1
|
Fan QY, Liu YP, Zhu HX, Gong FQ, Wang Y, E W, Bao X, Tian ZQ, Cheng J. Entropy in catalyst dynamics under confinement. Chem Sci 2024; 15:d4sc05399k. [PMID: 39464620 PMCID: PMC11500834 DOI: 10.1039/d4sc05399k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
Entropy during the dynamic structural evolution of catalysts has a non-trivial influence on chemical reactions. Confinement significantly affects the catalyst dynamics and thus impacts the reactivity. However, a full understanding has not been clearly established. To investigate catalyst dynamics under confinement, we utilize the active learning scheme to effectively train machine learning potentials for computing free energies of catalytic reactions. The scheme enables us to compute the reaction free energies and entropies of O2 dissociation on Pt clusters with different sizes confined inside a carbon nanotube (CNT) at the timescale of tens of nanoseconds while keeping ab initio accuracy. We observe an entropic effect owing to liquid-to-solid phase transitions of clusters at finite temperatures. More importantly, the confinement effect enhances the structural dynamics of the cluster and leads to a lower melting temperature than those of the bare cluster and cluster outside the CNT, consequently facilitating the reaction to occur at lower temperatures and preventing the catalyst from forming unfavorable oxides. Our work reveals the important influence of confinement on structural dynamics, providing useful insight into entropy in dynamic catalysis.
Collapse
Affiliation(s)
- Qi-Yuan Fan
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Engineering Research Center of Ministry of Education for Fine Chemicals, School of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, Shanxi University Taiyuan 030006 China
| | - Yun-Pei Liu
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Hao-Xuan Zhu
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Fu-Qiang Gong
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Weinan E
- Center for Machine Learning Research, School of Mathematical Sciences, Peking University Beijing 100871 China
- AI for Science Institute Beijing 100084 China
| | - Xinhe Bao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Laboratory of AI for Electrochemistry (AI4EC), IKKEM Xiamen 361005 China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Laboratory of AI for Electrochemistry (AI4EC), IKKEM Xiamen 361005 China
- Institute of Artificial Intelligence, Xiamen University Xiamen 361005 China
| |
Collapse
|
2
|
Gong FQ, Liu YP, Wang Y, E W, Tian ZQ, Cheng J. Machine Learning Molecular Dynamics Shows Anomalous Entropic Effect on Catalysis through Surface Pre-melting of Nanoclusters. Angew Chem Int Ed Engl 2024; 63:e202405379. [PMID: 38639181 DOI: 10.1002/anie.202405379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/20/2024]
Abstract
Due to the superior catalytic activity and efficient utilization of noble metals, nanocatalysts are extensively used in the modern industrial production of chemicals. The surface structures of these materials are significantly influenced by reactive adsorbates, leading to dynamic behavior under experimental conditions. The dynamic nature poses significant challenges in studying the structure-activity relations of catalysts. Herein, we unveil an anomalous entropic effect on catalysis via surface pre-melting of nanoclusters through machine learning accelerated molecular dynamics and free energy calculation. We find that due to the pre-melting of shell atoms, there exists a non-linear variation in the catalytic activity of the nanoclusters with temperature. Consequently, two notable changes in catalyst activity occur at the respective temperatures of melting for the shell and core atoms. We further study the nanoclusters with surface point defects, i.e. vacancy and ad-atom, and observe significant decrease in the surface melting temperatures of the nanoclusters, enabling the reaction to take place under more favorable and milder conditions. These findings not only provide novel insights into dynamic catalysis of nanoclusters but also offer new understanding of the role of point defects in catalytic processes.
Collapse
Affiliation(s)
- Fu-Qiang Gong
- College of Chemistry and Chemical Engineering, Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen, 361005, China
| | - Yun-Pei Liu
- College of Chemistry and Chemical Engineering, Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen, 361005, China
| | - Ye Wang
- College of Chemistry and Chemical Engineering, Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen, 361005, China
| | - Weinan E
- School of Mathematical Sciences, Peking University, Center for Machine Learning Research, Beijing, 100084, China
- AI for Science Institute, Beijing, 100080, China
| | - Zhong-Qun Tian
- College of Chemistry and Chemical Engineering, Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen, 361005, China
- Laboratory of AI for Electrochemistry (AI4EC), Tan Kah Kee Innovation Laboratory (IKKEM), Xiamen, 361005, China
| | - Jun Cheng
- College of Chemistry and Chemical Engineering, Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen, 361005, China
- Laboratory of AI for Electrochemistry (AI4EC), Tan Kah Kee Innovation Laboratory (IKKEM), Xiamen, 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
3
|
Yu Z, Zhang S, Zhang L, Liu X, Jia Z, Li L, Ta N, Wang A, Liu W, Wang A, Zhang T. Suppressing Metal Leaching and Sintering in Hydroformylation Reaction by Modulating the Coordination of Rh Single Atoms with Reactants. J Am Chem Soc 2024; 146:11955-11967. [PMID: 38640231 DOI: 10.1021/jacs.4c01315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Hydroformylation reaction is one of the largest homogeneously catalyzed industrial processes yet suffers from difficulty and high cost in catalyst separation and recovery. Heterogeneous single-atom catalysts (SACs), on the other hand, have emerged as a promising alternative due to their high initial activity and reasonable regioselectivity. Nevertheless, the stability of SACs against metal aggregation and leaching during the reaction has rarely been addressed. Herein, we elucidate the mechanism of Rh aggregation and leaching by investigating the structural evolution of Rh1@silicalite-1 SAC in response to different adsorbates (CO, H2, alkene, and aldehydes) by using diffuse reflectance infrared Fourier transform spectroscopy, X-ray adsorption fine structure, and scanning transmission electron microscopy techniques and kinetic studies. It is discovered that the aggregation and leaching of Rh are induced by the strong adsorption of CO and aldehydes on Rh, as well as the reduction of Rh3+ by CO/H2 which weakens the binding of Rh with support. In contrast, alkene effectively counteracts this effect by the competitive adsorption on Rh atoms with CO/aldehyde, and the disintegration of Rh clusters. Based on these results, we propose a strategy to conduct the reaction under conditions of high alkene concentration, which proves to be able to stabilize Rh single atom against aggregation and/or leaching for more than 100 h time-on-stream.
