1
|
Li S, Ouyang T, Guo X, Dong W, Ma Z, Fei T. Tetraphenylethene-Based Cross-Linked Conjugated Polymer Nanoparticles for Efficient Detection of 2,4,6-Trinitrophenol in Aqueous Phase. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6458. [PMID: 37834593 PMCID: PMC10573890 DOI: 10.3390/ma16196458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
The cross-linked conjugated polymer poly(tetraphenylethene-co-biphenyl) (PTPEBP) nanoparticles were prepared by Suzuki-miniemulsion polymerization. The structure, morphology, and pore characteristics of PTPEBP nanoparticles were characterized by FTIR, NMR, SEM, and nitrogen adsorption and desorption measurements. PTPEBP presents a spherical nanoparticle morphology with a particle size of 56 nm; the specific surface area is 69.1 m2/g, and the distribution of the pore size is centered at about 2.5 nm. Due to the introduction of the tetraphenylethene unit, the fluorescence quantum yield of the PTPEBP nanoparticles reaches 8.14% in aqueous dispersion. Combining the porosity and nanoparticle morphology, the fluorescence sensing detection toward nitroaromatic explosives in the pure aqueous phase has been realized. The Stern-Volmer quenching constant for 2,4,6-trinitrophenol (TNP) detection is 2.50 × 104 M-1, the limit of detection is 1.07 μM, and the limit of quantification is 3.57 μM. Importantly, the detection effect of PTPEBP nanoparticles toward TNP did not change significantly after adding other nitroaromatic compounds, indicating that the anti-interference and selectivity for TNP detection in aqueous media is remarkable. In addition, the spike recovery test demonstrates the potential of PTPEBP nanoparticles for detecting TNP in natural environmental water samples.
Collapse
Affiliation(s)
- Shengjie Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Tianwen Ouyang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Xue Guo
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Wenyue Dong
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Chongqing Research Institute, Changchun University of Science and Technology, Chongqing 401135, China
| | - Zhihua Ma
- Chongqing Research Institute, Changchun University of Science and Technology, Chongqing 401135, China
| | - Teng Fei
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Gao K, Li W, Wang X, Sun S, Zhang B. Fabrication of AIE Polymer-Functionalized Reduced Graphene Oxide for Information Storage. Molecules 2023; 28:6271. [PMID: 37687100 PMCID: PMC10488735 DOI: 10.3390/molecules28176271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Reduced graphene oxide (RGO) has been extensively studied and applied in optoelectronic systems, but its unstable dispersion in organic solvents has limited its application. To overcome this problem, the newly designed and developed aggregation-induced emission (AIE) material poly[(9,9-bis(6-azidohexyl)-9H-fluorene)-alt-(9-(4-(1,2,2-triphenylvinyl)phenyl)-9H-carbazole)] (PAFTC) was covalently grafted onto RGO to produce (PFTC-g-RGO). The solubility of two-dimensional graphene was improved by incorporating it into the backbone of PAFTC to form new functional materials. In resistive random access memory (RRAM) devices, PFTC-g-RGO was used as the active layer material after it was characterized. The fabricated Al/PFTC-g-RGO/ITO device exhibited nonvolatile bistable resistive switching performances with a long retention time of over 104 s, excellent endurance of over 200 switching cycles, and an impressively low turn-ON voltage. This study provides important insights into the future development of AIE polymer-functionalized nanomaterials for information storage.
Collapse
Affiliation(s)
- Kai Gao
- Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyang Wang
- Guangxi Key Laboratory of Information Material, Engineering Research Center of Electronic Information Materials and Devices, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Sai Sun
- Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
More KS, Mirgane HA, Gosavi NM, Puyad AL, Bhosale SV. Tetraphenylethylene Based Fluorescent Chemosensor for the Selective Detection of Explosive Nitroaromatic Compounds. ChemistrySelect 2023. [DOI: 10.1002/slct.202204354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kerba S. More
- School of Chemical Sciences Goa University Taleigao Plateau, Goa 403206 India
| | - Harshad A. Mirgane
- School of Chemical Sciences Goa University Taleigao Plateau, Goa 403206 India
| | - Nilesh M. Gosavi
- D. P. Bhosale College Koregaon Dist.– Satara Maharashtra 415501 India
| | - Avinash L. Puyad
- School of Chemical Sciences Swami Ramanand Teerth Marathwada University Nanded 431606, Maharashtra India
| | | |
Collapse
|
4
|
Saravanan C, Anbu Sujitha SD, Senthilkumaran M, Shanmugavelan P, Durai Murugan K, Muthu Mareeswaran P. Photophysical Properties of Linear, Net-structured and Branched Polybenzimidazoles. J Fluoresc 2023; 33:125-134. [PMID: 36282346 DOI: 10.1007/s10895-022-03029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2022] [Indexed: 02/03/2023]
Abstract
Polybenzimidazoles with three different network structures are synthesized by condensation polymerization between the conventional monomer 3,3'-Diaminobenzidine and three different acid monomers. The synthesised polymer networks are characterized using several characterization techniques such as FT-IR, powder XRD, HR-SEM and TG-DTA analyses. The polybenzimidazoles are amorphous in nature with excellent thermal stability up to 450 ºC. The photophysical properties of polybenzimidazoles are studied using UV-visible absorption and Emission spectral techniques. Further, the excited state photoluminescence decay time measurement shows a functional group dependant decay behaviour. All the three polymers display narrow optical band gap energy and could be applied as a material for solar energy conversion and semiconductors.
