1
|
Jin L, Huang Y, Ye L, Huang D, Liu X. Challenges and opportunities in the selective degradation of organophosphorus herbicide glyphosate. iScience 2024; 27:110870. [PMID: 39381744 PMCID: PMC11459065 DOI: 10.1016/j.isci.2024.110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
The wide and continuous usage of glyphosate in the environment poses a serious threat to biological systems. Besides the accumulation of glyphosate in vivo, a growing body of research has revealed that aminomethylphosphonic acid (AMPA), the main degradation intermediate of glyphosate, has significant environmental and biological influences by inducing chromosome aberration of fish and canceration of human erythrocyte. Therefore, the development of new strategies avoiding the generation of the toxic AMPA intermediate during the full degradation of glyphosate is becoming of high importance. Herein, we provide a mini-review that includes the most recent advances in the selective degradation of glyphosate avoiding the generation of AMPA in the last several years from 2018. The developments of the selective degradation of glyphosate, highlighting its synthesis and selective degradation mechanism, are summarized here. This review intends to attract more attention from researchers toward this area and to emphasize the recent developments of selective degradation of glyphosate in highlighting future challenges.
Collapse
Affiliation(s)
- Lei Jin
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Liqun Ye
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Di Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| |
Collapse
|
2
|
Yuan R, He X, Zhu C, Tao L. Recent Developments in Functional Polymers via the Kabachnik-Fields Reaction: The State of the Art. Molecules 2024; 29:727. [PMID: 38338468 PMCID: PMC10856324 DOI: 10.3390/molecules29030727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Recently, multicomponent reactions (MCRs) have attracted much attention in polymer synthesis. As one of the most well-known MCRs, the Kabachnik-Fields (KF) reaction has been widely used in the development of new functional polymers. The KF reaction can efficiently introduce functional groups into polymer structures; thus, polymers prepared via the KF reaction have unique α-aminophosphonates and show important bioactivity, metal chelating abilities, and flame-retardant properties. In this mini-review, we mainly summarize the latest advances in the KF reaction to synthesize functional polymers for the preparation of heavy metal adsorbents, multifunctional hydrogels, flame retardants, and bioimaging probes. We also discuss some emerging applications of functional polymers prepared by means of the KF reaction. Finally, we put forward our perspectives on the further development of the KF reaction in polymer chemistry.
Collapse
Affiliation(s)
- Rui Yuan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; (R.Y.); (X.H.)
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; (R.Y.); (X.H.)
| | - Chongyu Zhu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China;
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; (R.Y.); (X.H.)
| |
Collapse
|
3
|
Tsacheva I, Todorova Z, Momekova D, Momekov G, Koseva N. Pharmacological Activities of Schiff Bases and Their Derivatives with Low and High Molecular Phosphonates. Pharmaceuticals (Basel) 2023; 16:938. [PMID: 37513849 PMCID: PMC10386503 DOI: 10.3390/ph16070938] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
This review paper is focused on the design of anthracene and furan-containing Schiff bases and their advanced properties as ligands in complex transition metal ions The paper also provides a brief overview on a variety of biological applications, namely, potent candidates with antibacterial and antifungal activity, antioxidant and chemosensing properties. These advantageous properties are enhanced upon metal complexing. The subject of the review has been extended with a brief discussion on reactivity of Schiff bases with hydrogen phosphonates and the preparation of low and high molecular phosphonates, as well as their application as pharmacological agents. This work will be of interest for scientists seeking new challenges in discovering advanced pharmacological active molecules gaining inspiration from the versatile families of imines and aminophosphonates.
Collapse
Affiliation(s)
- Ivelina Tsacheva
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, 1113 Sofia, Bulgaria
| | - Zornica Todorova
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, 1113 Sofia, Bulgaria
| | - Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Neli Koseva
- Bulgarian Academy of Sciences, 1 "15 Noemvri" Str., 1040 Sofia, Bulgaria
| |
Collapse
|
4
|
Varga PR, Karaghiosoff K, Sári ÉV, Simon A, Hegedűs L, Drahos L, Keglevich G. New N-acyl- as well as N-phosphonoylmethyl- and N-phosphinoylmethyl-α-amino-benzylphosphonates by acylation and a tandem Kabachnik-Fields protocol. Org Biomol Chem 2023; 21:1709-1718. [PMID: 36723166 DOI: 10.1039/d3ob00010a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Diethyl α-benzylamino- and α-amino-benzylphosphonates obtained by the Kabachnik-Fields reaction were useful intermediates in the synthesis of other derivatives. Acylation of α-aminophosphonates with acyl chlorides led to the corresponding N-acyl species existing under a dynamic equilibrium of two conformers. Judging from the broad NMR signals, the sterically most crowded N-benzoyl-N-benzyl derivative suffered a hindered rotation around the N-C axis to the acyl carbon atom at 26 °C. Low temperature NMR measurements at -10 °C showed the presence of two distinct rotamers that were characterized. The other acylated α-amino-benzylphosphonates prepared revealed a less hindered rotation. Single crystal X-ray diffraction of the NH-propionyl species showed a dimer, in which the two molecules were held together by rare intermolecular PO⋯HN bonds. On the other hand, substituted α-benzylamino-benzylphosphonates prepared by phospha-Mannich reactions were employed, as a new approach, in a second Kabachnik-Fields condensation by reaction with formaldehyde and dialkyl phosphites or secondary phosphine oxides to afford novel N-phosphonoylmethyl- and N-phosphinoylmethyl-α-amino-benzylphosphonates. The structure of the new products was confirmed by two-dimensional NMR spectroscopy. A symmetrical bis derivative was prepared in a diastereoselective manner. A related tris(phosphonoylmethyl)amine species was also synthesized.
