1
|
Halldorsson S, Nagymihaly RM, Patel A, Brandal P, Panagopoulos I, Leske H, Lund-Iversen M, Sahm F, Vik-Mo EO. Accurate and comprehensive evaluation of O6-methylguanine-DNA methyltransferase promoter methylation by nanopore sequencing. Neuropathol Appl Neurobiol 2024; 50:e12984. [PMID: 38783575 DOI: 10.1111/nan.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
AIMS The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter region is essential in evaluating the prognosis and predicting the drug response in patients with glioblastoma. In this study, we evaluated the utility of using nanopore long-read sequencing as a method for assessing methylation levels throughout the MGMT CpG-island, compared its performance to established techniques and demonstrated its clinical applicability. METHODS We analysed 165 samples from CNS tumours, focusing on the MGMT CpG-island using nanopore sequencing. Oxford Nanopore Technologies (ONT) MinION and PromethION flow cells were employed for single sample or barcoded assays, guided by a CRISPR/Cas9 protocol, adaptive sampling or as part of a whole genome sequencing assay. Methylation data obtained through nanopore sequencing were compared to results obtained via pyrosequencing and methylation bead arrays. Hierarchical clustering was applied to nanopore sequencing data for patient stratification. RESULTS Nanopore sequencing displayed a strong correlation (R2 = 0.91) with pyrosequencing results for the four CpGs of MGMT analysed by both methods. The MGMT-STP27 algorithm's classification was effectively reproduced using nanopore data. Unsupervised hierarchical clustering revealed distinct patterns in methylated and unmethylated samples, providing comparable survival prediction capabilities. Nanopore sequencing yielded high-confidence results in a rapid timeframe, typically within hours of sequencing, and extended the analysis to all 98 CpGs of the MGMT CpG-island. CONCLUSIONS This study presents nanopore sequencing as a valid and efficient method for determining MGMT promotor methylation status. It offers a comprehensive view of the MGMT promoter methylation landscape, which enables the identification of potentially clinically relevant subgroups of patients. Further exploration of the clinical implications of patient stratification using nanopore sequencing of MGMT is warranted.
Collapse
Affiliation(s)
- Skarphedinn Halldorsson
- Vilhelm Magnus Laboratory, Institute for Surgical Research, Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Richard Mark Nagymihaly
- Vilhelm Magnus Laboratory, Institute for Surgical Research, Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Areeba Patel
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Petter Brandal
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Henning Leske
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | | | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Einar O Vik-Mo
- Vilhelm Magnus Laboratory, Institute for Surgical Research, Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Satgunaseelan L, Lee M, Iannuzzi S, Hallal S, Deang K, Stanceski K, Wei H, Mason S, Shivalingam B, Sim HW, Buckland ME, Alexander KL. 'The Reports of My Death Are Greatly Exaggerated'-Evaluating the Effect of Necrosis on MGMT Promoter Methylation Testing in High-Grade Glioma. Cancers (Basel) 2024; 16:1906. [PMID: 38791984 PMCID: PMC11120496 DOI: 10.3390/cancers16101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Background: MGMT (O-6-methylguanine-DNA methyltransferase) promoter methylation remains an important predictive biomarker in high-grade gliomas (HGGs). The influence of necrosis on the fidelity of MGMT promoter (MGMTp) hypermethylation testing is currently unknown. Therefore, our study aims to evaluate the effect of varying degrees of necrosis on MGMTp status, as determined by pyrosequencing, in a series of primary and recurrent HGGs; (2) Methods: Within each case, the most viable blocks (assigned as 'true' MGMTp status) and the most necrotic block were determined by histopathology review. MGMTp status was determined by pyrosequencing. Comparisons of MGMTp status were made between the most viable and most necrotic blocks. (3) Results: 163 samples from 64 patients with HGGs were analyzed. MGMTp status was maintained in 84.6% of primary and 78.3% of recurrent HGGs between the most viable and necrotic blocks. A threshold of ≥60% tumor cellularity was established at which MGMTp status was unaltered, irrespective of the degree of necrosis. (4) Conclusions: MGMTp methylation status, as determined by pyrosequencing, does not appear to be influenced by necrosis in the majority of cases at a cellularity of at least 60%. Further investigation into the role of intratumoral heterogeneity on MGMTp status will increase our understanding of this predictive marker.
Collapse
Affiliation(s)
- Laveniya Satgunaseelan
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Maggie Lee
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Sebastian Iannuzzi
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Susannah Hallal
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
| | - Kristine Deang
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
| | - Kristian Stanceski
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Heng Wei
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Sofia Mason
- Department of Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (S.M.); (H.-W.S.)
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Brindha Shivalingam
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
- Department of Neurosurgery, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Hao-Wen Sim
- Department of Medical Oncology, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (S.M.); (H.-W.S.)
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW 2050, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia
| | - Michael E. Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
| | - Kimberley L. Alexander
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (M.L.); (S.I.); (S.H.); (K.S.); (H.W.); (M.E.B.); (K.L.A.)
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia; (K.D.); (B.S.)
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
| |
Collapse
|
3
|
Shaw R, Basu M, Karmakar S, Ghosh MK. MGMT in TMZ-based glioma therapy: Multifaceted insights and clinical trial perspectives. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119673. [PMID: 38242327 DOI: 10.1016/j.bbamcr.2024.119673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Temozolomide (TMZ) is the most preferred and approved chemotherapeutic drug for either first- or second-line chemotherapy for glioma patients across the globe. In glioma patients, resistance to treatment with alkylating drugs like TMZ is known to be conferred by exalted levels of MGMT gene expression. On the contrary, epigenetic silencing through MGMT gene promoter methylation leading to subsequent reduction in MGMT transcription and protein expression, is predicted to have a response favoring TMZ treatment. Thus, MGMT protein level in cancer cells is a crucial determining factor in indicating and predicting the choice of alkylating agents in chemotherapy or choosing glioma patients directly for a second line of treatment. Thus, in-depth research is necessary to achieve insights into MGMT gene regulation that has recently enticed a fascinating interest in epigenetic, transcriptional, post-transcriptional, and post-translational levels. Furthermore, MGMT promoter methylation, stability of MGMT protein, and related subsequent adaptive responses are also important contributors to strategic developments in glioma therapy. With applications to its identification as a prognostic biomarker, thus predicting response to advanced glioma therapy, this review aims to concentrate on the mechanistic role and regulation of MGMT gene expression at epigenetic, transcriptional, post-transcriptional, and post-translational levels functioning under the control of multiple signaling dynamics.
Collapse
Affiliation(s)
- Rajni Shaw
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24, Paraganas 743372, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
4
|
Anan M, Del Maestro RF, Hata N, Fujiki M. O 6 -methylguanine methyltransferase promoter methylation status of glioblastoma cell line clonal population. Neuropathology 2024; 44:41-46. [PMID: 37382159 DOI: 10.1111/neup.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 06/30/2023]
Abstract
Glioblastoma (GBM) remains a treatment-resistant malignant brain tumor in large part because of its genetic heterogeneity and epigenetic plasticity. In this study, we investigated the epigenetic heterogeneity of GBM by evaluating the methylation status of the O6 -methylguanine methyltransferase (MGMT) promoter in individual clones of a single cell derived from GBM cell lines. The U251 and U373 GBM cell lines, from the Brain Tumour Research Centre of the Montreal Neurological Institute, were used for the experiments. To evaluate the methylation status of the MGMT promoter, pyrosequencing and methylation-specific PCR (MSP) were used. Moreover, mRNA and protein expression levels of MGMT in the individual GBM clones were evaluated. The HeLa cell line, which hyper-expresses MGMT, was used as control. A total of 12 U251 and 12 U373 clones were isolated. The methylation status of 83 of 97 CpG sites in the MGMT promoter were evaluated by pyrosequencing, and 11 methylated CpG sites and 13 unmethylated CpG sites were evaluated by MSP. The methylation status by pyrosequencing was relatively high at CpG sites 3-8, 20-35, and 7-83, in both the U251 and U373 clones. Neither MGMT mRNA nor protein was detected in any clone. These findings demonstrate tumor heterogeneity among individual clones derived from a single GBM cell. MGMT expression may be regulated, not only by methylation of the MGMT promoter but by other factors as well. Further studies are needed to clarify the mechanisms underlying the epigenetic heterogeneity and plasticity of GBM.
Collapse
Affiliation(s)
- Mitsuhiro Anan
- Department of Neurosurgery, Oita University Faculty of Medicine, Oita, Japan
| | - Rolando Fausto Del Maestro
- Neurosurgical Simulation and Artificial Intelligence Learning Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Nobuhiro Hata
- Department of Neurosurgery, Oita University Faculty of Medicine, Oita, Japan
| | - Minoru Fujiki
- Department of Neurosurgery, Oita University Faculty of Medicine, Oita, Japan
| |
Collapse
|
5
|
Zappe K, Pühringer K, Pflug S, Berger D, Weis S, Spiegl-Kreinecker S, Cichna-Markl M. Association of MGMT Promoter and Enhancer Methylation with Genetic Variants, Clinical Parameters, and Demographic Characteristics in Glioblastoma. Cancers (Basel) 2023; 15:5777. [PMID: 38136323 PMCID: PMC10742072 DOI: 10.3390/cancers15245777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The response of glioblastoma (GBM) patients to the alkylating agent temozolomide (TMZ) vitally depends on the expression level of the repair protein O6-methylguanine-DNA methyltransferase (MGMT). Since MGMT is strongly regulated by promoter methylation, the methylation status of the MGMT promoter has emerged as a prognostic and predictive biomarker for GBM patients. By determining the methylation levels of the four enhancers located within or close to the MGMT gene, we recently found that enhancer methylation contributes to MGMT regulation. In this study, we investigated if methylation of the four enhancers is associated with SNP rs16906252, TERT promoter mutations C228T and C250T, TERT SNP rs2853669, proliferation index Ki-67, overall survival (OS), age, and sex of the patients. In general, associations with genetic variants, clinical parameters, and demographic characteristics were caused by a complex interplay of multiple CpGs in the MGMT promoter and of multiple CpGs in enhancer regions. The observed associations for intragenic enhancer 4, located in intron 2 of MGMT, differed from associations observed for the three intergenic enhancers. Some findings were restricted to subgroups of samples with either methylated or unmethylated MGMT promoters, underpinning the relevance of the MGMT promoter status in GBMs.
Collapse
Affiliation(s)
- Katja Zappe
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| | - Katharina Pühringer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| | - Simon Pflug
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| | - Daniel Berger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| | - Serge Weis
- Division of Neuropathology, Department of Pathology and Molecular Pathology, Kepler University Hospital GmbH, Johannes Kepler University, 4040 Linz, Austria;
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University, 4040 Linz, Austria;
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| |
Collapse
|
6
|
Penkova A, Kuziakova O, Gulaia V, Tiasto V, Goncharov NV, Lanskikh D, Zhmenia V, Baklanov I, Farniev V, Kumeiko V. Comprehensive clinical assays for molecular diagnostics of gliomas: the current state and future prospects. Front Mol Biosci 2023; 10:1216102. [PMID: 37908227 PMCID: PMC10613994 DOI: 10.3389/fmolb.2023.1216102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
Glioma is one of the most intractable types of cancer, due to delayed diagnosis at advanced stages. The clinical symptoms of glioma are unclear and due to a variety of glioma subtypes, available low-invasive testing is not effective enough to be introduced into routine medical laboratory practice. Therefore, recent advances in the clinical diagnosis of glioma have focused on liquid biopsy approaches that utilize a wide range of techniques such as next-generation sequencing (NGS), droplet-digital polymerase chain reaction (ddPCR), and quantitative PCR (qPCR). Among all techniques, NGS is the most advantageous diagnostic method. Despite the rapid cheapening of NGS experiments, the cost of such diagnostics remains high. Moreover, high-throughput diagnostics are not appropriate for molecular profiling of gliomas since patients with gliomas exhibit only a few diagnostic markers. In this review, we highlighted all available assays for glioma diagnosing for main pathogenic glioma DNA sequence alterations. In the present study, we reviewed the possibility of integrating routine molecular methods into the diagnosis of gliomas. We state that the development of an affordable assay covering all glioma genetic aberrations could enable early detection and improve patient outcomes. Moreover, the development of such molecular diagnostic kits could potentially be a good alternative to expensive NGS-based approaches.
