1
|
Dong T, Yu P, Zhao J, Wang J. Site specifically probing the unfolding process of human telomere i-motif DNA using vibrationally enhanced alkynyl stretch. Phys Chem Chem Phys 2024; 26:3857-3868. [PMID: 38224126 DOI: 10.1039/d3cp05328h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The microscopic unfolding process of a cytosine-rich DNA forming i-motif by hemi-protonated base pairs is related to gene regulation. However, the detailed thermal unfolding mechanism and the protonation/deprotonation status of site-specific cytosine in DNA in a physiological environment are still obscure. To address this issue, a vibration-enhanced CC probe tagged on 5'E terminal cytosine of human telomere i-motif DNA was examined using linear and nonlinear infrared (IR) spectroscopies and quantum-chemistry calculations. The CC probe extended into the major groove of the i-motif was found using nonlinear IR results only to introduce a minor steric effect on both steady-state structure and local structure dynamics; however, its IR absorption profile effectively reports the cleavage of the hemi-protonated base pair of C1-C13 upon the unfolding with C1 remaining protonated. The temperature mid-point (Tm) of the local transition reported using the CC tag was slightly lower than the Tm of global transition, and the enthalpy of the former exceeds 60% of the global transition. It is shown that the base-pair unraveling is noncooperative, with outer base pairs breaking first and being likely the rate limiting step. Our results offered an in-depth understanding of the macroscopic unfolding characteristics of the i-motif DNA and provided a nonlinear IR approach to monitoring the local structural transition and dynamics of DNA and its complexes.
Collapse
Affiliation(s)
- Tiantian Dong
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Mao D, Paluzzi VE, Zhang C, Mao C. DNA conformational equilibrium enables continuous changing of curvatures. NANOSCALE 2023; 15:470-475. [PMID: 36515101 DOI: 10.1039/d2nr05404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Assembly of complex structures from a small set of tiles is a common theme in biology. For example, many copies of identical proteins make up polyhedron-shaped, viral capsids and tubulin can make long microtubules. This inspired the development of tile-based DNA self-assembly for nanoconstruction, particularly for structures with high symmetries. In the final structure, each type of motif will adopt the same conformation, either rigid or with defined flexibility. For structures that have no symmetry, their assembly remains a challenge from a small set of tiles. To meet this challenge, algorithmic self-assembly has been explored driven by computational science, but it is not clear how to implement this approach to one-dimensional (1D) structures. Here, we have demonstrated that a constant shift of a conformational equilibrium could allow 1D structures to evolve. As shown by atomic force microscopy imaging, one type of DNA tile successfully assembled into DNA spirals and concentric circles, which became less and less curved from the structure's center outward. This work points to a new direction for tile-based DNA assembly.
Collapse
Affiliation(s)
- Dake Mao
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA.
| | - Victoria E Paluzzi
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA.
| | - Cuizheng Zhang
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA.
| | - Chengde Mao
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA.
| |
Collapse
|
3
|
Mahapatra A, Barik S, Satish L, Chakraborty M, Sarkar M. Assessing the Suitability of a Dicationic Ionic Liquid as a Stabilizing Material for the Storage of DNA in Aqueous Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14857-14868. [PMID: 36394977 DOI: 10.1021/acs.langmuir.2c02530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The present study has been undertaken with an objective to find out a suitable medium for the long-term stability and storage of the ct-DNA structure in aqueous solution. For this purpose, the potential of a pyrrolidinium-based dicationic ionic liquid (DIL) in stabilizing ct-DNA structure has been investigated by following the DNA-DIL interaction. Additionally, in order to understand the fundamental aspects regarding the DNA-DIL interaction in a comprehensive manner, studies are also done by employing structurally similar monocationic ionic liquids (MILs). The investigations have been carried out both at ensemble-average and single molecular level by using various spectroscopic techniques. The molecular docking study has also been performed to throw more light into the experimental observations. The combined steady-state and time-resolved fluorescence, fluorescence correlation spectroscopy, and circular dichroism measurements have demonstrated that DILs can effectively be used as better storage media for ct-DNA as compared to MILs. Investigations have also shown that the extra electrostatic interaction between the cationic head group of DIL and the phosphate backbone of DNA is primarily responsible for providing better stabilization to ct-DNA, retaining its native structure in aqueous medium. The outcomes of the present study are also expected to provide valuable insights in designing new polycationic IL systems that can be used in nucleic acid-based applications.
Collapse
Affiliation(s)
- Amita Mahapatra
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Khurda, Bhubaneswar752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai400094, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar752050, Odisha, India
| | - Sahadev Barik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Khurda, Bhubaneswar752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai400094, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar752050, Odisha, India
| | - Lakkoji Satish
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Khurda, Bhubaneswar752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai400094, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar752050, Odisha, India
| | - Manjari Chakraborty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Khurda, Bhubaneswar752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai400094, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar752050, Odisha, India
| | - Moloy Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Khurda, Bhubaneswar752050, Odisha, India
- Homi Bhabha National Institute (HBNI), Mumbai400094, India
- Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Khurda, Bhubaneswar752050, Odisha, India
| |
Collapse
|
4
|
Xu R, Li Y, Zhu C, Liu D, Yang YR. Cellular Ingestible DNA Nanostructures for Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Rui Xu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yujie Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Chenyou Zhu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuhe R. Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| |
Collapse
|
5
|
Chen C, Zhou J, Chen J, Liu H. Advances in DNA Supramolecular Hydrogels for Tissue Engineering. Macromol Biosci 2022; 22:e2200152. [PMID: 35917391 DOI: 10.1002/mabi.202200152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/19/2022] [Indexed: 01/15/2023]
Abstract
Deoxyribonucleic acid (DNA) is a biological macromolecule that plays a genetic role in cells. DNA molecules with specific recognition, self-assembly capabilities, and sequence programmability have become an excellent construction material for micro- and nanostructures. Based on DNA self-assembly technology, a series of molecular devices and materials are constructed. Among them, DNA hydrogels with the advantages of good biocompatibility, biodegradability, and containing designable stimuli-responsive units have attracted much attention. This review introduces the formation strategy of DNA supramolecular hydrogels, and focuses on its applications in tissue engineering, including cell encapsulation, cell culture, cell capture and release, wound dressings, and tissue growth. The unique properties and application prospects of DNA supramolecular hydrogels in tissue engineering are also discussed.
Collapse
Affiliation(s)
- Chun Chen
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Jiaying Zhou
- School of Chemical Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education and Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, 200092, China
| | - Jie Chen
- School of Chemical Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education and Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, 200092, China
| | - Huajie Liu
- School of Chemical Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education and Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai, 200092, China
| |
Collapse
|
6
|
Mondal M, Gao YQ. Microscopic Insight into pH-Dependent Conformational Dynamics and Noncanonical Base Pairing in Telomeric i-Motif DNA. J Phys Chem Lett 2022; 13:5109-5115. [PMID: 35657602 DOI: 10.1021/acs.jpclett.2c00640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gene regulatory functions of noncanonical i-motif DNA are associated with dynamic i-motif formation in the cellular environment and pH variation. With atomistic simulations, we show the dramatic influence of solvent pH on the conformational dynamics of biologically relevant telomeric i-motif DNA coupled with protonation of cytosine bases in different conformations. We rationalized the pH-dependent dynamics and conformational variability of the i-motif in terms of base pairing and specific loop motions. The human telomeric i-motif is found to acquire various metastable folded conformations at pH values near the pKa of cytosine with the formation of a noncanonical C:C W:W trans base pair along with the hemiprotonated C:C+ pairs in the i-motif core. pH-dependent dynamics and the local solvent structure of i-motif DNA imply that the presence of a cosolvent or molecular crowding can promote i-motif formation in vivo by changing the conformational fluctuations and hydration state of the structure.