Collapse
Affiliation(s)
- Petra Regina Varga
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
| | - Konstantin Karaghiosoff
- Department Chemie, Ludwig-Maximilians-Universitat München, Butenandtstr. 5-13, D-81377 München, Germany
| | - Éva Viktória Sári
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
| | - András Simon
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, 1521 Budapest, Hungary
| | - László Hegedűs
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
| |
Collapse
|
5
|
New phosphinic and phosphonic acids: Synthesis, antidiabetic, anti-Alzheimer, antioxidant activity, DFT study and SARS-CoV-2 inhibition. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Foss LE, Shabalin KV, Yakubov MR, Borisov DN. Kinetic Regularities of the Kabachnik–Fields Reaction under Catalysis by Sulfonic Cation Exchangers Based on Petroleum Asphaltenes. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s0023158422050032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Lamberink J, Boyle PD, Gilroy JB, Noël JJ, Blacquiere JM, Ragogna PJ. Reactivity of Primary Phosphines and Primary Phosphine Sulfides towards Imines. Chemistry 2022; 28:e202201565. [DOI: 10.1002/chem.202201565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Jan‐Willem Lamberink
- Department of Chemistry Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario N6A 587 London Ontario Canada
| | - Paul D. Boyle
- Department of Chemistry Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario N6A 587 London Ontario Canada
| | - Joe B. Gilroy
- Department of Chemistry Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario N6A 587 London Ontario Canada
| | - James J. Noël
- Department of Chemistry Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario N6A 587 London Ontario Canada
- Surface Science Western The University of Western Ontario N6G 0J3 London Ontario Canada
| | - Johanna M. Blacquiere
- Department of Chemistry Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario N6A 587 London Ontario Canada
| | - Paul J. Ragogna
- Department of Chemistry Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario N6A 587 London Ontario Canada
| |
Collapse
|
8
|
Reich D, Noble A, Aggarwal VK. Facile Conversion of α-Amino Acids into α-Amino Phosphonates by Decarboxylative Phosphorylation using Visible-Light Photocatalysis. Angew Chem Int Ed Engl 2022; 61:e202207063. [PMID: 35851520 PMCID: PMC9543399 DOI: 10.1002/anie.202207063] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 11/07/2022]
Abstract
Amino phosphonates exhibit potent inhibitory activity for a wide range of biological processes due to their specific structural and electronic properties, making them important in a plethora of applications, including as enzyme inhibitors, herbicides, antiviral, antibacterial, and antifungal agents. While the traditional synthesis of α-amino phosphonates has relied on the multicomponent Kabachnik-Fields reaction, we herein describe a novel and facile conversion of activated derivatives of α-amino acids directly to their respective α-amino phosphonate counterparts via a decarboxylative radical-polar crossover process enabled by the use of visible-light organophotocatalysis. The novel method shows broad applicability across a range of natural and synthetic amino acids, operates under mild conditions, and has been demonstrated to successfully achieve the late-stage functionalization of drug molecules.
Collapse
Affiliation(s)
- Dominik Reich
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Adam Noble
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
9
|
Sukhikh TS, Kolybalov DS, Khisamov RM, Konchenko SN. PHENYL-2-BENZOTHIAZOLE-BASED α-AMINOPHOSPHINES: SYNTHESIS, CRYSTAL STRUCTURE, AND PHOTOPHYSICAL PROPERTIES. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622090074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
10
|
Natarajan K, Sharma S, Irfana Jesin CP, Kataria R, Nandi GC. One-pot synthesis of α-sulfoximinophosphonate via Kabachnik-Fields reaction. Org Biomol Chem 2022; 20:7036-7039. [PMID: 36040442 DOI: 10.1039/d2ob01355j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we disclose a novel approach for the synthesis of hitherto unknown α-sulfoximinophosphonate via the Kabachnik-Fields reaction of aldehyde, dialkylphosphite and sulfoximine in the presence of InCl3 in THF at 70 °C. α-Sulfoximinophosphonate is synthesized in good yields and its synthetic utilities are proved by functionalizing bromine through the Pd-catalyzed Suzuki-Miyaura cross-coupling reaction and reduction of a nitro group through the Béchamp reduction.
