1
|
Chen J, Yao Q, Dong X, Tang J, Zhang S, Ji Y, Zou Z. Pb-based metal organic framework as substrate: Chemical vapor generation-visual/smartphone colorimetric analytical system for sensitive and selective detection of sulfide ion in water and beers. Food Chem X 2024; 23:101767. [PMID: 39280216 PMCID: PMC11402409 DOI: 10.1016/j.fochx.2024.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
A visual/smartphone colorimetric system was developed for the sensitive and selective detection of sulfide ion (S2-) using chemical vapor generation (CVG) as a gaseous sampling technique. S2- in samples were converted into H2S after the addition of H2SO4, which separated from the solution during CVG process, ensuring high efficiency of vapor generation (sensitivity) and eliminated interferences (selectivity). The H2S was subsequently reacted with Pb-BTC and PbS was thus formed, causing the test paper turned to black. It was utilized for the detection of S2- by visual/smartphone colorimetric system. Detectable limits of 0.05 μg/mL and 0.2 μg/mL were obtained under smartphone mode and visual mode, respectively. Furthermore, this colorimetric system was successfully used for the analysis of S2- in several beer samples and water samples, with recoveries ranging 97 %-111 %. This system represents a potential miniaturized, easy used and high-effective method for rapid and on-site detection of S2-.
Collapse
Affiliation(s)
- Jihong Chen
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Qian Yao
- School of Chemistry and Chemical Engineering, Key Laboratory of Low-cost Rural Environmental Treatment Technology, Special Polymer Materials for Automobile Key Laboratory of Sichuan Province, Sichuan Institute of Arts and Science, Dazhou, Sichuan 635000, China
| | - Xiaoyu Dong
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Jiayuan Tang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Shu Zhang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Yuyao Ji
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Zhirong Zou
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
- School of Chemistry and Chemical Engineering, Key Laboratory of Low-cost Rural Environmental Treatment Technology, Special Polymer Materials for Automobile Key Laboratory of Sichuan Province, Sichuan Institute of Arts and Science, Dazhou, Sichuan 635000, China
| |
Collapse
|
2
|
Ma T, Liu X, Wang X, Ma JG, Cheng P. Bottom-Up Construction of Rhombic Lamellar CoNi-MOFs for the Electrochemical Sensing of H 2S. Inorg Chem 2024; 63:7504-7511. [PMID: 38598777 DOI: 10.1021/acs.inorgchem.4c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Lamellar metal-organic frameworks (MOFs) have attracted significant attention in the field of electrochemical sensing due to their abundant open active sites and specific electron conductivity. Herein, by employing a bottom-up synthesis strategy, rhombic lamellar heterometallic CoNi-MOFs with varying thicknesses are constructed. This is achieved by using 4-methylpyridine as a capping agent based on the (4,6)-linked Co2(azpy)2(bptc) (azpy = 4,4'-azopyridine, bptc = 3,3',5,5'-biphenyltetracarboxylic acid) structure with a fsc topology and by introducing Ni species simultaneously. To mitigate sulfur deposition on electrodes, the triple pulse amperometry (TPA) method is employed. Among the synthesized lamellar CoNi-MOFs, lamellar CoNi-MOF-3 with the minimum thickness exhibits an optimal electrochemical sensing performance toward hydrogen sulfide, with a sensitivity of 119.3 μA·mM-1·cm-2 in the linear range of 2-2000 μM. This study pioneers a new approach to the controlled construction and electrochemical activity modification of lamellar MOF materials.
Collapse
Affiliation(s)
- Teng Ma
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao Liu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiaowen Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jian-Gong Ma
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
3
|
Sun H, Zhang Q, Wang Z, Huang Y, Pan M. Transformational Modulation of Fluorescence to Room Temperature Phosphorescence in Metal-Organic Frameworks with Flexible C-S-C Bonds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11730-11739. [PMID: 38407090 DOI: 10.1021/acsami.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Photoluminescent metal-organic frameworks (MOFs) have been a subject of considerable interest for many years. However, the regulation of excited states of MOFs at the single crystal level remains restricted due to a lack of control methods. The singlet-triplet emissive property can be significantly influenced by crystal conformational distortions. This review introduces an intelligent responsive MOF material, denoted as LIFM-SHL-3a, characterized by flexible C-S-C bonds. LIFM-SHL-3a integrates elastic structural dynamics with fluorescence and room temperature phosphorescence (RTP) modulation under heating conditions. The deformable carbon-sulfur bond essentially propels the distortion of molecular conformation and alters the stacking mode, as illustrated by single-crystal-to-single-crystal transformation detection. The deformation of flexible C-S-C bonds leads to different noncovalent interactions in the crystal system, thereby achieving modulation of the fluorescence (F) and RTP bands. In the final state structure, the ratio of fluorescence is 66.7%, and the ratio of RTP is 32.6%. This stands as a successful demonstration of modulating F/RTP within the dynamic MOF, unlocking potential applications in optical sensing and beyond. Especially, a PL thermometer with a relative sensitivity of 0.096-0.104%·K-1 in the range of 300-380 K and a H2S probe with a remarkably low LOD of 125.80 nM can be obtained using this responsive MOF material of LIFM-SHL-3a.