Collapse
Affiliation(s)
- Alina Penkova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Olga Kuziakova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Gulaia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vladlena Tiasto
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Nikolay V. Goncharov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Daria Lanskikh
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Zhmenia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Ivan Baklanov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Vladislav Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vadim Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| |
Collapse
|
7
|
Bai P, Fan T, Wang X, Zhao L, Zhong R, Sun G. Modulating MGMT expression through interfering with cell signaling pathways. Biochem Pharmacol 2023; 215:115726. [PMID: 37524206 DOI: 10.1016/j.bcp.2023.115726] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Guanine O6-alkylating agents are widely used as first-line chemotherapeutic drugs due to their ability to induce cytotoxic DNA damage. However, a major hurdle in their effectiveness is the emergence of chemoresistance, largely attributed to the DNA repair pathway mediated by O6-methylguanine-DNA methyltransferase (MGMT). MGMT plays an important role in removing the alkyl groups from lethal O6-alkylguanine (O6-AlkylG) adducts formed by chemotherapeutic alkylating agents. By doing so, MGMT enables tumor cells to evade apoptosis and develop drug resistance toward DNA alkylating agents. Although covalent inhibitors of MGMT, such as O6-benzylguanine (O6-BG) and O6-(4-bromothenyl)guanine (O6-4-BTG or lomeguatrib), have been explored in clinical settings, their utility is limited due to severe delayed hematological toxicity observed in most patients when combined with alkylating agents. Therefore, there is an urgent need to identify new targets and unravel the underlying molecular mechanisms and to develop alternative therapeutic strategies that can overcome MGMT-mediated tumor resistance. In this context, the regulation of MGMT expression via interfering the specific cell signaling pathways (e.g., Wnt/β-catenin, NF-κB, Hedgehog, PI3K/AKT/mTOR, JAK/STAT) emerges as a promising strategy for overcoming tumor resistance, and ultimately enhancing the efficacy of DNA alkylating agents in chemotherapy.
Collapse
Affiliation(s)
- Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
8
|
Leske H, Camenisch Gross U, Hofer S, Neidert MC, Leske S, Weller M, Lehnick D, Rushing EJ. MGMT methylation pattern of long-term and short-term survivors of glioblastoma reveals CpGs of the enhancer region to be of high prognostic value. Acta Neuropathol Commun 2023; 11:139. [PMID: 37641156 PMCID: PMC10463744 DOI: 10.1186/s40478-023-01622-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 08/31/2023] Open
Abstract
Treatment with the alkylating agent temozolomide is known to be prognostically beneficial in a subset of glioblastoma patients. Response to such chemotherapeutic treatment and the prognostic benefit have been linked to the methylation status of O6-methylguanine-DNA methyltransferase (MGMT). To date, it has not been entirely resolved which methylation pattern of MGMT is most relevant to predict response to temozolomide treatment and outcome. In this retrospective study, we compared the methylation patterns, analyzed by Sanger sequencing, of 27 isocitrate dehydrogenase (IDH)-wildtype glioblastoma patients that survived more than 3 years (long-term survivors) with those of 24 patients who survived less than a year after initial surgery (short-term survivors). Random Forest-, Correlation-, and ROC-curve analyses were performed. The data showed that MGMT is typically methylated in long-term survivors, whereas no prominent methylation is observed in short-term survivors. The methylation status of CpGs, especially in the promoter and exon1/enhancer region correlated highly with outcome. In addition, age and temozolomide treatment were strongly associated with overall survival. Some CpGs in the enhancer region, in particular CpG 86 (bp + 154), demonstrated high values associated with overall survival in the Random Forest analysis. Our data confirm previously published prognostic factors in IDH-wildtype glioblastoma patients, including age and temozolomide treatment as well as the global MGMT methylation status. The area frequently used for decision making to administer temozolomide at the end of exon1 of MGMT, was associated with outcome. However, our data also suggest that the enhancer region, especially CpG 86 (bp + 154) is of strong prognostic value. Therefore, we propose further investigation of the enhancer region in a large prospective study in order to confirm our findings, which might result in an optimized prediction of survival in glioblastoma patients, likely linked to response to temozolomide treatment.
Collapse
Affiliation(s)
- Henning Leske
- Department of Pathology, Oslo University Hospital, Oslo, Norway.
- University of Oslo (UiO), Oslo, Norway.
- Department of Neuropathology, University Hospital of Zurich, Zurich, Switzerland.
| | | | - Silvia Hofer
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marian Christoph Neidert
- Department of Neurosurgery, University Hospital of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Cantonal Hospital of St. Gallen, St. Gallen, Switzerland
| | | | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Dirk Lehnick
- Department of Health Sciences and Medicine, Head Biostatistics and Methodology, University of Lucerne, Lucerne, Switzerland
| | - Elisabeth Jane Rushing
- Department of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
- Department of Pathology/ Neuropathology, Lucerne, Switzerland
| |
Collapse
|
9
|
Cheng G, Wang M, Zhang X, Zhang Y. Expression of IL-13Rα2 and FUS in glioma: clinicopathological and prognostic correlation. BMC Neurol 2023; 23:185. [PMID: 37158824 PMCID: PMC10165843 DOI: 10.1186/s12883-023-03237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/02/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND IL-13Rα2 is one of the most widely studied tumor-associated antigens in glioma research. Fused in sarcoma (FUS) is a DNA/RNA binding protein that is dysfunctional in various malignant tumors. However, the expression of IL-13Rα2 and FUS, their relationship with clinicopathological parameters and their prognostic value in glioma remain unclear. METHODS In the present study, the expression of IL-13Rα2 and FUS was measured in a glioma tissue array by immunohistochemistry. Pearson's X2 test was used to determine the correlation between immunohistochemical expressions and clinicopathological parameters. Pearson's or Spearman's correlation test was used to determine the association between these two proteins expression. The Kaplan-Meier analysis was used to investigate the effect of these proteins on prognosis. RESULTS The expressions of IL-13Rα2 were significantly higher in high-grade gliomas (HGG) than that in low-grade gliomas (LGG) and was associated with IDH mutation status, whereas FUS location demonstrated no significant correlation with clinicopathological parameters. Moreover, a positive relationship was found between nuclear and cytoplasmic co-localization FUS and IL-13Rα2 expression. Kaplan-Meier analysis revealed that patients with IDH wide type or IL-13Rα2 had worst overall survival (OS) compared to other biomarkers. In HGG, IL-13Rα2 combined with nuclear and cytoplasmic co-localization of FUS was associated with worse OS. Multivariate analysis showed that tumor grade, Ki-67, P53 and IL-13Rα2 could be the independent prognostic factors for OS. CONCLUSION IL-13Rα2 expression was significantly associated with cytoplasmic distribution of FUS in human glioma samples and could be the independent prognostic factors for OS, while the prognostic value of its co-expression with cytoplasmic FUS in glioma need to be addressed in the future studies.
Collapse
Affiliation(s)
- Guang Cheng
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Meng Wang
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China
- Department of Immunology, Medicine School, Yan'an University, Yan'an, China
| | - Xiyue Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China
- Department of Pathogenic Biology, Medicine School, Yan'an University, Yan'an, China
| | - Yun Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China.
| |
Collapse
|
10
|
Brandt B, Németh M, Berta G, Szünstein M, Heffer M, Rauch TA, Pap M. A Promising Way to Overcome Temozolomide Resistance through Inhibition of Protein Neddylation in Glioblastoma Cell Lines. Int J Mol Sci 2023; 24:ijms24097929. [PMID: 37175636 PMCID: PMC10178391 DOI: 10.3390/ijms24097929] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
There is no effective therapy for the lately increased incidence of glioblastoma multiforme (GBM)-the most common primary brain tumor characterized by a high degree of invasiveness and genetic heterogeneity. Currently, DNA alkylating agent temozolomide (TMZ) is the standard chemotherapy. Nevertheless, TMZ resistance is a major problem in the treatment of GBM due to numerous molecular mechanisms related to DNA damage repair, epigenetic alterations, cellular drug efflux, apoptosis-autophagy, and overactive protein neddylation. Low molecular weight inhibitors of NEDD8-activating enzyme (NAE), such as MLN4924, attenuate protein neddylation and present a promising low-toxicity anticancer agent. The aim of our study was to find an effective combination treatment with TMZ and MLN4924 in our TMZ-resistant GBM cell lines and study the effect of these combination treatments on different protein expressions such as O6-methylguanine methyltransferase (MGMT) and p53. The combination treatment successfully decreased cell viability and sensitized TMZ-resistant cells to TMZ, foreshadowing a new treatment strategy for GBM.
Collapse
Affiliation(s)
- Barbara Brandt
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Marica Németh
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Máté Szünstein
- Department of Ecology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tibor A Rauch
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Marianna Pap
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
11
|
Bai P, Fan T, Sun G, Wang X, Zhao L, Zhong R. The dual role of DNA repair protein MGMT in cancer prevention and treatment. DNA Repair (Amst) 2023; 123:103449. [PMID: 36680944 DOI: 10.1016/j.dnarep.2023.103449] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Alkylating agents are genotoxic chemicals that can induce and treat various types of cancer. This occurs through covalent bonding with cellular macromolecules, in particular DNA, leading to the loss of functional integrity under the persistence of modifications upon replication. O6-alkylguanine (O6-AlkylG) adducts are proposed to be the most potent DNA lesions induced by alkylating agents. If not repaired correctly, these adducts can result, at the molecular level, in DNA point mutations, chromosome aberrations, recombination, crosslinking, and single- and double-strand breaks (SSB/DSBs). At the cellular level, these lesions can result in malignant transformation, senescence, or cell death. O6-methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein capable of removing the alkyl groups from O6-AlkylG adducts in a damage reversal process that can prevent the adverse biological effects of DNA damage caused by guanine O6-alkylation. MGMT can thereby defend normal cells against tumor initiation, however it can also protect tumor cells against the beneficial effects of chemotherapy. Hence, MGMT can play an important role in both the prevention and treatment of cancer; thus, it can be considered as a double-edged sword. From a clinical perspective, MGMT is a therapeutic target, and it is important to explore the rational development of its clinical exploitation.