Collapse
Affiliation(s)
- K Natarajan
- Department of Chemistry, National Institute of Technology-Tiruchirappalli 620015, Tamil Nadu, India.
| | - Suraj Sharma
- Department of Chemistry, National Institute of Technology-Tiruchirappalli 620015, Tamil Nadu, India.
| | - C P Irfana Jesin
- Department of Chemistry, National Institute of Technology-Tiruchirappalli 620015, Tamil Nadu, India.
| | - Ramesh Kataria
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India
| | - Ganesh Chandra Nandi
- Department of Chemistry, National Institute of Technology-Tiruchirappalli 620015, Tamil Nadu, India.
| |
Collapse
|
11
|
Peng L, Zhao Y, Yang T, Tong Z, Tang Z, Orita A, Qiu R. Zirconium-Based Catalysts in Organic Synthesis. Top Curr Chem (Cham) 2022; 380:41. [PMID: 35951161 DOI: 10.1007/s41061-022-00396-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Zirconium is a silvery-white malleable and ductile metal at room temperature with a crustal abundance of 162 ppm. Its compounds, showing Lewis acidic behavior and high catalytic performance, have been recognized as a relatively cheap, low-toxicity, stable, green, and efficient catalysts for various important organic transformations. Commercially available inorganic zirconium chloride was widely applied as a catalyst to accelerate amination, Michael addition, and oxidation reactions. Well-designed zirconocene perfluorosulfonates can be applied in allylation, acylation, esterification, etc. N-Chelating oganozirconium complexes accelerate polymerization, hydroaminoalkylation, and CO2 fixation efficiently. In this review, the applications of both commercially available and synthesized zirconium catalysts in organic reactions in the last 5 years are highlighted. Firstly, the properties and application of zirconium and its compounds are simply introduced. After presenting the superiority of zirconium compounds, their applications as catalysts to accelerate organic transformations are classified and presented in detail. On the basis of different kinds of zirconium catalysts, organic reactions accelerated by inorganic zirconium catalysts, zirconium catalysts bearing Cp, and organozirconium catalysts without Cp are summarized, and the plausible reaction mechanisms are presented if available.
Collapse
Affiliation(s)
- Lifen Peng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.,Department of Applied Chemistry and Biotechnology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| | - Yanting Zhao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Tianbao Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhou Tong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| | - Akihiro Orita
- Department of Applied Chemistry and Biotechnology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan.
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
12
|
Reich D, Noble A, Aggarwal VK. Facile Conversion of α‐Amino Acids to α‐Amino Phosphonates by Decarboxylative Phosphorylation using Visible‐Light Photocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dominik Reich
- University of Bristol School of Chemistry school of chemistry UNITED KINGDOM
| | - Adam Noble
- University of Bristol School of Chemistry school of chemistry UNITED KINGDOM
| | | |
Collapse
|
13
|
Khisamov RM, Ryadun AA, Konchenko SN, Sukhikh TS. Molecular Environment Effects That Modulate the Photophysical Properties of Novel 1,3-Phosphinoamines Based on 2,1,3-Benzothiadiazole. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123857. [PMID: 35744980 PMCID: PMC9227927 DOI: 10.3390/molecules27123857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 12/05/2022]
Abstract
We report synthesis, crystal structure, and photophysical properties of novel 1,3-phosphinoamines based on 4-amino-2,1,3-benzothiadiazole (NH2-btd): Ph2PCH(Ph)NH-btd (1) and Ph2P(E)CH(Ph)NH-btd, (E = O (2α and 2β·thf), S (3), Se (4)). Chalcogenides 2–4 exhibit bright emissions with a major band at 519–536 nm and a minor band at 840 nm. According to TD-DFT calculations, the first band is attributed to fluorescence, while the second band corresponds to phosphorescence. In the solid state, room temperature quantum yield reaches 93% in the case of the sulphide. The compounds under study feature effects of the molecular environment on the luminescent properties, which manifest themselves in fluorosolvatochromism as well as in a luminescent response to changes in crystal packing and in contributions to aggregation effects. Specifically, transformation of solid 2β·thf to solvate-free 2β either by aging or by grinding causes crystal packing changes, and, as a result, a hypsochromic shift of the emission band. Polystyrene films doped with 2 reveal a bathochromic shift upon increasing the mass fraction from 0.2 to 3.3%, which is caused by molecular aggregation effects.
Collapse
Affiliation(s)
- Radmir M. Khisamov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia; (R.M.K.); (A.A.R.); (S.N.K.)
| | - Alexey A. Ryadun
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia; (R.M.K.); (A.A.R.); (S.N.K.)
| | - Sergey N. Konchenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia; (R.M.K.); (A.A.R.); (S.N.K.)
- Department of Natural Sciences, National Research University—Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Taisiya S. Sukhikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia; (R.M.K.); (A.A.R.); (S.N.K.)