Collapse
Affiliation(s)
- Chokalingam Saravanan
- Department of Industrial Chemistry, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Sugumar Daisylin Anbu Sujitha
- Department of Science and Humanities, Sri Sairam Institute of Technology, West Tambaram, Chennai, 600 044, Tamilnadu, India
| | | | - Poovan Shanmugavelan
- Department of Chemistry, School of Sciences, Tamilnadu Open University, Saidapet, Chennai, 600 015, Tamil Nadu, India
| | - Kandhasamy Durai Murugan
- Department of Chemistry, Syed Hameetha Arts and Science College, Keelakarai, 623 806, Tamilnadu, India
| | - Paulpandian Muthu Mareeswaran
- Department of Industrial Chemistry, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India. .,Department of Oceanography and Coastal Area Studies, Alagappa University, Thondi Campus, Karaikudi, 630 003, Tamilnadu, India.
| |
Collapse
|
5
|
A short review article on conjugated polymers. JOURNAL OF POLYMER RESEARCH 2023. [PMCID: PMC9947454 DOI: 10.1007/s10965-023-03451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
This article provides a brief review of conjugated polymers and the various typical polymerization reactions exploited by the community to synthesise different conjugated polyelectrolytes with varied conjugated backbone systems. We further discuss with detailed emphasises the mechanism involved such as photo-induced electron transfer, resonance energy transfer, and intra-molecular charge transfer in the detection or sensing of various analytes. Owing to their excellent photo-physical properties, facile synthesis, ease of functionalization, good biocompatibility, optical stability, high quantum yield, and strong fluorescence emission. Conjugated polymers have been explored for wide applications such as chemical and biological sensors, drug delivery and drug screening, cancer therapeutics and imaging. As such we believe it will be a timely review article for the community.
Collapse
|
6
|
Shen T, Chen M, Zhang H, Sun JZ, Tang BZ. Copolymers of 4-Trimethylsilyl Diphenyl Acetylene and 1-Trimethylsilyl-1-Propyne: Polymer Synthesis and Luminescent Property Adjustment. Molecules 2022; 28:molecules28010027. [PMID: 36615223 PMCID: PMC9822087 DOI: 10.3390/molecules28010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Poly(4-trimethylsilyl diphenyl acetylene) (PTMSDPA) has strong fluorescence emission, but its application is limited by the effect of aggregation-caused quenching (ACQ). Copolymerization is a commonly used method to adjust the properties of polymers. Through the copolymerization of 4-trimethylsilyl diphenyl acetylene and 1-trimethylsilyl-1-propyne (TMSP), we successfully realized the conversion of PTMSDPA from ACQ to aggregation-induced emission (AIE) and aggregation-induced emission enhancement (AEE). By controlling the monomer feeding ratio and with the increase of the content of TMSDPA inserted into the copolymer, the emission peak was red-shifted, and a series of copolymers of poly(TMSDPA-co-TMSP) that emit blue-purple to orange-red light was obtained, and the feasibility of the application in explosive detection was verified. With picric acid (PA) as a model explosive, a super-quenching process has been observed, and the quenching constant (KSV) calculated from the Stern-Volmer equation is 24,000 M-1, which means that the polymer is potentially used for explosive detection.
Collapse
Affiliation(s)
- Tanxiao Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Manyu Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
- Correspondence: ; Tel.: +86-13958091775
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
7
|
Zhang W, Cui Q, Guo X, Ouyang T, Dong W, Duan Q. Highly sensitive, selective and reliable detection of picric acid in aqueous media based on conjugated porous polymer nanoparticles. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Batool R, Riaz N, Junaid HM, Waseem MT, Khan ZA, Nawazish S, Farooq U, Yu C, Shahzad SA. Fluorene-Based Fluorometric and Colorimetric Conjugated Polymers for Sensitive Detection of 2,4,6-Trinitrophenol Explosive in Aqueous Medium. ACS OMEGA 2022; 7:1057-1070. [PMID: 35036769 PMCID: PMC8757457 DOI: 10.1021/acsomega.1c05644] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/20/2021] [Indexed: 05/19/2023]
Abstract
Nitroaromatic explosives are a class of compounds that are responsible for various health hazards and terrorist outrages. Among these, sensitive detection of 2,4,6-trinitrophenol (TNP) explosive has always been highly desirable considering public health and national security. In this regard, three fluorene-based conjugated polymers (CP 1, CP 2, and CP 3) were synthesized through the Suzuki-Miyaura coupling reaction and were found to be highly sensitive for fluorescence detection of TNP with detection limits of 3.2, 5.7, and 6.1 pM, respectively. Excellent selectivity of CPs toward TNP was attributed to their unique π-π interactions based on fluorescence studies and density functional theory (DFT) calculations. The high sensitivity of CPs to TNP was attributed to the static quenching mechanism based on the photoinduced electron transfer process and was evaluated by fluorescence, UV-visible absorption, dynamic light scattering, Job's plots, the Benesi-Hildebrand plots, and DFT calculations. CPs were also used for colorimetric and real-water sample analysis for the detection of TNP explosive. Meanwhile, sensor-coated test strips were fabricated for on-site detection of TNP, which makes them convenient solid-supported sensors.