Collapse
Affiliation(s)
- Huili Sun
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qiangsheng Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhonghao Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanting Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Qiao JQ, Ren HM, Chen X, Li ZF, Li G. Icing on the Cake: Imidazole-Anchored Strategy To Enhance the Proton Conductivity of Two Isostructural Ce(IV)/Hf(IV) Metal-Organic Frameworks. Inorg Chem 2023; 62:21309-21321. [PMID: 38091472 DOI: 10.1021/acs.inorgchem.3c03400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
In the field of proton conduction, the acquisition of crystalline metal-organic frameworks (MOFs) with high stability and ultrahigh proton conductivity has been of great research value and is worth continuous exploration. Here, we greenly synthesized a three-dimensional porous MOF (MOF-801-Ce) by using [(NH4)2Ce(NO3)6 and fumaric acid as starting materials and solvothermally synthesized Hf-UiO-66-NO2 by using HfCl4 and 2-nitroterephthalic acid as starting materials. A series of measurements have shown that both MOFs exhibit good water stability, acid-base stability, and thermal stability and demonstrate outstanding proton conductivity. At 100 °C and 98% relative humidity (RH), the proton conductivities (σ) could be 2.59 × 10-3 S·cm-1 for MOF-801-Ce and 0.89 × 10-3 S·cm-1 for Hf-UiO-66-NO2. To pursue higher proton conductivity, we further adopted the evaporation approach to encapsulate imidazole molecules in the pores of the two compounds, achieving the imidazole-encapsulated MOFs, Im@MOF-801-Ce and Im@Hf-UiO-66-NO2. As expected, their σ values were significantly boosted by almost an order of magnitude up to 10-2 S·cm-1. Finally, their proton-conductive mechanisms were explored in light of the structural information, gas adsorption/desorption, and other tests. The outstanding structural stability of these MOFs and their durability of the proton conduction capability manifested that they have great promise in electrochemical fields.
Collapse
Affiliation(s)
- Jin-Qi Qiao
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Hui-Min Ren
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Xin Chen
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Zi-Feng Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
5
|
Liu X, Wang X, Jiang Y. Construction and Application of Multipurpose metal-organic frameworks -based Hydrogen Sulfide Probe. J Fluoresc 2023; 33:2193-2200. [PMID: 37000364 DOI: 10.1007/s10895-023-03225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023]
Abstract
Hydrogen sulfide (H2S) is a toxic gas derived from the sulfur industry and trace H2S in the environment can cause serious ecological damage while inhalation can cause serious damage and lead to disease. Therefore, the real-time and accurate detection of trace sulfur ions is of great significance for environmental protection and early disease detection. Considering the shortcoming of current H2S probes in terms of stability and sensitivity, the development of novel probes is necessary. Herein, a novel metal-organic frameworks (MOF)-based material, UiO-66-NH2@BDC, was designed and prepared for the visual detection of H2S with rapid response (< 6 s) and low detection limit of S2- (0.13 µM) by hydrogen bonding. Based on its good optical performance, the UiO-66-NH2@BDC probe can detect S2- in various water environments. More importantly, UiO-66-NH2@BDC probe realize imaging S2- in cells and live zebrafish.
Collapse
Affiliation(s)
- Xinyi Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio- functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P R China
| | - Xiaosong Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio- functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P R China
| | - Yuliang Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio- functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P R China
| |
Collapse
|
6
|
Selective and sensitive detection of hydrogen sulphide using hydrolytically stable Cu-MOF. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Huo L, Wang L, Li J, Pu Y, Xuan K, Qiao C, Yang H. Cerium doped Zr-based metal-organic framework as catalyst for direct synthesis of dimethyl carbonate from CO2 and methanol. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
|
9
|
A novel hydrolytically stable fluorescent Cd(II) coordination polymer showing solvent-dependent multi-responsive fluorescence sensing to pH and some metal ions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Huang X, Gong Z, Lv Y. Advances in Metal-Organic Frameworks-based Gas Sensors for Hazardous Substances. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Zhao D, Yu S, Jiang WJ, Cai ZH, Li DL, Liu YL, Chen ZZ. Recent Progress in Metal-Organic Framework Based Fluorescent Sensors for Hazardous Materials Detection. Molecules 2022; 27:2226. [PMID: 35408627 PMCID: PMC9000234 DOI: 10.3390/molecules27072226] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
Population growth and industrial development have exacerbated environmental pollution of both land and aquatic environments with toxic and harmful materials. Luminescence-based chemical sensors crafted for specific hazardous substances operate on host-guest interactions, leading to the detection of target molecules down to the nanomolar range. Particularly, the luminescence-based sensors constructed on the basis of metal-organic frameworks (MOFs) are of increasing interest, as they can not only compensate for the shortcomings of traditional detection techniques, but also can provide more sensitive detection for analytes. Recent years have seen MOFs-based fluorescent sensors show outstanding advantages in the field of hazardous substance identification and detection. Here, we critically discuss the application of MOFs for the detection of a broad scope of hazardous substances, including hazardous gases, heavy metal ions, radioactive ions, antibiotics, pesticides, nitro-explosives, and some harmful solvents as well as luminous and sensing mechanisms of MOF-based fluorescent sensors. The outlook and several crucial issues of this area are also discussed, with the expectation that it may help arouse widespread attention on exploring fluorescent MOFs (LMOFs) in potential sensing applications.
Collapse
Affiliation(s)
- Dan Zhao
- School of Marine Science, Ningbo University, Ningbo 315211, China; (W.-J.J.); (Z.-H.C.)
| | - Shuang Yu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| | - Wen-Jie Jiang
- School of Marine Science, Ningbo University, Ningbo 315211, China; (W.-J.J.); (Z.-H.C.)
| | - Zhi-Hao Cai
- School of Marine Science, Ningbo University, Ningbo 315211, China; (W.-J.J.); (Z.-H.C.)
| | - Dan-Li Li
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China;
| | - Ya-Lan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| | - Zhi-Zhou Chen
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China;
| |
Collapse
|
12
|
Hong C, Li D, Wang Z, Liu B, Zhang W, Zhang K, Huang Z. A sensitive colorimetric hydrogen sulfide detection approach based on copper-metal-organic frameworks and a smartphone. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1239-1245. [PMID: 35258061 DOI: 10.1039/d2ay00151a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we demonstrate a colorimetric approach for the detection of hydrogen sulfide (H2S) in water samples with high sensitivity. Firstly, copper-metal-organic frameworks (Cu-MOFs) were synthesized by ultrasonic-assisted hydrothermal method, presenting a maximum absorption peak at 700 nm. It was found that Cu-MOFs could react with H2S to form a copper-sulfur complex along with a decrease of the absorption peak at 700 nm and a visible color change from blue to tan. Under the optimal reaction conditions, the absorption intensity at 700 nm was linear with H2S concentration in a range of 0.05-2 mM (R2 = 0.9928), providing a detection limit of 22 μM. Furthermore, the method was successfully applied to the detection of H2S in lake water samples with a recovery rate between 94.4% and 112.6%. In addition, a practical and portable device for on-site H2S detection was designed by using agarose hydrogels, and a simple colorimetric detection method based on a smartphone was developed. This analytical method showed good selectivity for H2S compared to other interfering substances, and the feasibility of the agarose hydrogel-based device was proved by the determination of H2S in real lake water samples.