- Department of Natural Sciences, National Research University—Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
14
|
Affiliation(s)
| | - Brian R. James
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Affiliation(s)
| | - Brian R. James
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Wang W, Li Y, Wei J, Luo Z, Pan C, Liu C. A novel polyhedral oligomeric silsesquioxanes derivative: Synthesis and characterization. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Alberto Rosas‐Ortiz J, Pioquinto‐Mendoza JR, González‐Sebastián L, Hernandez‐Ortega S, Flores‐Alamo M, Morales‐Morales D. Schiff Bases as Inspirational Motif for the Production of Ni(II) and Pd(II) Coordination and Novel Non‐Symmetric Ni(II)‐POCOP Pincer Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jaime Alberto Rosas‐Ortiz
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior Ciudad Universitaria Ciudad de México C.P. 04510 México
| | - J. Roberto Pioquinto‐Mendoza
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior Ciudad Universitaria Ciudad de México C.P. 04510 México
| | - Lucero González‐Sebastián
- Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Av. San Rafael Atlixco No. 186 Ciudad de México C.P. 09340 México
| | - Simon Hernandez‐Ortega
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior Ciudad Universitaria Ciudad de México C.P. 04510 México
| | - Marcos Flores‐Alamo
- Facultad de Química División de Estudios de Posgrado Universidad Nacional Autónoma de México Circuito Exterior CU, 04510 México
| | - David Morales‐Morales
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior Ciudad Universitaria Ciudad de México C.P. 04510 México
| |
Collapse
|
18
|
Yushchenko DY, Khlebnikova TB, Pai ZP, Bukhtiyarov VI. Glyphosate: Methods of Synthesis. KINETICS AND CATALYSIS 2021. [DOI: 10.1134/s0023158421030113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Belakhov VV, Chistyakova TB, Musayev EE, Smirnov IA, Kolodyaznaya VA. Synthesis and Antifungal Activity of N-Benzyl Derivatives of Tetramycin B. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221060086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
MCR under Microwave Irradiation: Synthesis in Water of New 2-Amino-bis(2-phosphonoacetic) Acids. ORGANICS 2021. [DOI: 10.3390/org2020009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Novel 2-amino bis(2-phosphonoacetic) acids were prepared by microwave irradiation of a mixture of amine, glyoxylic acid and phosphorous acid. The reaction takes place with various amines including primary and secondary amines and polyamines, but this reaction is more sensitive to steric hindrance of amine than the similar Kabachnik–Fields reaction. Amino acids can be also transformed into the expected bis(2-phosphonoacetic) acids, with the exception of tryptophan, which gives a β-carboline product.
Collapse
|
21
|
Banerjee M, Panjikar PC, Bhutia ZT, Bhosle AA, Chatterjee A. Micellar nanoreactors for organic transformations with a focus on “dehydration” reactions in water: A decade update. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Varga PR, Keglevich G. Synthesis of α-Aminophosphonates and Related Derivatives; the Last Decade of the Kabachnik-Fields Reaction. Molecules 2021; 26:2511. [PMID: 33923090 PMCID: PMC8123346 DOI: 10.3390/molecules26092511] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/07/2021] [Accepted: 04/17/2021] [Indexed: 11/21/2022] Open
Abstract
The Kabachnik-Fields reaction, comprising the condensation of an amine, oxo compound and a P-reagent (generally a >P(O)H species or trialkyl phosphite), still attracts interest due to the challenging synthetic procedures and the potential biological activity of the resulting α-aminophosphonic derivatives. Following the success of the first part (Molecules 2012, 17, 12821), here we summarize the synthetic developments in this field accumulated in the last decade. The procedures compiled include catalytic accomplishments as well as catalyst-free and/or solvent-free "greener" protocols. The products embrace α-aminophosphonates, α-aminophosphinates, and α-aminophosphine oxides along with different bis derivatives from the double phospha-Mannich approach. The newer developments of the aza-Pudovik reactions are also included.
Collapse
Affiliation(s)
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
| |
Collapse
|
23
|
Niobium pentoxide, a recyclable heterogeneous solid surface catalyst for the synthesis of α-amino phosphonates. J CHEM SCI 2021. [DOI: 10.1007/s12039-020-01853-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Zaout S, Chafaa S, Hellal A, Boukhemis O, Khattabi L, Merazig H, Chafai N, Bensouici C, Bendjeddou L. Hydroxyphenylamine phosphonate derivatives: Synthesis, X-ray crystallographic analysis, and evaluation of theirs anti-Alzheimer effects and antioxidant activities. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Sravya G, Balakrishna A, Zyryanov GV, Mohan G, Reddy CS, Bakthavatchala Reddy N. Synthesis of α-aminophosphonates by the Kabachnik-Fields reaction. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1854258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- G. Sravya
- Chemical Engineering Institute, Ural Federal University, Yekaterinburg, Russian Federation
| | - A. Balakrishna
- Rajeev Gandhi Memorial College of Engineering and Technology (Autonomous), Nandyal, Andhra Pradesh, India
| | - Grigory V. Zyryanov
- Chemical Engineering Institute, Ural Federal University, Yekaterinburg, Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - G. Mohan
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
- DST-PURSE Centre, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - C. Suresh Reddy
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | | |
Collapse
|
26
|
Baddi L, Ouzebla D, El Mansouri AE, Smietana M, Vasseur JJ, Lazrek HB. Efficient one-pot, three-component procedure to prepare new α-aminophosphonate and phosphonic acid acyclic nucleosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 40:43-67. [PMID: 33030107 DOI: 10.1080/15257770.2020.1826516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An efficient one-pot three-component Kabachnik-Fields reaction of aldehydes (acyclic nucleosides), amines (or amino acid), and triethyl phosphite proceeded for the synthesis of aminophosphonates using natural phosphate coated with iodine (I2@NP) as a catalyst. The novel α-aminophosphonate and phosphonic acid acyclic nucleosides were tested for their anti-HCV and anti-HIV activities. The molecular docking showed that the non-activity of these compounds could be due to the absence of hydrophobic pharmacophores.