Collapse
Affiliation(s)
- Zhounan Yu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxin Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhenghao Jia
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Na Ta
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - An Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
R D, Sengupta T, Kumar D, Khanna SN. Effect of Ligand Attachment at Ag 11 for CO Oxidation: A Computational Investigation. J Phys Chem A 2023; 127:10766-10774. [PMID: 38095876 DOI: 10.1021/acs.jpca.3c04675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Heterogeneous CO oxidation is a demanding reaction at room temperature due to the high activation energy required to break the O=O bond. While several metal clusters are reported to oxidize CO successfully, they fall short of their selectivity for the reaction and recyclability. In this regard, there is a need for economic catalysts with high catalytic activity, low activation barrier, and reusability. In this study, we have investigated the catalytic activity of the neutral pristine and ligated Ag11 cluster toward CO oxidation. We investigated the attachment effect of three organic donor ligands: trimethylphosphine, triethylphosphine, and N-ethyl pyrrolidone to the Ag11 cluster. Our results show that including donor ligands on the Ag11 cluster surface can significantly reduce the barrier heights for CO oxidation. The minimum barrier heights with the system coordinated with triethylphosphine showed the lowest activation barrier of 1.06 kcal/mol compared to the high activation barrier of 14.77 kcal/mol recorded for the pristine cluster. Exploration of the reaction mechanism and charge analysis showed that the electron donor ligands activate O2 via charge donation, thereby reducing the barrier heights of CO oxidation.
Collapse
Affiliation(s)
- Deeksha R
- Department of Chemistry, Faculty of Mathematical and Physical Sciences, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka 560058, India
| | - Turbasu Sengupta
- Physics Department, Virginia Commonwealth University, 701 W. Grace St., Richmond, Virginia 23284-2000, United States
| | - Deepak Kumar
- Department of Chemistry, Faculty of Mathematical and Physical Sciences, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka 560058, India
| | - Shiv N Khanna
- Physics Department, Virginia Commonwealth University, 701 W. Grace St., Richmond, Virginia 23284-2000, United States
| |
Collapse
|
5
|
Groppo E, Rojas-Buzo S, Bordiga S. The Role of In Situ/ Operando IR Spectroscopy in Unraveling Adsorbate-Induced Structural Changes in Heterogeneous Catalysis. Chem Rev 2023; 123:12135-12169. [PMID: 37882638 PMCID: PMC10636737 DOI: 10.1021/acs.chemrev.3c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 10/27/2023]
Abstract
Heterogeneous catalysts undergo thermal- and/or adsorbate-induced dynamic changes under reaction conditions, which consequently modify their catalytic behavior. Hence, it is increasingly crucial to characterize the properties of a catalyst under reaction conditions through the so-called "operando" approach. Operando IR spectroscopy is probably one of the most ubiquitous and versatile characterization methods in the field of heterogeneous catalysis, but its potential in identifying adsorbate- and thermal-induced phenomena is often overlooked in favor of other less accessible methods, such as XAS spectroscopy and high-resolution microscopy. Without detracting from these techniques, and while aware of the enormous value of a multitechnique approach, the purpose of this Review is to show that IR spectroscopy alone can provide relevant information in this field. This is done by discussing a few selected case studies from our own research experience, which belong to the categories of both "single-site"- and nanoparticle-based catalysts.
Collapse
Affiliation(s)
- Elena Groppo
- Department of Chemistry,
NIS Centre and INSTM, University of Torino, via Giuria 7, 10125 Turin, Italy
| | - Sergio Rojas-Buzo
- Department of Chemistry,
NIS Centre and INSTM, University of Torino, via Giuria 7, 10125 Turin, Italy
| | - Silvia Bordiga
- Department of Chemistry,
NIS Centre and INSTM, University of Torino, via Giuria 7, 10125 Turin, Italy
| |
Collapse
|
6
|
Wollak B, Espinoza D, Dippel AC, Sturm M, Vrljic F, Gutowski O, Nielsen IG, Sheppard TL, Korup O, Horn R. Catalytic reactor for operando spatially resolved structure-activity profiling using high-energy X-ray diffraction. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:571-581. [PMID: 37042662 PMCID: PMC10161877 DOI: 10.1107/s1600577523001613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/22/2023] [Indexed: 05/06/2023]
Abstract
In heterogeneous catalysis, operando measurements probe catalysts in their active state and are essential for revealing complex catalyst structure-activity relationships. The development of appropriate operando sample environments for spatially resolved studies has come strongly into focus in recent years, particularly when coupled to the powerful and multimodal characterization tools available at synchrotron light sources. However, most catalysis studies at synchrotron facilities only measure structural information about the catalyst in a spatially resolved manner, whereas gas analysis is restricted to the reactor outlet. Here, a fully automated and integrated catalytic profile reactor setup is shown for the combined measurement of temperature, gas composition and high-energy X-ray diffraction (XRD) profiles, using the oxidative dehydrogenation of C2H6 to C2H4 over MoO3/γ-Al2O3 as a test system. The profile reactor methodology was previously developed for X-ray absorption spectroscopy and is here extended for operando XRD. The profile reactor is a versatile and accessible research tool for combined spatially resolved structure-activity profiling, enabling the use of multiple synchrotron-based characterization methods to promote a knowledge-based optimization of a wide range of catalytic systems in a time- and resource-efficient way.