Collapse
Affiliation(s)
- Chengyi Hong
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, 361021, China.
| | - Dandan Li
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, 361021, China.
| | - Ziyue Wang
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, 361021, China.
| | - Boyuan Liu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), School of Life Sciences, Longyan University, Longyan 364012, P. R. China.
| | - Wenmin Zhang
- Department of Chemical and Biological Engineering, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Kailong Zhang
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), School of Life Sciences, Longyan University, Longyan 364012, P. R. China.
| | - Zhiyong Huang
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
13
|
Zhou Y, Mazur F, Fan Q, Chandrawati R. Synthetic nanoprobes for biological hydrogen sulfide detection and imaging. VIEW 2022. [DOI: 10.1002/viw.20210008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Qingqing Fan
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| |
Collapse
|
14
|
Asad M, Wang YJ, Wang S, Dong QG, Li LK, Majeed S, Wang QY, Zang SQ. Hydrazone connected stable luminescent covalent-organic polymer for ultrafast detection of nitro-explosives. RSC Adv 2021; 11:39270-39277. [PMID: 35492474 PMCID: PMC9044423 DOI: 10.1039/d1ra08009a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Developing promising luminescent probes for the selective sensing of nitro-explosives remains a challenging issue. Porous luminescent covalent–organic polymers are one of the excellent sensing probes for trace hazardous materials. Herein, fluorescent monomers 1,1,2,2-tetrakis(4-formyl-(1,1′-biphenyl))ethane (TFBE) and 1,3,5-benzenetricarboxylic acid trihydrazide (BTCH) were selected to build a novel hydrazone connected stable luminescent covalent–organic polymer (H-COP) of high stability by typical Schiff-base reaction. The N2 sorption study, BET surface area analysis, and TGA profile indicate the porosity and stability of this H-COP material. Such properties of the H-COP material enable a unique sensing platform for nitro-explosives with great sensitivity (Ksv ∼ 106 M) and selectivity up to μM. This polymer material shows attractive selectivity and sensitivity towards phenolic nitro-explosives and other common explosives among earlier reported COP-based sensors. A novel H-COP was synthesized through Schiff-base condensation reaction, which shows high sensitivity (Ksv ∼ 106 M−1) and selectivity (μM level) towards nitro-explosives.![]()
Collapse
Affiliation(s)
- Muhammad Asad
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Ya-Jie Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Shan Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Qing-Guo Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Lin-Ke Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Qian-You Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
15
|
Li M, Shen A, Du M, Hao X, Wang H, Du X, Ma S, Yuan J, Yang Y. Tb 3+-Doped Ag-MOFs for fluorescent detection of formaldehyde in a novel smartphone platform and its removal applications in milk products and wastewater. RSC Adv 2021; 11:34291-34299. [PMID: 35497289 PMCID: PMC9042377 DOI: 10.1039/d1ra05856h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
As one kind of reactive carbonyl species (RCS), formaldehyde (FA) with a high concentration could be extremely toxic to living bodies as well as the environment. This paper reports a three-dimensional (3D) Tb3+@Ag-MOFs-based fluorescent probe for fast sensing of FA, which uses a novel turn-on mechanism based on the luminescence induced by Tb3+. The MOF sensor shows broad dynamic ranges of 0.1-1 mM for FA with the detection limit of 1.9 μM. For online and real-time detection of FA, a portable smartphone platform was employed to analyze the RGB values of the fluorescence by a smartphone application. By incorporating this probe into a polyacrylonitrile (PAN) layer, we synthesized a film composite that could effectively remove FA in real samples including milk and chemical factory wastewater, and the removal rate reached 98.52% and 95.38% respectively. Moreover, the potential of the film to remove gaseous FA was confirmed by experiments as well.
Collapse
Affiliation(s)
- Mengwen Li
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Ao Shen
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Man Du
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Xiaohui Hao
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Hongquan Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Xiaoyu Du
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Shufeng Ma
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Jiaxin Yuan
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Yunxu Yang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
16
|
A. S. Souza B, L. N. Sousa F, Oliveira DM, Pinto L, Freitas DV, Navarro M. Pb-MOF electrosynthesis based on recycling of lead-acid battery electrodes for hydrogen sulfide colorimetric detection. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Target-induced mimic enzyme deactivation based on mixed-node metal-organic frameworks for colorimetric assay of hydrogen sulfide. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Ghosh S, Biswas S. Ultrafast and nanomolar level detection of H 2S in aqueous medium using a functionalized UiO-66 metal-organic framework based fluorescent chemosensor. Dalton Trans 2021; 50:11631-11639. [PMID: 34355723 DOI: 10.1039/d1dt01456k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here, we present a 4-nitrophenyl functionalized Zr-UiO-66 MOF (MOF = metal-organic framework) and its applications towards the selective, sensitive and rapid detection of H2S both in the aqueous medium and vapour phase. The MOF material was synthesized using the 2-(nitrophenoxy)terepththalic acid (H2BDC-O-Ph-NO2) linker and ZrCl4 salt in the presence of a benzoic acid modulator. It was carefully characterized by thermogravimetric analysis (TGA), elemental analysis, powder X-ray diffraction (PXRD), FT-IR spectroscopy and surface area analysis. Noticeable thermal stability up to a temperature of 390 °C under air and the considerable chemical stability in different liquid media (H2O, 1 M HCl, glacial acetic acid, NaOH in the pH = 8 to 10 range) confirmed the robustness of the MOF. The BET surface area (1040 m2 g-1) indicated the porous nature of the MOF. Remarkable selectivity of the MOF towards H2S over other potential congeners of H2S was observed in the aqueous medium. A very high fluorescence increment (∼77 fold) was observed after adding an aqueous Na2S solution to the MOF suspension. The MOF probe displayed the lowest limit of detection (12.58 nM) among the existing MOF-based chemosensors of H2S. Furthermore, it exhibited a very quick (60 s) response towards H2S detection. The MOF compound could also detect H2S in the vapour phase as well as in real water samples. Furthermore, we developed inexpensive MOF-coated paper strips for the naked-eye sensing of H2S. A thorough investigation was carried out in order to elucidate the fluorescence turn-on sensing mechanism.