Collapse
Affiliation(s)
- Manas Mondal
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518107 Shenzhen, China
| | - Yi Qin Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518107 Shenzhen, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, 100871 Beijing, China
- Beijing Advanced Innovation Center for Genomics, Peking University, 100871 Beijing, China
| |
Collapse
|
7
|
Thanasekaran P, Lin B, Valaboju A, Lan C, Chang C, Lee C, Wu J, Bhattacharya D, Tseng T, Lee H, Hsu C, Lu K. Molecular mechanics of glove‐like re(I) metallacycles: Toward light‐activated molecular catchers. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Bo‐Chao Lin
- Institute of Chemistry, Academia Sinica Taipei Taiwan
| | | | | | - Che‐Hao Chang
- Institute of Chemistry, Academia Sinica Taipei Taiwan
| | - Chung‐Chou Lee
- Material and Chemical Research Laboratories Industrial Technology Research Institute Hsinchu Taiwan
| | - Jing‐Yun Wu
- Department of Applied Chemistry National Chi Nan University Nantou Taiwan
| | | | - Tien‐Wen Tseng
- Department of Chemical Engineering National Taipei University of Technology Taipei Taiwan
| | | | - Chao‐Ping Hsu
- Institute of Chemistry, Academia Sinica Taipei Taiwan
- Division of Physics National Center for Theoretical Sciences Taipei Taiwan
| | - Kuang‐Lieh Lu
- Institute of Chemistry, Academia Sinica Taipei Taiwan
| |
Collapse
|
8
|
Ji C, Yu C, Song M, Pei H, Fu P, Lin Y, Wang J. Construction of Molecular Transporter Based on DNA Structure Regulation. ACS APPLIED BIO MATERIALS 2022; 5:2122-2129. [PMID: 35481744 DOI: 10.1021/acsabm.2c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study aims to build a molecular transporter machine that is based on the microstructure regulation of DNA triplets, which can automatically search, load, target delivery, and unload target protein molecules. The design of the molecular transporter includes: (1) a DNA triplet, which can recognize and load of the target protein; (2) a similar DNA triplet realizing the target transport; and (3) the signal-indicating DNA, which is connected at the target destination to achieve fixation of the target protein at the target destination. The molecular transporter machine would provide research practice and theoretical guidance for the development of DNA-based molecular machines.
Collapse
Affiliation(s)
- Chengdong Ji
- Zybio Inc, Chongqing, 400082, China.,Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Chunchun Yu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Min Song
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | | | | | - Jing Wang
- Zybio Inc, Chongqing, 400082, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
De Fazio AF, Misatziou D, Baker YR, Muskens OL, Brown T, Kanaras AG. Chemically modified nucleic acids and DNA intercalators as tools for nanoparticle assembly. Chem Soc Rev 2021; 50:13410-13440. [PMID: 34792047 PMCID: PMC8628606 DOI: 10.1039/d1cs00632k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 12/26/2022]
Abstract
The self-assembly of inorganic nanoparticles to larger structures is of great research interest as it allows the fabrication of novel materials with collective properties correlated to the nanoparticles' individual characteristics. Recently developed methods for controlling nanoparticle organisation have enabled the fabrication of a range of new materials. Amongst these, the assembly of nanoparticles using DNA has attracted significant attention due to the highly selective recognition between complementary DNA strands, DNA nanostructure versatility, and ease of DNA chemical modification. In this review we discuss the application of various chemical DNA modifications and molecular intercalators as tools for the manipulation of DNA-nanoparticle structures. In detail, we discuss how DNA modifications and small molecule intercalators have been employed in the chemical and photochemical DNA ligation in nanostructures; DNA rotaxanes and catenanes associated with reconfigurable nanoparticle assemblies; and DNA backbone modifications including locked nucleic acids, peptide nucleic acids and borane nucleic acids, which affect the stability of nanostructures in complex environments. We conclude by highlighting the importance of maximising the synergy between the communities of DNA chemistry and nanoparticle self-assembly with the aim to enrich the library of tools available for the manipulation of nanostructures.
Collapse
Affiliation(s)
- Angela F De Fazio
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Doxi Misatziou
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Ysobel R Baker
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Otto L Muskens
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Antonios G Kanaras
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
10
|
Lu S, Shen J, Fan C, Li Q, Yang X. DNA Assembly-Based Stimuli-Responsive Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100328. [PMID: 34258165 PMCID: PMC8261508 DOI: 10.1002/advs.202100328] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Indexed: 05/06/2023]
Abstract
Stimuli-responsive designs with exogenous stimuli enable remote and reversible control of DNA nanostructures, which break many limitations of static nanostructures and inspired development of dynamic DNA nanotechnology. Moreover, the introduction of various types of organic molecules, polymers, chemical bonds, and chemical reactions with stimuli-responsive properties development has greatly expand the application scope of dynamic DNA nanotechnology. Here, DNA assembly-based stimuli-responsive systems are reviewed, with the focus on response units and mechanisms that depend on different exogenous stimuli (DNA strand, pH, light, temperature, electricity, metal ions, etc.), and their applications in fields of nanofabrication (DNA architectures, hybrid architectures, nanomachines, and constitutional dynamic networks) and biomedical research (biosensing, bioimaging, therapeutics, and theranostics) are discussed. Finally, the opportunities and challenges for DNA assembly-based stimuli-responsive systems are overviewed and discussed.
Collapse
Affiliation(s)
- Shasha Lu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jianlei Shen
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineDepartment of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Qian Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Xiurong Yang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
11
|
Zhou B, Dong Y, Liu D. Recent Progress in DNA Motor-Based Functional Systems. ACS APPLIED BIO MATERIALS 2021; 4:2251-2261. [PMID: 35014349 DOI: 10.1021/acsabm.0c01540] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The designability, functionalization, and diverse secondary structures of DNA enable the construction of DNA motors with stimuli-responsiveness. Therefore, it has been widely used to fabricate functional systems or generate mechanical power under external stimuli, such as pH, light, heat, electrical, and chemical molecular signals. Furthermore, the DNA motor has also been demonstrated to promote the applications of smart devices and materials, particularly in controllable drug delivery and reversible molecular switching. In this review, we have summarized and discussed recent progress of the construction and applications of DNA motor-based functional systems, such as responsive nanodevices, modified surfaces, and hydrogels.
Collapse
Affiliation(s)
- Bini Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Yuanchen Dong
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
12
|
Mollarasouli F, Badilli U, Bakirhan NK, Ozkan SA, Ozkan Y. Advanced DNA nanomachines: Strategies and bioapplications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Dinis TBV, Sousa F, Freire MG. Insights on the DNA Stability in Aqueous Solutions of Ionic Liquids. Front Bioeng Biotechnol 2020; 8:547857. [PMID: 33178668 PMCID: PMC7591794 DOI: 10.3389/fbioe.2020.547857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Deoxyribonucleic acid (DNA) carries the genetic information essential for the growth and functioning of living organisms, playing a significant role in life sciences research. However, the long-term storage and preservation of DNA, while ensuring its bioactivity, are still current challenges to overcome. In this work, aqueous solutions of ionic liquids (ILs) were investigated as potential preservation media for double stranded (dsDNA). A screening of several ILs, by combining the cholinium, tetrabutylammonium, tetrabutylphosphonium, and 1-ethyl-3-methylimidazolium, cations with the anions bromide, chloride, dihydrogen phosphate, acetate, and glycolate, was carried out in order to gather fundamental knowledge on the molecular features of ILs that improve the dsDNA stability. Different IL concentrations and the pH effect were also addressed. Circular dichroism (CD) spectroscopy was used to evaluate the conformational structure and stability of dsDNA. IL-DNA interactions were appraised by UV-Vis absorption spectrophotometry and 31P nuclear magnetic resonance (NMR) spectroscopy. The results obtained demonstrate that pH has a significant effect towards the dsDNA stability. Amongst the ILs investigated, cholinium-based ILs are the most promising class of ILs to preserve the dsDNA structure, in which electrostatic interactions between the cholinium cation and the DNA phosphate groups play a significant role as demonstrated by the 31P NMR data, being more relevant at higher IL concentrations. On the other hand, the denaturation of dsDNA mainly occurs with ILs composed of more hydrophobic cations and able to establish dispersive interactions with the nucleobases environment. Furthermore, the IL anion has a weaker impact when compared to the IL cation effect to interact with DNA molecules. The experimental data of this work provide relevant fundamental knowledge for the application of ILs in the preservation of nucleic acids, being of high relevance in the biotechnology field.