Collapse
Affiliation(s)
- Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; Department of Medical Technology, Beijing Pharmaceutical University of Staff and Workers, Beijing 100079, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
12
|
Wang J, Li D, Yang J, Chang L, Zhang R, Li J. CRISPR/Cas9-mediated epigenetic editing tool: An optimized strategy for targeting de novo DNA methylation with stable status via homology directed repair pathway. Biochimie 2022; 202:190-205. [DOI: 10.1016/j.biochi.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
|
13
|
Separable roles for RNAi in regulation of transposable elements and viability in the fission yeast Schizosaccharomyces japonicus. PLoS Genet 2022; 18:e1010100. [PMID: 35226668 PMCID: PMC8912903 DOI: 10.1371/journal.pgen.1010100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/10/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
RNA interference (RNAi) is a conserved mechanism of small RNA-mediated genome regulation commonly involved in suppression of transposable elements (TEs) through both post-transcriptional silencing, and transcriptional repression via heterochromatin assembly. The fission yeast Schizosaccharomyces pombe has been extensively utilised as a model for studying RNAi pathways. However, this species is somewhat atypical in that TEs are not major targets of RNAi, and instead small RNAs correspond primarily to non-coding pericentromeric repeat sequences, reflecting a specialised role for the pathway in promoting heterochromatin assembly in these regions. In contrast, in the related fission yeast Schizosaccharomyces japonicus, sequenced small RNAs correspond primarily to TEs. This suggests there may be fundamental differences in the operation of RNAi pathways in these two related species. To investigate these differences, we probed RNAi function in S. japonicus. Unexpectedly, and in contrast to S. pombe, we found that RNAi is essential in this species. Moreover, viability of RNAi mutants can be rescued by mutations implicated in enhancing RNAi-independent heterochromatin propagation. These rescued strains retain heterochromatic marks on TE sequences, but exhibit derepression of TEs at the post-transcriptional level. Our findings indicate that S. japonicus retains the ancestral role of RNAi in facilitating suppression of TEs via both post-transcriptional silencing and heterochromatin assembly, with specifically the heterochromatin pathway being essential for viability, likely due to a function in genome maintenance. The specialised role of RNAi in heterochromatin assembly in S. pombe appears to be a derived state that emerged after the divergence of S. japonicus. The chromosomes of many species are populated by repetitive transposable elements that are able to “jump” throughout the genome. The consequences of these mobilisations can be catastrophic, resulting in disruption of genes or chromosomal rearrangements, thus organisms usually employ defence mechanisms to keep these elements inactivated. The most widespread of these systems is RNA interference, which utilises small RNA molecules to direct either packaging of transposable element DNA into repressive heterochromatin, or degradation of RNA transcripts. Many fundamental discoveries about RNAi function have been made in the model fission yeast Schizosaccharomyces pombe; however, this species is unusual as it does not generally employ RNAi to control its transposable elements. We found that in a lesser studied relative, Schizosaccharomyces japonicus, small RNAs are required to silence transposable elements, and that this silencing occurs via both formation of heterochromatin and degradation of transcripts. This dual function RNAi pathway targeting transposable elements that appear to cluster at centromeres is very similar to systems seen in complex multicellular organisms, thus our findings reveal S. japonicus to be an exciting emergent model in which to study RNAi and centromere function.
Collapse
|
14
|
Liu Z, Liu B, Bian L, Wang H, Jia Y, Wang Y, Zhang W, Wang Y, Han Z, Cheng X, Lian X, Ren Z, Gao Y. ITGB3BP is a potential biomarker associated with poor prognosis of glioma. J Cell Mol Med 2021; 26:813-827. [PMID: 34953037 PMCID: PMC8817129 DOI: 10.1111/jcmm.17127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
Despite the growing recognition of ITGB3BP as an essential feature of various cancers, the relationship between ITGB3BP and glioma remains unclear. The main aim of this study was to determine the prognostic and diagnostic value of ITGB3BP in glioma. RNA-Seq and microarray data from 2222 glioma patients were included, and we found that the expression level of ITGB3BP in glioma tissues was significantly higher than that in normal brain tissues. Moreover, ITGB3BP can be considered an independent risk factor for poor prognosis and has great predictive value for the prognosis of glioma. Gene Set Enrichment Analysis results showed that ITGB3BP contributes to the poor prognosis of glioma by activating tumour-related signalling pathways. Some small-molecule drugs were identified, such as hexestrol, which may specifically inhibit ITGB3BP and be useful in the treatment of glioma. The TIMER database analysis results revealed a correlation between the expression of ITGB3BP and the infiltration of various immune cells in glioma. Our findings provide the first evidence that the up-regulation of ITGB3BP correlates with poor prognosis in human glioma. Thus, ITGB3BP is a potential new biomarker that can be used for the clinical diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, China
| | - Binfeng Liu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, China
| | - Lu Bian
- Department of Dermatology, Henan University People's Hospital, Henan Provincial People's Hospital, Henan, China
| | - Hongbo Wang
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, China
| | - Yulong Jia
- Department of Neurosurgery of the Henan Provincial People's Hospital, Henan, China
| | - Yubo Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Wang Zhang
- Department of Neurosurgery of the First affiliate Hospital of Harbin Medical University, Harbin, China
| | - Yanbiao Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, China
| | - Zhibin Han
- Department of Neurosurgery of the First affiliate Hospital of Harbin Medical University, Harbin, China
| | - Xingbo Cheng
- Department of Neurosurgery of the First affiliate Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyu Lian
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, China
| | - Zhishuai Ren
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, China
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW This review discusses current and investigative strategies for targeting DNA repair in the management of glioma. RECENT FINDINGS Recent strategies in glioma treatment rely on the production of overwhelming DNA damage and inhibition of repair mechanisms, resulting in lethal cytotoxicity. Many strategies are effective in preclinical glioma models while clinical feasibility remains under investigation. The presence of glioma biomarkers, including IDH mutation and/or MGMT promoter methylation, may confer particular susceptibility to DNA damage and inhibition of repair. These biomarkers have been adopted as eligibility criteria in the design of multiple ongoing clinical trials. Targeting DNA repair mechanisms with novel agents or therapeutic combinations is a promising approach to the treatment of glioma. Further investigations are underway to optimize this approach in the clinical setting.
Collapse
|
16
|
Bacolod MD, Barany F. MGMT Epigenetics: The Influence of Gene Body Methylation and Other Insights Derived from Integrated Methylomic, Transcriptomic, and Chromatin Analyses in Various Cancer Types. Curr Cancer Drug Targets 2021; 21:360-374. [PMID: 33535955 DOI: 10.2174/1568009621666210203111620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND MGMT (O6-methylguanine-DNA methyltransferase) is primarily responsible for limiting the activity of some widely used chemotherapeutic agents, including temozolomide (TMZ) and carmustine (BCNU). The gene encoding this protein is epigenetically regulated, and assessment of methylation at its promoter region is used to predict glioma patients' response to TMZ. METHODS In this report, we employed a bioinformatic approach to elucidate MGMT's epigenetic regulation. Integrated for the analysis were genome-wide methylation and transcription datasets for > 8,600 human tissue (representing 31 distinct cancer types) and 500 human cancer cell line samples. Also crucial to the interpretation of results were publicly available data from the ENCODE Project: tracks for histone modifications (via ChIP-seq) and DNase I hypersensitivity (via DNaseseq), as well as methylation and transcription data for representative cell lines (HeLa-S3, HMEC, K562). RESULTS AND DISCUSSION We were able to validate (perhaps more comprehensively) the contrasting influences of CpG methylation at promoter region and at gene body on MGMT transcription. While the MGMT promoter is populated by CpG sites whose methylation levels displayed high negative correlation (R) with MGMT mRNA counts, the gene body harbors CpG sites exhibiting high positive R values. The promoter CpG sites with very high negative R's across cancer types include cg12981137, cg12434587, and cg00618725. Among the notable gene body CpG sites (high positive R's across cancer types) are cg00198994 (Intron 1), cg04473030 (Intron 2), and cg07367735 (Intron 4). For certain cancer types, such as melanoma, gene body methylation appears to be a better predictor of MGMT transcription (compared to promoter methylation). In general, the CpG methylation v. MGMT expression R values are higher in cell lines relative to tissues. Also, these correlations are noticeably more prominent in certain cancer types such as colorectal, adrenocortical, esophageal, skin, and head and neck cancers, as well as glioblastoma. As expected, hypomethylation at the promoter region is associated with more open chromatin, and enrichment of histone marks H3K4m1, H3K4m2, H3K4m3, and H3K9ac. CONCLUSION Overall, our analysis illustrated the contrasting influence of promoter and gene body methylation on MGMT expression. These observations may help improve diagnostic assays for MGMT.
Collapse
Affiliation(s)
- Manny D Bacolod
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065, United States
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave, New York, NY 10065, United States
| |
Collapse
|
17
|
Nguyen VT, Tran TTN, Van TK, Tran T. DNA-Templated Silver Nanoclusters Used as a Label-Free Fluorescent Probe for the Detection of O6-Methyltransferase Activity. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821050130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Xing X, He Z, Wang Z, Mo Z, Chen L, Yang B, Zhang Z, Chen S, Ye L, Zhang R, Zheng Y, Chen W, Li D. Association between H3K36me3 modification and methylation of LINE-1 and MGMT in peripheral blood lymphocytes of PAH-exposed workers. Toxicol Res (Camb) 2020; 9:661-668. [PMID: 33178426 DOI: 10.1093/toxres/tfaa074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 01/24/2023] Open
Abstract
To explore the epigenetic alterations in response to DNA damage following polycyclic aromatic hydrocarbons (PAHs) exposure and the crosstalk between different epigenetic regulations, we examined trimethylated Lys 36 of histone H3 (H3K36me3) and methylation of 'long interspersed element-1 (LINE-1)' and 'O 6-methylguanine-DNA methyltransferase (MGMT)' in peripheral blood lymphocytes (PBLCs) of 173 coke oven workers (PAH-exposed group) and 94 non-exposed workers (control group). The PAH-exposed group showed higher internal PAH exposure level, enhanced DNA damage and increased MGMT expression (all P < 0.001). Notably, the methylation of LINE-1 and MGMT decreased by 3.9 and 40.8%, respectively, while H3K36me3 level was 1.7 times higher in PBLCs of PAH-exposed group compared to control group (all P < 0.001). These three epigenetic marks were significantly associated with DNA damage degree (all P < 0.001) and PAH exposure level in a dose-response manner (all P < 0.001). LINE-1 hypomethylation is correlated with enhanced H3K36me3 modification (β = -0.198, P = 0.002), indicating a synergistic effect between histone modification and DNA methylation at the whole genome level. In addition, MGMT expression was positively correlated with H3K36me3 modification (r = 0.253, P < 0.001), but not negatively correlated with MGMT methylation (r = 0.202, P < 0.05). The in vitro study using human bronchial epithelial cells treated with the organic extract of coke oven emissions confirmed that H3K36me3 is important for MGMT expression following PAH exposure. In summary, our study indicates that histone modification and DNA methylation might have synergistic effects on DNA damage induced by PAH exposure at the whole genome level and H3K36me3 is more essential for MGMT expression during the course.
