans of Siglec-7 and two ligand O-glycan-carrier proteins, PODXL and MUC13, using a colon cancer line. Upon binding of these ligand glycans, Siglec-7-expressing immune cells showed reduced cytotoxic activity, whereas cancer cells expressing ligand glycans underwent signal activation, leading to enhanced invasion activity. To clarify the structure of the ligand glycan, podoplanin (PDPN) identified as a Siglec-7 ligand-carrier protein, was transfected into HEK293T cells using sialyltransferase cDNAs. Mass spectrometry of the products revealed a ligand glycan, tri-sialylated T antigen. These results indicate that Siglec-7 interaction with its ligand generates bidirectional signals in NK and cancer cells, leading to the efficient escape of cancers from host immune surveillance.
Collapse
Affiliation(s)
- Noboru Hashimoto
- Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan
- Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Shizuka Ito
- Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan
| | - Akira Harazono
- Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Akiko Tsuchida
- Laboratory of Glycobiology, The Noguchi Institute, Itabashi 173-0003, Japan
| | - Yasuhiro Mouri
- Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Akihito Yamamoto
- Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Tetsuya Okajima
- Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan
| | - Yuhsuke Ohmi
- Clinical Engineering, Chubu University College of Life and Health Science, Aichi 487-8501, Japan
| | - Keiko Furukawa
- Biomedical Sciences, Chubu University College of Life and Health Sciences, Aichi 487-8501, Japan
| | - Yasusei Kudo
- Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Nana Kawasaki
- Biopharmaceutical and Regenerative Sciences, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Koichi Furukawa
- Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan
- Biomedical Sciences, Chubu University College of Life and Health Sciences, Aichi 487-8501, Japan
| |
Collapse
|
42
|
Dey R, Taraphder S. Molecular Modeling of Glycosylated Catalytic Domain of Human Carbonic Anhydrase IX. J Phys Chem B 2024; 128:11054-11068. [PMID: 39487784 DOI: 10.1021/acs.jpcb.4c03514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Glycans exhibit significant structural diversity due to the flexibility of glycosidic bonds linking their constituent monosaccharides and the formation of numerous hydrogen bonds. The present work searches a simulated ensemble of glycan chain conformations attached to the catalytic domain of N-glycosylated human carbonic anhydrase IX (HCA IX-c) to identify conformations pointed away or back-folded toward the protein surface guided by different amino acid residues. A series of classical molecular dynamics (MD) simulation studies for a total of 30 μs followed by accelerated MD simulations for a total of 2 μs have been performed using two different force fields to capture varying degrees of fluctuations of both glycan chain and HCA IX. From the underlying free energy profile and kinetics derived using hidden Markov state model, several stable glycan orientations are identified that extend away from the protein surface and convert among each other with rate constants of the order 107-1010 S-1. Most importantly, we have identified a rare glycan conformation which reaches close to a catalytically important amino acid residue, Glu-106. We further enlist the protein residues that couple such less frequent event of the glycan chain back-folding toward the surface of the protein.
Collapse
Affiliation(s)
- Ritwika Dey
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Srabani Taraphder
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
43
|
Angelia MRN, Rodelas-Angelia AJD, Yang C, Park S, Jeong SP, Jang H, Bela-ong DB, Jang H, Thompson KD, Jung T. Screening and Characterization of Sialic Acid-Binding Variable Lymphocyte Receptors from Hagfish. BIOTECH 2024; 13:46. [PMID: 39584903 PMCID: PMC11586995 DOI: 10.3390/biotech13040046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Sialic acid is a diverse group of monosaccharides often found on the termini of N- and O-linked glycans as well as being components of glycoconjugates. Hypersialylation has been associated with the progression of chronic inflammation-mediated diseases such as cardiovascular disease and cancer. Given its role in infection and disease-related processes, sialic acid is a promising target for therapeutic approaches that utilize carbohydrate-binding molecules. In this study, we screened for sialic acid-recognizing variable lymphocyte receptors (VLRBs) or ccombodies from inshore hagfish (Eptatretus burgeri) using a synthetic Neu5Ac-glycoconjugate as an antigen in immunoassay. Resulting ccombodies, 2D8, 5G11, 4A1, and 5F8 were further characterized in terms of their binding activity and specificity. A competitive ELISA using free haptens showed strong inhibition using either N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). The half-maximal inhibitory concentrations (IC50) for Neu5Ac ranged from 7.02 to 17.06 mM, with candidates 4A1 and 5G11 requiring the least and highest amounts, respectively. IC50 values for Neu5Gc ranged from 8.12 to 13.91 mM, for 4A1 and 5G11, respectively. Candidate ccombodies also detected naturally occurring sialic acid from known sialoglycoproteins using a dot blot assay. Neu5Gc-5G11 and Neu5Ac-2D8 yielded the strongest and weakest docking interactions with affinity values of -5.9 kcal/mol and -4.9 kcal/mol, respectively. Hydrogen bonding and hydrophobic interactions were predicted to be the predominant noncovalent forces observed between the ccombodies and sialic acid. This study demonstrates that glycan-binding VLRBs from hagfish hold promise in augmenting the glycobiologists' toolkit in investigating the roles of glycans in human and animal health and disease.