Collapse
Affiliation(s)
- Subhrajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | | |
Collapse
|
19
|
Zhang L, Feng Y, He H, Liu Y, Weng J, Zhang P, Huang W. Construction of hexanuclear Ce(III) metal−porphyrin frameworks through linker induce strategy for CO2 capture and conversion. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.12.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Mercuri G, Giambastiani G, Di Nicola C, Pettinari C, Galli S, Vismara R, Vivani R, Costantino F, Taddei M, Atzori C, Bonino F, Bordiga S, Civalleri B, Rossin A. Metal–Organic Frameworks in Italy: From synthesis and advanced characterization to theoretical modeling and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Hu Z, Wang Y, Zhao D. The chemistry and applications of hafnium and cerium(iv) metal-organic frameworks. Chem Soc Rev 2021; 50:4629-4683. [PMID: 33616126 DOI: 10.1039/d0cs00920b] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The coordination connection of organic linkers to the metal clusters leads to the formation of metal-organic frameworks (MOFs), where the metal clusters and ligands are spatially entangled in a periodic manner. The immense availability of tuneable ligands of different length and functionalities gives rise to robust molecular porosity ranging from several angstroms to nanometres. Among the large family of MOFs, hafnium (Hf) based MOFs have been demonstrated to be highly promising for practical applications due to their unique and outstanding characteristics such as chemical, thermal, and mechanical stability, and acidic nature. Since the report of UiO-66(Hf) and DUT-51(Hf) in 2012, less than 200 Hf-MOFs (ca. 50 types of structures) have been reported. Besides, tetravalent cerium [Ce(iv)] has been proven to be capable of forming similar topological MOF structures to Zr and Hf since its first discovery in 2015. So far, ca. 40 Ce(iv) MOFs with 60% having UiO-66-type structure have been reported. This review will offer a holistic summary of the chemistry, uniqueness, synthesis, and applications of Hf/Ce(iv)-MOFs with a focus on presenting the development in the Hf/Ce(iv)-clusters, topologies, ligand structures, synthetic strategies, and practical applications of Hf/Ce(iv)-MOFs. In the end, we will present the research outlook for the development of Hf/Ce(iv)-MOFs in the future, including fundamental design of Hf/Ce(iv)-clusters, defect engineering, and various applications including membrane development, diversified types of catalytic reactions, irradiation absorption in nuclear waste treatment, water production and wastewater treatment, etc. We will also present the emerging computational approaches coupled with machine-learning algorithms that can be applied in screening Hf and Ce(iv) based MOF structures and identifying the best-performing MOFs for tailor-made applications in future practice.
Collapse
Affiliation(s)
- Zhigang Hu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | | | | |
Collapse
|
22
|
Akhtar S, Singha P, De A, Das KS, Saha S, Bala S, Mondal R. Construction of a series of metal-directed MOFs to explore their physical and chemical properties. NEW J CHEM 2021. [DOI: 10.1039/d0nj03424j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we report a series of metal-directed coordination polymers and explore their various properties. The polymeric networks show interesting properties such as selective CO2 gas adsorption, Fenton-type photocatalytic dye degradation and heterogeneous catalytic reduction of 4-nitrophenol.
Collapse
Affiliation(s)
- Sohel Akhtar
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Pabitra Singha
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Avik De
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Krishna Sundar Das
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Sayan Saha
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Sukhen Bala
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Raju Mondal
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
23
|
Nagarjun N, Jacob M, Varalakshmi P, Dhakshinamoorthy A. UiO-66(Ce) metal-organic framework as a highly active and selective catalyst for the aerobic oxidation of benzyl amines. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111277] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Mengwen L, Ao S, Yueqi L, Hao Z, Xiaohui H, Xueliang L, Xinchao S, Yunxu Y. The selective and sensitive detection of formaldehyde by ZIF-90-LWvia aza-Cope rearrangement. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3748-3755. [PMID: 32779657 DOI: 10.1039/d0ay00493f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Formaldehyde (FA), as one of the simplest reactive carbonyl species (RCS), is widely known as an environmental toxin and carcinogen. In this work, a new ZIF-90 type material (ZIF-90-LW) was synthesized and investigated, which combines the two strategies of "2-aza-Cope rearrangement" and "MOF structure", by the combination of a pre-functionalized 2-allylaminoimidazole ligand and Zn2+ salt under solvothermal conditions. From this, the hurdle of selectivity over other carbonyl compounds (RCS) could be overcome despite their similar electrophilic reactivities to FA, and a prominent fluorescence turn-on type signal was realized through the 2-aza-Cope rearrangement mechanism. A good linear relationship (R2 = 0.9979) was obtained by fitting the fluorescence intensity towards FA from 0 to 25 mM, and the detection limit of ZIF-90-LW for FA was 2.3 μM. In addition, it also showed potentially useful sensing ability for the detection of FA in the gas phase, and might therefore be used to rapidly detect FA with a response time of 28 s in the liquid phase. All of the above features clearly demonstrate that ZIF-90-LW has great potential for sensitive and selective recognition of FA in the environment.