Collapse
Affiliation(s)
- Teresa B V Dinis
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Center, Universidade da Beira Interior, Covilhã, Portugal
| | - Mara G Freire
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
14
|
Sarkar S, Singh PC. Alteration of the groove width of DNA induced by the multimodal hydrogen bonding of denaturants with DNA bases in its grooves affects their stability. Biochim Biophys Acta Gen Subj 2020; 1864:129498. [DOI: 10.1016/j.bbagen.2019.129498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023]
|
15
|
Ghosh D, Datta LP, Govindaraju T. Molecular architectonics of DNA for functional nanoarchitectures. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:124-140. [PMID: 31976202 PMCID: PMC6964666 DOI: 10.3762/bjnano.11.11] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/09/2019] [Indexed: 05/08/2023]
Abstract
DNA is the key biomolecule central to almost all processes in living organisms. The eccentric idea of utilizing DNA as a material building block in molecular and structural engineering led to the creation of numerous molecular-assembly systems and materials at the nanoscale. The molecular structure of DNA is believed to have evolved over billions of years, with structure and stability optimizations that allow life forms to sustain through the storage and transmission of genetic information with fidelity. The nanoscale structural characteristics of DNA (2 nm thickness and ca. 40-50 nm persistence length) have inspired the creation of numerous functional patterns and architectures through noncovalent conventional and unconventional base pairings as well as through mutual templating-interactions with small organic molecules and metal ions. The recent advancements in structural DNA nanotechnology allowed researchers to design new DNA-based functional materials with chemical and biological properties distinct from their parent components. The modulation of structural and functional properties of hybrid DNA ensembles of small functional molecules (SFMs) and short oligonucleotides by adapting the principles of molecular architectonics enabled the creation of novel DNA nanoarchitectures with potential applications, which has been termed as templated DNA nanotechnology or functional DNA nanoarchitectonics. This review highlights the molecular architectonics-guided design principles and applications of the derived DNA nanoarchitectures. The advantages and ability of functional DNA nanoarchitectonics to overcome the trivial drawbacks of classical DNA nanotechnology to fulfill realistic and practical applications are highlighted, and an outlook on future developments is presented.
Collapse
Affiliation(s)
- Debasis Ghosh
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru 560064, Karnataka, India
| | - Lakshmi P Datta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
16
|
Mondal M, Bhattacharyya D, Gao YQ. Structural properties and influence of solvent on the stability of telomeric four-stranded i-motif DNA. Phys Chem Chem Phys 2019; 21:21549-21560. [PMID: 31536074 DOI: 10.1039/c9cp03253c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Repetitive cytosine rich i-motif forming sequences are abundant in the telomere, centromere and promoters of several oncogenes and in some instances are known to regulate transcription and gene expression. The in vivo existence of i-motif structures demands further insight into the factors affecting their formation and stability and development of better understanding of their gene regulatory functions. Most prior studies characterizing the conformational dynamics of i-motifs are based on i-motif forming synthetic constructs. Here, we present a systematic study on the stability and structural properties of biologically relevant i-motifs of telomeric and centromeric repeat fragments. Our results based on molecular dynamics simulations and quantum chemical calculations indicate that along with base pairing interactions within the i-motif core the overall folded conformation is associated with the stable C-HO sugar "zippers" in the narrow grooves and structured water molecules along the wide grooves. The stacked geometry of the hemi-protonated cytosine pairs within the i-motif core is mainly governed by the repulsive base stacking interaction. The loop sequence can affect the structural dynamics of the i-motif by altering the loop motion and backbone conformation. Overall this study provides microscopic insight into the i-motif structure that will be helpful to understand the structural aspect of mechanisms of gene regulation by i-motif DNA.
Collapse
Affiliation(s)
- Manas Mondal
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
17
|
Dong Y, Mao Y. DNA Origami as Scaffolds for Self‐Assembly of Lipids and Proteins. Chembiochem 2019; 20:2422-2431. [DOI: 10.1002/cbic.201900073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/22/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Yuanchen Dong
- Department of Cancer Immunology and VirologyDana-Farber Cancer InstituteDepartment of MicrobiologyHarvard Medical School 450 Brookline Avenue Boston MA 02215 USA
- Intel Parallel Computing Center for Structural BiologyDana-Farber Cancer Institute 450 Brookline Avenue Boston MA 02215 USA
- Present address: CAS Key Laboratory of Colloid Interfaces and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences No. 2 Zhongguancun Beiyijie Beijing 100190 P.R. China
| | - Youdong Mao
- Department of Cancer Immunology and VirologyDana-Farber Cancer InstituteDepartment of MicrobiologyHarvard Medical School 450 Brookline Avenue Boston MA 02215 USA
- Intel Parallel Computing Center for Structural BiologyDana-Farber Cancer Institute 450 Brookline Avenue Boston MA 02215 USA
- State Key Laboratory for Artificial Microstructures and Mesoscopic PhysicsSchool of PhysicsCenter for Quantitative BiologyPeking University Beijing 100871 P.R. China
| |
Collapse
|
18
|
Sun GY, Du YC, Cui YX, Wang J, Li XY, Tang AN, Kong DM. Terminal Deoxynucleotidyl Transferase-Catalyzed Preparation of pH-Responsive DNA Nanocarriers for Tumor-Targeted Drug Delivery and Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14684-14692. [PMID: 30942569 DOI: 10.1021/acsami.9b05358] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Developing a highly efficient carrier for tumor-targeted delivery and site-specific release of anticancer drugs is a good way to overcome the side effects of traditional cancer chemotherapy. Benefiting from the nontoxic and biocompatible characteristics, DNA-based drug carriers have attracted increasing attention. Herein, we reported a novel and readily manipulated strategy to construct spherical DNA nanocarriers. In this strategy, terminal deoxynucleotidyl transferase (TdT)-catalyzed DNA extension reaction is used to prepare a thick DNA layer on a gold nanoparticle (AuNP) surface by extending long poly(C) sequences from DNA primers immobilized on AuNPs. The poly(C) extension products can then hybridize with G-rich oligonucleotides to give CG-rich DNA duplexes (for loading anticancer drug doxorubicin, Dox) and multiple AS1411 aptamers. Via synergic recognition of multiple aptamer units to nucleolin proteins, biomarker of malignant tumors, Dox-loaded DNA carrier can be efficiently internalized in cancer cells and achieve burst release of drugs in acidic organelles because of i-motif formation-induced DNA duplex destruction. An as-prepared pH-responsive drug carrier was demonstrated to be promising for highly efficient delivery of Dox and selective killing of cancer cells in both in vitro and in vivo experiments, thus showing a huge potential in anticancer therapy.
Collapse
Affiliation(s)
- Guo-Ying Sun
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Yun-Xi Cui
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Jing Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Xiao-Yu Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| |
Collapse
|
19
|
Oprzeska-Zingrebe EA, Smiatek J. Preferential Binding of Urea to Single-Stranded DNA Structures: A Molecular Dynamics Study. Biophys J 2019; 114:1551-1562. [PMID: 29642026 DOI: 10.1016/j.bpj.2018.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/12/2018] [Accepted: 02/12/2018] [Indexed: 01/06/2023] Open
Abstract
In nature, a wide range of biological processes such as transcription termination and intermolecular binding depend on the formation of specific DNA secondary and tertiary structures. These structures can be both stabilized or destabilized by different cosolutes coexisting with nucleic acids in the cellular environment. In our molecular dynamics simulation study, we investigate the binding of urea at different concentrations to short 7-nucleotide single-stranded DNA structures in aqueous solution. The local concentration of urea around a native DNA hairpin in comparison to an unfolded DNA conformation is analyzed by a preferential binding model in light of the Kirkwood-Buff theory. All our findings indicate a pronounced accumulation of urea around DNA that is driven by a combination of electrostatic and dispersion interactions and accomplished by a significant replacement of hydrating water molecules. The outcomes of our study can be regarded as a first step into a deeper mechanistic understanding toward cosolute-induced effects on nucleotide structures in general.