Collapse
Affiliation(s)
- Razia Batool
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Noreen Riaz
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Hafiz Muhammad Junaid
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Tahir Waseem
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Zulfiqar Ali Khan
- Department
of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Shamyla Nawazish
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Umar Farooq
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Cong Yu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University
of Science and Technology of China, Hefei 230026, P.R. China
| | - Sohail Anjum Shahzad
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
9
|
Liu P, Hadjichristidis N. Boron-Catalyzed Polymerization of Phenyl-Substituted Allylic Arsonium Ylides toward Nonconjugated Emissive Materials from C3/C1 Monomeric Units. ACS Macro Lett 2021; 10:1287-1294. [PMID: 35549048 DOI: 10.1021/acsmacrolett.1c00514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two novel allylic arsonium ylide monomers with a phenyl (steric and electronic effect) group at different positions were synthesized and used in boron-catalyzed polymerization to produce a series of well-defined polymers, poly(2-phenyl-propenylene-co-2-phenyl-propenylidene) (P2-PhAY) and poly(3-phenyl-propenylene-co-3-phenyl-propenylidene) (P3-PhAY), with unusual structures but a controllable molecular weight and relatively low polydispersity. The backbone of these polymers consists of a mixture of C1 (chain grows by one carbon atom at a time) and C3 (chain grows by three carbon atoms at a time) monomeric units, as determined by 1H, 13C, and 1H-13C HSQC 2D NMR. Based on the experimental results and density functional theoretical (DFT) calculations, we were able to propose a mechanism that takes into account not only the steric hindrance, but also the electron effect of the phenyl group. In addition, a nontraditional intrinsic luminescence was observed from the nonconjugated P2-PhAY and P3-PhAY; such unexpected emission is attributed to the formation of C3-unit clusters, as evidenced by ultraviolet-visible and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Pibo Liu
- Division of Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (DICP), Dalian, Liaoning 116023, Republic of China
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Dou Y, Zhu Q, Du K. Recent Advances in Two-Photon AIEgens and Their Application in Biological Systems. Chembiochem 2021; 22:1871-1883. [PMID: 33393721 DOI: 10.1002/cbic.202000709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Two-photon fluorescence imaging technology has the advantages of high light stability, little light damage, and high spatiotemporal resolution, which make it a powerful biological analysis method. However, due to the high concentration or aggregation state of traditional organic light-emitting molecules, the fluorescence intensity is easily reduced or disappears completely, and is not conducive to optimal application. The concept of aggregation-induced emission (AIE) provides a solution to the problem of aggregation-induced luminescence quenching (ACQ), and realizes the high fluorescence quantum yield of luminescent molecules in the aggregation state. In addition, two-photon absorption properties can readily be improved just by increasing the loading content of AIE fluorogen (AIEgen). Therefore, the design and preparation of two-photon fluorescence probes based on AIEgen to achieve high-efficiency fluorescence imaging in vitro/in vivo has become a major research hotspot. This review aims to summarize representative two-photon AIEgens based on triphenylamine, tetraphenylethene, quinoline, naphthalene and other new structures from the past five years, and discuss their great potential in bioimaging applications.
Collapse
Affiliation(s)
- Yandong Dou
- Collaborative Innovation Center, Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Qing Zhu
- Collaborative Innovation Center, Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| |
Collapse
|
11
|
Sánchez-Ruiz A, Sousa-Herves A, Tolosa J, Navarro A, García-Martínez JC. Aggregation-Induced Emission Properties in Fully π-Conjugated Polymers, Dendrimers, and Oligomers. Polymers (Basel) 2021; 13:E213. [PMID: 33435293 PMCID: PMC7826689 DOI: 10.3390/polym13020213] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Aggregation-Induced Emission (AIE) in organic molecules has recently attracted the attention of the scientific community because of their potential applications in different fields. Compared to small molecules, little attention has been paid to polymers and oligomers that exhibit AIE, despite having excellent properties such as high emission efficiency in aggregate and solid states, signal amplification effect, good processability and the availability of multiple functionalization sites. In addition to these features, if the molecular structure is fully conjugated, intramolecular electronic interactions between the composing chromophores may appear, thus giving rise to a wealth of new photophysical properties. In this review, we focus on selected fully conjugated oligomers, dendrimers and polymers, and briefly summarize their synthetic routes, fluorescence properties and potential applications. An exhaustive comparison between spectroscopic results in solution and aggregates or in solid state has been collected in almost all examples, and an opinion on the future direction of the field is briefly stated.
Collapse
Affiliation(s)
- Antonio Sánchez-Ruiz
- Facultad de Farmacia, Departamento de Química Inorgánica Orgánica y Bioquímica, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; (A.S.-R.); (A.S.-H.); (J.T.)
- Regional Center for Biomedical Research (CRIB), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain
| | - Ana Sousa-Herves
- Facultad de Farmacia, Departamento de Química Inorgánica Orgánica y Bioquímica, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; (A.S.-R.); (A.S.-H.); (J.T.)
- Regional Center for Biomedical Research (CRIB), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain
| | - Juan Tolosa
- Facultad de Farmacia, Departamento de Química Inorgánica Orgánica y Bioquímica, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; (A.S.-R.); (A.S.-H.); (J.T.)
- Regional Center for Biomedical Research (CRIB), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain
| | - Amparo Navarro
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, Campus Las Lagunillas, Universidad de Jaén, 23071 Jaén, Spain;
| | - Joaquín C. García-Martínez
- Facultad de Farmacia, Departamento de Química Inorgánica Orgánica y Bioquímica, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain; (A.S.-R.); (A.S.-H.); (J.T.)
- Regional Center for Biomedical Research (CRIB), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain
| |
Collapse
|
12
|
Lu S, Fan W, Liu H, Gong L, Xiang Z, Wang H, Yang C. Four imidazole derivative AIEE luminophores: sensitive detection of NAC explosives. NEW J CHEM 2021. [DOI: 10.1039/d0nj06007k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Four imidazole sensors with aggregation-induced emission enhancement (AIEE) properties were used for the sensitive detection of NAC explosives.
Collapse
Affiliation(s)
- Shuang Lu
- College of Biological and Pharmaceutical Science
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Wutu Fan
- College of Biological and Pharmaceutical Science
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Han Liu
- College of Biological and Pharmaceutical Science
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Lingli Gong
- College of Biological and Pharmaceutical Science
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Zhouxuan Xiang
- College of Biological and Pharmaceutical Science
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Huimin Wang
- College of Biological and Pharmaceutical Science
- China Three Gorges University
- Yichang 443002
- P. R. China
| | - Changying Yang
- College of Biological and Pharmaceutical Science
- China Three Gorges University
- Yichang 443002
- P. R. China
| |
Collapse
|
13
|
Lu S, Xue M, Tao A, Weng Y, Yao B, Weng W, Lin X. Facile Microwave-Assisted Synthesis of Functionalized Carbon Nitride Quantum Dots as Fluorescence Probe for Fast and Highly Selective Detection of 2,4,6-Trinitrophenol. J Fluoresc 2021; 31:1-9. [PMID: 33057853 DOI: 10.1007/s10895-020-02633-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/05/2020] [Indexed: 11/27/2022]
Abstract
Functionalized carbon nitride quantum dots (CNQDs) are fabricated by moderate carbonization of L-tartaric acid and urea in oil acid media by a facile microwave-assisted solvothermal method. The obtained CNQDs are monodispersed with a narrow size distribution (average size of 3.5 nm), and exhibit excellent selectivity and sensitivity of fluorescence quenching for 2,4,6-trinitrophenol (TNP) with a quenching efficiency coefficient Ksv of 4.75 × 104 M-1. This sensing system exhibits a fast response time within 1 min and a wide linear response range from 0.1 to 15 μM. The limit of detection is as low as 87 nM, which is comparable or lower than the other probes. The application of the developed probe to the detection of TNP in spiked water samples yields satisfactory results. The mechanism of fluorescence quenching is also discussed. Graphical Abstract An optical sensor based on functionalized carbon nitride quantum dots (CNQDs) were fabricated from L-tartaric acid and urea by a facile one-pot microwave-assisted solvothermal method, and were effectively utilized to the detection of 2,4,6-trinitrophenol (TNP) based on fluorescence (FL) quenching.