Collapse
Affiliation(s)
- Li Mengwen
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang YF, Wang Q, Xue DX, Bai J. Single-Crystal Synthesis and Diverse Topologies of Hexanuclear CeIV-Based Metal–Organic Frameworks. Inorg Chem 2020; 59:11233-11237. [DOI: 10.1021/acs.inorgchem.0c01646] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu-Feng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi′an 710062, China
| | - Qian Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi′an 710062, China
| | - Dong-Xu Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi′an 710062, China
| | - Junfeng Bai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi′an 710062, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
26
|
Fast and sensitive fluorescent detection of nitrite based on an amino-functionalized MOFs of UiO-66-NH2. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121323] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Nagarjun N, Concepcion P, Dhakshinamoorthy A. Influence of oxophilic behavior of UiO‐66(Ce) metal–organic framework with superior catalytic performance in Friedel‐Crafts alkylation reaction. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Patricia Concepcion
- Instituto de Tecnologia Quimica CSIV‐UPVUniversitat Politecnica de Valencia Av. De los Naranjos s/n 46022 Valencia Spain
| | | |
Collapse
|
28
|
Wang J, Xu LF, Wu J, You GQ, Cai R, Wu CL. A water-stable eu(iii)-mof for phosphorescent detection of acetone and treatment effect on catheter-associated infections by inhibiting gram positive and negative bacteria survival. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1743829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jing Wang
- Blood Purification Center, Yanghu Branch, Changzhou No.2 People’s Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Lin-Fang Xu
- Blood Purification Center, Yanghu Branch, Changzhou No.2 People’s Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Jing Wu
- Blood Purification Center, Yanghu Branch, Changzhou No.2 People’s Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Guang-Qing You
- Blood Purification Center, Yanghu Branch, Changzhou No.2 People’s Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ru Cai
- Blood Purification Center, Yanghu Branch, Changzhou No.2 People’s Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Chun-Lei Wu
- Blood Purification Center, Yanghu Branch, Changzhou No.2 People’s Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
29
|
Liu JQ, Luo ZD, Pan Y, Kumar Singh A, Trivedi M, Kumar A. Recent developments in luminescent coordination polymers: Designing strategies, sensing application and theoretical evidences. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213145] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
|
31
|
Wang Y, Liang RP, Qiu JD. Nanoceria-Templated Metal Organic Frameworks with Oxidase-Mimicking Activity Boosted by Hexavalent Chromium. Anal Chem 2020; 92:2339-2346. [PMID: 31865699 DOI: 10.1021/acs.analchem.9b05593] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The high toxicity and mobility of hexavalent chromium (Cr(VI)) allow it to easily spread and bioaccumulate, and its detection is a major part of environmental protection. In this work, an innovative method is developed for preparation of cerium oxide nanorod-templated metal-organic frameworks (CeO2NRs-MOF). The in situ growth of MOF on the surface of CeO2 nanorods (CeO2NRs) enhances its oxidase-like activity. In the presence of a trace amount of Cr(VI), CeO2NRs-MOF can significantly accelerate the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) due to Cr(VI)-boosted oxidation, resulting in a blue colored oxidation product. It can detect Cr(VI) over a range of 0.03-5 μM with high selectivity. Moreover, this method can be applied to the detection of Cr(VI) in different water environment samples with satisfactory recoveries, demonstrating the potential application of CeO2NRs-MOF for the direct monitoring of Cr(VI) in environmental water systems. Thus, this work provides a facile host-templated MOF preparation method, which could possibly be extended to other fields.
Collapse
Affiliation(s)
- Yi Wang
- College of Chemistry , Nanchang University , Nanchang 330031 , China
| | - Ru-Ping Liang
- College of Chemistry , Nanchang University , Nanchang 330031 , China
| | - Jian-Ding Qiu
- College of Chemistry , Nanchang University , Nanchang 330031 , China.,College of Materials and Chemical Engineering , Pingxiang University , Pingxiang 337055 , China
| |
Collapse
|
32
|
Jacobsen J, Wegner L, Reinsch H, Stock N. Ce-MIL-140: expanding the synthesis routes for cerium(iv) metal-organic frameworks. Dalton Trans 2020; 49:11396-11402. [PMID: 32776061 DOI: 10.1039/d0dt02455d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A microwave-assisted synthesis method for Ce(iv)-based MOFs crystallizing in the MIL-140 structure has been developed. Three different linker molecules, i.e. terephthalic acid (H2BDC), 2-chloroterephthalic acid (H2BDC-Cl) and 2,6-naphtalenedicarboxylic acid (H2NDC) that have previously been used for the synthesis of Ce-UiO-66 which contains hexanuclear Ce-O clusters as the inorganic building unit (IBU), were employed. Under solvothermal reaction conditions (140 °C) with acetonitrile as the solvent the compounds Ce-MIL-140-BDC, -BDC-Cl and -NDC, with the general composition [CeO(linker)] were obtained as microcrystalline products. For all three MOFs an extended purification process had to be carried out. The MOFs were fully characterized and the structure of Ce-MIL-140-BDC was refined against PXRD data using the Rietveld method. In contrast to Zr-MIL-140-BDC a symmetry reduction to the space group P1[combining macron] is observed. The MIL-140 structure type is built up by infinite CeO7 polyhedra that are interconnected by dicarboxylate ions to generate 1D pores. For Ce-MIL-140-BDC the highest specific surface area of asBET = 222 m2 g-1 is observed and the MOF is thermally stable up to 370 °C. This new synthetic route to Ce(iv)-MOFs avoids the formation of the previously extremely dominant hexanuclear IBU, and paves the way for higher IBU diversity in Ce(iv)-MOFs.