Collapse
Affiliation(s)
- Laila Baddi
- Unité de Chimie Biomoléculaire et Médicinale, Laboratoire de Chimie Biomoléculaire, Faculte des Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Driss Ouzebla
- Unité de Chimie Biomoléculaire et Médicinale, Laboratoire de Chimie Biomoléculaire, Faculte des Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Az-Eddine El Mansouri
- Unité de Chimie Biomoléculaire et Médicinale, Laboratoire de Chimie Biomoléculaire, Faculte des Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Michael Smietana
- UMR 5247 CNRS-UMI-UMII, Institut des Biomolécules Max Mousseron, Université Montpellier II, Montpellier Cedex, France
| | - Jean-Jacques Vasseur
- UMR 5247 CNRS-UMI-UMII, Institut des Biomolécules Max Mousseron, Université Montpellier II, Montpellier Cedex, France
| | - Hassan B Lazrek
- Unité de Chimie Biomoléculaire et Médicinale, Laboratoire de Chimie Biomoléculaire, Faculte des Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
27
|
Marenin KS, Agafontsev AM, Bryleva YA, Gatilov YV, Glinskaya LA, Piryazev DA, Tkachev AV. Stereochemistry of the Kabachnik‐Fields Condensation of Terpenic Amino Oximes with Aldehydes and Dimethyl Phosphite. ChemistrySelect 2020. [DOI: 10.1002/slct.202002369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Konstantin S. Marenin
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of the Russian Academy of Sciences 9 Academician Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Alexander M. Agafontsev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of the Russian Academy of Sciences 9 Academician Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Yuliya A. Bryleva
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences 3 Academician Lavrentiev Ave. 630090 Novosibirsk Russian Federation
- Department of Natural Sciences Novosibirsk State University 2 Pirogiva str. 630090 Novosibirsk Russian Federation
| | - Yuri V. Gatilov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of the Russian Academy of Sciences 9 Academician Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Ludmila A. Glinskaya
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences 3 Academician Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Dmitry A. Piryazev
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences 3 Academician Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Alexey V. Tkachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of the Russian Academy of Sciences 9 Academician Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| |
Collapse
|
28
|
Urbanovský P, Kotek J, Císařová I, Hermann P. Selective and clean synthesis of aminoalkyl- H-phosphinic acids from hypophosphorous acid by phospha-Mannich reaction. RSC Adv 2020; 10:21329-21349. [PMID: 35518776 PMCID: PMC9059144 DOI: 10.1039/d0ra03075a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022] Open
Abstract
Aminoalkyl-H-phosphinic acids, also called aminoalkylphosphonous acids, are investigated as biologically active analogues of carboxylic amino acids and/or as valuable intermediates for synthesis of other aminoalkylphosphorus acids. Their synthesis has been mostly accomplished by phospha-Mannich reaction of a P–H precursor, an aldehyde and an amine. The reaction is rarely clean and high-yielding. Here, reaction of H3PO2 with secondary amines and formaldehyde in wet AcOH led to aminomethyl-H-phosphinic acids in nearly quantitative yields and with almost no by-products. Surprisingly, the reaction outcome depended on the basicity of the amines. Amines with pKa > 7–8 gave the desired products. For less basic amines, reductive N-methylation coupled with oxidation of H3PO2 to H3PO3 became a relevant side reaction. Primary amines reacted less clearly and amino-bis(methyl-H-phosphinic acids) were obtained only for very basic amines. Reaction yields with higher aldehydes were lower. Unique carboxylic–phosphinic–phosphonic acids as well as poly(H-phosphinic acids) derived from polyamines were obtained. Synthetic usefulness of the aminoalkyl-H-phosphinic was illustrated in P–H bond oxidation and its addition to double bonds, and in selective amine deprotection. Compounds with an ethylene-diamine fragment, e.g. most common polyazamacrocycles, are not suitable substrates. The X-ray solid-state structures of seventeen aminoalkyl-phosphinic acids were determined. In the reaction mechanism, N-hydroxyalkyl species R2NCH2OH and [R2N(CH2OH)2]+, probably stabilized as acetate esters, are suggested as the reactive intermediates. This mechanism is an alternative one to the known phospha-Mannich reaction mechanisms. The conditions can be utilized in syntheses of various aminoalkylphosphorus compounds. Acetic acid was used as a new solvent for phospha-Mannich reaction leading to clear reaction mixtures and high yields of the aminoalkylphosphonous acids (AHPA), and hydroxymethylated species were suggested as key intermediates in the reaction.![]()
Collapse
Affiliation(s)
- Peter Urbanovský
- Department of Inorganic Chemistry, Faculty of Science, Universita Karlova (Charles University) Hlavova 8/2030, 12843 Prague 2 Czech Republic +420-22195-1253 +420-22195-1263
| | - Jan Kotek
- Department of Inorganic Chemistry, Faculty of Science, Universita Karlova (Charles University) Hlavova 8/2030, 12843 Prague 2 Czech Republic +420-22195-1253 +420-22195-1263
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Universita Karlova (Charles University) Hlavova 8/2030, 12843 Prague 2 Czech Republic +420-22195-1253 +420-22195-1263