Collapse
Affiliation(s)
- Birte Wollak
- Institute of Chemical Reaction Engineering (CRT), Hamburg University of Technology (TUHH), Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Diego Espinoza
- Institute of Chemical Reaction Engineering (CRT), Hamburg University of Technology (TUHH), Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Ann-Christin Dippel
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Marina Sturm
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Filip Vrljic
- Institute of Chemical Reaction Engineering (CRT), Hamburg University of Technology (TUHH), Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ida G. Nielsen
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Thomas L. Sheppard
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Baden-Württemberg, Germany
- REACNOSTICS GmbH, Am Kaiserkai 30, 20457 Hamburg, Germany
| | - Oliver Korup
- Institute of Chemical Reaction Engineering (CRT), Hamburg University of Technology (TUHH), Eißendorfer Straße 38, 21073 Hamburg, Germany
- REACNOSTICS GmbH, Am Kaiserkai 30, 20457 Hamburg, Germany
| | - Raimund Horn
- Institute of Chemical Reaction Engineering (CRT), Hamburg University of Technology (TUHH), Eißendorfer Straße 38, 21073 Hamburg, Germany
- REACNOSTICS GmbH, Am Kaiserkai 30, 20457 Hamburg, Germany
| |
Collapse
|
7
|
Liu L, Corma A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem Rev 2023; 123:4855-4933. [PMID: 36971499 PMCID: PMC10141355 DOI: 10.1021/acs.chemrev.2c00733] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/29/2023]
Abstract
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but achieving a fundamental understanding on the nature of the active sites in bimetallic catalysts at the atomic and molecular level is very challenging due to the structural complexity of the bimetallic catalysts. Comparing the structural features and the catalytic performances of different bimetallic entities will favor the formation of a unified understanding of the structure-reactivity relationships in heterogeneous bimetallic catalysts and thereby facilitate the upgrading of the current bimetallic catalysts. In this review, we will discuss the geometric and electronic structures of three representative types of bimetallic catalysts (bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles) and then summarize the synthesis methodologies and characterization techniques for different bimetallic entities, with emphasis on the recent progress made in the past decade. The catalytic applications of supported bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles for a series of important reactions are discussed. Finally, we will discuss the future research directions of catalysis based on supported bimetallic catalysts and, more generally, the prospective developments of heterogeneous catalysis in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València−Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
8
|
Chen JJ, Liu QY, Wang SD, Li XN, He SG. Catalytic NO Reduction by NO Pre-Adsorbed RhCeO 2 NO - Clusters. Chemphyschem 2023; 24:e202200743. [PMID: 36308426 DOI: 10.1002/cphc.202200743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 11/11/2022]
Abstract
A fundamental understanding on the dynamically structural evolution of catalysts induced by reactant gases under working conditions is challenging but pivotal in catalyst design. Herein, in combination with state-of-the-art mass spectrometry for cluster reactions, cryogenic photoelectron imaging spectroscopy, and quantum-chemical calculations, we identified that NO adsorption on rhodium-cerium bimetallic oxide cluster RhCeO2 - can create a Ce3+ ion in product RhCeO2 NO- that serves as the starting point to trigger the catalysis of NO reduction by CO. Theoretical calculations substantiated that the reduction of another two NO molecules into N2 O takes place exclusively on the Ce3+ ion while Rh behaves like a promoter to buffer electrons and cooperates with Ce3+ to drive NO reduction. Our finding demonstrates the importance of NO in regulating the catalytic behavior of Rh under reaction conditions and provides much-needed insights into the essence of NO reduction over Rh/CeO2 , one of the most efficient components in three-way catalysts for NOx removal.
Collapse
Affiliation(s)
- Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Si-Dun Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry and Chemical Engineering, South China University of Technology Tianhe District, Guangzhou, 510641, China.,Beijing, 100049, China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education, Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
9
|
Exploring catalytic reaction networks with machine learning. Nat Catal 2023. [DOI: 10.1038/s41929-022-00896-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Quinlivan Domínguez JE, Neyman KM, Bruix A. Stability of oxidized states of free-standing and ceria-supported PtO x particles. J Chem Phys 2022; 157:094709. [DOI: 10.1063/5.0099927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nanostructured materials based on CeO2 and Pt play a fundamental role in catalyst design. However, their characterization is often challenging due to their structural complexity and the tendency of the materials to change under reaction conditions. In this work, we combine calculations based on the density functional theory, a machine-learning assisted global optimization method (GOFEE), and ab initio thermodynamics to characterize stable oxidation states of ceria-supported PtyOx particles in different environments. The collection of global minima structures for different stoichiometries resulting from the global optimisation effort is used to assess the effect of temperature, oxygen pressure, and support interactions on the phase diagrams, oxidation states, and geometries of the PtyOx particles. We thus identify favoured structural motifs and O:Pt ratios, revealing that oxidized states of free-standing and ceria-supported platinum particles are more stable than reduced ones under a wide range of conditions. These results indicate that studies rationalizing activity of ceria-supported Pt clusters must consider oxidized states, and that previous understanding of such materials obtained only with fully reduced Pt clusters may be incomplete.