Collapse
Affiliation(s)
- Jannick Jacobsen
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth Straße 2, D-24118 Kiel, Germany.
| | - Lasse Wegner
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth Straße 2, D-24118 Kiel, Germany.
| | - Helge Reinsch
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth Straße 2, D-24118 Kiel, Germany.
| | - Norbert Stock
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth Straße 2, D-24118 Kiel, Germany.
| |
Collapse
|
33
|
Jacobsen J, Ienco A, D'Amato R, Costantino F, Stock N. The chemistry of Ce-based metal-organic frameworks. Dalton Trans 2020; 49:16551-16586. [PMID: 33146175 DOI: 10.1039/d0dt02813d] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Metal-organic frameworks (MOFs) have gained widespread attention due to their modular construction that allows the tuning of their properties. Within this vast class of compounds, metal carboxylates containing tri- and tetravalent metal ions have been in the focus of many studies due to their often high thermal and chemical stabilities. Cerium has a rich chemistry, which depends strongly on its oxidation state. Ce(iii) exhibits properties typically observed for rare earth elements, while Ce(iv) is mostly known for its oxidation behaviour. In MOF chemistry this is reflected in their unique optical and catalytic properties. The synthetic parameters for Ce(iii)- and Ce(iv)-MOFs also differ substantially and conditions must be chosen to prevent reduction of Ce(iv) for the formation of the latter. Ce(iii)-MOFs are usually reported in comprehensive studies together with those constructed with other RE elements and normally they are isostructural. They exhibit a greater structural diversity, which is reflected in the larger variety of inorganic building units. In contrast, the synthesis conditions of Ce(iv)-MOFs were only recently (2015) established. These lead selectively to hexanuclear Ce-O clusters that are well-known for Zr-MOFs and therefore very similar structural and isoreticluar chemistry is found. Hence Ce(iv)-MOFs exhibit often high porosity, while only a few porous Ce(iii)-MOFs have been described. Some of these show structural flexibility which makes them interesting for separation processes. For Ce(iv)-MOFs the redox properties are most relevant. Thus, they are intensively discussed for catalytic, photocatalytic and sensing applications. In this perspective, the synthesis, structural chemistry and properties of Ce-MOFs are summarized.
Collapse
Affiliation(s)
- Jannick Jacobsen
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth Straße 2, D-24118 Kiel, Germany.
| | | | | | | | | |
Collapse
|
34
|
Zhu Z, He X, Wang WN. Unraveling the origin of the “Turn-On” effect of Al-MIL-53-NO2 during H2S detection. CrystEngComm 2020. [DOI: 10.1039/c9ce01595g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Real fluorophores were found in nitro-functionalized metal–organic frameworks for H2S detection using a representative MOF, Al-MIL-53-NO2.
Collapse
Affiliation(s)
- Zan Zhu
- Department of Mechanical and Nuclear Engineering
- Virginia Commonwealth University
- Richmond
- USA
| | - Xiang He
- Department of Mechanical and Nuclear Engineering
- Virginia Commonwealth University
- Richmond
- USA
| | - Wei-Ning Wang
- Department of Mechanical and Nuclear Engineering
- Virginia Commonwealth University
- Richmond
- USA
| |
Collapse
|
35
|
Dufaye M, Duval S, Stoclet G, Loiseau T. Influence of pH on Ce IV-[As IIIW 9O 33] 9− association for the formation of hexanuclear cerium( iv) oxo-hydroxo-clusters stabilized by trivacant polyanions. CrystEngComm 2020. [DOI: 10.1039/c9ce01663e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Influence of pH on CeIV-AsW9O33 association leads to the formation of four crystalline compounds incorporating classical and distorted hexanuclear cerium clusters.
Collapse
Affiliation(s)
- Maxime Dufaye
- Université de Lille, CNRS, Centrale Lille, ENSCL
- Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du solide
- F-59000 Lille
- France
| | - Sylvain Duval
- Université de Lille, CNRS, Centrale Lille, ENSCL
- Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du solide
- F-59000 Lille
- France
| | - Gregory Stoclet
- Unité Matériaux et Transformation (UMET) – UMR CNRS 8207
- Université de Lille Nord de France
- 59652 Villeneuve d'Ascq
- France
| | - Thierry Loiseau
- Université de Lille, CNRS, Centrale Lille, ENSCL
- Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du solide
- F-59000 Lille
- France
| |
Collapse
|
36
|
Dalapati R, Nandi S, Biswas S. Post-synthetic modification of a metal–organic framework with a chemodosimeter for the rapid detection of lethal cyanide via dual emission. Dalton Trans 2020; 49:8684-8692. [DOI: 10.1039/d0dt00837k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A post-synthetically modified chemodosimeter grafted MOF is presented for the selective, visual and fluorogenic detection of cyanide via dual emission.
Collapse
Affiliation(s)
- Rana Dalapati
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Soutick Nandi
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Shyam Biswas
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| |
Collapse
|
37
|
Dong J, Zhang XD, Xie XF, Guo F, Sun WY. Amino group dependent sensing properties of metal–organic frameworks: selective turn-on fluorescence detection of lysine and arginine. RSC Adv 2020; 10:37449-37455. [PMID: 35521281 PMCID: PMC9057127 DOI: 10.1039/d0ra06879a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/04/2020] [Indexed: 01/03/2023] Open
Abstract
Recently, metal–organic frameworks (MOFs) have been extensively investigated as fluorescence chemsensors due to their tunable porosity, framework structure and photoluminescence properties. In this paper, a well-known Zr(iv)-based MOF, UiO-66-NH2 was demonstrated to have capability for detection of l-lysine (Lys) and l-arginine (Arg) selectively from common essential amino acids in aqueous media via a fluorescence turn-on mechanism. Further investigation reveals its high sensitivity and strong anti-interference properties. Moreover, the possible mechanism for sensing Lys and Arg was explored by FT-IR and 1H-NMR, and the results indicate that the enhancement of the fluorescence could be ascribed to the adsorption of Lys/Arg and the hydrogen bonding interactions between Lys/Arg and the amino group of UiO-66-NH2. The difference of the sensing capacity and sensitivity between UiO-66 and UiO-66-NH2 revealed that the amino group plays an essential role in the sensing performance. This work presents a unique example of the functional group dependent sensing properties of MOFs. The amino group of UiO-66-NH2 was demonstrated to play an important role in selective fluorescence turn-on sensing of lysine and arginine.![]()
Collapse
Affiliation(s)
- Jing Dong
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
| | - Xiu-Du Zhang
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
| | - Xia-Fei Xie
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
| | - Fan Guo
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
| | - Wei-Yin Sun
- Coordination Chemistry Institute
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Collaborative Innovation Center of Advanced Microstructures
| |
Collapse
|
38
|
Li HY, Zhao SN, Zang SQ, Li J. Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chem Soc Rev 2020; 49:6364-6401. [DOI: 10.1039/c9cs00778d] [Citation(s) in RCA: 434] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarizes the recent advances of metal organic framework (MOF) based sensing of gases and volatile compounds.