| | - Petr Hermann
- Department of Inorganic Chemistry, Faculty of Science, Universita Karlova (Charles University) Hlavova 8/2030, 12843 Prague 2 Czech Republic +420-22195-1253 +420-22195-1263
| |
Collapse
|
29
|
Bechlem K, Aissaoui M, Belhani B, Rachedi KO, Bouacida S, Bahadi R, Djouad SE, Ben Mansour R, Bouaziz M, Almalki F, Ben Hadda T, Berredjem M. Synthesis, X-ray crystallographic study and molecular docking of new α-sulfamidophosphonates: POM analyses of their cytotoxic activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127990] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
α-Hydroxyphosphonates as intermediates in the Kabachnik–Fields reaction: New proof of their reversible formation. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Smolobochkin AV, Gazizov AS, Doszhanova KA, Kuandykova AB, Jiyembayev BZ, Burilov AR, Pudovik MA, Cherkasov RA. Synthesis of New α-Aminophosphonates Based on Cyclohexylamine. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220060274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Hudson HR, Tajti Á, Bálint E, Czugler M, Karaghiosoff K, Keglevich G. Microwave-assisted synthesis of α-aminophosphonates with sterically demanding α-aryl substituents. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2019.1679186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Harry R. Hudson
- Faculty of Life Sciences and Computing, London Metropolitan University, London, UK
| | - Ádám Tajti
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Erika Bálint
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Mátyás Czugler
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | | | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
33
|
Zhang W, Ding X, Li Z, Bi W, Chen X, Zhao Y. Synthesis of 2-phenoxyl-2-oxo-1,4,2-oxazaphosphinanes from a three component reaction. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2019.1700417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Wenjie Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiling Ding
- Danhong Pharmaceutical, Shandong Danhong Pharmaceutical Co., Ltd, Heze, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Zijie Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenzhu Bi
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiaolan Chen
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Yufen Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
- Department of Chemistry, Xiamen University, Xiamen, China
| |
Collapse
|
34
|
Kolodiazhnyi OI. Stereochemistry, mechanisms and applications of electrophilic reactions of organophosphorus compounds. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Shilpa T, Ann Harry N, Ujwaldev SM, Anilkumar G. An Overview of Microwave‐Assisted Kabachnik‐Fields Reactions. ChemistrySelect 2020. [DOI: 10.1002/slct.202000693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas Shilpa
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills P O, Kottayam Kerala India 686560
| | - Nissy Ann Harry
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills P O, Kottayam Kerala India 686560
| | | | - Gopinathan Anilkumar
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills P O, Kottayam Kerala India 686560
| |
Collapse
|
36
|
Neetha M, Rohit KR, Saranya S, Anilkumar G. Zinc‐Catalysed Multi‐Component Reactions: An Overview. ChemistrySelect 2020. [DOI: 10.1002/slct.201904146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mohan Neetha
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills P O Kottayam, Kerala India 686560
| | - K. R. Rohit
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills P O Kottayam, Kerala India 686560
| | - Salim Saranya
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills P O Kottayam, Kerala India 686560
| | - Gopinathan Anilkumar
- School of Chemical SciencesMahatma Gandhi University Priyadarsini Hills P O Kottayam, Kerala India 686560
- Advanced Molecular Materials Research Centre (AMMRC)Mahatma Gandhi University, Priyadarsini Hills P O Kottayam, Kerala India 686560
| |
Collapse
|
37
|
Abstract
This review is devoted to the theoretic and synthetic aspects of asymmetric electrophilic substitution reactions at the stereogenic phosphorus center. The stereochemistry and mechanisms of electrophilic reactions are discussed—the substitution, addition and addition-elimination of many important reactions. The reactions of bimolecular electrophilic substitution SE2(P) proceed stereospecifically with the retention of absolute configuration at the phosphorus center, in contrast to the reactions of bimolecular nucleophilic substitution SN2(P), proceeding with inversion of absolute configuration. This conclusion was made based on stereochemical analysis of a wide range of trivalent phosphorus reactions with typical electrophiles and investigation of examples of a sizeable number of diverse compounds. The combination of stereospecific electrophilic reactions and stereoselective nucleophilic reactions is useful and promising for the further development of organophosphorus chemistry. The study of phosphoryl group transfer reactions is important for biological and molecular chemistry, as well as in studying mechanisms of chemical processes involving organophosphorus compounds. New versions of asymmetric electrophilic reactions applicable for the synthesis of enantiopure P-chiral secondary and tertiary phosphines are discussed.