Collapse
Affiliation(s)
| | - Konstantin M. Neyman
- Departament de Quimica Fisica, Universitat de Barcelona Departament de Química-Física, Spain
| | - Albert Bruix
- Universitat de Barcelona Departament de Química-Física, Spain
| |
Collapse
|
11
|
Farnesi Camellone M, Dvořák F, Vorokhta M, Tovt A, Khalakhan I, Johánek V, Skála T, Matolínová I, Fabris S, Mysliveček J. Adatom and Nanoparticle Dynamics on Single-Atom Catalyst Substrates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Matteo Farnesi Camellone
- CNR-IOM Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Area Science Park, Strada Statale 14, km 163.5, 34149 Basovizza, Trieste, Italy
| | - Filip Dvořák
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Praha 8, Czech Republic
| | - Mykhailo Vorokhta
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Praha 8, Czech Republic
| | - Andrii Tovt
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Praha 8, Czech Republic
| | - Ivan Khalakhan
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Praha 8, Czech Republic
| | - Viktor Johánek
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Praha 8, Czech Republic
| | - Tomáš Skála
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Praha 8, Czech Republic
| | - Iva Matolínová
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Praha 8, Czech Republic
| | - Stefano Fabris
- CNR-IOM Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Area Science Park, Strada Statale 14, km 163.5, 34149 Basovizza, Trieste, Italy
| | - Josef Mysliveček
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Praha 8, Czech Republic
| |
Collapse
|
12
|
Wollak B, Doronkin D, Espinoza D, Sheppard T, Korup O, Schmidt M, Alizadefanaloo S, Rosowski F, Schroer C, Grunwaldt JD, Horn R. Exploring catalyst dynamics in a fixed bed reactor by correlative operando spatially-resolved structure-activity profiling. J Catal 2022. [DOI: 10.1016/j.jcat.2021.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Activating catalysts by adsorbate-induced reconstructions. Nat Catal 2022. [DOI: 10.1038/s41929-022-00742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Ahorsu R, Constanti M, Medina F. Recent Impacts of Heterogeneous Catalysis in Biorefineries. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Richard Ahorsu
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Magda Constanti
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Francesc Medina
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| |
Collapse
|
15
|
Yuan X, Pu T, Gu M, Zhu M, Xu J. Strong Metal–Support Interactions between Nickel and Iron Oxide during CO 2 Hydrogenation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03936] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaohan Yuan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tiancheng Pu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengwei Gu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Xu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Chung S, Schober JC, Tober S, Schmidt D, Khadiev A, Novikov DV, Vonk V, Stierle A. Epitaxy and Shape Heterogeneity of a Nanoparticle Ensemble during Redox Cycles. ACS NANO 2021; 15:13267-13278. [PMID: 34350766 DOI: 10.1021/acsnano.1c03002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The role of metal-support epitaxy on shape and size heterogeneity of nanoparticles and their response to gas atmospheres is not very well explored. Here we show that an ensemble of Pd nanoparticles, grown on MgO(001) by deposition under ultrahigh vacuum, mostly consists of two distinctly epitaxially oriented particles, each having a different structural response to redox cycles. X-ray reciprocal space patterns were acquired in situ under oxidizing and reducing environments. Each type of nanoparticle has a truncated octahedral shape, whereby the majority grows with a cube-on-cube epitaxy on the substrate. Less frequently occurring and larger particles have their principal crystal axes rotated ±3.7° with respect to the substrate's. Upon oxidation, the top (001) facets of both types of particles shrink. The relative change of the rotated particles' top facets is much more pronounced. This finding indicates that a larger mass transfer is involved for the rotated particles and that a larger portion of high-index facets forms. On the main facets of the cube-on-cube particles, the oxidation process results in a considerable strain, as concluded from the evolution to largely asymmetric facet scattering signals. The shape and strain responses are reversible upon reduction, either by annealing to 973 K in vacuum or by reducing with hydrogen. The presented results are important for unraveling different elements of heterogeneity and their effect on the performance of real polycrystalline catalysts. It is shown that a correlation can exist between the particle-support epitaxy and redox-cycling-induced shape changes.
Collapse
Affiliation(s)
- Simon Chung
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jan-Christian Schober
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
| | - Steffen Tober
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
| | - Daniel Schmidt
- Fachbereich Physik, Universität Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
| | - Azat Khadiev
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dmitri V Novikov
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Vedran Vonk
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Andreas Stierle
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany
| |
Collapse
|
17
|
Importance of Surface Topography in Both Biological Activity and Catalysis of Nanomaterials: Can Catalysis by Design Guide Safe by Design? Int J Mol Sci 2021; 22:ijms22158347. [PMID: 34361117 PMCID: PMC8348784 DOI: 10.3390/ijms22158347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
It is acknowledged that the physicochemical properties of nanomaterials (NMs) have an impact on their toxicity and, eventually, their pathogenicity. These properties may include the NMs’ surface chemical composition, size, shape, surface charge, surface area, and surface coating with ligands (which can carry different functional groups as well as proteins). Nanotopography, defined as the specific surface features at the nanoscopic scale, is not widely acknowledged as an important physicochemical property. It is known that the size and shape of NMs determine their nanotopography which, in turn, determines their surface area and their active sites. Nanotopography may also influence the extent of dissolution of NMs and their ability to adsorb atoms and molecules such as proteins. Consequently, the surface atoms (due to their nanotopography) can influence the orientation of proteins as well as their denaturation. However, although it is of great importance, the role of surface topography (nanotopography) in nanotoxicity is not much considered. Many of the issues that relate to nanotopography have much in common with the fundamental principles underlying classic catalysis. Although these were developed over many decades, there have been recent important and remarkable improvements in the development and study of catalysts. These have been brought about by new techniques that have allowed for study at the nanoscopic scale. Furthermore, the issue of quantum confinement by nanosized particles is now seen as an important issue in studying nanoparticles (NPs). In catalysis, the manipulation of a surface to create active surface sites that enhance interactions with external molecules and atoms has much in common with the interaction of NP surfaces with proteins, viruses, and bacteria with the same active surface sites of NMs. By reviewing the role that surface nanotopography plays in defining many of the NMs’ surface properties, it reveals the need for its consideration as an important physicochemical property in descriptive and predictive toxicology. Through the manipulation of surface topography, and by using principles developed in catalysis, it may also be possible to make safe-by-design NMs with a reduction of the surface properties which contribute to their toxicity.
Collapse
|
18
|
Piccolo L. Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Kim J, Choi H, Kim D, Park JY. Operando Surface Studies on Metal-Oxide Interfaces of Bimetal and Mixed Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jeongjin Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hanseul Choi
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daeho Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
20
|
|
21
|
Liu L, Corma A. Structural transformations of solid electrocatalysts and photocatalysts. Nat Rev Chem 2021; 5:256-276. [PMID: 37117283 DOI: 10.1038/s41570-021-00255-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 01/13/2023]
Abstract
Heterogeneous catalysts often undergo structural transformations when they operate under thermal reaction conditions. These transformations are reflected in their evolving catalytic activity, and a fundamental understanding of the changing nature of active sites is vital for the rational design of solid materials for applications. Beyond thermal catalysis, both photocatalysis and electrocatalysis are topical because they can harness renewable energy to drive uphill reactions that afford commodity chemicals and fuels. Although structural transformations of photocatalysts and electrocatalysts have been observed in operando, the resulting implications for catalytic behaviour are not fully understood. In this Review, we summarize and compare the structural evolution of solid thermal catalysts, electrocatalysts and photocatalysts. We suggest that well-established knowledge of thermal catalysis offers a good basis to understand emerging photocatalysis and electrocatalysis research.