Collapse
Affiliation(s)
- Hai-Yang Li
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shu-Na Zhao
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shuang-Quan Zang
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Jing Li
- Department of Chemistry and Chemical Biology
- Rutgers University
- Piscataway
- USA
| |
Collapse
|
39
|
Rasheed T, Nabeel F. Luminescent metal-organic frameworks as potential sensory materials for various environmental toxic agents. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213065] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Yu H, Liu C, Li Y, Huang A. Functionalized Metal-Organic Framework UiO-66-NH-BQB for Selective Detection of Hydrogen Sulfide and Cysteine. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41972-41978. [PMID: 31625716 DOI: 10.1021/acsami.9b16529] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogen sulfide (H2S) is an important signaling molecule related to many diseases. Thus, H2S has a great impact on the pathological and physiological processes in biological systems. Cysteine (l-Cys) is a building block for proteins and important metabolites. To understand their roles in the physiological metabolic procedures, the measurement of the H2S level and identifying cysteine in the biological system is significant. In this study, through the functionalization of UiO-66-NH2 by 4-(2,2-dicyanoethenyl)benzoic acid (BQB), a novel UiO-66-NH-BQB is successfully synthesized and used as a fluorescence probe to recognize and detect H2S and l-Cys. The fluorescence signals of the probe are enhanced great when it is exposed to H2S or cysteine molecules; thus, it is able to determine quantificationally the H2S concentration in an aqueous solution. The detection limitation of the UiO-66-NH-BQB to H2S concentration is found to be as low as 1.74 μM. The developed fluorescent probe based on UiO-66-NH-BQB displays a high selectivity and excellent biocompatibility, which is very promising for recognition and sensing of biothiols in organisms.
Collapse
Affiliation(s)
- Huazheng Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry , East China Normal University , Dongchuan Road 500 , Shanghai 200241 , China
| | - Chuanyao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry , East China Normal University , Dongchuan Road 500 , Shanghai 200241 , China
| | - Yanhong Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry , East China Normal University , Dongchuan Road 500 , Shanghai 200241 , China
| | - Aisheng Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry , East China Normal University , Dongchuan Road 500 , Shanghai 200241 , China
| |
Collapse
|
41
|
Tong P, Liang J, Jiang X, Li J. Research Progress on Metal-Organic Framework Composites in Chemical Sensors. Crit Rev Anal Chem 2019; 50:376-392. [DOI: 10.1080/10408347.2019.1642732] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peihong Tong
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Junyu Liang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Xinxin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
42
|
Grebenyuk D, Martynova I, Tsymbarenko D. Self-Assembly of Hexanuclear Lanthanide Carboxylate Clusters of Three Architectures. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900643] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Dimitry Grebenyuk
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
| | - Irina Martynova
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
| | - Dmitry Tsymbarenko
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
| |
Collapse
|
43
|
Hao Y, Chen S, Zhou Y, Zhang Y, Xu M. Recent Progress in Metal-Organic Framework (MOF) Based Luminescent Chemodosimeters. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E974. [PMID: 31277318 PMCID: PMC6669767 DOI: 10.3390/nano9070974] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/09/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
Metal-organic frameworks (MOFs), as a class of crystalline hybrid architectures, consist of metal ions and organic ligands and have displayed great potential in luminescent sensing applications due to their tunable structures and unique photophysical properties. Until now, many studies have been reported on the development of MOF-based luminescent sensors, which can be classified into two major categories: MOF chemosensors based on reversible host-guest interactions and MOF chemodosimeters based on the irreversible reactions between targets with a probe. In this review, we summarize the recently developed luminescent MOF-based chemodosimeters for various analytes, including H2S, HClO, biothiols, fluoride ions, redox-active biomolecules, Hg2+, and CN-. In addition, some remaining challenges and future perspectives in this area are also discussed.
Collapse
Affiliation(s)
- Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
44
|
Eu3+/TFA Functionalized MOF as Luminescent Enhancement Platform: A Ratiometric Luminescent Sensor for Hydrogen Sulfide in Aqueous Solution. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01171-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Nandi S, Banesh S, Trivedi V, Biswas S. A dinitro-functionalized metal-organic framework featuring visual and fluorogenic sensing of H 2S in living cells, human blood plasma and environmental samples. Analyst 2019; 143:1482-1491. [PMID: 29487917 DOI: 10.1039/c7an01964e] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Here, we describe a new dinitro-functionalized Zr(iv) MOF (MOF = metal-organic framework) having a UiO-66 (UiO = University of Oslo) framework topology called UiO-66-(NO2)2 (1). It shows fluorescence turn-on behavior towards H2S in simulated biological medium (HEPES buffer, pH = 7.4). By employing solvothermal conditions, 1 was successfully synthesized by reacting ZrCl4, H2BDC-(NO2)2 [H2BDC-(NO2)2 = 2,5-dinitro-1,4-benzenedicarboxylic acid] ligand and benzoic acid with a molar ratio of 1 : 1 : 10 in DMF (DMF = N,N-dimethylformamide) at 130 °C for 24 h. The material was characterized by infrared spectroscopy, X-ray powder diffraction (XRPD) and thermogravimetric (TG) analyses. The compound not only displays highly sensitive fluorometric sensing of H2S but also exhibits a visually detectable colorimetric change towards H2S in daylight. Moreover, the high selectivity of 1' towards H2S is retained even when several other biologically intrusive species co-exist in the sensing medium. The limit of detection (LOD) of the compound is 14.14 μM which lies in the range of the H2S concentration found in biological systems. Fluorescence microscopy studies on J774A.1 cells revealed the efficacy of the probe for imaging H2S in living cells. Moreover, this material can detect H2S in human blood plasma (HBP) and monitor the sulfide concentration in real water samples. All these features clearly demonstrate that the material has huge potential for highly selective sensing of both extracellular and intracellular H2S.