Collapse
Affiliation(s)
- Xiumei Xing
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhini He
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Ziwei Wang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Ziying Mo
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Boyi Yang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhengbao Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Shen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Lizhu Ye
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Rui Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University 38 Dengzhou Road, Qingdao 266021, China
| | - Wen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Daochuan Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| |
Collapse
|
19
|
Avci NG, Ebrahimzadeh-Pustchi S, Akay YM, Esquenazi Y, Tandon N, Zhu JJ, Akay M. NF-κB inhibitor with Temozolomide results in significant apoptosis in glioblastoma via the NF-κB(p65) and actin cytoskeleton regulatory pathways. Sci Rep 2020; 10:13352. [PMID: 32770097 PMCID: PMC7414229 DOI: 10.1038/s41598-020-70392-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor characterized by intrinsic or acquired resistance to chemotherapy. GBM tumors show nuclear factor-κB (NF-κB) activity that has been associated with tumor formation, growth, and increased resistance to therapy. We investigated the effect of NF-κB inhibitor BAY 11-7082 with Temozolomide (TMZ) on the signaling pathways in GBM pathogenesis. GBM cells and patient-derived GBM cells cultured in 3D microwells were co-treated with BAY 11-7082 and TMZ or BAY 11-7082 and TMZ alone, and combined experiments of cell proliferation, apoptosis, wound healing assay, as well as reverse-phase protein arrays, western blot and immunofluorescence staining were used to evaluate the effects of drugs on GBM cells. The results revealed that the co-treatment significantly altered cell proliferation by decreasing GBM viability, suppressed NF-κB pathway and enhanced apoptosis. Moreover, it was found that the co-treatment of BAY 11-7082 and TMZ significantly contributed to a decrease in the migration pattern of patient-derived GBM cells by modulating actin cytoskeleton pathway. These findings suggest that in addition to TMZ treatment, NF-κB can be used as a potential target to increase the treatment's outcomes. The drug combination strategy, which is significantly improved by NF-κB inhibitor could be used to better understand the underlying mechanism of GBM pathways in vivo and as a potential therapeutic tool for GBM treatment.
Collapse
Affiliation(s)
- Naze G Avci
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX, 77204-5060, USA
| | - Sadaf Ebrahimzadeh-Pustchi
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX, 77204-5060, USA
| | - Yasemin M Akay
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX, 77204-5060, USA
| | - Yoshua Esquenazi
- UTHealth Neurosurgery, McGovern Medical School, Memorial Hermann at Texas Medical Center, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Nitin Tandon
- UTHealth Neurosurgery, McGovern Medical School, Memorial Hermann at Texas Medical Center, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jay-Jiguang Zhu
- UTHealth Neurosurgery, McGovern Medical School, Memorial Hermann at Texas Medical Center, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Metin Akay
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX, 77204-5060, USA.
| |
Collapse
|
20
|
Ban DK, Liu Y, Wang Z, Ramachandran S, Sarkar N, Shi Z, Liu W, Karkisaval AG, Martinez-Loran E, Zhang F, Glinsky G, Bandaru PR, Fan C, Lal R. Direct DNA Methylation Profiling with an Electric Biosensor. ACS NANO 2020; 14:6743-6751. [PMID: 32407064 DOI: 10.1021/acsnano.9b10085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
DNA methylation is one of the principal epigenetic mechanisms that control gene expression in humans, and its profiling provides critical information about health and disease. Current profiling methods require chemical modification of bases followed by sequencing, which is expensive and time-consuming. Here, we report a direct and rapid determination of DNA methylation using an electric biosensor. The device consists of a DNA-tweezer probe integrated on a graphene field-effect transistor for label-free, highly sensitive, and specific methylation profiling. The device performance was evaluated with a target DNA that harbors a sequence of the methylguanine-DNA methyltransferase, a promoter of glioblastoma multiforme, a lethal brain tumor. The results show that we successfully profiled the methylated and nonmethylated forms at picomolar concentrations. Further, fluorescence kinetics and molecular dynamics simulations revealed that the position of the methylation site(s), their proximity, and accessibility to the toe-hold region of the tweezer probe are the primary determinants of the device performance.
Collapse
Affiliation(s)
- Deependra Kumar Ban
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yushuang Liu
- School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Zejun Wang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Srinivasan Ramachandran
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Nirjhar Sarkar
- Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ze Shi
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wenhan Liu
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Abhijith G Karkisaval
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Erick Martinez-Loran
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Feng Zhang
- School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
- State Key Laboratory of Respiratory Disease, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Gennadi Glinsky
- Institute of Engineering in Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Prabhakar R Bandaru
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Chunhai Fan
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ratnesh Lal
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
21
|
Ma L, Huang Y, Zhang H, Ning W, Qi R, Yuan H, Lv F, Liu L, Yu C, Wang S. Sensitive Detection and Conjoint Analysis of Promoter Methylation by Conjugated Polymers for Differential Diagnosis and Prognosis of Glioma. ACS APPLIED MATERIALS & INTERFACES 2020; 13:9291-9299. [PMID: 32436715 DOI: 10.1021/acsami.0c03218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glioma is the most common primary tumor in the central nervous system (CNS) with the worst prognosis. Accurate pathological diagnosis has always been a challenge for optimal management of glioma. Promoter methylation is an important mechanism of epigenetic silencing tumor-suppressor genes and a potential biomarker for differential diagnosis and prognosis. Herein, using the cationic conjugated polymer (CCP)-based fluorescence resonance energy transfer (FRET) technique, we realized a highly sensitive detection of promoter methylation in clinical samples of minimal methylation degree (1.25%) and trace DNA quantity (10 ng/μL). Results for three glioma-related genes (MGMT, CDKN2A, and TERT) were combined in a diagnostic classifier to analyze the glioma-CpG island methylator phenotype (G-CIMP), which achieved a sensitivity of 80% at a maximum specificity of 100% for a glioma diagnosis. Kaplan-Meier survival curves and Pearson correlation analysis revealed that the prognosis of glioma patients with high G-CIMP scores (>5) was significantly better than those with low G-CIMP scores, especially in diffuse midline glioma and astrocytoma. This CCP-based FRET technique for determining G-CIMP status could provide patients with rapid and reasonably accurate diagnosis of glioma, as well as a valuable prognostic prediction that can guide individual treatment.
Collapse
Affiliation(s)
- Lixin Ma
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P. R. China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P. R. China
| | - Ruilian Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haitao Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chunjiang Yu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
22
|
Taglini F, Chapman E, van Nues R, Theron E, Bayne EH. Mkt1 is required for RNAi-mediated silencing and establishment of heterochromatin in fission yeast. Nucleic Acids Res 2020; 48:1239-1253. [PMID: 31822915 PMCID: PMC7026591 DOI: 10.1093/nar/gkz1157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/12/2019] [Accepted: 11/28/2019] [Indexed: 01/04/2023] Open
Abstract
Constitutive domains of repressive heterochromatin are maintained within the fission yeast genome through self-reinforcing mechanisms involving histone methylation and small RNAs. Non-coding RNAs generated from heterochromatic regions are processed into small RNAs by the RNA interference pathway, and are subject to silencing through both transcriptional and post-transcriptional mechanisms. While the pathways involved in maintenance of the repressive heterochromatin state are reasonably well understood, less is known about the requirements for its establishment. Here, we describe a novel role for the post-transcriptional regulatory factor Mkt1 in establishment of heterochromatin at pericentromeres in fission yeast. Loss of Mkt1 does not affect maintenance of existing heterochromatin, but does affect its recovery following depletion, as well as de novo establishment of heterochromatin on a mini-chromosome. Pathway dissection revealed that Mkt1 is required for RNAi-mediated post-transcriptional silencing, downstream of small RNA production. Mkt1 physically associates with pericentromeric transcripts, and is additionally required for maintenance of silencing and heterochromatin at centromeres when transcriptional silencing is impaired. Our findings provide new insight into the mechanism of RNAi-mediated post-transcriptional silencing in fission yeast, and unveil an important role for post-transcriptional silencing in establishment of heterochromatin that is dispensable when full transcriptional silencing is imposed.
Collapse
Affiliation(s)
- Francesca Taglini
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Elliott Chapman
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Rob van Nues
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Emmanuelle Theron
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Elizabeth H Bayne
- Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
23
|
Wu H, Li X, Zhang T, Zhang G, Chen J, Chen L, He M, Hao B, Wang C. Overexpression miR-486-3p Promoted by Allicin Enhances Temozolomide Sensitivity in Glioblastoma Via Targeting MGMT. Neuromolecular Med 2020; 22:359-369. [PMID: 32086739 PMCID: PMC7417398 DOI: 10.1007/s12017-020-08592-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma is the most common primary tumor of the central nervous system that develops chemotherapy resistance. Previous studies showed that Allicin could inhibit multiple cancer cells including glioblastoma, but the function of Allicin in glioblastoma is still unclear. Our work aimed to investigate the underlying molecular mechanism. The results showed that miR-486-3p levels were greatly increased in glioblastoma during Allicin treatment. Overexpression of miR-486-3p increased chemosensitivity to temozolomide (TMZ) in vitro and in vivo. O6-methylguanine-DNA methyltransferase (MGMT) was identified as a direct target of miR-486-3p, and miR-486-3p overexpression prevented the protein translation of MGMT. Moreover, overexpression of MGMT restored miR-486-3p-induced chemosensitivity to TMZ. Taken together, our studies revealed that Allicin could upregulate miR-486-3p and enhance TMZ sensitivity in glioblastoma. The results suggested that in the future, Allicin can be used as an adjuvant therapy with TMZ to improve the prognosis of patients, and miR-486-3p may be a potential target for glioblastoma treatment to improve the curative effects.
Collapse
Affiliation(s)
- Henggang Wu
- Department of Neurosurgery, Wenrong Hospital of Hengdian, Jinhua, 322118, Zhejiang, China
| | - Xu Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310002, Zhejiang, China
| | - Tiehui Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310002, Zhejiang, China
| | - Guojun Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310011, Zhejiang, China
| | - Jingnan Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310011, Zhejiang, China
| | - Li Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310011, Zhejiang, China
| | - Min He
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310011, Zhejiang, China
| | - Bilie Hao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310011, Zhejiang, China
| | - Cheng Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310011, Zhejiang, China.
| |
Collapse
|
24
|
Weak MGMT gene promoter methylation confers a clinically significant survival benefit in patients with newly diagnosed glioblastoma: a retrospective cohort study. J Neurooncol 2019; 146:55-62. [DOI: 10.1007/s11060-019-03334-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 11/03/2019] [Indexed: 12/25/2022]
|
25
|
Khatami F, Larijani B, Heshmat R, Nasiri S, Saffar H, Shafiee G, Mossafa A, Tavangar SM. Promoter Methylation of Four Tumor Suppressor Genes in Human Papillary Thyroid Carcinoma. IRANIAN JOURNAL OF PATHOLOGY 2019; 14:290-298. [PMID: 31754358 PMCID: PMC6824767 DOI: 10.30699/ijp.2019.94401.1922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/27/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND & OBJECTIVE Papillary thyroid cancer (PTC) is considered to be the most common type of thyroid malignancies. Epigenetic alteration, in which the chromatin conformation and gene expression change without changing the sequence of DNA, can occur in some tumor suppressor genes and oncogenes. Methylation is the most common type of epigenetic alterations that can be an excellent indicator of PTC invasive behavior. METHODS In this research, we determined the promoter methylation status of four tumor suppressor genes (SLC5A8, RASSF1, MGMT, and DNMT1) and compared the results of 55 PTC cases with 40 goiter patients. For methylation, we used the methylation-sensitive high resolution melting (MS-HRM) assay technique. The resulting graphs of each run were compared with those of 0%, 50%, and 100% methylated controls. RESULTS Our data showed that the promoter methylation of SLC5A8, Ras association domain family member 1(RASSF1), and MGMT were significantly different between PTC tissue and goiter with P-value less than 0.05. The most significant differences were observed in RASSF1; 77.2% of hyper-methylated PTC patients versus 15.6% hyper-methylated goiter samples (P<0.001). CONCLUSION RASSF1 promoter methylation can be a PTC genetic marker. RASSF1 promoter methylation is under the impact of the methyltransferase genes (DNMT1 and MGMT), protein expression, and promoter methylation.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Department of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Hiva Saffar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Mossafa
- Department of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Abolhassani M, Asadikaram G, Paydar P, Fallah H, Aghaee-Afshar M, Moazed V, Akbari H, Moghaddam SD, Moradi A. Organochlorine and organophosphorous pesticides may induce colorectal cancer; A case-control study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:168-177. [PMID: 31004929 DOI: 10.1016/j.ecoenv.2019.04.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 05/15/2023]
Abstract
OBJECTIVES Among the numerous agents, genetic factors and environmental elements such as pesticides have an important role in colorectal cancer (CRC) incidence. The present study aimed to investigate the probable-role of some organochlorine pesticides (OCPs) and organophosphorous pesticides (OPPs) in patients with CRC. METHODS In this case-control study, 42 patients with CRC and 30 healthy subjects were selected. The serum levels of some OCPs (α-HCH, β-HCH, γ-HCH, 2,4 DDE, 4,4 DDE, 2,4DDT and 4,4DDT) were measured by gas chromatography (GC) method. Serum levels of malondialdehyde (MDA), and total antioxidant capacity (TAC) as well as the enzyme activity of acetylcholinesterase (AChE) and arylesterase activity of Paraoxonase-1 (PON-1) were evaluated in all participants. The methylation specific PCR (MSP) assay was used for determining the methylation status of CpG island of p16 and MGMT genes in CRC patients. RESULTS The mean serum levels of each OCPs were significantly higher in the patient group compared to the control group (P < 0.001). The AChE and arylesterase activity of PON-1 in the patient group were significantly lower than the control group (P < 0.001). The mean serum levels of MDA and TAC in the serum of the patient group were significantly higher than the control group (P < 0.001 and P < 0.002, respectively). The current findings demonstrated significantly hypermethylation of p16 promoter in CRC patients. CONCLUSION Regarding the higher levels of OCPs in CRC patients, along with hypermethylation of the p16 promoter gene, diminishing in AChE and PON-1 activity and increasing in oxidative stress factors, the role of OCPs and OPPs in the CRC progression in the South-East of Iran may be assumed.