Collapse
|
22
|
Hejral U, Shipilin M, Gustafson J, Stierle A, Lundgren E. High energy surface x-ray diffraction applied to model catalyst surfaces at work. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:073001. [PMID: 33690191 DOI: 10.1088/1361-648x/abb17c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Catalysts are materials that accelerate the rate of a desired chemical reaction. As such, they constitute an integral part in many applications ranging from the production of fine chemicals in chemical industry to exhaust gas treatment in vehicles. Accordingly, it is of utmost economic interest to improve catalyst efficiency and performance, which requires an understanding of the interplay between the catalyst structure, the gas phase and the catalytic activity under realistic reaction conditions at ambient pressures and elevated temperatures. In recent years efforts have been made to increasingly develop techniques that allow for investigating model catalyst samples under conditions closer to those of real technical catalysts. One of these techniques is high energy surface x-ray diffraction (HESXRD), which uses x-rays with photon energies typically in the range of 70-80 keV. HESXRD allows a fast data collection of three dimensional reciprocal space for the structure determination of model catalyst samples under operando conditions and has since been used for the investigation of an increasing number of different model catalysts. In this article we will review general considerations of HESXRD including its working principle for different model catalyst samples and the experimental equipment required. An overview over HESXRD investigations performed in recent years will be given, and the advantages of HESXRD with respect to its application to different model catalyst samples will be presented. Moreover, the combination of HESXRD with other operando techniques such as in situ mass spectrometry, planar laser-induced fluorescence and surface optical reflectance will be discussed. The article will close with an outlook on future perspectives and applications of HESXRD.
Collapse
Affiliation(s)
- Uta Hejral
- Division of Synchrotron Radiation Research, Lund University, 221 00 Lund, Sweden
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, 20355 Hamburg, Germany
| | - Mikhail Shipilin
- Department of Physics, Stockholm University, 106 91 Stockholm, Sweden
| | - Johan Gustafson
- Division of Synchrotron Radiation Research, Lund University, 221 00 Lund, Sweden
| | - Andreas Stierle
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, 20355 Hamburg, Germany
| | - Edvin Lundgren
- Division of Synchrotron Radiation Research, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
23
|
Kim JH, Kim JK, Liu J, Curcio A, Jang JS, Kim ID, Ciucci F, Jung W. Nanoparticle Ex-solution for Supported Catalysts: Materials Design, Mechanism and Future Perspectives. ACS NANO 2021; 15:81-110. [PMID: 33370099 DOI: 10.1021/acsnano.0c07105] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Supported metal catalysts represent one of the major milestones in heterogeneous catalysis. Such catalytic systems are feasible for use in a broad range of applications, including renewable energy devices, sensors, automotive emission control systems, and chemical reformers. The lifetimes of these catalytic platforms depend strongly on the stability of the supported nanoparticles. With this regard, nanoparticles synthesized via ex-solution process emphasize exceptional robustness as they are socketed in the host oxide. Ex-solution refers to a phenomenon which yields selective growth of fine and uniformly distributed metal nanocatalysts on oxide supports upon partial reduction. This type of advanced structural engineering is a game-changer in the field of heterogeneous catalysis with numerous studies showing the benefits of ex-solution process. In this review, we highlight the latest research efforts regarding the origin of the ex-solution phenomenon and the mechanism underpinning particle formation. We also propose research directions to expand the utility and functionality of the current ex-solution techniques.
Collapse
Affiliation(s)
- Jun Hyuk Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jun Kyu Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jiapeng Liu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Antonino Curcio
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Ji-Soo Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Francesco Ciucci
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
24
|
Liu L, Lopez-Haro M, Lopes CW, Meira DM, Concepcion P, Calvino JJ, Corma A. Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites. J Catal 2020. [DOI: 10.1016/j.jcat.2020.07.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Auer A, Andersen M, Wernig EM, Hörmann NG, Buller N, Reuter K, Kunze-Liebhäuser J. Self-activation of copper electrodes during CO electro-oxidation in alkaline electrolyte. Nat Catal 2020. [DOI: 10.1038/s41929-020-00505-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Collinge G, Yuk SF, Nguyen MT, Lee MS, Glezakou VA, Rousseau R. Effect of Collective Dynamics and Anharmonicity on Entropy in Heterogenous Catalysis: Building the Case for Advanced Molecular Simulations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01501] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Greg Collinge
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Simuck F. Yuk
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Manh-Thuong Nguyen
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Mal-Soon Lee
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vassiliki-Alexandra Glezakou
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Roger Rousseau
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
27
|
Kim JK, Jo YR, Kim S, Koo B, Kim JH, Kim BJ, Jung W. Exceptional Tunability over Size and Density of Spontaneously Formed Nanoparticles via Nucleation Dynamics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24039-24047. [PMID: 32343543 DOI: 10.1021/acsami.0c05215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ex-solution process, in which metal nanoparticles are grown on a host oxide, can be used to synthesize nanocatalysts with excellent thermal and chemical durability via spontaneous heterogeneous nucleation. However, this technique lacks a means to control the particle size and density because the amounts of ex-solved metal elements vary with the reduction conditions. Here, we devise a strategy to achieve small particle sizes and high particle densities concurrently by controlling the temperature (T), oxygen partial pressure (pO2) and ramping rate of the temperature. Quantitative analyses of Co particles ex-solved on Sr0.98Ti0.95Co0.05O3-δ thin films using ex situ SEM and in situ TEM reveal that the increasing T and decreasing the pO2 lead to smaller particle sizes with higher density levels and vice versa, contrary to common ex-solution examples. We find that nucleation thermodynamics dictates such counterintuitive behaviors of particle characteristics, which are attributed to our specific ex-solution conditions in which particle interactions are minimized and all the Co atoms are ex-solved under highly reducible conditions. We also demonstrated the feasibility of our strategy via CO oxidation with typical powder-based catalysts, suggesting that this method can be extended to various chemical/electrochemical applications.