Collapse
Affiliation(s)
- Shikong Lu
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Meihua Xue
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Aojia Tao
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Yuhui Weng
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Bixia Yao
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Wen Weng
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Zhangzhou, 363000, China.
| | - Xiuchun Lin
- College of Environmental and Biological Engineering, Putian University, Putian, 351100, China
| |
Collapse
|
14
|
Ahmad Z, Saeed B, Akhtar T, Ahmad J. Synthesis and polymerization of 1,5-bis(N-carbazolyl)pentane with its structural and behavioral highlights. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02797-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Loch AS, Stoltzfus DM, Burn PL, Shaw PE. High-Sensitivity Poly(dendrimer)-Based Sensors for the Detection of Explosives and Taggant Vapors. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alex S. Loch
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dani M. Stoltzfus
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul L. Burn
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul E. Shaw
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
16
|
|
17
|
Yu J, Tang C, Gu X, Zheng X, Yu ZQ, He Z, Li XG, Tang BZ. Highly emissive phenylene-expanded [5]radialene. Chem Commun (Camb) 2020; 56:3911-3914. [DOI: 10.1039/d0cc00122h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Star: a pentagonal conjugated radialene macrocycle was one-pot synthesized for the first time. The fantastic pentagonal architecture is revealed by its single crystal structure, and affords the smallest ring strain and the best conjugation.
Collapse
Affiliation(s)
- Jie Yu
- School of Science and School of Materials Science and Engineering
- Harbin Institute of Technology
- Shenzhen
- China
| | - Chunlin Tang
- School of Science and School of Materials Science and Engineering
- Harbin Institute of Technology
- Shenzhen
- China
| | - Xinggui Gu
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Hong Kong
- China
| | - Xiaoyan Zheng
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- 100081 Beijing
- China
| | - Zhen-Qiang Yu
- Shenzhen Key Laboratory of Functional Polymers
- School of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- China
| | - Zikai He
- School of Science and School of Materials Science and Engineering
- Harbin Institute of Technology
- Shenzhen
- China
| | - Xin-Gui Li
- School of Science and School of Materials Science and Engineering
- Harbin Institute of Technology
- Shenzhen
- China
- State Key Laboratory of Pollution Control and Resource Reuse, and Shanghai Institute of Pollution Control and Ecological Security
| | - Ben Zhong Tang
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Hong Kong
- China
| |
Collapse
|
18
|
Zhang HJ, Tian Y, Tao FR, Yu W, You KY, Zhou LR, Su X, Li TD, Cui YZ. Detection of nitroaromatics based on aggregation induced emission of barbituric acid derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117168. [PMID: 31226612 DOI: 10.1016/j.saa.2019.117168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/09/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Barbituric acid derivatives with typical aggregation induced emission (AIE) are reported. Their emission wavelengths varied with water fraction of their solution. UV-visible absorption spectroscopy and theoretical calculations revealed the intramolecular charge transfer (ICT) possibility from donor to acceptor and the mechanism was confirmed as a restriction of intramolecular motion (RIM). The AIE properties were affected by the different substituents on barbituric acid. When the molecular volume increased, the AIE effect decreased. Fluorescent quenching mechanism was applied to detect nitroaromatic explosives. For 2,4,6-trinitrophenol (PA), one of the derivatives 5-(4-diphenylamino styrene)-1,3-diphenyl-barbituric acid in THF/H2O mixture (1:9, v/v), showed amplified fluorescence quenching with a maximum Stern-Volmer quenching constant of 4.1 × 104 M-1. The solid phase paper test based on 5-(4-diphenylamino styrene)-1,3-diphenyl-barbituric acid also showed a superior sensitivity toward PA both in vapor and solution.
Collapse
Affiliation(s)
- Han-Jun Zhang
- School of Chemical and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, PR China
| | - Yan Tian
- School of Chemical and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, PR China
| | - Fu-Rong Tao
- School of Chemical and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, PR China
| | - William Yu
- School of Chemical and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, PR China
| | - Kai-Yue You
- School of Chemical and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, PR China
| | - Lin-Rui Zhou
- School of Chemical and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, PR China
| | - Xi Su
- School of Chemical and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, PR China
| | - Tian-Duo Li
- School of Chemical and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, PR China
| | - Yue-Zhi Cui
- School of Chemical and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, PR China.