Collapse
Affiliation(s)
- Soutick Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam, India.
| | | | | | | |
Collapse
|
46
|
Surya SG, Bhanoth S, Majhi SM, More YD, Teja VM, Chappanda KN. A silver nanoparticle-anchored UiO-66(Zr) metal–organic framework (MOF)-based capacitive H2S gas sensor. CrystEngComm 2019. [DOI: 10.1039/c9ce01323g] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal–organic frameworks anchored with metal oxide nanoparticles for the detection of H2S gas with enhanced sensitivity.
Collapse
Affiliation(s)
- Sandeep G. Surya
- Sensors Lab
- Advanced Membranes and Porous Materials Center
- Computer, Electrical and Mathematical Science and Engineering Division
- King Abdullah University of Science and Technology (KAUST)
- Saudi Arabia
| | - Sreenu Bhanoth
- Department of Chemistry
- Indian Institute of Science Education and Research
- Pune
- India
| | - Sanjit M. Majhi
- Sensors Lab
- Advanced Membranes and Porous Materials Center
- Computer, Electrical and Mathematical Science and Engineering Division
- King Abdullah University of Science and Technology (KAUST)
- Saudi Arabia
| | - Yogeshwar D. More
- Department of Chemistry
- Indian Institute of Science Education and Research
- Pune
- India
| | - V. Mani Teja
- Sensors Lab
- Advanced Membranes and Porous Materials Center
- Computer, Electrical and Mathematical Science and Engineering Division
- King Abdullah University of Science and Technology (KAUST)
- Saudi Arabia
| | - Karumbaiah N. Chappanda
- Sensors Lab
- Advanced Membranes and Porous Materials Center
- Computer, Electrical and Mathematical Science and Engineering Division
- King Abdullah University of Science and Technology (KAUST)
- Saudi Arabia
| |
Collapse
|
47
|
Zhang H, Li G, Liao C, Cai Y, Jiang G. Bio-related applications of porous organic frameworks (POFs). J Mater Chem B 2019; 7:2398-2420. [PMID: 32255118 DOI: 10.1039/c8tb03192d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Porous organic frameworks (POFs) are promising candidates for bio-related applications. This review highlights the recent progress in POF-based bioapplications, including drug delivery, bioimaging, biosensing, therapeutics, and artificial shells. These encouraging performances suggest that POFs used for bioapplications deserve more attention in the future.
Collapse
Affiliation(s)
- He Zhang
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
- University of the Chinese Academy of Sciences
| | - Guoliang Li
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Chunyang Liao
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
- University of the Chinese Academy of Sciences
| | - Yaqi Cai
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
- University of the Chinese Academy of Sciences
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
- University of the Chinese Academy of Sciences
| |
Collapse
|
48
|
Das A, Das S, Trivedi V, Biswas S. A dual functional MOF-based fluorescent sensor for intracellular phosphate and extracellular 4-nitrobenzaldehyde. Dalton Trans 2019; 48:1332-1343. [DOI: 10.1039/c8dt03964j] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A hydrazine-functionalized Zr(iv) MOF was used for the selective and sensitive detection of intracellular PO43− ions and extracellular 4-nitrobenzaldehyde.
Collapse
Affiliation(s)
- Aniruddha Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- 781039 Assam
- India
| | - Sourik Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- 781039 Assam
- India
| | - Vishal Trivedi
- Malaria Research Group
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Guwahati
- 781039 Assam
- India
| | - Shyam Biswas
- Department of Chemistry
- Indian Institute of Technology Guwahati
- 781039 Assam
- India
| |
Collapse
|
49
|
SK M, Khan MRUZ, Das A, Nandi S, Trivedi V, Biswas S. A phthalimide-functionalized UiO-66 metal–organic framework for the fluorogenic detection of hydrazine in live cells. Dalton Trans 2019; 48:12615-12621. [DOI: 10.1039/c9dt02459j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A phthalimide-functionalized Zr(iv) UiO-66 MOF was utilized for fluorogenic detection of hydrazine in HEPES buffer and inside living cells.
Collapse
Affiliation(s)
- Mostakim SK
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Mohammed Rafi Uz Zama Khan
- Malaria Research Group
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Guwahati
- India
| | - Aniruddha Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Soutick Nandi
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Vishal Trivedi
- Malaria Research Group
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Guwahati
- India
| | - Shyam Biswas
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| |
Collapse
|
50
|
Esrafili L, Gharib M, Morsali A. Selective detection and removal of mercury ions by dual-functionalized metal–organic frameworks: design-for-purpose. NEW J CHEM 2019. [DOI: 10.1039/c9nj03951a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, through introducing a new functional group into the structure, the performance and efficiency of MOFs as a sensor for heavy metal cations have been improved.
Collapse
Affiliation(s)
- Leili Esrafili
- Department of Chemistry
- Faculty of Sciences
- TarbiatModares University
- Tehran
- Iran
| | - Maniya Gharib
- Department of Chemistry
- Faculty of Sciences
- TarbiatModares University
- Tehran
- Iran
| | - Ali Morsali
- Department of Chemistry
- Faculty of Sciences
- TarbiatModares University
- Tehran
- Iran
| |
Collapse
|