Collapse
Affiliation(s)
- Jun Kyu Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yong-Ryun Jo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Seunghyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Bonjae Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jun Hyuk Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Bong-Joong Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
28
|
|
29
|
Hernández Mejía C, Vogt C, Weckhuysen B, de Jong K. Stable niobia-supported nickel catalysts for the hydrogenation of carbon monoxide to hydrocarbons. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.11.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Li Z, Ji S, Liu Y, Cao X, Tian S, Chen Y, Niu Z, Li Y. Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chem Rev 2019; 120:623-682. [PMID: 31868347 DOI: 10.1021/acs.chemrev.9b00311] [Citation(s) in RCA: 480] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The use of well-defined materials in heterogeneous catalysis will open up numerous new opportunities for the development of advanced catalysts to address the global challenges in energy and the environment. This review surveys the roles of nanoparticles and isolated single atom sites in catalytic reactions. In the second section, the effects of size, shape, and metal-support interactions are discussed for nanostructured catalysts. Case studies are summarized to illustrate the dynamics of structure evolution of well-defined nanoparticles under certain reaction conditions. In the third section, we review the syntheses and catalytic applications of isolated single atomic sites anchored on different types of supports. In the final part, we conclude by highlighting the challenges and opportunities of well-defined materials for catalyst development and gaining a fundamental understanding of their active sites.
Collapse
Affiliation(s)
- Zhi Li
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Shufang Ji
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Yiwei Liu
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Xing Cao
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Shubo Tian
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Yuanjun Chen
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Zhiqiang Niu
- Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Yadong Li
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
31
|
Wöll C. Structure and Chemical Properties of Oxide Nanoparticles Determined by Surface-Ligand IR Spectroscopy. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
32
|
Bruix A, Margraf JT, Andersen M, Reuter K. First-principles-based multiscale modelling of heterogeneous catalysis. Nat Catal 2019. [DOI: 10.1038/s41929-019-0298-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Puspito Buwono H, Omori Y, Shioya N, Yoshida H, Hinokuma S, Nagao Y, Iwashina K, Endo Y, Nakahara Y, Machida M. Enhanced Rh-anchoring on the composite metal phosphate Y0.33Zr2(PO4)3 in three-way catalysis. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01274e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rh/Y0.33Zr2(PO4)3 formed a more thermostable bidentate interfacial linkage compared to the monodentate linkage that formed in Rh/ZrP2O7.
Collapse
Affiliation(s)
- Haris Puspito Buwono
- Department of Mechanical Engineering
- Politeknik Negeri Malang
- Malang
- Indonesia
- Department of Applied Chemistry and Biochemistry
| | - Yasuhiro Omori
- Department of Applied Chemistry and Biochemistry
- Graduate School of Science and Technology
- Kumamoto 860-8555
- Japan
| | - Naoki Shioya
- Department of Applied Chemistry and Biochemistry
- Graduate School of Science and Technology
- Kumamoto 860-8555
- Japan
| | - Hiroshi Yoshida
- Division of Materials Science and Chemistry
- Faculty of Advanced Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Satoshi Hinokuma
- Division of Materials Science and Chemistry
- Faculty of Advanced Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| | - Yuki Nagao
- Catalysts Division, Engineered Materials Sector
- Mitsui Mining & Smelting Co., Ltd
- Saitama 362-0025
- Japan
| | - Katsuya Iwashina
- Catalysts Division, Engineered Materials Sector
- Mitsui Mining & Smelting Co., Ltd
- Saitama 362-0025
- Japan
| | - Yoshinori Endo
- Catalysts Division, Engineered Materials Sector
- Mitsui Mining & Smelting Co., Ltd
- Saitama 362-0025
- Japan
| | - Yunosuke Nakahara
- Catalysts Division, Engineered Materials Sector
- Mitsui Mining & Smelting Co., Ltd
- Saitama 362-0025
- Japan
| | - Masato Machida
- Division of Materials Science and Chemistry
- Faculty of Advanced Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| |
Collapse
|
34
|
Andersen M, Plaisance CP, Reuter K. Assessment of mean-field microkinetic models for CO methanation on stepped metal surfaces using accelerated kinetic Monte Carlo. J Chem Phys 2018; 147:152705. [PMID: 29055323 DOI: 10.1063/1.4989511] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
First-principles screening studies aimed at predicting the catalytic activity of transition metal (TM) catalysts have traditionally been based on mean-field (MF) microkinetic models, which neglect the effect of spatial correlations in the adsorbate layer. Here we critically assess the accuracy of such models for the specific case of CO methanation over stepped metals by comparing to spatially resolved kinetic Monte Carlo (kMC) simulations. We find that the typical low diffusion barriers offered by metal surfaces can be significantly increased at step sites, which results in persisting correlations in the adsorbate layer. As a consequence, MF models may overestimate the catalytic activity of TM catalysts by several orders of magnitude. The potential higher accuracy of kMC models comes at a higher computational cost, which can be especially challenging for surface reactions on metals due to a large disparity in the time scales of different processes. In order to overcome this issue, we implement and test a recently developed algorithm for achieving temporal acceleration of kMC simulations. While the algorithm overall performs quite well, we identify some challenging cases which may lead to a breakdown of acceleration algorithms and discuss possible directions for future algorithm development.