| |
Collapse
|
19
|
Li J, Sun F, Shi X, Ren H, Li M, Zhu G. A Highly Crystalline Fluorene‐Based Porous Organic Framework with High Photoluminescence Quantum Yield. Macromol Rapid Commun 2019; 40:e1900060. [DOI: 10.1002/marc.201900060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jiawen Li
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Xinli Shi
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Hao Ren
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Meiping Li
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012 P. R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate Science of the Ministry of EducationFaculty of ChemistryNortheast Normal University Changchun 130024 P. R. China
| |
Collapse
|
20
|
Tu YW, Wang CC, Godana AS, Yu CY. Synthesis, characterization, aggregation-induced emission and nanoaggregates of the copolymers containing different ratios of carbazoles and tetraphenylethylenes. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Leduskrasts K, Suna E. Aggregation induced emission by pyridinium–pyridinium interactions. RSC Adv 2019; 9:460-465. [PMID: 35521587 PMCID: PMC9059268 DOI: 10.1039/c8ra08771g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022] Open
Abstract
Non-covalent intermolecular interactions between pyridinium subunits in a crystal-state are an efficient means to accomplish aggregation induced emission and avoid aggregation caused quenching. Non-covalent intermolecular pyridinium–pyridinium and pyridinium–arene-π system interactions result in aggregation induced emission (AIE).![]()
Collapse
Affiliation(s)
| | - Edgars Suna
- Latvian Institute of Organic Synthesis
- Riga
- Latvia
| |
Collapse
|
22
|
Dou Y, Kenry K, Liu J, Zhang F, Cai C, Zhu Q. 2-Styrylquinoline-based two-photon AIEgens for dual monitoring of pH and viscosity in living cells. J Mater Chem B 2019; 7:7771-7775. [DOI: 10.1039/c9tb02036e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new class of aggregation-induced emission (AIE) fluorophores HAPHs with excellent two-photon properties is developed from styrylquinoline.
Collapse
Affiliation(s)
- Yandong Dou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Kenry Kenry
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
| | - Jiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Fangfang Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Chunhui Cai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|
23
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
24
|
Wang K, Lu H, Liu B, Yang J. A high-efficiency and low-cost AEE polyurethane chemo-sensor for Fe3+ and explosives detection. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Chi W, Yuan W, Du J, Han T, Li H, Li Y, Tang BZ. Construction of Functional Hyperbranched Poly(phenyltriazolylcarboxylate)s by Metal-Free Phenylpropiolate-Azide Polycycloaddition. Macromol Rapid Commun 2018; 39:e1800604. [PMID: 30252976 DOI: 10.1002/marc.201800604] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/07/2018] [Indexed: 01/21/2023]
Abstract
The 1,3-dipolar cycloaddition of activated internal alkynes with azides has been developed into an efficient polymerization reaction for constructing functional linear 1,4,5-trisubstitued polytriazoles. However, it is rarely employed for the synthesis of hyperbranched polymers. In this work, metal-free polycycloadditions of tris(3-phenylpropiolate)s (1) and tetraphenylethene-containing diazides (2) are performed in dimethylformamide at 100 °C for 7 and 12 h, producing hyperbranched poly(phenyltriazolylcarboxylate)s (hb-PPTCs) with high molecular weights and satisfactory regioregularities in good yields. The hb-PPTCs have good solubility in common organic solvents and high thermal stability. They are non-emissive in solutions, but emit intensively upon aggregation, showing an aggregation-induced emission effect. Their aggregates can work as fluorescent sensors for explosive detection with high sensitivity. Furthermore, the polymers can be utilized for the fabrication of 2D fluorescent patterns with high resolution by UV irradiation through copper grid masks.
Collapse
Affiliation(s)
- Weiwen Chi
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wei Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jun Du
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ting Han
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hongkun Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yongfang Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Laboratory of Advanced Optoelectronic Materials, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
26
|
Wang D, Li D. AIEgens-functionalised hydroxyapatite rods for explosive detection in water and pH-triggered drug delivery. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Lakshmidevi V, Yelamaggad CV, Venkataraman A. Studies on Fluorescence Quenching of DBSA-PANI-Employing Nitroaromatics. ChemistrySelect 2018. [DOI: 10.1002/slct.201702992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Venkatappa Lakshmidevi
- Materials Chemistry Laboratory; Department of Materials Science; Gulbarga University; Kalaburagi-585 106
| | | | - Abbaraju Venkataraman
- Materials Chemistry Laboratory; Department of Materials Science; Gulbarga University; Kalaburagi-585 106
- Department of Chemistry; Gulbarga University; Kalaburagi-585 106
| |
Collapse
|
28
|
Dong W, Fei T, Scherf U. Conjugated polymers containing tetraphenylethylene in the backbones and side-chains for highly sensitive TNT detection. RSC Adv 2018; 8:5760-5767. [PMID: 35539570 PMCID: PMC9078185 DOI: 10.1039/c7ra13536j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/27/2018] [Indexed: 11/21/2022] Open
Abstract
The novel polytriphenylamines derivatives PTPA1-TPE and PTPA2-TPE with TPE as side groups and bis(tert-butyl)-TPE in the backbones have been successfully synthesized via Yamamoto-type coupling under microwave heating. The incorporation of TPE units in the backbones and side-chains endows the polymers with a distinct AIE effect and high fluorescence quantum yields in the solid state. Meanwhile, nitroaromatic explosive detection based on dispersed, electron-rich PTPA1-TPE and PTPA2-TPE nanoaggregates in THF/water was carried out. Both of them show high sensitivity towards the TNT analyte, with a maximum Stern-Volmer quenching constant K sv of up to 8.3 × 104 M-1. In addition, the paper strip test demonstrates the promising practical application of the polymers as solid state sensors towards PL-based nitroaromatic explosive detection.
Collapse
Affiliation(s)
- Wenyue Dong
- School of Materials Science and Engineering, Changchun University of Science and Technology Changchun 130022 P. R. China
| | - Teng Fei
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University Changchun 130012 P. R. China
| | - Ullrich Scherf
- Bergische Universität Wuppertal, Macromolecular Chemistry Group (buwmakro), Institute for Polymer Technology Gauss-Str. 20 D-42097 Wuppertal Germany
| |
Collapse
|
29
|
Puri P, Kumar G, Paul K, Luxami V. Self-agglomerated crystalline needles harnessing ESIPT and AIEE features for the ‘turn-on’ fluorescence detection of Al3+ ions. NEW J CHEM 2018. [DOI: 10.1039/c8nj03577f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report the synthesis of probe 2 for the fluorescence “turn-on” detection of Al3+ ions in CH3OH.