Collapse
Affiliation(s)
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, Stuttgart, Germany; Helmholtz Institute Münster: Ionics in Energy Storage, Forschungszentrum Jülich, Münster, Germany.
| |
Collapse
|
20
|
Kim J, Jang D, Park H, Jung S, Kim DH, Kim WJ. Functional-DNA-Driven Dynamic Nanoconstructs for Biomolecule Capture and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707351. [PMID: 30062803 DOI: 10.1002/adma.201707351] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The discovery of sequence-specific hybridization has allowed the development of DNA nanotechnology, which is divided into two categories: 1) structural DNA nanotechnology, which utilizes DNA as a biopolymer; and 2) dynamic DNA nanotechnology, which focuses on the catalytic reactions or displacement of DNA structures. Recently, numerous attempts have been made to combine DNA nanotechnologies with functional DNAs such as aptamers, DNAzymes, amplified DNA, polymer-conjugated DNA, and DNA loaded on functional nanoparticles for various applications; thus, the new interdisciplinary research field of "functional DNA nanotechnology" is initiated. In particular, a fine-tuned nanostructure composed of functional DNAs has shown immense potential as a programmable nanomachine by controlling DNA dynamics triggered by specific environments. Moreover, the programmability and predictability of functional DNA have enabled the use of DNA nanostructures as nanomedicines for various biomedical applications, such as cargo delivery and molecular drugs via stimuli-mediated dynamic structural changes of functional DNAs. Here, the concepts and recent case studies of functional DNA nanotechnology and nanostructures in nanomedicine are reviewed, and future prospects of functional DNA for nanomedicine are indicated.
Collapse
Affiliation(s)
- Jinhwan Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
| | - Donghyun Jang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Hyeongmok Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon, 57922, Korea
| | - Won Jong Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| |
Collapse
|
21
|
Garai A, Ghoshdastidar D, Senapati S, Maiti PK. Ionic liquids make DNA rigid. J Chem Phys 2018; 149:045104. [PMID: 30068211 DOI: 10.1063/1.5026640] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Persistence length of double-stranded DNA (dsDNA) is known to decrease with an increase in ionic concentration of the solution. In contrast to this, here we show that the persistence length of dsDNA increases dramatically as a function of ionic liquid (IL) concentration. Using all atom explicit solvent molecular dynamics simulations and theoretical models, we present, for the first time, a systematic study to determine the mechanical properties of dsDNA in various hydrated ILs at different concentrations. We find that dsDNA in 50 wt % ILs have lower persistence length and stretch modulus in comparison to 80 wt % ILs. We further observe that both the persistence length and stretch modulus of dsDNA increase as we increase the concentration of ILs. The present trend of the stretch modulus and persistence length of dsDNA with IL concentration supports the predictions of the macroscopic elastic theory, in contrast to the behavior exhibited by dsDNA in monovalent salt. Our study further suggests the preferable ILs that can be used for maintaining DNA stability during long-term storage.
Collapse
Affiliation(s)
- Ashok Garai
- Department of Physics, Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| | - Debostuti Ghoshdastidar
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sanjib Senapati
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Prabal K Maiti
- Department of Physics, Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
22
|
Zhao Z, Du T, Liang F, Liu S. Amphiphilic DNA Organic Hybrids: Functional Materials in Nanoscience and Potential Application in Biomedicine. Int J Mol Sci 2018; 19:E2283. [PMID: 30081520 PMCID: PMC6121482 DOI: 10.3390/ijms19082283] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
Due to the addressability and programmability, DNA has been applied not merely in constructing static elegant nanostructures such as two dimensional and three dimensional DNA nanostructures but also in designing dynamic nanodevices. Moreover, DNA could combine with hydrophobic organic molecules to be a new amphiphilic building block and then self-assemble into nanomaterials. Of particular note, a recent state-of-the-art research has turned our attention to the amphiphilic DNA organic hybrids including small molecule modified DNA (lipid-DNA, fluorescent molecule-DNA, etc.), DNA block copolymers, and DNA-dendron hybrids. This review focuses mainly on the development of their self-assembly behavior and their potential application in nanomaterial and biomedicine. The potential challenges regarding of the amphiphilic DNA organic hybrids are also briefly discussed, aiming to advance their practical applications in nanoscience and biomedicine.
Collapse
Affiliation(s)
- Zhiyong Zhao
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Ting Du
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
23
|
Huang JY, Lin HT, Chen TH, Chen CA, Chang HT, Chen CF. Signal Amplified Gold Nanoparticles for Cancer Diagnosis on Paper-Based Analytical Devices. ACS Sens 2018; 3:174-182. [PMID: 29282979 DOI: 10.1021/acssensors.7b00823] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, we report a highly sensitive colorimetric sensing strategy for cancer biomarker diagnosis using gold nanoparticles (AuNPs) labeled with biotinylated poly(adenine) ssDNA sequences and streptavidin-horseradish peroxidase for enzymatic signal enhancement. By adopting this DNA-AuNP nanoconjugate sensing strategy, we were able to eliminate the complicated and costly thiol-binding process typically used to modify AuNP surfaces with ssDNA. In addition, different antibodies can be introduced to the AuNP surfaced via electrostatic interactions to provide highly specific recognition sites for biomolecular sensing. Moreover, multiple, simultaneous tests can be rapidly performed with low sample consumption by incorporating these surface-modified AuNPs into a paper-based analytical device that can be read using just a smartphone. As a result of these innovations, we were able to achieve a detection limit of 10 pg/mL for a prostate specific antigen in a test that could be completed in as little as 15 min. These results suggest that the proposed paper platform possesses the capability for sensitive, high-throughput, and on-site prognosis in resource-limited settings.
Collapse
Affiliation(s)
- Jia-Yu Huang
- Department of Chemistry, ‡Institute of Applied Mechanics, and §Center for Emerging Material and Advanced
Devices, National Taiwan University, Taipei 106, Taiwan
| | - Hong-Ting Lin
- Department of Chemistry, ‡Institute of Applied Mechanics, and §Center for Emerging Material and Advanced
Devices, National Taiwan University, Taipei 106, Taiwan
| | - Tzu-Heng Chen
- Department of Chemistry, ‡Institute of Applied Mechanics, and §Center for Emerging Material and Advanced
Devices, National Taiwan University, Taipei 106, Taiwan
| | - Chung-An Chen
- Department of Chemistry, ‡Institute of Applied Mechanics, and §Center for Emerging Material and Advanced
Devices, National Taiwan University, Taipei 106, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, ‡Institute of Applied Mechanics, and §Center for Emerging Material and Advanced
Devices, National Taiwan University, Taipei 106, Taiwan
| | - Chien-Fu Chen
- Department of Chemistry, ‡Institute of Applied Mechanics, and §Center for Emerging Material and Advanced
Devices, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
24
|
Chen J, Zuehlke A, Deng B, Peng H, Hou X, Zhang H. A Target-Triggered DNAzyme Motor Enabling Homogeneous, Amplified Detection of Proteins. Anal Chem 2017; 89:12888-12895. [PMID: 29099172 DOI: 10.1021/acs.analchem.7b03529] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report here the concept of a self-powered, target-triggered DNA motor constructed by engineering a DNAzyme to adapt into binding-induced DNA assembly. An affinity ligand was attached to the DNAzyme motor via a DNA spacer, and a second affinity ligand was conjugated to the gold nanoparticle (AuNP) that was also decorated with hundreds of substrate strands serving as a high-density, three-dimensional track for the DNAzyme motor. Binding of a target molecule to the two ligands induced hybridization between the DNAzyme and its substrate on the AuNP, which are otherwise unable to spontaneously hybridize. The hybridization of DNAzyme with the substrate initiates the cleavage of the substrate and the autonomous movement of the DNAzyme along the AuNP. Each moving step restores the fluorescence of a dye molecule, enabling monitoring of the operation of the DNAzyme motor in real time. A simple addition or depletion of the cofactor Mg2+ allows for fine control of the DNAzyme motor. The motor can translate a single binding event into cleavage of hundreds of substrates, enabling amplified detection of proteins at room temperature without the need for separation.