Collapse
Affiliation(s)
- Moslem Abolhassani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman, Iran.
| | - Parisa Paydar
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Fallah
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Vahid Moazed
- Hematology and Oncology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamed Akbari
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sodaif Darvish Moghaddam
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Afshin Moradi
- Cancer Research Center, Shohada Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
27
|
Tong P, Pidoux AL, Toda NRT, Ard R, Berger H, Shukla M, Torres-Garcia J, Müller CA, Nieduszynski CA, Allshire RC. Interspecies conservation of organisation and function between nonhomologous regional centromeres. Nat Commun 2019; 10:2343. [PMID: 31138803 PMCID: PMC6538654 DOI: 10.1038/s41467-019-09824-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 03/27/2019] [Indexed: 01/31/2023] Open
Abstract
Despite the conserved essential function of centromeres, centromeric DNA itself is not conserved. The histone-H3 variant, CENP-A, is the epigenetic mark that specifies centromere identity. Paradoxically, CENP-A normally assembles on particular sequences at specific genomic locations. To gain insight into the specification of complex centromeres, here we take an evolutionary approach, fully assembling genomes and centromeres of related fission yeasts. Centromere domain organization, but not sequence, is conserved between Schizosaccharomyces pombe, S. octosporus and S. cryophilus with a central CENP-ACnp1 domain flanked by heterochromatic outer-repeat regions. Conserved syntenic clusters of tRNA genes and 5S rRNA genes occur across the centromeres of S. octosporus and S. cryophilus, suggesting conserved function. Interestingly, nonhomologous centromere central-core sequences from S. octosporus and S. cryophilus are recognized in S. pombe, resulting in cross-species establishment of CENP-ACnp1 chromatin and functional kinetochores. Therefore, despite the lack of sequence conservation, Schizosaccharomyces centromere DNA possesses intrinsic conserved properties that promote assembly of CENP-A chromatin.
Collapse
Affiliation(s)
- Pin Tong
- 0000 0004 1936 7988grid.4305.2Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF UK
| | - Alison L. Pidoux
- 0000 0004 1936 7988grid.4305.2Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF UK
| | - Nicholas R. T. Toda
- 0000 0004 1936 7988grid.4305.2Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF UK ,0000 0001 2203 0006grid.464101.6Present Address: UPMC CNRS, Roscoff Marine Station, Place Georges Teissier, 29680 Roscoff, France
| | - Ryan Ard
- 0000 0004 1936 7988grid.4305.2Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF UK ,0000 0001 0674 042Xgrid.5254.6Present Address: Copenhagen Plant Science Centre, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Harald Berger
- 0000 0004 1936 7988grid.4305.2Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF UK ,0000 0001 2298 5320grid.5173.0Present Address: Symbiocyte, Universität für Bodenkultur Wien, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Manu Shukla
- 0000 0004 1936 7988grid.4305.2Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF UK
| | - Jesus Torres-Garcia
- 0000 0004 1936 7988grid.4305.2Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF UK
| | - Carolin A. Müller
- 0000 0004 1936 8948grid.4991.5Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE UK
| | - Conrad A. Nieduszynski
- 0000 0004 1936 8948grid.4991.5Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE UK
| | - Robin C. Allshire
- 0000 0004 1936 7988grid.4305.2Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3BF UK
| |
Collapse
|
28
|
Khatami F, Teimoori-Toolabi L, Heshmat R, Nasiri S, Saffar H, Mohammadamoli M, Aghdam MH, Larijani B, Tavangar SM. Circulating ctDNA methylation quantification of two DNA methyl transferases in papillary thyroid carcinoma. J Cell Biochem 2019; 120:17422-17437. [PMID: 31127647 DOI: 10.1002/jcb.29007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/06/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
Papillary thyroid cancer (PTC) is the most common type of cancer among thyroid malignancies. Tumor-related methylation of circulating tumor DNA (ctDNA) in plasma could represent tumor specific alterations can be considered as good biomarkers in circulating tumor cells. In this study, we studied the methylation status of seven promoter regions of two DNA methyl Transferases (MGMT and DNMT1) genes as the methylated ctDNA in plasma and tissue samples of patients with PTC and goiter patients as noncancerous controls. METHODS Both ctDNA and tissue genomic DNA of 57 PTC and 45 Goiter samples were isolated. After bisulfite modification, the methylation status was studied by Methylation-Sensitive High Resolution Melting (MS-HRM) assay technique. Four promoter regions of O6-methylguanine-DNA methyltransferase (MGMT) and three promoter regions of DNA methyltransferase 1 (DNMT1) were assessed. RESULTS From seven candidate promoter regions of two methyltrasferase coding genes, the methylation status of ctDNA within MGMT (a), MGMT (c), MGMT (d), and DNMT1 (b) were meaningfully different between PTC cases and controls. However, the most significant differences were seen in circulating ctDNA MGMT (c) which was hypermethylated in 25 (43.9 %) of patients with PTC vs 2 (4. 4 %) of goiter samples. Between two selected DNA methyl transferase, the methylation of MGMT as the maintenance methyltransferase was significantly higher in PTC cases than goiter controls (P-value < .001). The resulting areas under the receiver operating characteristic (ROC) curve were 0.78 for MGMT (d) for PTC versus goiter samples that can represent the overall ability of MGMT (d) methylation status to discriminate between PTC and goiter patients. CONCLUSION Among seven candidate regions of ctDNA the MGMT (c) and MGMT (d) showed higher sensitivity and specificity for PTC as a suitable candidates as biomarkers of PTC.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Departments of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Hiva Saffar
- Departments of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mohammadamoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Departments of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Braný D, Dvorská D, Grendár M, Ňachajová M, Szépe P, Lasabová Z, Žúbor P, Višňovský J, Halášová E. Different methylation levels in the KLF4, ATF3 and DLEC1 genes in the myometrium and in corpus uteri mesenchymal tumours as assessed by MS-HRM. Pathol Res Pract 2019; 215:152465. [PMID: 31176573 DOI: 10.1016/j.prp.2019.152465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Mesenchymal tumours of the corpus uteri comprise common benign lesions - leiomyomas and very rare malignant variants - sarcomas. It can be difficult to distinguish between the particular types of mesenchymal tumours pre-surgically. Primarily, leiomyomas and the very aggressive leiomyosarcomas can be easily misdiagnosed when using only imaging devices. Therefore, a reliable non-invasive marker for these tumour types would provide greater certitude for patients that the lesion remains benign. Our collection comprises 76 native leiomyomas, an equal number of healthy myometrium samples and 49 FFPE samples of various types of sarcomas. The methylation level was assessed by MS-HRM method and we observed differences in the methylation level between healthy, benign and (semi)malignant tissues in the KLF4 and DLEC1 genes. The mean methylation levels of leiomyomas compared to myometrium and leiomyosarcomas were 70.7% vs. 6.5% vs. 39.6 % (KLF4) and 66.1% vs. 14.08% vs. 37.5% (DLEC1). The ATF3 gene was differentially methylated in leiomyomatous and myometrial tissues with 98.1% compared to 76.6%. The AUC values of the predictive logistic regression model for discrimination between leiomyomas and leiomyosarcomas based on methylation levels were 0.7829 (KLF4) and 0.7719 (DLEC1). Finally, our results suggest that there should be distinct models for the methylation events in benign leiomyomas and sarcomas, and that the KLF4 and DLEC1 genes can be considered potential methylation biomarkers for uterine leiomyomas.
Collapse
Affiliation(s)
- Dušan Braný
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Dana Dvorská
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Marián Grendár
- Bioinformatic Unit, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Marcela Ňachajová
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Peter Szépe
- Department of Pathological Anatomy, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Zora Lasabová
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Pavol Žúbor
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Jozef Višňovský
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Erika Halášová
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
30
|
Nie E, Miao F, Jin X, Wu W, Zhou X, Zeng A, Yu T, Zhi T, Shi Z, Wang Y, Zhang J, Liu N, You Y. Fstl1/DIP2A/MGMT signaling pathway plays important roles in temozolomide resistance in glioblastoma. Oncogene 2018; 38:2706-2721. [PMID: 30542120 PMCID: PMC6484760 DOI: 10.1038/s41388-018-0596-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/23/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023]
Abstract
Temozolomide was recognized as the first-line therapy for glioblastoma to prolong the survival of patients noticeably, while recent clinical studies found that some patients were not sensitive to temozolomide treatment. The possible mechanisms seemed to be methylguanine-DNA-methyltransferase (MGMT), mismatch repair, PARP, etc. And the abnormal expression of MGMT might be the most direct factor. In this study, we provide evidence that Fstl1 plays a vital role in temozolomide resistance by sequentially regulating DIP2A protein distribution, H3K9 acetylation (H3K9Ac), and MGMT transcription. As a multifunctional protein widely distributed in cells, DIP2A cooperates with the HDAC2-DMAP1 complex to enhance H3K9Ac deacetylation, prevent MGMT transcription, and increase temozolomide sensitivity. Fstl1, a glycoprotein highly expressed in glioblastoma, competitively binds DIP2A to block DIP2A nuclear translocation, so as to hinder DIP2A from binding the HDAC2-DMAP1 complex. The overexpression of Fstl1 promoted the expression of MGMT in association with increased promoter H3K9Ac. Upregulation of Fstl1 enhanced temozolomide resistance, whereas Fstl1 silencing obviously sensitized GBM cells to temozolomide both in vivo and in vitro. Moreover, DIP2A depletion abolished the effects of Fstl1 on MGMT expression and temozolomide resistance. These findings highlight an important role of Fstl1 in the regulation of temozolomide resistance by modulation of DIP2A/MGMT signaling.