Collapse
Affiliation(s)
- Pranshu Puri
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala-147001
- India
| | - Gulshan Kumar
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala-147001
- India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala-147001
- India
| | - Vijay Luxami
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala-147001
- India
| |
Collapse
|
30
|
Zhang Y, Shen P, He B, Luo W, Zhao Z, Tang BZ. New fluorescent through-space conjugated polymers: synthesis, optical properties and explosive detection. Polym Chem 2018. [DOI: 10.1039/c7py01700f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
New through-space conjugated polymers based on a tetraphenylethene foldamer are explored and utilized in explosive detection in aqueous media.
Collapse
Affiliation(s)
- Yingying Zhang
- Center for Aggregation-Induced Emission
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Pingchuan Shen
- Center for Aggregation-Induced Emission
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Bairong He
- Center for Aggregation-Induced Emission
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Wenwen Luo
- Center for Aggregation-Induced Emission
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Zujin Zhao
- Center for Aggregation-Induced Emission
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Ben Zhong Tang
- Center for Aggregation-Induced Emission
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
31
|
Khalid Baig MZ, Sahu PK, Sarkar M, Chakravarty M. Haloarene-Linked Unsymmetrically Substituted Triarylethenes: Small AIEgens To Detect Nitroaromatics and Volatile Organic Compounds. J Org Chem 2017; 82:13359-13367. [DOI: 10.1021/acs.joc.7b02438] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- M. Zubair Khalid Baig
- Department
of Chemistry, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Jawahar nagar, Shamirpet Mandal, Hyderabad, Telangana 500078, India
| | - Prabhat Kumar Sahu
- School
of Chemical Sciences, National Institute of Science Education and Research-Bhubaneswar, Jatni, Odisha 752050, India
| | - Moloy Sarkar
- School
of Chemical Sciences, National Institute of Science Education and Research-Bhubaneswar, Jatni, Odisha 752050, India
| | - Manab Chakravarty
- Department
of Chemistry, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Jawahar nagar, Shamirpet Mandal, Hyderabad, Telangana 500078, India
| |
Collapse
|
32
|
Konidena RK, Thomas KRJ. Star-Shaped Asymmetrically Substituted Blue Emitting Carbazoles: Synthesis, Photophyscial, Electrochemical and Theoretical Investigations. ChemistrySelect 2017. [DOI: 10.1002/slct.201701336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rajendra Kumar Konidena
- Organic Materials Laboratory, Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee − 247667 India
| | - K. R. Justin Thomas
- Organic Materials Laboratory, Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee − 247667 India
| |
Collapse
|
33
|
Wu Y, He B, Quan C, Zheng C, Deng H, Hu R, Zhao Z, Huang F, Qin A, Tang BZ. Metal-Free Poly-Cycloaddition of Activated Azide and Alkynes toward Multifunctional Polytriazoles: Aggregation-Induced Emission, Explosive Detection, Fluorescent Patterning, and Light Refraction. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/31/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Yongwei Wu
- State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| | - Benzhao He
- State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| | - Changyun Quan
- State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| | - Chao Zheng
- State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| | - Haiqin Deng
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; The Hong Kong University of Science & Technology; Clear Water Bay Kowloon Hong Kong
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| | - Fei Huang
- State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; The Hong Kong University of Science & Technology; Clear Water Bay Kowloon Hong Kong
| |
Collapse
|
34
|
Li L, Nie H, Chen M, Sun J, Qin A, Tang BZ. Aggregation-enhanced emission active tetraphenylbenzene-cored efficient blue light emitter. Faraday Discuss 2017; 196:245-253. [DOI: 10.1039/c6fd00163g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tetraphenylbenzene (TPB) cored luminophore of TPB-AC with aggregation-enhanced emission characteristics was designed and synthesized. TPB-AC could be potentially applied for the fabrication of high performance organic light-emitting diodes (OLEDs) with blue light emission.
Collapse
Affiliation(s)
- Lingzhi Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Han Nie
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Ming Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jingzhi Sun
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Anjun Qin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
35
|
Ceballos SA, Gil S, Costero AM. Influence of side chain characteristics on the aggregation-induced emission (AIE) properties of tetrasubstituted tetraphenylethylene (TPE). RSC Adv 2017. [DOI: 10.1039/c7ra01024a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The side-chain in TPE derivatives has strong influence in their aggregation induced emission.
Collapse
Affiliation(s)
- Samuel A. Ceballos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universitat Politécnica de València
- Universitat de València
- Spain
- Departamento de Química Orgánica
| | - Salvador Gil
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universitat Politécnica de València
- Universitat de València
- Spain
- Departamento de Química Orgánica
| | - Ana M. Costero
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universitat Politécnica de València
- Universitat de València
- Spain
- Departamento de Química Orgánica
| |
Collapse
|
36
|
|
37
|
Kalita A, Hussain S, Malik AH, Barman U, Goswami N, Iyer PK. Anion-Exchange Induced Strong π-π Interactions in Single Crystalline Naphthalene Diimide for Nitroexplosive Sensing: An Electronic Prototype for Visual on-Site Detection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25326-36. [PMID: 27589572 DOI: 10.1021/acsami.6b08751] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A new derivative of naphthalene diimide (NDMI) was synthesized that displayed optical, electrical, and visual changes exclusively for the most widespread nitroexplosive and highly water-soluble toxicant picric acid (PA) due to strong π-π interactions, dipole-charge interaction, and a favorable ground state electron transfer process facilitated by Coulombic attraction. The sensing mechanism and interaction between NDMI with PA is demonstrated via X-ray diffraction analysis, (1)H NMR studies, cyclic voltammetry, UV-visible/fluorescence spectroscopy, and lifetime measurements. Single crystal X-ray structure of NDMI revealed the formation of self-assembled crystalline network assisted by noncovalent C-H···I interactions that get disrupted upon introducing PA as a result of anion exchange and strong π-π stacking between NDMI and PA. Morphological studies of NDMI displayed large numbers of single crystalline microrods along with some three-dimensional (3D) daisy-like structures which were fabricated on Al-coated glass substrate to construct a low-cost two terminal sensor device for realizing vapor mode detection of PA at room temperature and under ambient conditions. Furthermore, an economical and portable electronic prototype was developed for visual and on-site detection of PA vapors under exceptionally realistic conditions.