Collapse
Affiliation(s)
- Junbo Chen
- Analytical and Testing Center, Sichuan University , 29 Wangjiang Road, Chengdu, Sichuan 610064, China.,Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta T6G 2G3, Canada
| | - Albert Zuehlke
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta T6G 2G3, Canada
| | - Bin Deng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta T6G 2G3, Canada
| | - Hanyong Peng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta T6G 2G3, Canada
| | - Xiandeng Hou
- Analytical and Testing Center, Sichuan University , 29 Wangjiang Road, Chengdu, Sichuan 610064, China.,College of Chemistry, Sichuan University , 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
25
|
Abstract
Extracellular matrix (ECM) provides essential supports three dimensionally to the cells in living organs, including mechanical support and signal, nutrition, oxygen, and waste transportation. Thus, using hydrogels to mimic its function has attracted much attention in recent years, especially in tissue engineering, cell biology, and drug screening. However, a hydrogel system that can merit all parameters of the natural ECM is still a challenge. In the past decade, deoxyribonucleic acid (DNA) has arisen as an outstanding building material for the hydrogels, as it has unique properties compared to most synthetic or natural polymers, such as sequence designability, precise recognition, structural rigidity, and minimal toxicity. By simple attachment to polymers as a side chain, DNA has been widely used as cross-links in hydrogel preparation. The formed secondary structures could confer on the hydrogel designable responsiveness, such as response to temperature, pH, metal ions, proteins, DNA, RNA, and small signal molecules like ATP. Moreover, single or multiple DNA restriction enzyme sites could be incorporated into the hydrogels by sequence design and greatly expand the latitude of their responses. Compared with most supramolecular hydrogels, these DNA cross-linked hydrogels could be relatively strong and easily adjustable via sequence variation, but it is noteworthy that these hydrogels still have excellent thixotropic properties and could be easily injected through a needle. In addition, the quick formation of duplex has also enabled the multilayer three-dimensional injection printing of living cells with the hydrogel as matrix. When the matrix is built purely by DNA assembly structures, the hydrogel inherits all the previously described characteristics; however, the long persistence length of DNA structures excluded the small size meshes of the network and made the hydrogel permeable to nutrition for cell proliferation. This unique property greatly expands the cell viability in the three-dimensional matrix to several weeks and also provides an easy way to prepare interpenetrating double network materials. In this Account, we outline the stream of hydrogels based on DNA self-assembly and discuss the mechanism that brings outstanding properties to the materials. Unlike most reported hydrogel systems, the all-in-one character of the DNA hydrogel avoids the "cask effect" in the properties. We believe the hydrogel will greatly benefit cell behavior studies especially in the following aspects: (1) stem cell differentiation can be studied with solely tunable mechanical strength of the matrix; (2) the dynamic nature of the network can allow cell migration through the hydrogel, which will help to build a more realistic model to observe the migration of cancer cells in vivo; (3) combination with rapidly developing three-dimension printing technology, the hydrogel will boost the construction of three-dimensional tissues and artificial organs.
Collapse
Affiliation(s)
- Yu Shao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haoyang Jia
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tianyang Cao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Xing Y, Liu B, Chao J, Wang L. DNA-based nanoscale walking devices and their applications. RSC Adv 2017. [DOI: 10.1039/c7ra09781f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein we review DNA-based nanoscale walking devices including unipedal, bipedal, multipedal, and other novel walking devices and their applications.
Collapse
Affiliation(s)
- Yikang Xing
- Institute of Advanced Materials (IAM)
- Jiangsu National Syngerstic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Bing Liu
- Institute of Advanced Materials (IAM)
- Jiangsu National Syngerstic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Jie Chao
- Institute of Advanced Materials (IAM)
- Jiangsu National Syngerstic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Lianhui Wang
- Institute of Advanced Materials (IAM)
- Jiangsu National Syngerstic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| |
Collapse
|
27
|
Del Grosso E, Idili A, Porchetta A, Ricci F. A modular clamp-like mechanism to regulate the activity of nucleic-acid target-responsive nanoswitches with external activators. NANOSCALE 2016; 8:18057-18061. [PMID: 27714163 DOI: 10.1039/c6nr06026a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Here we demonstrate a general and modular approach to regulate the activity of target-responsive DNA-based nanoswitches. We do so by coupling together two DNA-based responsive elements: a triplex-forming clamp-like probe able to bind a specific DNA sequence and a split aptamer selected to bind a small molecule. In the presence of the specific target of one of the above responsive elements, the nanoswitch partially folds and its ability to bind the second target is restored. With this approach we can finely modulate the affinity of both DNA-recognition elements and aptamers using an external ligand. The modular nature of our strategy makes it easily generalizable to different DNA based recognition elements. As a demonstration of this we successfully designed five different DNA nanoswitches whose responsiveness can be regulated by different molecular effectors and targets. The convenience with which this mechanism is designed suggests that it may prove a useful tool by which sensors, genetic networks and other biotechnology devices employing nucleic-acid based receptors can be controlled with an external input.
Collapse
Affiliation(s)
- Erica Del Grosso
- Chemistry Department, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy.
| | - Andrea Idili
- Chemistry Department, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy.
| | - Alessandro Porchetta
- Chemistry Department, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy.
| | - Francesco Ricci
- Chemistry Department, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy.
| |
Collapse
|
28
|
Xu B, Wu X, Yeow EKL, Shao F. A single thiazole orange molecule forms an exciplex in a DNA i-motif. Chem Commun (Camb) 2016; 50:6402-5. [PMID: 24811922 DOI: 10.1039/c4cc01147c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A fluorescent exciplex of thiazole orange (TO) is formed in a single-dye conjugated DNA i-motif. The exciplex fluorescence exhibits a large Stokes shift, high quantum yield, robust response to pH oscillation and little structural disturbance to the DNA quadruplex, which can be used to monitor the folding of high-order DNA structures.
Collapse
Affiliation(s)
- Baochang Xu
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | | | | | | |
Collapse
|
29
|
Xu B, Devi G, Shao F. Regulation of telomeric i-motif stability by 5-methylcytosine and 5-hydroxymethylcytosine modification. Org Biomol Chem 2016; 13:5646-51. [PMID: 25886653 DOI: 10.1039/c4ob02646b] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The two important epigenetic markers in the human genome, 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC), are involved in gene regulation processes. As a major epigenetic target, cytosines in a C-rich DNA sequence were substituted with mC and hmC to investigate the thermal stability and pH sensitivity of the corresponding i-motifs. Circular Dichroism (CD) studies indicate the formation of i-motifs at acidic pH (<6.5) for mC- and hmC-modified DNA sequences. Thermal denaturation results suggest that DNA i-motifs are stabilized when modified with one or two mCs. However, hypermethylation with mC and single modification with hmC cause destabilization of the structure. A biomimetic crowding agent does not alter the stability effect trends resulting from mC and hmC modifications, though the corresponding i-motifs show elevated melting temperatures without significant changes in pKa values.
Collapse
Affiliation(s)
- Baochang Xu
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | | | | |
Collapse
|
30
|
Xu Q, Zhang Y, Zhang CY. A universal sensing platform based on the repair ligation-mediated light-producing DNA machine. Chem Commun (Camb) 2016; 51:5652-5. [PMID: 25714986 DOI: 10.1039/c4cc10356d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The repair ligation-mediated light-producing DNA machine can produce light through transforming the repetitive DNA cleavage/ligation motions into optical energy without the requirement of either external reporting reagents or excitation light, and it can be applied for sensitive and selective detection of DNA, thrombin, adenosine, potassium ions (K(+)) and endonuclease even in human serum.