Collapse
Affiliation(s)
- Er Nie
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Faan Miao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xin Jin
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Weining Wu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xu Zhou
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ailiang Zeng
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tianfu Yu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tongle Zhi
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhumei Shi
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.,State Key lab of Reproductive Medicine, Department of Pathology, Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, 210029, China
| | - Yingyi Wang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Junxia Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ning Liu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. .,Chinese Glioma Cooperative Group (CGCG), Nanjing, 210029, China.
| | - Yongping You
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. .,Chinese Glioma Cooperative Group (CGCG), Nanjing, 210029, China.
| |
Collapse
|
31
|
Panagopoulos I, Gorunova L, Leske H, Niehusmann P, Johannessen LE, Staurseth J, Øino N, Meling TR, Heim S, Micci F, Brandal P. Pyrosequencing Analysis of MGMT Promoter Methylation in Meningioma. Cancer Genomics Proteomics 2018; 15:379-385. [PMID: 30194078 DOI: 10.21873/cgp.20096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/28/2018] [Accepted: 07/08/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Methylation of the O6-methylguanine-DNA methyltransferase (MGMT) gene promoter is a well-established predictor of response to the DNA-alkylating agent temozolomide in patients with glioblastoma. MATERIALS AND METHODS Pyrosequencing analysis was used to determine the MGMT promoter methylation status in 61 meningiomas, to clarify whether it might have a predictive role. RESULTS Only two tumors (3%) had a mean methylation frequency higher than the cut-off value of 10% for the four CpG sites examined. CONCLUSION The methylation of the MGMT promoter is uncommon, or occurs at a low frequency in meningiomas. There is no convincing rationale to test such tumors for their MGMT methylation status in a clinical setting.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Henning Leske
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Pitt Niehusmann
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Lene E Johannessen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Julie Staurseth
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Nina Øino
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Torstein R Meling
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Neurosurgery, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Petter Brandal
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
32
|
Ghosh D, Nandi S, Bhattacharjee S. Combination therapy to checkmate Glioblastoma: clinical challenges and advances. Clin Transl Med 2018; 7:33. [PMID: 30327965 PMCID: PMC6191404 DOI: 10.1186/s40169-018-0211-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022] Open
Abstract
Combination therapy is increasingly becoming the cornerstone of current day antitumor therapy. Glioblastoma multiforme is an aggressive brain tumor with a dismal median survival post diagnosis and a high rate of disease recurrence. The poor prognosis can be attributed to unique treatment limitations, which include the infiltrative nature of tumor cells, failure of anti-glioma drugs to cross the blood-brain barrier, tumor heterogeneity and the highly metastatic and angiogenic nature of the tumor making cells resistant to chemotherapy. Combination therapy approach is being developed against glioblastoma with new innovative combination drug regimens being tested in preclinical and clinical trials. In this review, we discuss the pathophysiology of glioblastoma, diagnostic markers, therapeutic targeting strategies, current treatment limitations, novel combination therapies in the context of current treatment options and the ongoing clinical trials for glioblastoma therapy.
Collapse
Affiliation(s)
- Debarati Ghosh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Saikat Nandi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | | |
Collapse
|
33
|
Ferreira J, Ramos AA, Almeida T, Azqueta A, Rocha E. Drug resistance in glioblastoma and cytotoxicity of seaweed compounds, alone and in combination with anticancer drugs: A mini review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 48:84-93. [PMID: 30195884 DOI: 10.1016/j.phymed.2018.04.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Glioblastomas (GBM) are one of the most aggressive tumor of the central nervous system with an average life expectancy of only 1-2 years after diagnosis, even with the use of advanced treatments with surgery, radiation, and chemotherapy. There are several anticancer drugs with alkylating properties that have been used in the therapy of malignant gliomas. Temozolomide (TMZ) is one of them, widely used even in combination with ionizing radiation. However, the main disadvantage of using these types of drugs in the treatment of GBM is the development of cancer drug resistance. Research of bioactive compounds with anticancer activity has been heavily explored. PURPOSE This review focuses on a carotenoid and a phlorotannin present in seaweed, namely fucoxanthin and phloroglucinol, and their anticancer activity against glioblastoma. The combination of natural compounds with conventional drugs is also discussed. CONCLUSION Several natural compounds existing in seaweeds, such as fucoxanthin and phoroglucinol, have shown cytotoxic activity in models in vitro and in vivo, acting through different molecular mechanisms, such as antioxidant, antiproliferative, DNA damage/DNA repair, proapoptotic, antiangiogenic and antimetastic. Within the scope of interactions with conventional drugs, there are evidences that some seaweed compounds could be used to potentiate the action of anticancer drugs. However, their effects and mechanisms of action, alone or in combination with anticancer drugs, namely TMZ, in glioblastoma cell, still few explored and require more attention due to the unquestionable high potential of these marine compounds.
Collapse
Affiliation(s)
- Joana Ferreira
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal; FCUP - Faculty of Sciences, U.Porto - University of Porto (U.Porto), Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Alice Abreu Ramos
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal.
| | - Tânia Almeida
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal; FCUP - Faculty of Sciences, U.Porto - University of Porto (U.Porto), Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/ Irunlarrea, CP 31008 Pamplona, Navarra, Spain
| | - Eduardo Rocha
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, Matosinhos 4450-208, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, Porto 4050-313, Portugal
| |
Collapse
|
34
|
Yang Z, Wei D, Liu F, Liu J, Wu X, Stevens MFG, Bradshaw TD, Luo Y, Zhang J. Temozolomide analog PMX 465 downregulates MGMT expression in HCT116 colorectal carcinoma cells. J Cell Biochem 2018; 119:5350-5358. [PMID: 29331023 DOI: 10.1002/jcb.26674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/11/2018] [Indexed: 01/01/2023]
Abstract
The efficacy of temozolomide (TMZ) treatment for cancers is currently limited by inherent or the development of resistance, particularly, but not exclusively, due to the expression of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) in a significant proportion of tumors. We have found that TMZ analog C8-methyl imidazole tetrazine (PMX 465) displayed good anticancer activity against the colorectal carcinoma HCT116 cells which are MGMT-overexpressing and mismatch repair (MMR)-deficient. In this study, we found that PMX 465 could downregulate the expression of MGMT in HCT116 cells at the protein and mRNA levels. We found that PMX 465 could reduce MGMT expression by increasing the binding of wild-type p53 to the MGMT promoter and reducing the binding of Sp1 to the MGMT promoter.
Collapse
Affiliation(s)
- Zhikuan Yang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Danping Wei
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Feifei Liu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jing Liu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaoming Wu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | | | - Tracey D Bradshaw
- Centre for Biomolecular Science, University of Nottingham, Nottingham, UK
| | - Ying Luo
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jihong Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
35
|
Tóth C, Sükösd F, Valicsek E, Herpel E, Schirmacher P, Tiszlavicz L. Loss of CDX2 gene expression is associated with DNA repair proteins and is a crucial member of the Wnt signaling pathway in liver metastasis of colorectal cancer. Oncol Lett 2018; 15:3586-3593. [PMID: 29467879 PMCID: PMC5796384 DOI: 10.3892/ol.2018.7756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/13/2017] [Indexed: 12/23/2022] Open
Abstract
Caudal type homeobox 2 (CDX2) has been well-established as a diagnostic marker for colorectal cancer (CRC); however, less is known about its regulation, particularly its potential interactions with the DNA repair proteins, adenomatous polyposis coli (APC) and β-catenin, in a non-transcriptional manner. In the present study, the protein expression of CDX2 was analyzed, depending on the expression of the DNA repair proteins, mismatch repair (MMR), O6-methylguanine DNA methyltransferase (MGMT) and excision repair cross-complementing 1 (ERCC1), and its importance in Wnt signaling was also determined. A total of 101 liver metastases were punched into tissue microarray (TMA) blocks and serial sections were cut for immunohistochemistry. For each protein, an immunoreactive score was generated according to literature data and the scores were fitted to TMA. Subsequently, statistical analysis was performed to compare the levels of expression with each other and with clinical data. CDX2 loss of expression was observed in 38.5% of the CRC liver metastasis cases. A statistically significant association between CDX2 and each of the investigated MMRs was observed: MutL Homolog 1 (P<0.01), MutS protein Homolog (MSH) 2 (P<0.01), MSH6 (P<0.01), and postmeiotic segregation increased 2 (P=0.040). Furthermore, loss of MGMT and ERCC1 was also associated with CDX2 loss (P=0.039 and P<0.01, respectively). In addition, CDX2 and ERCC1 were inversely associated with metastatic tumor size (P=0.038 and P=0.027, respectively). Sustained CDX2 expression was associated with a higher expression of cytoplasmic/membranous β-catenin and with nuclear APC expression (P=0.042 and P<0.01, respectively). In conclusion, CDX2 loss of expression was not a rare event in liver metastasis of CRC and the results suggested that CDX2 may be involved in mechanisms resulting in the loss of DNA repair protein expression, and in turn methylation; however, its exact function in this context remains to be elucidated.
Collapse
Affiliation(s)
- Csaba Tóth
- Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Farkas Sükösd
- Department of Pathology, University of Szeged, 6725 Szeged, Hungary
| | - Erzsébet Valicsek
- Department of Oncotherapy, University of Szeged, 6725 Szeged, Hungary
| | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany.,Tissue Bank of The National Center for Tumor Diseases (NCT), D-69120 Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | | |
Collapse
|
36
|
Banan R, Christians A, Bartels S, Lehmann U, Hartmann C. Absence of MGMT promoter methylation in diffuse midline glioma, H3 K27M-mutant. Acta Neuropathol Commun 2017; 5:98. [PMID: 29246238 PMCID: PMC5732448 DOI: 10.1186/s40478-017-0500-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 11/14/2022] Open
|
37
|
Jiménez D, Matamala JM, Chiti A, Vergara C, Tissera C, Melo R, Cartier L. O 6-methylguanine-DNA-methyltransferase immunostaining intensity in glioblastoma. Neurol Neurochir Pol 2017; 52:116-119. [PMID: 29153917 DOI: 10.1016/j.pjnns.2017.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/10/2017] [Accepted: 10/25/2017] [Indexed: 11/16/2022]
Abstract
Immunohistochemistry (IHC) for O6-methylguanine-DNA-methyltransferase (MGMT) has shown heterogeneous results. Cell staining intensity has not been included as a quantifiable variable in IHC analyses. We performed MGMT IHC in 29 patients diagnosed as glioblastoma classifying cells into three categories based on nuclear staining intensity compared with adjacent endothelium. The median proportions of strong-moderate, weak and no staining cells were 10%, 16% and 71%, respectively. The proportion of positive cases for MGMT expression varies from 38% to 52% depending on the classification of weakly stained cells. This letter challenges previous studies that have not included intensity as a variable for IHC analysis.