Collapse
Affiliation(s)
- Anamika Kalita
- Center for Nanotechnology and ‡Department of Chemistry, Indian Institute of Technology , Guwahati-781039, Assam, India
| | - Sameer Hussain
- Center for Nanotechnology and ‡Department of Chemistry, Indian Institute of Technology , Guwahati-781039, Assam, India
| | - Akhtar Hussain Malik
- Center for Nanotechnology and ‡Department of Chemistry, Indian Institute of Technology , Guwahati-781039, Assam, India
| | - Ujjwol Barman
- Center for Nanotechnology and ‡Department of Chemistry, Indian Institute of Technology , Guwahati-781039, Assam, India
| | - Namami Goswami
- Center for Nanotechnology and ‡Department of Chemistry, Indian Institute of Technology , Guwahati-781039, Assam, India
| | - Parameswar Krishnan Iyer
- Center for Nanotechnology and ‡Department of Chemistry, Indian Institute of Technology , Guwahati-781039, Assam, India
| |
Collapse
|
38
|
Baysec S, Preis E, Allard S, Scherf U. Very High Solid State Photoluminescence Quantum Yields of Poly(tetraphenylethylene) Derivatives. Macromol Rapid Commun 2016; 37:1802-1806. [DOI: 10.1002/marc.201600485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/29/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Sebnem Baysec
- Bergische Universität Wuppertal; Macromolecular Chemistry Group (buwmakro) and Institute for Polymer Technology; Gausss-Str. 20 D-42119 Wuppertal Germany
| | - Eduard Preis
- Bergische Universität Wuppertal; Macromolecular Chemistry Group (buwmakro) and Institute for Polymer Technology; Gausss-Str. 20 D-42119 Wuppertal Germany
| | - Sybille Allard
- Bergische Universität Wuppertal; Macromolecular Chemistry Group (buwmakro) and Institute for Polymer Technology; Gausss-Str. 20 D-42119 Wuppertal Germany
| | - Ullrich Scherf
- Bergische Universität Wuppertal; Macromolecular Chemistry Group (buwmakro) and Institute for Polymer Technology; Gausss-Str. 20 D-42119 Wuppertal Germany
| |
Collapse
|
39
|
Mesoporous aluminium organophosphonates: a reusable chemsensor for the detection of explosives. J SOLID STATE CHEM 2016. [DOI: 10.1016/j.jssc.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Joshi S, Kumari S, Chamorro E, Pant DD, Sakhuja R. Fluorescence Quenching of a Benzimidazolium-based Probe for Selective Detection of Picric Acid in Aqueous Medium. ChemistrySelect 2016. [DOI: 10.1002/slct.201600383] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sunita Joshi
- Department of Pathophysiology; Charles University; Prague Czech Republic
| | - Santosh Kumari
- Department of Chemistry; Birla Institute of Technology and Science; Pilani 333031 Rajasthan India
| | - Eduardo Chamorro
- Departamento de Ciencias Quimicas; Facultad de Ciencias Exactas, Millennium Nucleus Chemical Processes and Catalysis (CPC).; Universidad Andres Bello; AvenidaRepublica 275 830146. Santiago Chile
| | - Debi D. Pant
- Department of Physics; Birla Institute of Technology and Science; Pilani 333031 Rajasthan India
| | - Rajeev Sakhuja
- Department of Chemistry; Birla Institute of Technology and Science; Pilani 333031 Rajasthan India
| |
Collapse
|
41
|
Dong X, Li M, Shi H, Cheng F, Roose J, Tang BZ. Synthesis, aggregation-induced emission, and electroluminescence of a new compound based on tetraphenylethene, carbazole, and dimesitylboron moieties. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
Neupane LN, Oh ET, Park HJ, Lee KH. Selective and Sensitive Detection of Heavy Metal Ions in 100% Aqueous Solution and Cells with a Fluorescence Chemosensor Based on Peptide Using Aggregation-Induced Emission. Anal Chem 2016; 88:3333-40. [PMID: 26872241 DOI: 10.1021/acs.analchem.5b04892] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A fluorescent peptidyl chemosensor for the detection of heavy metal ions in aqueous solution as well as in cells was synthesized on the basis of the peptide receptor for the metal ions using an aggregation-induced emission fluorophore. The peptidyl chemosensor (1) bearing tetraphenylethylene fluorophore showed an exclusively selective turn-on response to Hg(2+) among 16 metal ions in aqueous buffered solution containing NaCl. The peptidyl chemosensor complexed Hg(2+) ions and then aggregated in aqueous buffered solution, resulting in the significant enhancement (OFF-On) of emissions at around 470 nm. The fluorescent sensor showed a highly sensitive response to Hg(2+), and about 1.0 equiv of Hg(2+) was enough for the saturation of the emission intensity change. The detection limit (5.3 nM, R(2) = 0.99) of 1 for Hg(2+) ions was lower than the maximum allowable level of Hg(2+) in drinking water by EPA. Moreover, the peptidyl chemosensor penetrated live cells and detected intracellular Hg(2+) ions by the turn-on response.