Collapse
|
38
|
Kwiczak-Yiğitbaşı J, Pirat JL, Virieux D, Volle JN, Janiak A, Hoffmann M, Pluskota-Karwatka D. Fluorinated phosphonate analogues of phenylalanine: Synthesis, X-ray and DFT studies. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
39
|
Graebin CS, Ribeiro FV, Rogério KR, Kümmerle AE. Multicomponent Reactions for the Synthesis of Bioactive Compounds: A Review. Curr Org Synth 2019; 16:855-899. [DOI: 10.2174/1570179416666190718153703] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/17/2019] [Accepted: 05/17/2019] [Indexed: 01/16/2023]
Abstract
Multicomponent reactions (MCRs) are composed of three or more reagents in which the final
product has all or most of the carbon atoms from its starting materials. These reactions represent, in the
medicinal chemistry context, great potential in the research for new bioactive compounds, since their products
can present great structural complexity. The aim of this review is to present the main multicomponent reactions
since the original report by Strecker in 1850 from nowadays, covering their evolution, highlighting their
significance in the discovery of new bioactive compounds. The use of MCRs is, indeed, a growing field of
interest in the synthesis of bioactive compounds and approved drugs, with several examples of commerciallyavailable
drugs that are (or can be) obtained through these protocols.
Collapse
Affiliation(s)
- Cedric S. Graebin
- Department of Organic Chemistry, Chemistry Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - Felipe V. Ribeiro
- Department of Organic Chemistry, Chemistry Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | | | - Arthur E. Kümmerle
- Department of Organic Chemistry, Chemistry Institute, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| |
Collapse
|
40
|
Affiliation(s)
- Soumava Santra
- Department of ChemistryLovelyProfessional University, NH-41, Phagwara Punjab 144411 India
| |
Collapse
|
41
|
Alexandrova EА, Lotsman KА, Lyssenko KА, Trishin YG. Synthesis of novel N,O-macrocyclic ligands, functionalized by phosphine oxide groups. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Ewies EF, El-Hussieny M, El-Sayed NF, Fouad MA. Design, synthesis and biological evaluation of novel α-aminophosphonate oxadiazoles via optimized iron triflate catalyzed reaction as apoptotic inducers. Eur J Med Chem 2019; 180:310-320. [PMID: 31323616 DOI: 10.1016/j.ejmech.2019.07.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 11/25/2022]
Abstract
α-aminophosphonate oxadiazoles (5a-m) were prepared in high yields by reacting of 1,3,4-oxadiazole acetohydrazide (3) with appropriate aldehydes and diethyl phosphite under Kabachnik-Fields conditions using Iron triflate as a catalyst. The reaction conditions were optimized using D-optimal experimental design. Possible reaction mechanisms were considered, and structures of the new products were based upon compatible elementary and spectroscopic evidence. In vitro antitumor activities of these compounds were evaluated against human cancer cell lines of colon (HCT116), breast (MCF7) and liver (HepG2) and compared with anticancer drug, Doxorubicin, employing standard MTT assay. Compounds 5i and 5l demonstrated good antiproliferative activities against HCT116 tumor cells comparable to doxorubicin with low cytotoxicity towards normal fetal colon cell (FHC). Additionally, their capacity to activate apoptosis cascade was studied in HCT116 cell line by investigating the activation of proteolytic caspases cascade, the levels of Cytochrome C, Bax and Bcl-2. Active caspase-3 level was enhanced by 6-8-folds in HCT116 cell line when stimulated with compounds 5i and 5l compared to the control. The level of Caspases 8 & 9 was also increased signifying that intrinsic and extrinsic pathways are both activated. They also induced Bax and down regulated Bcl-2 protein level in addition to over-expressing Cytochrome C level in HCT116 cell line. Also, HCT116 cell cycle was mainly arrested at the Pre-G1 and G2/M phases when treated with compounds 5i and 5l.
Collapse
Affiliation(s)
- Ewies F Ewies
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 ElBohouth St., (Former El Tahrir) Dokki, 12622, Giza, Egypt.
| | - Marwa El-Hussieny
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 ElBohouth St., (Former El Tahrir) Dokki, 12622, Giza, Egypt
| | - Naglaa F El-Sayed
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 ElBohouth St., (Former El Tahrir) Dokki, 12622, Giza, Egypt
| | - Marwa A Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| |
Collapse
|
43
|
Abdou MM, El-Saeed RA. Potential chemical transformation of phosphinic acid derivatives and their applications in the synthesis of drugs. Bioorg Chem 2019; 90:103039. [PMID: 31220667 DOI: 10.1016/j.bioorg.2019.103039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 11/29/2022]
Abstract
The chemical transformation of phosphinic acid is a well-considered mature area of research on account of the historical significant reactions such as Kabachnik-Fields, Mannich, Arbuzov, Michaelis-Becker, etc. Considerable advances have been made over last years especially in metal-catalyzed, free-radical processes and asymmetric synthesis using catalytic enantioselective. As a result, the aim of this synopsis is to make the reader familiar with advances in the approaches of phosphinic acids toward the synthesis of highly functionalized and valuable buildings blocks. Another purpose of this survey is to provide the current status of the applications of phosphinic acids in the synthesis of drugs.