Collapse
Affiliation(s)
- Daniel Jiménez
- Laboratory of Biomedical Sciences, Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Neurology Service, Hospital del Salvador, Santiago, Chile.
| | - José Manuel Matamala
- Laboratory of Biomedical Sciences, Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alessandra Chiti
- Laboratory of Biomedical Sciences, Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carmen Vergara
- Laboratory of Biomedical Sciences, Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Romulo Melo
- Instituto de Neurocirugía Dr. Asenjo, Santiago, Chile; Department of Neurological Science, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis Cartier
- Laboratory of Biomedical Sciences, Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Neurology Service, Hospital del Salvador, Santiago, Chile
| |
Collapse
|
38
|
Chen GD, Qian DY, Li ZG, Fan GY, You KL, Wu YL. Down-regulation of p16 and MGMT promotes the anti-proliferative and pro-apoptotic effects of 5-Aza-dC and radiation on cervical cancer cells. Cell Biochem Funct 2017; 35:488-496. [PMID: 29143344 DOI: 10.1002/cbf.3282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 12/19/2022]
Abstract
Cervical cancer is one of the most common malignancies of the female reproductive system. Therefore, it is critical to investigate the molecular mechanisms involved in the development and progression of cervical cancer. In this study, we stimulated cervical cancer cells with 5-aza-2'-deoxycytidine (5-Aza-dC) and found that this treatment inhibited cell proliferation and induced apoptosis; additionally, methylation of p16 and O-6-methylguanine-DNA methyltransferase (MGMT) was reversed, although their expression was suppressed. 5-Aza-dC inhibited E6 and E7 expression and up-regulated p53, p21, and Rb expression. Cells transfected with siRNAs targeting p16 and MGMT as well as cells stimulated with 5-Aza-dC were arrested in S phase, and the expression of p53, p21, and Rb was up-regulated more significantly. However, when cells were stimulated with 5-Aza-dC after transfection with siRNAs targeting p16 and MGMT, proliferation decreased significantly, and the percentage of cells in the sub-G1 peak and in S phase was significantly increased, suggesting a marked increase in apoptosis. But E6 and E7 overexpression could rescue the observed effects in proliferation. Furthermore, X-ray radiation caused cells to arrest in G2/M phase, but cells transfected with p16- and MGMT-targeted siRNAs followed by X-ray radiation exhibited a significant decrease in proliferation and were shifted toward the sub-G1 peak, also indicating enhanced apoptosis. In addition, the effects of 5-Aza-dC and X-ray radiation were most pronounced when MGMT expression was down-regulated. Therefore, down-regulation of p16 and MGMT expression enhances the anti-proliferative effects of 5-Aza-dC and X-ray radiation. This discovery may provide novel ideas for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Guan-di Chen
- Southern Medical University, Guangzhou, Guangdong, China
| | - De-Ying Qian
- Department of Gynecology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zhi-Gang Li
- Department of Gynecology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ge-Ying Fan
- Department of Gynecology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ke-Li You
- Department of Gynecology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yi-Long Wu
- Southern Medical University, Guangzhou, Guangdong, China.,Medical Research Centre, Guangdong Lung Cancer Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Ida CM, Butz ML, Jenkins RB, Sarkaria JN, Kitange GJ, Giannini C, Kipp BR. Real-Time Methylation-Specific Polymerase Chain Reaction for MGMT Promoter Methylation Clinical Testing in Glioblastoma: An Alternative Detection Method for a Heterogeneous Process. Am J Clin Pathol 2017; 148:296-307. [PMID: 28967952 DOI: 10.1093/ajcp/aqx073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES To develop and evaluate a real-time methylation-specific polymerase chain reaction (RT-MSP) MGMT assay, with a particular focus on small biopsies and indeterminate testing results. METHODS We assessed formalin-fixed paraffin-embedded glioblastoma or gliosarcoma specimens (n = 641). A test-validation group (n = 51) with previously obtained reference laboratory (RL) results was used to determine performance characteristics of the RT-MSP assay. An indeterminate (equivocal) category was established for cases that could not be clearly classified as positive or negative. RESULTS Overall agreement of RT-MSP and RL results was 91% (41/45 nonindeterminate cases). Discordant cases were tested by pyrosequencing, and results were most concordant with RT-MSP. Among cases with limited amounts of tissue (n = 7), six yielded valid results by RT-MSP (all negative); the single invalid result consisted of a stereotactic biopsy specimen obtained 14 years prior. A subset of indeterminate cases obtained during clinical testing (n = 18/575 [3%]) was also evaluated by pyrosequencing and showed a heterogeneous pattern of methylation across the eight interrogated CpG sites. CONCLUSIONS The RT-MSP assay that we developed in-house is a robust clinical detection method for the heterogeneous process of MGMT promoter methylation in glioblastoma.
Collapse
Affiliation(s)
| | | | - Robert B Jenkins
- Departments of Laboratory Medicine and Pathology
- Biochemistry and Molecular Biology
| | | | | | | | - Benjamin R Kipp
- Departments of Laboratory Medicine and Pathology
- Clinical Genomics
| |
Collapse
|
40
|
Enhancing the cytotoxicity of chemoradiation with radiation-guided delivery of anti-MGMT morpholino oligonucleotides in non-methylated solid tumors. Cancer Gene Ther 2017; 24:348-357. [PMID: 28752860 PMCID: PMC5605678 DOI: 10.1038/cgt.2017.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/20/2017] [Indexed: 01/25/2023]
Abstract
The DNA repair enzyme O6-methylguanine DNA methyltransferase (MGMT) is epigenetically silenced in some tumors by MGMT gene promoter methylation. MGMT-hypermethylated solid tumors have enhanced susceptibility to the cytotoxic effects of alkylating chemotherapy such as temozolomide, compared with non-methylated tumors. In glioblastoma, subjects with MGMT hypermethylation have significantly longer survival rates after chemoradiotherapy. We report the first successful use of a non-ablative dose of ionizing radiation to prime human cancer cells to enhance the uptake of unmodified anti-MGMT morpholino oligonucleotide (AMON) sequences. We demonstrate >40% reduction in the in vitro proliferation index and cell viability in radiation-primed MGMT-expressing human solid tumor cells treated with a single dose of AMONs and temozolomide. We further demonstrate the feasibility of using a non-ablative dose of radiation in vivo to guide and enhance the delivery of intravenously administered AMONs to achieve 50% MGMT knockdown only at radiation-primed tumor sites in a subcutaneous tumor model. Local upregulation of physiological endocytosis after radiation may have a role in radiation-guided uptake of AMONs. This approach holds direct translational significance in glioblastoma and brain metastases where radiation is part of the standard of care; our approach to silence MGMT could overcome the significant problem of MGMT-mediated chemoresistance.
Collapse
|
41
|
Sanchez H, Hossain MB, Lera L, Hirsch S, Albala C, Uauy R, Broberg K, Ronco AM. High levels of circulating folate concentrations are associated with DNA methylation of tumor suppressor and repair genes p16, MLH1, and MGMT in elderly Chileans. Clin Epigenetics 2017; 9:74. [PMID: 28748002 PMCID: PMC5525256 DOI: 10.1186/s13148-017-0374-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Changes in DNA methylation, one of the most studied epigenetic mechanisms, are considered an initial marker for early cancer detection. We evaluated how availability of dietary factors (folates and vitamin B12) involved in one-carbon metabolism may contribute to DNA methylation changes of cancer-related genes in human subjects. METHODS We studied, by pyrosequencing, the methylation of tumor suppressor gene p16, DNA repair genes MLH1 and MGMT, and the repetitive element LINE-1 (as a surrogate for global DNA methylation), in blood of elderly individuals (n = 249) who had been exposed to folic acid (FA) through FA-fortified wheat flour during the last 12 years. RESULTS We found that serum folate and to a lesser extent, vitamin B12 concentrations, were significantly correlated with DNA methylation of p16, MLH1, and MGMT, but not with LINE-1. High serum folate concentrations (>45.3 nmol/L) were present in 31.1% of the participants. Although the methylated fraction of CpG sites in p16, MLH1, and MGMT was low (1.17-3.8%), high folate concentrations were significantly associated with methylation at the 3rd tertile of specific CpG sites in all genes with OR between 1.97 and 4.17. CONCLUSIONS This study shows that a public policy, like food fortification with FA that increases circulating serum folate levels, could affect methylation levels of specific genes linked to cancer risk. Our present results deserve additional studies to clarify the real impact of high FA levels for risk of cancer in a whole population chronically exposed to a fortified food such as wheat flour. TRIAL REGISTRATION ISRCTN 48153354 and ISRCTN 02694183.
Collapse
Affiliation(s)
- Hugo Sanchez
- Unidad de Nutrición Pública, Instituto de Nutrición y Tecnología de los Alimentos Doctor. Fernando Monckeberg Barros (INTA), Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Mohammad B. Hossain
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Lydia Lera
- Unidad de Nutrición Pública, Instituto de Nutrición y Tecnología de los Alimentos Doctor. Fernando Monckeberg Barros (INTA), Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Sandra Hirsch
- Unidad de Nutrición Humana, Instituto de Nutrición y Tecnología de los Alimentos Doctor Fernando Monckeberg Barros (INTA), Universidad de Chile, Santiago, Chile
| | - Cecilia Albala
- Unidad de Nutrición Pública, Instituto de Nutrición y Tecnología de los Alimentos Doctor. Fernando Monckeberg Barros (INTA), Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Ricardo Uauy
- Unidad de Nutrición Pública, Instituto de Nutrición y Tecnología de los Alimentos Doctor. Fernando Monckeberg Barros (INTA), Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
- Institutet of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ana M. Ronco
- Unidad de Nutrición Humana, Instituto de Nutrición y Tecnología de los Alimentos Doctor Fernando Monckeberg Barros (INTA), Universidad de Chile, Santiago, Chile
| |
Collapse
|
42
|
Nie E, Jin X, Wu W, Yu T, Zhou X, Shi Z, Zhang J, Liu N, You Y. MiR-198 enhances temozolomide sensitivity in glioblastoma by targeting MGMT. J Neurooncol 2017; 133:59-68. [DOI: 10.1007/s11060-017-2425-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/11/2017] [Indexed: 12/19/2022]
|
43
|
Ludwig K, Kornblum HI. Molecular markers in glioma. J Neurooncol 2017; 134:505-512. [PMID: 28233083 DOI: 10.1007/s11060-017-2379-y] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/29/2017] [Indexed: 02/08/2023]
Abstract
Gliomas are the most malignant and aggressive form of brain tumors, and account for the majority of brain cancer related deaths. Malignant gliomas, including glioblastoma are treated with radiation and temozolomide, with only a minor benefit in survival time. A number of advances have been made in understanding glioma biology, including the discovery of cancer stem cells, termed glioma stem cells (GSC). Some of these advances include the delineation of molecular heterogeneity both between tumors from different patients as well as within tumors from the same patient. Such research highlights the importance of identifying and validating molecular markers in glioma. This review, intended as a practical resource for both clinical and basic investigators, summarizes some of the more well-known molecular markers (MGMT, 1p/19q, IDH, EGFR, p53, PI3K, Rb, and RAF), discusses how they are identified, and what, if any, clinical relevance they may have, in addition to discussing some of the specific biology for these markers. Additionally, we discuss identification methods for studying putative GSC's (CD133, CD15, A2B5, nestin, ALDH1, proteasome activity, ABC transporters, and label-retention). While much research has been done on these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature. Furthermore, it is unlikely that the investigator will be able to utilize one single marker to prospectively identify and isolate GSC from all, or possibly, any gliomas.