Collapse
Affiliation(s)
- Lok Nath Neupane
- Bioorganic Chemistry Laboratory, Center for Design and Applications of Molecular Catalysts, Department of Chemistry and Chemical Engineering, Inha University , Incheon 402-751, South Korea
| | - Eun-Taex Oh
- Department of Biomedical Sciences, Inha University College of Medicine , Incheon 402-751, South Korea.,Hypoxia-related Disease Research Center, College of Medicine, Inha University , Incheon 402-751, South Korea
| | - Heon Joo Park
- Hypoxia-related Disease Research Center, College of Medicine, Inha University , Incheon 402-751, South Korea.,Department of Microbiology, Inha Research Institute for Medical Science, College of Medicine, Inha University , Incheon 402-751, South Korea
| | - Keun-Hyeung Lee
- Bioorganic Chemistry Laboratory, Center for Design and Applications of Molecular Catalysts, Department of Chemistry and Chemical Engineering, Inha University , Incheon 402-751, South Korea
| |
Collapse
|
43
|
Palma-Cando A, Scherf U. Electrochemically Generated Thin Films of Microporous Polymer Networks: Synthesis, Properties, and Applications. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201500484] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alex Palma-Cando
- Macromolecular Chemistry Group; Bergische Universität Wuppertal; Gaußstraße 20 D-42119 Wuppertal Germany
| | - Ullrich Scherf
- Macromolecular Chemistry Group; Bergische Universität Wuppertal; Gaußstraße 20 D-42119 Wuppertal Germany
| |
Collapse
|
44
|
|
45
|
Xu Y, Wu X, Chen Y, Hang H, Tong H, Wang L. Fiber-optic detection of nitroaromatic explosives with solution-processable triazatruxene-based hyperbranched conjugated polymer nanoparticles. Polym Chem 2016. [DOI: 10.1039/c6py00930a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solution-processable triazatruxene-based hyperbranched conjugated polymer nanoparticles have been developed as homogeneous, transparent fluorescent films coated on glass substrates and on optic-fiber tips for the detection of TNT vapor.
Collapse
Affiliation(s)
- Yuxiang Xu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiaofu Wu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yonghong Chen
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Hao Hang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Hui Tong
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
46
|
Yan LQ, Kong ZN, Xia Y, Qi ZJ. A novel coumarin-based red fluorogen with AIE, self-assembly, and TADF properties. NEW J CHEM 2016. [DOI: 10.1039/c6nj01296e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel red AIE fluorogen based on ESIPT and TICT effects was prepared, which exhibits both self-assembly and TADF characteristics.
Collapse
Affiliation(s)
- Li Qiang Yan
- College of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Zhi Neng Kong
- College of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Yong Xia
- College of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Zheng Jian Qi
- College of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- P. R. China
| |
Collapse
|
47
|
Mohamed MG, Hsu KC, Hong JL, Kuo SW. Unexpected fluorescence from maleimide-containing polyhedral oligomeric silsesquioxanes: nanoparticle and sequence distribution analyses of polystyrene-based alternating copolymers. Polym Chem 2016. [DOI: 10.1039/c5py01537e] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Unusual fluorescent polyhedral oligomeric silsesquioxane (POSS)-containing polymers lacking any common fluorescent units because of the crystallinity and clustering of locked CO groups of POSS units.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science
- Center for Nanoscience and Nanotechnology
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - Kuo-Chih Hsu
- Department of Materials and Optoelectronic Science
- Center for Nanoscience and Nanotechnology
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - Jin-Long Hong
- Department of Materials and Optoelectronic Science
- Center for Nanoscience and Nanotechnology
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science
- Center for Nanoscience and Nanotechnology
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
| |
Collapse
|
48
|
Malik AH, Hussain S, Kalita A, Iyer PK. Conjugated Polymer Nanoparticles for the Amplified Detection of Nitro-explosive Picric Acid on Multiple Platforms. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26968-76. [PMID: 26580229 DOI: 10.1021/acsami.5b08068] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Spontaneously formed conjugated polymer nanoparticles (CPNs) or polymer dots displayed remarkable fluorescence response toward nitroexplosive-picric acid (PA) in multiple environments including 100% aqueous media, solid support using portable paper strips and vapor phase detection via two terminal device. This new cationic conjugated polyelectrolyte (CPE) poly(3,3'-((2-phenyl-9H-fluorene-9,9-diyl)bis(hexane-6,1-diyl))bis(1-methyl-1H-imidazol-3-ium)bromide) (PFMI) was synthesized by Suzuki coupling polymerization followed by post functionalization method without employing any hectic purification technique. Highest quenching constant value (K(sv)) of 1.12 × 10(8) M(-1) and a very low detection limit of 30.9 pM/7.07 ppt were obtained exclusively for PA in 100% aqueous environment which is rare and unique for any CPE/CPNs. Contact mode detection of PA was also performed using simple, cost-effective and portable fluorescent paper strips for achieving on-site detection. Furthermore, the two terminal sensor device fabricated with nanoparticles of PFMI (PFMI-NPs) provides an exceptional and unprecedented platform for the vapor mode detection of PA under ambient conditions. The mechanism for the ultrasensitivity of PFMI-NPs probe to detect PA is attributed to the "molecular-wire effect", electrostatic interaction, photoinduced electron transfer (PET), and possible resonance energy transfer (RET).
Collapse
Affiliation(s)
- Akhtar Hussain Malik
- Department of Chemistry and ‡Centre for Nanotechnology, Indian Institute of Technology Guwahati , Guwahati-781039. India
| | - Sameer Hussain
- Department of Chemistry and ‡Centre for Nanotechnology, Indian Institute of Technology Guwahati , Guwahati-781039. India
| | - Anamika Kalita
- Department of Chemistry and ‡Centre for Nanotechnology, Indian Institute of Technology Guwahati , Guwahati-781039. India
| | - Parameswar Krishnan Iyer
- Department of Chemistry and ‡Centre for Nanotechnology, Indian Institute of Technology Guwahati , Guwahati-781039. India
| |
Collapse
|
49
|
Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem Rev 2015; 115:11718-940. [DOI: 10.1021/acs.chemrev.5b00263] [Citation(s) in RCA: 5139] [Impact Index Per Article: 571.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ju Mei
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Nelson L. C. Leung
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan T. K. Kwok
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong
Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
50
|
Dong W, Pina J, Pan Y, Preis E, Seixas de Melo JS, Scherf U. Polycarbazoles and polytriphenylamines showing aggregation-induced emission (AIE) and intramolecular charge transfer (ICT) behavior for the optical detection of nitroaromatic compounds. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.08.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|