Collapse
Affiliation(s)
- Mark Rickard N. Angelia
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-Daero, Jinju-si 52828, Gyeongsangnam-do, Republic of Korea; (M.R.N.A.); (A.J.D.R.-A.); (C.Y.); (S.P.); (S.p.J.); (H.J.); (D.B.B.-o.)
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Abigail Joy D. Rodelas-Angelia
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-Daero, Jinju-si 52828, Gyeongsangnam-do, Republic of Korea; (M.R.N.A.); (A.J.D.R.-A.); (C.Y.); (S.P.); (S.p.J.); (H.J.); (D.B.B.-o.)
| | - Cheolung Yang
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-Daero, Jinju-si 52828, Gyeongsangnam-do, Republic of Korea; (M.R.N.A.); (A.J.D.R.-A.); (C.Y.); (S.P.); (S.p.J.); (H.J.); (D.B.B.-o.)
| | - Sojeong Park
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-Daero, Jinju-si 52828, Gyeongsangnam-do, Republic of Korea; (M.R.N.A.); (A.J.D.R.-A.); (C.Y.); (S.P.); (S.p.J.); (H.J.); (D.B.B.-o.)
| | - Seung pyo Jeong
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-Daero, Jinju-si 52828, Gyeongsangnam-do, Republic of Korea; (M.R.N.A.); (A.J.D.R.-A.); (C.Y.); (S.P.); (S.p.J.); (H.J.); (D.B.B.-o.)
| | - Hyeok Jang
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-Daero, Jinju-si 52828, Gyeongsangnam-do, Republic of Korea; (M.R.N.A.); (A.J.D.R.-A.); (C.Y.); (S.P.); (S.p.J.); (H.J.); (D.B.B.-o.)
| | - Dennis Berbulla Bela-ong
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-Daero, Jinju-si 52828, Gyeongsangnam-do, Republic of Korea; (M.R.N.A.); (A.J.D.R.-A.); (C.Y.); (S.P.); (S.p.J.); (H.J.); (D.B.B.-o.)
| | - Hobin Jang
- Center for Study of Emerging and Re-Emerging Viruses, Korea Virus Research Institute, Institute for Basic Science, Daejeon 34126, Republic of Korea;
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK;
| | - Taesung Jung
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-Daero, Jinju-si 52828, Gyeongsangnam-do, Republic of Korea; (M.R.N.A.); (A.J.D.R.-A.); (C.Y.); (S.P.); (S.p.J.); (H.J.); (D.B.B.-o.)
| |
Collapse
|
44
|
Liu YS, Miao YL, Dou Y, Yang ZH, Sun W, Zhou X, Li Z, Hideki N, Gao XD, Fujita M. Processing of N-glycans in the ER and Golgi influences the production of surface sialylated glycoRNA. Glycoconj J 2024:10.1007/s10719-024-10171-w. [PMID: 39531110 DOI: 10.1007/s10719-024-10171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Glycoconjugates, including glycans on proteins and lipids, have obtained significant attention due to their critical roles in both intracellular and intercellular biological functions and processes. Notably, recent discoveries have revealed the presence of glycosylated RNAs (glycoRNAs) on cell surfaces. Despite the well-characterized roles of RNA modifications, RNA glycosylation remains relatively unexplored. In this study, we investigate the relationship between N-glycosylation and RNA glycosylation. Using a recombinant Siglec11-Fc as a probe, we detected surface sialylated glycoRNAs in human cell lines and identified their dependency on the catalytic isoforms of the oligosaccharyltransferase (OST) complex, implicating STT3A-dependent protein glycosylation as a predominant contributor for affecting indirect generation of glycoRNAs. Additionally, perturbations in N-glycan biosynthesis pathways or changes in N-glycan structure impact surface sialylated glycoRNA levels, indicating a regulatory role of glycan metabolic pathways in RNA glycosylation. Together, our results underscore the intricate relationship between protein N-glycosylation and processing and RNA biology.