Collapse
Affiliation(s)
- Qinfeng Xu
- Single-Molecule Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | | | | |
Collapse
|
31
|
Kumar V, Bayda S, Hadla M, Caligiuri I, Russo Spena C, Palazzolo S, Kempter S, Corona G, Toffoli G, Rizzolio F. Enhanced Chemotherapeutic Behavior of Open-Caged DNA@Doxorubicin Nanostructures for Cancer Cells. J Cell Physiol 2016; 231:106-10. [PMID: 26031628 DOI: 10.1002/jcp.25057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/26/2015] [Indexed: 01/09/2023]
Abstract
In cancer therapy, it is imperative to increase the efficacy and reduce side effects of chemotherapeutic drugs. Nanotechnology offers the unique opportunity to overcome these barriers. In particular, in the last few years, DNA nanostructures have gained attention for their biocompatibility, easy customized synthesis and ability to deliver drugs to cancer cells. Here, an open-caged pyramidal DNA@Doxorubicin (Py-Doxo) nanostructure was constructed with 10 DNA sequences of 26-28 nucleotides for drug delivery to cancer cells. The synthesized DNA nanostructures are sufficiently stable in biological medium. Py-Doxo exhibited significantly enhanced cytotoxicity of the delivered doxorubicin to breast and liver cancer cells up to twofold compared to free doxorubicin. This study demonstrates the importance of the shape and structure of the designed transporter DNA nanostructures for biomedical applications.
Collapse
Affiliation(s)
- Vinit Kumar
- Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, PN, Italy
| | - Samer Bayda
- Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, PN, Italy.,Doctoral School in Nanotechnology, University of Trieste, Italy
| | - Mohamad Hadla
- Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, PN, Italy.,Doctoral School in Pharmacological Sciences, University of Padua, Italy
| | - Isabella Caligiuri
- Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, PN, Italy
| | - Concetta Russo Spena
- Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, PN, Italy
| | - Stefano Palazzolo
- Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, PN, Italy.,Doctoral School in Nanotechnology, University of Trieste, Italy
| | - Susanne Kempter
- Faculty of Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, München, Germany
| | - Giuseppe Corona
- Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, PN, Italy
| | - Giuseppe Toffoli
- Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, PN, Italy
| | - Flavio Rizzolio
- Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, PN, Italy
| |
Collapse
|
32
|
Gregoliński J, Hikita M, Sakamoto T, Sugimoto H, Tsukube H, Miyake H. Redox-Triggered Helicity Inversion in Chiral Cobalt Complexes in Combination with H+ and NO3– Stimuli. Inorg Chem 2016; 55:633-43. [DOI: 10.1021/acs.inorgchem.5b01902] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Janusz Gregoliński
- Department
of Chemistry, Graduate School of Science, and ⊥JST, CREST, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Masahiro Hikita
- Department
of Chemistry, Graduate School of Science, and ⊥JST, CREST, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tatsuya Sakamoto
- Department
of Chemistry, Graduate School of Science, and ⊥JST, CREST, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hideki Sugimoto
- Department
of Chemistry, Graduate School of Science, and ⊥JST, CREST, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hiroshi Tsukube
- Department
of Chemistry, Graduate School of Science, and ⊥JST, CREST, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hiroyuki Miyake
- Department
of Chemistry, Graduate School of Science, and ⊥JST, CREST, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
33
|
Li C, Li Y, Chen Y, Lin R, Li T, Liu F, Li N. Modulating the DNA strand-displacement kinetics with the one-sided remote toehold design for differentiation of single-base mismatched DNA. RSC Adv 2016. [DOI: 10.1039/c6ra17006d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A one-sided remote toehold design was proposed to provide the fine control over strand-displacement reaction kinetics with simplicity and versatility.
Collapse
Affiliation(s)
- Chenxi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Yixin Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Yang Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Ruoyun Lin
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Tian Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- Institute of Analytical Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
34
|
Devi G, He L, Xu B, Li T, Shao F. In-stem thiazole orange reveals the same triplex intermediate for pH and thermal unfolding of i-motifs. Chem Commun (Camb) 2016; 52:7261-4. [DOI: 10.1039/c6cc01643j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The unfolding pathway of human telomeric i-motifs was monitored by both monomer and exciplex fluorescence of in-stem thiazole orange. A uniform triplex intermediate was determined upon unfolding i-motifs against either pH or thermal denaturation.
Collapse
Affiliation(s)
- Gitali Devi
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Lei He
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Baochang Xu
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Tianhu Li
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Fangwei Shao
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| |
Collapse
|
35
|
Zhou X, Li C, Shao Y, Chen C, Yang Z, Liu D. Reversibly tuning the mechanical properties of a DNA hydrogel by a DNA nanomotor. Chem Commun (Camb) 2016; 52:10668-71. [DOI: 10.1039/c6cc04724f] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The microscopic conformational transition of an i-motif sequence integrated into a DNA hydrogel network leads to a reversible change in the macroscopic mechanical properties of the hydrogel without changing its initial topological structure.
Collapse
Affiliation(s)
- Xu Zhou
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Chuang Li
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yu Shao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Chun Chen
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
36
|
Zhang H, Lai M, Zuehlke A, Peng H, Li XF, Le XC. Binding-Induced DNA Nanomachines Triggered by Proteins and Nucleic Acids. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506312] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Zhang H, Lai M, Zuehlke A, Peng H, Li X, Le XC. Binding‐Induced DNA Nanomachines Triggered by Proteins and Nucleic Acids. Angew Chem Int Ed Engl 2015; 54:14326-30. [DOI: 10.1002/anie.201506312] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/17/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Hongquan Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2G3 (Canada)
| | - Maode Lai
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058 (China)
| | - Albert Zuehlke
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2G3 (Canada)
| | - Hanyong Peng
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2G3 (Canada)
| | - Xing‐Fang Li
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2G3 (Canada)
| | - X. Chris Le
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, T6G 2G3 (Canada)
| |
Collapse
|
38
|
Idili A, Porchetta A, Amodio A, Vallée-Bélisle A, Ricci F. Controlling Hybridization Chain Reactions with pH. NANO LETTERS 2015; 15:5539-44. [PMID: 26177980 DOI: 10.1021/acs.nanolett.5b02123] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
By taking inspiration from nature, where self-organization of biomolecular species into complex systems is finely controlled through different stimuli, we propose here a rational approach by which the assembly and disassembly of DNA-based concatemers can be controlled through pH changes. To do so we used the hybridization chain reaction (HCR), a process that, upon the addition of an initiator strand, allows to create DNA-based concatemers in a controlled fashion. We re-engineered the functional units of HCR through the addition of pH-dependent clamp-like triplex-forming domains that can either inhibit or activate the polymerization reaction at different pHs. This allows to finely regulate the HCR-induced assembly and disassembly of DNA concatemers at either basic or acidic pHs in a reversible way. The strategies we present here appear particularly promising as novel tools to achieve better spatiotemporal control of self-assembly processes of DNA-based nanostructures.