Collapse
Affiliation(s)
- Mie Andersen
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Craig P Plaisance
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| |
Collapse
|
35
|
Hejral U, Franz D, Volkov S, Francoual S, Strempfer J, Stierle A. Identification of a Catalytically Highly Active Surface Phase for CO Oxidation over PtRh Nanoparticles under Operando Reaction Conditions. PHYSICAL REVIEW LETTERS 2018; 120:126101. [PMID: 29694082 DOI: 10.1103/physrevlett.120.126101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 05/20/2023]
Abstract
Pt-Rh alloy nanoparticles on oxide supports are widely employed in heterogeneous catalysis with applications ranging from automotive exhaust control to energy conversion. To improve catalyst performance, an atomic-scale correlation of the nanoparticle surface structure with its catalytic activity under industrially relevant operando conditions is essential. Here, we present x-ray diffraction data sensitive to the nanoparticle surface structure combined with in situ mass spectrometry during near ambient pressure CO oxidation. We identify the formation of ultrathin surface oxides by detecting x-ray diffraction signals from particular nanoparticle facets and correlate their evolution with the sample's enhanced catalytic activity. Our approach opens the door for an in-depth characterization of well-defined, oxide-supported nanoparticle based catalysts under operando conditions with unprecedented atomic-scale resolution.
Collapse
Affiliation(s)
- U Hejral
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, 20355 Hamburg, Germany
- Synchrotron Radiation Research, Lund University, 22100 Lund, Sweden
| | - D Franz
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, 20355 Hamburg, Germany
| | - S Volkov
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, 20355 Hamburg, Germany
| | - S Francoual
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
| | - J Strempfer
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
| | - A Stierle
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, 20355 Hamburg, Germany
| |
Collapse
|
36
|
On the way of understanding the behavior of nanometer-scale metallic particles toward the adsorption of CO and NO molecules. CR CHIM 2018. [DOI: 10.1016/j.crci.2017.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Biffis A, Centomo P, Del Zotto A, Zecca M. Pd Metal Catalysts for Cross-Couplings and Related Reactions in the 21st Century: A Critical Review. Chem Rev 2018; 118:2249-2295. [DOI: 10.1021/acs.chemrev.7b00443] [Citation(s) in RCA: 670] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andrea Biffis
- Dipartimento
di Scienze Chimiche, Università di Padova, via Marzolo 1, I-35131 Padova, Italy
| | - Paolo Centomo
- Dipartimento
di Scienze Chimiche, Università di Padova, via Marzolo 1, I-35131 Padova, Italy
| | - Alessandro Del Zotto
- Dipartimento
di Scienze Agroalimentari, Ambientali e Animali−Sezione di
Chimica, Università di Udine, Via delle Scienze 206, I-33100 Udine, Italy
| | - Marco Zecca
- Dipartimento
di Scienze Chimiche, Università di Padova, via Marzolo 1, I-35131 Padova, Italy
| |
Collapse
|
38
|
Liu L, Zakharov DN, Arenal R, Concepcion P, Stach EA, Corma A. Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat Commun 2018; 9:574. [PMID: 29422522 PMCID: PMC5805776 DOI: 10.1038/s41467-018-03012-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/09/2018] [Indexed: 12/02/2022] Open
Abstract
Understanding the behavior and dynamic structural transformation of subnanometric metal species under reaction conditions will be helpful for understanding catalytic phenomena and for developing more efficient and stable catalysts based on single atoms and clusters. In this work, the evolution and stabilization of subnanometric Pt species confined in MCM-22 zeolite has been studied by in situ transmission electron microscopy (TEM). By correlating the results from in situ TEM studies and the results obtained in a continuous fix-bed reactor, it has been possible to delimitate the factors that control the dynamic agglomeration and redispersion behavior of metal species under reaction conditions. The dynamic reversible transformation between atomically dispersed Pt species and clusters/nanoparticles during CO oxidation at different temperatures has been elucidated. It has also been confirmed that subnanometric Pt clusters can be stabilized in MCM-22 crystallites during NO reduction with CO and H2. Understanding the behavior and structural transformation of metal species under reaction conditions is instrumental for developing more efficient and stable catalysts. Here, the authors reveal the evolution and stabilization of subnanometric Pt species confined in MCM-22 zeolite using in situ transmission electron microscopy.
Collapse
Affiliation(s)
- Lichen Liu
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, 46022, Valencia, Spain
| | - Dmitri N Zakharov
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Raul Arenal
- Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Mariano Esquillor Edificio I+D, 50018, Zaragoza, Spain.,ARAID Foundation, 50018, Zaragoza, Spain
| | - Patricia Concepcion
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, 46022, Valencia, Spain
| | - Eric A Stach
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Av. de los Naranjos s/n, 46022, Valencia, Spain.
| |
Collapse
|
39
|
Jeong H, Bae J, Han JW, Lee H. Promoting Effects of Hydrothermal Treatment on the Activity and Durability of Pd/CeO2 Catalysts for CO Oxidation. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01810] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hojin Jeong
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Junemin Bae
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jeong Woo Han
- Department
of Chemical Engineering, University of Seoul, Seoul 02504, South Korea
| | - Hyunjoo Lee
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
40
|
Surface Oxidation of Supported Ni Particles and Its Impact on the Catalytic Performance during Dynamically Operated Methanation of CO2. Catalysts 2017. [DOI: 10.3390/catal7090279] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
41
|
Mutz B, Belimov M, Wang W, Sprenger P, Serrer MA, Wang D, Pfeifer P, Kleist W, Grunwaldt JD. Potential of an Alumina-Supported Ni3Fe Catalyst in the Methanation of CO2: Impact of Alloy Formation on Activity and Stability. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01896] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin Mutz
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | | | | | - Paul Sprenger
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Marc-André Serrer
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | | | | | - Wolfgang Kleist
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| |
Collapse
|
42
|
Fester J, Sun Z, Rodríguez-Fernández J, Walton A, Lauritsen JV. Phase Transitions of Cobalt Oxide Bilayers on Au(111) and Pt(111): The Role of Edge Sites and Substrate Interactions. J Phys Chem B 2017; 122:561-571. [DOI: 10.1021/acs.jpcb.7b04944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jakob Fester
- Interdisciplinary Nanoscience
Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Zhaozong Sun
- Interdisciplinary Nanoscience
Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | | | - Alex Walton
- Interdisciplinary Nanoscience
Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Jeppe V. Lauritsen
- Interdisciplinary Nanoscience
Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
43
|
Greiner MT, Jones TE, Klyushin A, Knop-Gericke A, Schlögl R. Ethylene Epoxidation at the Phase Transition of Copper Oxides. J Am Chem Soc 2017; 139:11825-11832. [DOI: 10.1021/jacs.7b05004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark T. Greiner
- Fritz-Haber-Institut, Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Travis E. Jones
- Fritz-Haber-Institut, Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Alexander Klyushin
- Fritz-Haber-Institut, Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Axel Knop-Gericke
- Fritz-Haber-Institut, Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Robert Schlögl
- Fritz-Haber-Institut, Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
44
|
Bugaev AL, Guda AA, Lazzarini A, Lomachenko KA, Groppo E, Pellegrini R, Piovano A, Emerich H, Soldatov AV, Bugaev LA, Dmitriev VP, van Bokhoven JA, Lamberti C. In situ formation of hydrides and carbides in palladium catalyst: When XANES is better than EXAFS and XRD. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.02.065] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Reuter K, Plaisance CP, Oberhofer H, Andersen M. Perspective: On the active site model in computational catalyst screening. J Chem Phys 2017; 146:040901. [DOI: 10.1063/1.4974931] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching,
Germany
| | - Craig P. Plaisance
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching,
Germany
| | - Harald Oberhofer
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching,
Germany
| | - Mie Andersen
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching,
Germany
| |
Collapse
|
46
|
Kalz KF, Kraehnert R, Dvoyashkin M, Dittmeyer R, Gläser R, Krewer U, Reuter K, Grunwaldt J. Future Challenges in Heterogeneous Catalysis: Understanding Catalysts under Dynamic Reaction Conditions. ChemCatChem 2017; 9:17-29. [PMID: 28239429 PMCID: PMC5299475 DOI: 10.1002/cctc.201600996] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 01/12/2023]
Abstract
In the future, (electro-)chemical catalysts will have to be more tolerant towards a varying supply of energy and raw materials. This is mainly due to the fluctuating nature of renewable energies. For example, power-to-chemical processes require a shift from steady-state operation towards operation under dynamic reaction conditions. This brings along a number of demands for the design of both catalysts and reactors, because it is well-known that the structure of catalysts is very dynamic. However, in-depth studies of catalysts and catalytic reactors under such transient conditions have only started recently. This requires studies and advances in the fields of 1) operando spectroscopy including time-resolved methods, 2) theory with predictive quality, 3) kinetic modelling, 4) design of catalysts by appropriate preparation concepts, and 5) novel/modular reactor designs. An intensive exchange between these scientific disciplines will enable a substantial gain of fundamental knowledge which is urgently required. This concept article highlights recent developments, challenges, and future directions for understanding catalysts under dynamic reaction conditions.
Collapse
Affiliation(s)
- Kai F. Kalz
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)D-76344Eggenstein-LeopoldshafenGermany
| | - Ralph Kraehnert
- Department of ChemistryTechnische Universität BerlinD-10623BerlinGermany
| | - Muslim Dvoyashkin
- Institute of Chemical TechnologyUniversität LeipzigD-04103LeipzigGermany
| | - Roland Dittmeyer
- Institute for Micro Process Engineering (IMVT)Karlsruhe Institute of Technology (KIT)D-76344Eggenstein-LeopoldshafenGermany
| | - Roger Gläser
- Institute of Chemical TechnologyUniversität LeipzigD-04103LeipzigGermany
| | - Ulrike Krewer
- Institute of Energy and Process Systems EngineeringTU BraunschweigD-38106BraunschweigGermany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research CenterTechnische Universität MünchenD-85747GarchingGermany
| | - Jan‐Dierk Grunwaldt
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)D-76344Eggenstein-LeopoldshafenGermany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)D-76131KarlsruheGermany
| |
Collapse
|
47
|
Machida M. Rh Nanoparticle Anchoring on Metal Phosphates: Fundamental Aspects and Practical Impacts on Catalysis. CHEM REC 2016; 16:2219-2231. [PMID: 27249372 DOI: 10.1002/tcr.201600037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Indexed: 11/08/2022]
Abstract
Metal phosphates stabilize Rh nanoparticles on their surface via Rh-O-P bonds, in contrast to the Rh-O-M bonds formed on metal oxides (MOx ). The local structure, electronic structure, and redox properties of Rh nanoparticles anchored on metal phosphates, and their practical impacts on catalysis, are reviewed based on recent publications from the author's research group. Because of the covalency of the Rh-O-P bond, Rh oxide is readily reduced to metallic Rh having a higher catalytic activity, whereas Rh oxide on metal oxide supports is more difficult to reduce with an increase of the anchoring strength. Furthermore, Rh metal shows a higher tolerance to reoxidation when supported on metal phosphates because the Rh-O-P bond is preserved under reducing atmospheres. The electron deficiency of Rh metal is another feature that affects its catalytic properties, and the extent of the electron deficiency can be tuned by replacing the metal in the metal phosphate with one of higher basicity. Further impacts on practical performance (thermal stability, poisoning stability, and lean NOx purification) in automobile catalyst applications are also described.
Collapse
Affiliation(s)
- Masato Machida
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto, 860-8555, Japan.,Unit of Elements Strategy Initiative for Catalysts & Batteries Kyoto University, 1-30 Goryo-Ohara, Nishikyo, Kyoto 615-8245, Japan
| |
Collapse
|
48
|
Kale MJ, Christopher P. Utilizing Quantitative in Situ FTIR Spectroscopy To Identify Well-Coordinated Pt Atoms as the Active Site for CO Oxidation on Al2O3-Supported Pt Catalysts. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01128] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew J. Kale
- Department of Chemical & Environmental Engineering, ‡Program in Materials Science and Engineering, and §UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| | - Phillip Christopher
- Department of Chemical & Environmental Engineering, ‡Program in Materials Science and Engineering, and §UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
49
|
|
50
|
Zolfagharinia S, Koukabi N, Kolvari E. A unique opportunity for the utilization of glass wastes as a resource for catalytic applications: toward a cleaner environment. RSC Adv 2016. [DOI: 10.1039/c6ra22791k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
n-glass-waste-SO3H at the service of catalytic application.
Collapse
|