Collapse
Affiliation(s)
- Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Yu-Long Miao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yue Dou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ze-Hui Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wenhao Sun
- Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650021, China
| | - Xiaoman Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Nakanishi Hideki
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiao-Dong Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing, 100190, China
| | - Morihisa Fujita
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
45
|
Bertok T, Jane E, Hires M, Tkac J. N-Acetylated Monosaccharides and Derived Glycan Structures Occurring in N- and O-Glycans During Prostate Cancer Development. Cancers (Basel) 2024; 16:3786. [PMID: 39594740 PMCID: PMC11592093 DOI: 10.3390/cancers16223786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Post-translational modifications of proteins play an important role in their stability, solubility and in vivo function. Also, for several reasons, such as the Golgi fragmentation during cancerogenesis, glycosylation as the most common modification is especially promising in offering high cancer specificity which, in combination with tissue-specific biomarkers available in the case of prostate diseases (PSA, PSMA, PAP), may lead to the development of novel oncodiagnostic approaches. In this review, we present the importance of subterminal glycan structures based on the N-acetylated monosaccharides GlcNAc and GalNAc in N- and also O-glycans, structures of which they are a component (LacNAc, LacdiNAc, branched structures). We also discuss the importance and clinical performance of these structures in cases of prostate cancer diagnostics using lectin-based affinity methods, which could be implemented in clinical laboratory practice in the future.
Collapse
Affiliation(s)
- Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
- Glycanostics, Kudlakova 7, 841 08 Bratislava, Slovakia
| |
Collapse
|
46
|
Ma M, Dubey R, Jen A, Pusapati GV, Singal B, Shishkova E, Overmyer KA, Cormier-Daire V, Fedry J, Aravind L, Coon JJ, Rohatgi R. Regulated N-glycosylation controls chaperone function and receptor trafficking. Science 2024; 386:667-672. [PMID: 39509507 DOI: 10.1126/science.adp7201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/25/2024] [Accepted: 09/19/2024] [Indexed: 11/15/2024]
Abstract
One-fifth of human proteins are N-glycosylated in the endoplasmic reticulum (ER) by two oligosaccharyltransferases, OST-A and OST-B. Contrary to the prevailing view of N-glycosylation as a housekeeping function, we identified an ER pathway that modulates the activity of OST-A. Genetic analyses linked OST-A to HSP90B1, an ER chaperone for membrane receptors, and CCDC134, an ER luminal protein. During its translocation into the ER, an N-terminal peptide in HSP90B1 templates the assembly of a translocon complex containing CCDC134 and OST-A that protects HSP90B1 during folding, preventing its hyperglycosylation and degradation. Disruption of this pathway impairs WNT and IGF1R signaling and causes the bone developmental disorder osteogenesis imperfecta. Thus, N-glycosylation can be regulated by specificity factors in the ER to control cell surface receptor signaling and tissue development.
Collapse
Affiliation(s)
- Mengxiao Ma
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ramin Dubey
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Ganesh V Pusapati
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bharti Singal
- Stanford SLAC CryoEM Initiative, Stanford, CA 94305, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
| | - Katherine A Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
| | - Valérie Cormier-Daire
- Université Paris Cité, Génétique clinique, INSERM UMR 1163, Institut Imagine, Hôpital Necker-Enfants Malades (AP-HP), Paris, France
| | - Juliette Fedry
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - L Aravind
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, MD 20894, USA
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
47
|
Yang Y, Treger RS, Hernandez-Bird J, Lu P, Mao T, Iwasaki A. A B cell screen against endogenous retroviruses identifies glycan-reactive IgM that recognizes a broad array of enveloped viruses. Sci Immunol 2024; 9:eadd6608. [PMID: 39514636 DOI: 10.1126/sciimmunol.add6608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Endogenous retroviruses (ERVs), comprising a substantial portion of the vertebrate genome, are remnants of ancient genetic invaders. ERVs with near-intact coding potential reactivate in B cell-deficient mice. To study how B cells contribute to host anti-ERV immunity, we used an antigen-baiting strategy to enrich B cells reactive to ERV surface antigens. We identified ERV-reactive B-1 cells expressing germline-encoded natural IgM antibodies in naïve mice, the level of which further increases upon innate immune sensor stimulation. B cell receptor repertoire profiling of ERV-reactive B-1 cells revealed increased usage of the Igh VH gene that gives rise to glycan-specific antibodies targeting terminal N-acetylglucosamine moieties on ERV glycoproteins, which further engage the complement pathway to mediate anti-ERV responses. These same antibodies also recognize glycoproteins of other enveloped viruses but not self-proteins. These results reveal an innate antiviral mechanism of germline-encoded antibodies with broad reactivity to enveloped viruses, which constitutes a natural antibody repertoire capable of preventing the emergence of infectious ERVs.