Collapse
Affiliation(s)
- Andrea Idili
- †Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Rome, Italy
| | - Alessandro Porchetta
- †Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Rome, Italy
| | - Alessia Amodio
- †Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Rome, Italy
- ‡PhD School of Nanotechnology, Department of Physics, University of Trieste, Trieste, Italy
| | - Alexis Vallée-Bélisle
- §Laboratory of Biosensors and Nanomachines, Département de Chimie, Université de Montréal, Québec, Canada
| | - Francesco Ricci
- †Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Rome, Italy
| |
Collapse
|
39
|
Pabbathi A, Samanta A. Spectroscopic and Molecular Docking Study of the Interaction of DNA with a Morpholinium Ionic Liquid. J Phys Chem B 2015; 119:11099-105. [PMID: 26061788 DOI: 10.1021/acs.jpcb.5b02939] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural integrity of a nucleic acid under various conditions determines its utility in biocatalysis and biotechnology. Exploration of the ionic liquids (ILs) for extraction of DNA and other nucleic acid based applications requires an understanding of the nature of interaction between the IL and DNA. Considering these aspects, we have studied the interaction between calf-thymus DNA and a less toxic morpholinium IL, [Mor1,2][Br], employing fluorescence correlation spectroscopy (FCS), conventional steady state and time-resolved fluorescence, circular dichroism (CD) and molecular docking techniques. While the CD spectra indicate the stability of DNA and retention of its B-form in the presence of the morpholinium IL, the docking study reveals that [Mor1,2](+) binds to the minor groove of DNA with a binding energy of -4.57 kcal mol(-1). The groove binding of the cationic component of the IL is corroborated by the steady state fluorescence data, which indicated displacement of a known minor groove binder, DAPI, from its DNA-bound state on addition of [Mor1,2][Br]. The FCS measurements show that the hydrodynamic radius of DNA remains more or less constant in the presence of [Mor1,2][Br], thus suggesting that the structure of DNA is retained in the presence of the IL. DNA melting experiments show that the thermal stability of DNA is enhanced in the presence of morpholinium IL.
Collapse
Affiliation(s)
- Ashok Pabbathi
- School of Chemistry, University of Hyderabad , Hyderabad 500046, India
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad , Hyderabad 500046, India
| |
Collapse
|
40
|
Tang W, Hu S, Wang H, Zhao Y, Li N, Liu F. A universal molecular translator for non-nucleic acid targets that enables dynamic DNA assemblies and logic operations. Chem Commun (Camb) 2015; 50:14352-5. [PMID: 25295484 DOI: 10.1039/c4cc07041k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A universal molecular translator based on the target-triggered DNA strand displacement was developed, which was able to convert various kinds of non-nucleic acid targets into a unique output DNA. This translation strategy was successfully applied in directing dynamic DNA assemblies and in realizing three-input logic gate operations.
Collapse
Affiliation(s)
- Wei Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | | | |
Collapse
|
41
|
Yang M, Zhang X, Liu H, Kang H, Zhu Z, Yang W, Tan W. Stable DNA Nanomachine Based on Duplex-Triplex Transition for Ratiometric Imaging Instantaneous pH Changes in Living Cells. Anal Chem 2015; 87:5854-9. [PMID: 26016566 PMCID: PMC4928482 DOI: 10.1021/acs.analchem.5b01233] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/27/2015] [Indexed: 02/07/2023]
Abstract
DNA nanomachines are becoming useful tools for molecular recognition, imaging, and diagnostics and have drawn gradual attention. Unfortunately, the present application of most DNA nanomachines is limited in vitro, so expanding their application in organism has become a primary focus. Hence, a novel DNA nanomachine named t-switch, based on the DNA duplex-triplex transition, is developed for monitoring the intracellular pH gradient. Our strategy is based on the DNA triplex structure containing C(+)-G-C triplets and pH-dependent Förster resonance energy transfer (FRET). Our results indicate that the t-switch is an efficient reporter of pH from pH 5.3 to 6.0 with a fast response of a few seconds. Also the uptake of the t-switch is speedy. In order to protect the t-switch from enzymatic degradation, PEI is used for modification of our DNA nanomachine. At the same time, the dynamic range could be extended to pH 4.6-7.8. The successful application of this pH-depended DNA nanomachine and motoring spatiotemporal pH changes associated with endocytosis is strong evidence of the possibility of self-assembly DNA nanomachine for imaging, targeted therapies, and controllable drug delivery.
Collapse
Affiliation(s)
- Mengqi Yang
- Key
Laboratory of Cluster Science of Ministry of Education, Beijing Key
Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
School of Chemistry, Beijing Institute of
Technology, 5 Zhongguancun
Road, Beijing 100081, P. R. China
| | - Xiaoling Zhang
- Key
Laboratory of Cluster Science of Ministry of Education, Beijing Key
Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
School of Chemistry, Beijing Institute of
Technology, 5 Zhongguancun
Road, Beijing 100081, P. R. China
| | - Haipeng Liu
- College
of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Huaizhi Kang
- College
of Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, P.
R. China
| | - Zhi Zhu
- College
of Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, P.
R. China
| | - Wen Yang
- Key
Laboratory of Cluster Science of Ministry of Education, Beijing Key
Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
School of Chemistry, Beijing Institute of
Technology, 5 Zhongguancun
Road, Beijing 100081, P. R. China
| | - Weihong Tan
- Center
for Research at Bio/nano Interface, Department
of Chemistry, Department of Physiology and
Functional Genomics, Shands Cancer Center, UF Genetics Institute, and McKnight Brain Institute, University of
Florida, Gainesville, Florida 32611-7200, United States
- Molecular
Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Collaborative Innovation Center for Molecular Engineering
and Theranostics, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
42
|
Development of DNA computing and information processing based on DNA-strand displacement. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5373-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Yan Y, Sun Y, Yu H, Xu H, Lu JR. Self-assembly and nanoaggregation of a pH responsive DNA hybrid amphiphile. SOFT MATTER 2015; 11:1748-1754. [PMID: 25603356 DOI: 10.1039/c4sm02499k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This work describes the design and preparation of a simple but novel hybrid amphiphile containing a pH-responsive DNA sequence. The formation of a bimolecular i-motif structure allows the control of reversible switching of the hybrid amphiphile between the dimer and unimer by pH. Thus, spherical aggregates with distinct self-assembly pathways, sizes and structures are obtained at pH 4.5 and pH 9.0, and the structures can be switched by the change of pH and thermal annealing. This work reports different self-assembled nanostructures and their transitions that give this amphiphile potential for the design of controllable drug delivery systems.
Collapse
Affiliation(s)
- Yongfeng Yan
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | | | | | | | | |
Collapse
|
44
|
Campos R, Zhang S, Majikes JM, Ferraz LCC, LaBean TH, Dong MD, Ferapontova EE. Electronically addressable nanomechanical switching of i-motif DNA origami assembled on basal plane HOPG. Chem Commun (Camb) 2015; 51:14111-4. [DOI: 10.1039/c5cc04678e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here, a pH-induced nanomechanical switching of i-motif structures incorporated into DNA origami bound onto cysteamine-modified basal plane HOPG was electronically addressed, demonstrating for the first time the electrochemical read-out of the nanomechanics of DNA origami.
Collapse
Affiliation(s)
- R. Campos
- Interdisciplinary Nanoscience Center (iNANO)
- Science and Technology
- Aarhus University
- 8000 Aarhus C
- Denmark
| | - S. Zhang
- Interdisciplinary Nanoscience Center (iNANO)
- Science and Technology
- Aarhus University
- 8000 Aarhus C
- Denmark
| | - J. M. Majikes
- Department of Materials Science and Engineering
- North Carolina State University
- Raleigh
- USA
| | - L. C. C. Ferraz
- Department of Materials Science and Engineering
- North Carolina State University
- Raleigh
- USA
| | - T. H. LaBean
- Department of Materials Science and Engineering
- North Carolina State University
- Raleigh
- USA
| | - M. D. Dong
- Interdisciplinary Nanoscience Center (iNANO)
- Science and Technology
- Aarhus University
- 8000 Aarhus C
- Denmark
| | - E. E. Ferapontova
- Interdisciplinary Nanoscience Center (iNANO)
- Science and Technology
- Aarhus University
- 8000 Aarhus C
- Denmark
| |
Collapse
|
45
|
Wang R, Xu L, Li Y. Bio-nanogate controlled enzymatic reaction for virus sensing. Biosens Bioelectron 2014; 67:400-7. [PMID: 25212377 DOI: 10.1016/j.bios.2014.08.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 12/20/2022]
Abstract
The objective of this study was to develop an aptamer-based bifunctional bio-nanogate, which could selectively respond to target molecules, and control enzymatic reaction for electrochemical measurements. It was successfully applied for sensitive, selective, rapid, quantitative, and label-free detection of avian influenza viruses (AIV) H5N1. A nanoporous gold film with pore size of ~20 nm was prepared by a metallic corrosion method, and the purity was checked by energy-dispersive X-ray spectroscopy (EDS) study. To improve the performance of the bio-nanogate biosensor, its main analytical parameters were studied and optimized. We demonstrated that the developed bio-nanogate was capable of controlling enzymatic reaction for AIV H5N1 sensing within 1h with a detection limit of 2(-9)HAU (hemagglutination units). The enzymatic reaction was able to cause significant current change due to the presence of target AIV. A linear relationship was found in the virus titer range of 2(-10)-2(2)HAU. No interference was observed from non-target AIV subtypes such as H1N1, H2N2, H4N8 and H7N2. The developed approach could be adopted for sensing of other viruses.