Collapse
Affiliation(s)
- Kirsten Ludwig
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Department of Psychiatry and Biobehavioral Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Harley I Kornblum
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA. .,Department of Psychiatry and Biobehavioral Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA. .,Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
44
|
Banelli B, Carra E, Barbieri F, Würth R, Parodi F, Pattarozzi A, Carosio R, Forlani A, Allemanni G, Marubbi D, Florio T, Daga A, Romani M. The histone demethylase KDM5A is a key factor for the resistance to temozolomide in glioblastoma. Cell Cycle 2016; 14:3418-29. [PMID: 26566863 DOI: 10.1080/15384101.2015.1090063] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Notwithstanding current multimodal treatment, including surgery, radiotherapy and chemotherapy with temozolomide (TMZ), median survival of glioblastoma (GBM) patients is about 14 months, due to the rapid emergence of cell clones resistant to treatment. Therefore, understanding the mechanisms underlying chemoresistance is mandatory to improve treatments' outcome. We generated TMZ resistant cells (TMZ-R) from a GBM cell line and from cancer stem cell-enriched cultures isolated from human GBMs. We demonstrated that TMZ resistance is partially reverted by "drug wash-out" suggesting the contribution of epigenetic mechanisms in drug resistance and supporting the possibility of TMZ rechallenge in GBM patients after prior drug exposure. The expression of histone lysine demethylase genes (KDMs) was increased in TMZ-R cells compared to parental cells, and TMZ resistance or restored sensitivity was mimicked by over-expressing or inactivating KDM5A. Methylation and expression of O6-methylguanine-DNA methyltransferase (MGMT) and drug efflux mechanisms were not altered in TMZ-R cells compared to parental TMZ sensitive cells. TMZ-R cells transiently acquired morphologic and molecular characteristics of differentiated tumor cells, features that were lost after drug wash-out. In conclusion, we demonstrated that treatment-induced TMZ resistance in GBM involves epigenetic mechanisms in a subset of slow-cycling and transiently partially differentiated cells that escape drug cytotoxicity, overcome G2 checkpoint and sustain clonal growth. We found that TMZ-R cells are sensitive to histone deacethylase inhibitors (HDACi) that synergize with TMZ. This strong synergism could be exploited to develop novel combined adjuvant therapies for this rapidly progressing and invariably lethal cancer.
Collapse
Affiliation(s)
- Barbara Banelli
- a Laboratory of Tumor Epigenetics; IRCCS AOU San Martino - IST ; Genova , Italy
| | - Elisa Carra
- b Laboratory of Regenerative Medicine; IRCCS AOU San Martino - IST ; Genova , Italy
| | - Federica Barbieri
- c Section of Pharmacology ; Department of Internal Medicine and Center of Excellence for Biomedical Research (CEBR); University of Genova ; Genova , Italy
| | - Roberto Würth
- c Section of Pharmacology ; Department of Internal Medicine and Center of Excellence for Biomedical Research (CEBR); University of Genova ; Genova , Italy
| | - Federica Parodi
- a Laboratory of Tumor Epigenetics; IRCCS AOU San Martino - IST ; Genova , Italy
| | - Alessandra Pattarozzi
- c Section of Pharmacology ; Department of Internal Medicine and Center of Excellence for Biomedical Research (CEBR); University of Genova ; Genova , Italy
| | - Roberta Carosio
- a Laboratory of Tumor Epigenetics; IRCCS AOU San Martino - IST ; Genova , Italy
| | - Alessandra Forlani
- a Laboratory of Tumor Epigenetics; IRCCS AOU San Martino - IST ; Genova , Italy
| | - Giorgio Allemanni
- a Laboratory of Tumor Epigenetics; IRCCS AOU San Martino - IST ; Genova , Italy
| | - Daniela Marubbi
- b Laboratory of Regenerative Medicine; IRCCS AOU San Martino - IST ; Genova , Italy.,d Department of Experimental Medicine (DIMES) ; University of Genova ; Genova , Italy
| | - Tullio Florio
- c Section of Pharmacology ; Department of Internal Medicine and Center of Excellence for Biomedical Research (CEBR); University of Genova ; Genova , Italy
| | - Antonio Daga
- b Laboratory of Regenerative Medicine; IRCCS AOU San Martino - IST ; Genova , Italy
| | - Massimo Romani
- a Laboratory of Tumor Epigenetics; IRCCS AOU San Martino - IST ; Genova , Italy
| |
Collapse
|
45
|
Zhang J, Yang JH, Quan J, Kang X, Wang HJ, Dai PG. Identification of MGMT promoter methylation sites correlating with gene expression and IDH1 mutation in gliomas. Tumour Biol 2016; 37:13571-13579. [PMID: 27468718 DOI: 10.1007/s13277-016-5153-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/12/2016] [Indexed: 12/30/2022] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation was reported to be an independent prognostic and predictive factor in glioma patients who received temozolomide treatment. However, the predictive value of MGMT methylation was recently questioned by several large clinical studies. The purpose of this study is to identify MGMT gene promoter CpG sites or region whose methylation were closely correlated with its gene expression to elucidate this contradictory clinical observations. The methylation status for all CpG dinucleotides in MGMT promoter and first exon region were determined in 42 Chinese glioma patients, which were then correlated with MGMT gene expression, IDH1 mutation, and tumor grade. In whole 87 CpG dinucleotides analyzed, three distinct CpG regions covering 28 CpG dinucleotides were significantly correlated with MGMT gene expression; 10 CpG dinucleotides were significantly correlated with glioma classification (p < 0.05). Isocitrate dehydrogenase 1 (IDH1) mutation and MGMT gene hypermethylation significantly co-existed, but not for MGMT gene expression. The validation cohort of gliomas treated with standard of care and comparison of the CpGs we identified with the current CpGs used in clinical setting will be very important for gliomas individual medicine in the future.
Collapse
Affiliation(s)
- Jie Zhang
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi'an, China
| | - Jian-Hui Yang
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi'an, China
| | - Jia Quan
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi'an, China
| | - Xing Kang
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi'an, China
| | - Hui-Juan Wang
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi'an, China
| | - Peng-Gao Dai
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
46
|
Abstract
Alkylating chemotherapy is the mainstay in the treatment of pediatric and adult glioblastoma despite primary and acquired resistance and scientific efforts to precisely define therapies for individual patients. A focus on non-MGMT-mediated temozolomide resistance for pediatric glioblastoma suggests options for new drug combinations.
Collapse
Affiliation(s)
- Wolfgang Wick
- Department of Neurooncology, Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg and German Cancer Consortium (DKTK), Clinical Cooperation Units Neurooncology, Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Michael Platten
- Department of Neurooncology, Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg and German Cancer Consortium (DKTK), Clinical Cooperation Units Neurooncology, Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
47
|
Switzeny OJ, Christmann M, Renovanz M, Giese A, Sommer C, Kaina B. MGMT promoter methylation determined by HRM in comparison to MSP and pyrosequencing for predicting high-grade glioma response. Clin Epigenetics 2016; 8:49. [PMID: 27158275 PMCID: PMC4858829 DOI: 10.1186/s13148-016-0204-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/04/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) causes resistance of cancer cells to alkylating agents and, therefore, is a well-established predictive marker for high-grade gliomas that are routinely treated with alkylating drugs. Since MGMT is highly epigenetically regulated, the MGMT promoter methylation status is taken as an indicator of MGMT silencing, predicting the outcome of glioma therapy. MGMT promoter methylation is usually determined by methylation specific PCR (MSP), which is a labor intensive and error-prone method often used semi-quantitatively. Searching for alternatives, we used closed-tube high resolution melt (HRM) analysis, which is a quantitative method, and compared it with MSP and pyrosequencing regarding its predictive value. RESULTS We analyzed glioblastoma cell lines with known MGMT activity and formalin-fixed samples from IDH1 wild-type high-grade glioma patients (WHO grade III/IV) treated with radiation and temozolomide by HRM, MSP, and pyrosequencing. The data were compared as to progression-free survival (PFS) and overall survival (OS) of patients exhibiting the methylated and unmethylated MGMT status. A promoter methylation cut-off level relevant for PFS and OS was determined. In a multivariate Cox regression model, methylation of MGMT promoter of high-grade gliomas analyzed by HRM, but not MSP, was found to be an independent predictive marker for OS. Univariate Kaplan-Meier analyses revealed for PFS and OS a significant and better discrimination between methylated and unmethylated tumors when quantitative HRM was used instead of MSP. CONCLUSIONS Compared to MSP and pyrosequencing, the HRM method is simple, cost effective, highly accurate and fast. HRM is at least equivalent to pyrosequencing in quantifying the methylation level. It is superior in predicting PFS and OS of high-grade glioma patients compared to MSP and, therefore, can be recommended being used routinely for determination of the MGMT status of gliomas.
Collapse
Affiliation(s)
- Olivier J Switzeny
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany
| | - Markus Christmann
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany
| | - Mirjam Renovanz
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Alf Giese
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Clemens Sommer
- Department of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Bernd Kaina
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany
| |
Collapse
|
48
|
Methylation of MGMT and ADAMTS14 in normal colon mucosa: biomarkers of a field defect for cancerization preferentially targeting elder African-Americans. Oncotarget 2016; 6:3420-31. [PMID: 25638164 PMCID: PMC4413663 DOI: 10.18632/oncotarget.2852] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 12/24/2022] Open
Abstract
Somatic hypermethylation of the O6-methylguanine-DNA methyltransferase gene (MGMT) was previously associated with G > A transition mutations in KRAS and TP53 in colorectal cancer (CRC). We tested the association of MGMT methylation with G > A mutations in KRAS and TP53 in 261 CRCs. Sixteen cases, with and without MGMT hypermethylation, were further analyzed by exome sequencing. No significant association of MGMT methylation with G > A mutations in KRAS, TP53 or in the whole exome was found (p > 0.5 in all comparisons). The result was validated by in silico comparison with 302 CRCs from The Cancer Genome Atlas (TCGA) consortium dataset. Transcriptional silencing associated with hypermethylation and stratified into monoallelic and biallelic. We also found a significant clustering (p = 0.001) of aberrant hypermethylation of MGMT and the matrix metalloproteinase gene ADAMTS14 in normal colonic mucosa of CRC patients. This suggested the existence of an epigenetic field defect for cancerization disrupting the methylation patterns of several loci, including MGMT or ADAMTS14, that may lead to predictive biomarkers for CRC. Methylation of these loci in normal mucosa was more frequent in elder (p = 0.001) patients, and particularly in African Americans (p = 1 × 10−5), thus providing a possible mechanistic link between somatic epigenetic alterations and CRC racial disparities in North America.
Collapse
|
49
|
Verrier L, Taglini F, Barrales RR, Webb S, Urano T, Braun S, Bayne EH. Global regulation of heterochromatin spreading by Leo1. Open Biol 2016; 5:rsob.150045. [PMID: 25972440 PMCID: PMC4450266 DOI: 10.1098/rsob.150045] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Heterochromatin plays important roles in eukaryotic genome regulation. However, the repressive nature of heterochromatin combined with its propensity to self-propagate necessitates robust mechanisms to contain heterochromatin within defined boundaries and thus prevent silencing of expressed genes. Here we show that loss of the PAF complex (PAFc) component Leo1 compromises chromatin boundaries, resulting in invasion of heterochromatin into flanking euchromatin domains. Similar effects are seen upon deletion of other PAFc components, but not other factors with related functions in transcription-associated chromatin modification, indicating a specific role for PAFc in heterochromatin regulation. Loss of Leo1 results in reduced levels of H4K16 acetylation at boundary regions, while tethering of the H4K16 acetyltransferase Mst1 to boundary chromatin suppresses heterochromatin spreading in leo1Δ cells, suggesting that Leo1 antagonises heterochromatin spreading by promoting H4K16 acetylation. Our findings reveal a previously undescribed role for PAFc in regulating global heterochromatin distribution.
Collapse
Affiliation(s)
- Laure Verrier
- Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | - Ramon R Barrales
- Butenandt Institute of Physiological Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shaun Webb
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Takeshi Urano
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Sigurd Braun
- Butenandt Institute of Physiological Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
50
|
Cao Y, Chen Y, Huang Y, Liu Z, Li G. In vitro study of human mutL homolog 1 hypermethylation in inducing drug resistance of esophageal carcinoma. Ir J Med Sci 2016; 186:257-263. [DOI: 10.1007/s11845-016-1401-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
|