Collapse
Affiliation(s)
- Yexin Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rebecca S Treger
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Juan Hernandez-Bird
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peiwen Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
48
|
He JY, Fu JX, Huang JY, Wang CH, Zheng QY, Zhou LD, Zhang QH, Yuan CS. A dual-capture-system polymer based on imprinted cavities and post-imprinting modification sites with significantly improved affinity and specificity for sialic acid and sialylated glycoprotein. Int J Biol Macromol 2024; 282:137442. [PMID: 39522896 DOI: 10.1016/j.ijbiomac.2024.137442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/17/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The abnormal expression of N-acetylneuraminic acid (SA) and sialylated glycoproteins in biological fluids are closely associated with various diseases including cancer. However, the low content of SA and the strong interference of complex matrix greatly influence the effective capture of SA in biosamples prior to analysis. Herein, a dual-capture-system strategy based on molecular imprinting and post-imprinting modification (PIM) was proposed to precisely capture SA with improved binding affinity and specificity. After imprinting with SA as template, dynamic imine bonds are introduced by post-imprinting modification, enabling sufficiently high specificity to capture SA through imprinting cavities and the dynamic imine bonds hydrolysis reaction simultaneously. The prepared magnetic PIM polymers (Mag-MIPs-PIM) exhibited significantly high specificity both for SA (IF = 4.24) and sialylated glycoprotein (IFTRF = 3.50). In addition, the feasibility of Mag-MIPs-PIM for practical application was demonstrated by association with HPLC for the determination of SA in human serum, and an LOD of 0.01 × 10-2 g L-1 was obtained. The proposed strategy based on molecular imprinting and PIM provides a new inspiration for the improvement of selectivity of the molecularly imprinted polymers.
Collapse
Affiliation(s)
- Jia-Yuan He
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Jun-Xuan Fu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Jia-Yi Huang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chang-Hong Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Qin-Yue Zheng
- Chongqing Institute for Food and Drug Control, Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing, 400715, China
| | - Lian-Di Zhou
- School of Basic Medicine Science, Chongqing University of Chinese Medicine, Chongqing, 402760, China.
| | - Qi-Hui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China; Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA.
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
49
|
Kazantsev K, Toukach P. Remediation of the NMR data of natural glycans. Int J Biol Macromol 2024; 282:137042. [PMID: 39521218 DOI: 10.1016/j.ijbiomac.2024.137042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Primary structure elucidation in glycobiology is strongly affected by published structure-reporting NMR signals, especially on the 13C nucleus. The glycan NMR simulation accuracy and machine learning outcome depend on the quality of the NMR signal assignment in glycan databases. Within our work on improving the data quality in the Carbohydrate Structure Database (CSDB), we have applied a systematic search for inconsistencies in the published NMR data. The search was based on a bulk comparison between the experimental and simulated 13C NMR chemical shifts and manual analysis of the mismatches. On the basis of this analysis, CSDB was remediated by marking and correcting the NMR errors found in 272 structure elucidation reports published over the past 40 years.
Collapse
Affiliation(s)
- Kirill Kazantsev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia
| | - Philip Toukach
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia; National Research University Higher School of Economics, Faculty of Chemistry, Vavilova 7, 117312 Moscow, Russia.
| |
Collapse
|
50
|
Zhong X, D’Antona AM, Rouse JC. Mechanistic and Therapeutic Implications of Protein and Lipid Sialylation in Human Diseases. Int J Mol Sci 2024; 25:11962. [PMID: 39596031 PMCID: PMC11594235 DOI: 10.3390/ijms252211962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Glycan structures of glycoproteins and glycolipids on the surface glycocalyx and luminal sugar layers of intracellular membrane compartments in human cells constitute a key interface between intracellular biological processes and external environments. Sialic acids, a class of alpha-keto acid sugars with a nine-carbon backbone, are frequently found as the terminal residues of these glycoconjugates, forming the critical components of these sugar layers. Changes in the status and content of cellular sialic acids are closely linked to many human diseases such as cancer, cardiovascular, neurological, inflammatory, infectious, and lysosomal storage diseases. The molecular machineries responsible for the biosynthesis of the sialylated glycans, along with their biological interacting partners, are important therapeutic strategies and targets for drug development. The purpose of this article is to comprehensively review the recent literature and provide new scientific insights into the mechanisms and therapeutic implications of sialylation in glycoproteins and glycolipids across various human diseases. Recent advances in the clinical developments of sialic acid-related therapies are also summarized and discussed.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Aaron M. D’Antona
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Jason C. Rouse
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA;
| |
Collapse
|