Collapse
Affiliation(s)
- Moaz M Abdou
- Egyptian Petroleum Research Institute, Nasr City, P.O. 11727, Cairo, Egypt; Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK.
| | - Rasha A El-Saeed
- Department of Chemistry, Faculty of Science, Mansoura University, ET-35516 Mansoura, Egypt
| |
Collapse
|
44
|
Xu J. Convergent synthesis of phosphonopeptides via phospha-Mannich reactions: Rationale on reactivity and mechanistic insights. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2018.1540481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
45
|
Hofmann N, Hultzsch KC. Switching theN-Alkylation of Arylamines with Benzyl Alcohols to Imine Formation Enables the One-Pot Synthesis of Enantioenriched α-N-Alkylaminophosphonates. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Natalie Hofmann
- Fakultät für Chemie; Institut für Chemische Katalyse; Universität Wien; Währinger Straße 38 1090 Wien Austria
| | - Kai C. Hultzsch
- Fakultät für Chemie; Institut für Chemische Katalyse; Universität Wien; Währinger Straße 38 1090 Wien Austria
| |
Collapse
|
46
|
Eyckens DJ, Henderson LC. A Review of Solvate Ionic Liquids: Physical Parameters and Synthetic Applications. Front Chem 2019; 7:263. [PMID: 31058138 PMCID: PMC6482472 DOI: 10.3389/fchem.2019.00263] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/01/2019] [Indexed: 11/13/2022] Open
Abstract
Solvate Ionic Liquids (SILs) are a relatively new class of ionic liquids consisting of a coordinating solvent and salt, that give rise to a chelate complex with very similar properties to ionic liquids. Herein is the exploration of the reported Kamlet-Taft parameters, Gutmann Acceptor numbers and the investigation of chelating effects through NMR spectroscopy of multiple atomic nuclei. These properties are related to the application of SILs as reaction media for organic reactions. This area is also reviewed here, including the implication in catalysis for the Aldol and Kabachnik-Fields reactions and electrocyclization reactions such as Diels-Alder and [2+2] cycloaddition. Solvate ILs exhibit many interesting properties and hold great potential as a solvent for organic transformations.
Collapse
Affiliation(s)
- Daniel J. Eyckens
- Institute for Frontier Materials, Deakin University, Geelong, VIC, Australia
| | - Luke C. Henderson
- Institute for Frontier Materials, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
47
|
Wu W, Xu Y, Wu H, Chen J, Li M, Chen T, Hong J, Dai L. Synthesis of modified graphene oxide and its improvement on flame retardancy of epoxy resin. J Appl Polym Sci 2019. [DOI: 10.1002/app.47710] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wenqian Wu
- Fujian Provincial Key Laboratory of Fire Retardant Materials College of Materials, Xiamen University, Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Yiting Xu
- Fujian Provincial Key Laboratory of Fire Retardant Materials College of Materials, Xiamen University, Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Haiyang Wu
- Fujian Provincial Key Laboratory of Fire Retardant Materials College of Materials, Xiamen University, Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Jinmei Chen
- Fujian Provincial Key Laboratory of Fire Retardant Materials College of Materials, Xiamen University, Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Min Li
- Fujian Provincial Key Laboratory of Fire Retardant Materials College of Materials, Xiamen University, Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Ting Chen
- Fujian Provincial Key Laboratory of Fire Retardant Materials College of Materials, Xiamen University, Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Jing Hong
- Fujian Provincial Key Laboratory of Fire Retardant Materials College of Materials, Xiamen University, Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Lizong Dai
- Fujian Provincial Key Laboratory of Fire Retardant Materials College of Materials, Xiamen University, Xiamen University Xiamen Fujian 361005 People's Republic of China
| |
Collapse
|
48
|
Synthesis and structure of stereoisomers of 3,4-benzo-5,10-diphenyl-1,3-diaza-7-oxa-6-phosphabicyclo[4.3.1]decane-2,6-dione. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Turanov AN, Karandashev VK, Kharlamov AV, Bondarenko NA. Extraction of Rare Earth Elements(III) with Picrolonic Acid Mixtures with Phosphoryl-Substituted Aza Podands. RUSS J INORG CHEM+ 2018. [DOI: 10.1134/s0036023618120203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Shuvalov MV, Maklakova SY, Rudakova EV, Kovaleva NV, Makhaeva GF, Podrugina TA. New Possibilities of the Kabachnik–Fields and Pudovik Reactions in the Phthalocyanine-Catalyzed Syntheses of α-Aminophosphonic and α-Aminophosphinic Acid Derivatives. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218090013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|