Collapse
Affiliation(s)
- Ronghui Wang
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Lizhou Xu
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310068, China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310068, China; Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
46
|
Son S, Nam J, Kim J, Kim S, Kim WJ. i-motif-driven Au nanomachines in programmed siRNA delivery for gene-silencing and photothermal ablation. ACS NANO 2014; 8:5574-5584. [PMID: 24869928 DOI: 10.1021/nn5022567] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The present work illustrates unique design, construction and operation of an i-motif-based DNA nanomachine templated on gold nanoparticles (AuNPs), which utilizes pH-responsive dynamic motion of i-motif DNA strands and aggregational behavior of AuNPs to elicit programmed delivery of therapeutic siRNA. The pH-sensitive nucleic acids immobilized on the AuNPs consisted of three functional segments, i.e., an i-motif DNA, an overhanging linker DNA and a therapeutic siRNA. At neutral pH, the i-motif DNA is hybridized with the overhanging linker DNA segment of the therapeutic siRNA. However, in endosomal acidic pH, the i-motif DNA forms interstrand tetraplex, which could induce cluster formation of AuNPs resulting in endosomal escape of AuNP clusters, and produce a high gene silencing efficiency by releasing siRNA in the cytosol. Furthermore, the cluster formation of AuNPs accelerated photothermal ablation of cells when irradiated with laser. Precise and synchronized biomechanical motion in subcellular microenvironment is realized through judicious integration of pH-responsive behavior of the i-motif DNA and AuNPs, and meticulous designing of DNA.
Collapse
Affiliation(s)
- Sejin Son
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS) , Pohang, 790-784, Korea
| | | | | | | | | |
Collapse
|
47
|
Abstract
CONSPECTUS: Most biological processes happen at the nanometer scale, and understanding the energy transformations and material transportation mechanisms within living organisms has proved challenging. To better understand the secrets of life, researchers have investigated artificial molecular motors and devices over the past decade because such systems can mimic certain biological processes. DNA nanotechnology based on i-motif structures is one system that has played an important role in these investigations. In this Account, we summarize recent advances in functional DNA nanotechnology based on i-motif structures. The i-motif is a DNA quadruplex that occurs as four stretches of cytosine repeat sequences form C·CH(+) base pairs, and their stabilization requires slightly acidic conditions. This unique property has produced the first DNA molecular motor driven by pH changes. The motor is reliable, and studies show that it is capable of millisecond running speeds, comparable to the speed of natural protein motors. With careful design, the output of these types of motors was combined to drive micrometer-sized cantilevers bend. Using established DNA nanostructure assembly and functionalization methods, researchers can easily integrate the motor within other DNA assembled structures and functional units, producing DNA molecular devices with new functions such as suprahydrophobic/suprahydrophilic smart surfaces that switch, intelligent nanopores triggered by pH changes, molecular logic gates, and DNA nanosprings. Recently, researchers have produced motors driven by light and electricity, which have allowed DNA motors to be integrated within silicon-based nanodevices. Moreover, some devices based on i-motif structures have proven useful for investigating processes within living cells. The pH-responsiveness of the i-motif structure also provides a way to control the stepwise assembly of DNA nanostructures. In addition, because of the stability of the i-motif, this structure can serve as the stem of one-dimensional nanowires, and a four-strand stem can provide a new basis for three-dimensional DNA structures such as pillars. By sacrificing some accuracy in assembly, we used these properties to prepare the first fast-responding pure DNA supramolecular hydrogel. This hydrogel does not swell and cannot encapsulate small molecules. These unique properties could lead to new developments in smart materials based on DNA assembly and support important applications in fields such as tissue engineering. We expect that DNA nanotechnology will continue to develop rapidly. At a fundamental level, further studies should lead to greater understanding of the energy transformation and material transportation mechanisms at the nanometer scale. In terms of applications, we expect that many of these elegant molecular devices will soon be used in vivo. These further studies could demonstrate the power of DNA nanotechnology in biology, material science, chemistry, and physics.
Collapse
Affiliation(s)
- Yuanchen Dong
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
48
|
Abi A, Lin M, Pei H, Fan C, Ferapontova EE, Zuo X. Electrochemical switching with 3D DNA tetrahedral nanostructures self-assembled at gold electrodes. ACS APPLIED MATERIALS & INTERFACES 2014; 6:8928-8931. [PMID: 24802004 DOI: 10.1021/am501823q] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanomechanical switching of functional three-dimensional (3D) DNA nanostructures is crucial for nanobiotechnological applications such as nanorobotics or self-regulating sensor and actuator devices. Here, DNA tetrahedral nanostructures self-assembled onto gold electrodes were shown to undergo the electronically addressable nanoswitching due to their mechanical reconfiguration upon external chemical stimuli. That enables construction of robust surface-tethered electronic nanodevices based on 3D DNA tetrahedra. One edge of the tetrahedron contained a partially self-complementary region with a stem-loop hairpin structure, reconfigurable upon hybridization to a complementary DNA (stimulus DNA) sequence. A non-intercalative ferrocene (Fc) redox label was attached to the reconfigurable tetrahedron edge in such a way that reconfiguration of this edge changed the distance between the electrode and Fc.
Collapse
Affiliation(s)
- Alireza Abi
- Interdisciplinary Nanoscience Center (iNANO), Science and Technology, ‡Center for DNA Nanotechnology (CDNA) at iNANO, and §Sino-Danish Centre for Education and Research (SDC) at iNANO, Aarhus University , Gustav Wieds Vej 1590-14, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
49
|
Golubeva N, Imparato A. Efficiency at maximum power of motor traffic on networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062118. [PMID: 25019736 DOI: 10.1103/physreve.89.062118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Indexed: 06/03/2023]
Abstract
We study motor traffic on Bethe networks subject to hard-core exclusion for both tightly coupled one-state machines and loosely coupled two-state machines that perform work against a constant load. In both cases we find an interaction-induced enhancement of the efficiency at maximum power (EMP) as compared to noninteracting motors. The EMP enhancement occurs for a wide range of network and single-motor parameters and is due to a change in the characteristic load-velocity relation caused by phase transitions in the system. Using a quantitative measure of the trade-off between the EMP enhancement and the corresponding loss in the maximum output power we identify parameter regimes where motor traffic systems operate efficiently at maximum power without a significant decrease in the maximum power output due to jamming effects.
Collapse
Affiliation(s)
- N Golubeva
- Department of Physics and Astronomy, University of Aarhus, Ny Munkegade, Building 1520, DK-8000 Aarhus C, Denmark
| | - A Imparato
- Department of Physics and Astronomy, University of Aarhus, Ny Munkegade, Building 1520, DK-8000 Aarhus C, Denmark
| |
Collapse
|
50
|
Gates EP, Dearden AM, Woolley AT. DNA‐templated lithography and nanofabrication for the fabrication of nanoscale electronic circuitry. Crit Rev Anal Chem 2014; 44:354-70. [DOI: 10.1080/10408347.2014.910636] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|