1
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
2
|
El Harati R, Fancello F, Multineddu C, Zara G, Zara S. Screening and In Silico Analyses of the Yeast Saccharomyces cerevisiae Σ1278b Bank Mutants Using Citral as a Natural Antimicrobial. Foods 2024; 13:1457. [PMID: 38790757 PMCID: PMC11119076 DOI: 10.3390/foods13101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The antimicrobial function of citral, one of the main compounds of the essential oils (EO) of the Citrus genus, and widely used by the food industry toward spoilage yeast, was previously proven. In this study, the possible mode of action of citral against yeast cells was evaluated by using a global deletome approach. Firstly, the suitability of Saccharomyces cerevisiae Σ1278b to serve as model yeast was assessed by determining its sensitivity to citral (MIC = 0.5 μL/mL). Subsequently, the complete library of Σ1278b haploid mutants deleted in 4019 non-essential genes was screened to identify potential molecular targets of citral. Finally, the deleted genes in the 590 mutants showing increased citral resistance was analyzed with an in-silico approach (Gene Ontology). The significantly enriched GO Terms were "cytoplasm", "vacuole", and "mitochondrion" (cellular components); "catalytic activity" (molecular function); "pseudohyphal growth" (biological process). For molecular function, resistant mutants were grouped into thiosulfate sulfur transferase activity, transferase activity, and oxidoreductase activity; for cellular components, resistant mutants were grouped as: cytoplasm, intracellular organelle, membrane-bounded organelle, mitochondrion, organelle membrane, and vacuole; and finally, with regard to biological process, deleted genes were grouped as: pseudohyphal growth, mitochondrion organization, lipid metabolic process, DNA recombination and repair, and proteolysis. Interestingly, many identified genes were associated with the cellular response to oxidative stress and ROS scavenging. These findings have important implications for the development of citral-based antimicrobials and the elucidation of its mechanism of action.
Collapse
Affiliation(s)
| | | | | | | | - Severino Zara
- Department di Agricultural Sciences, University of Sassari, 07100 Sassari, Italy; (R.E.H.); (F.F.); (C.M.); (G.Z.)
| |
Collapse
|
3
|
Jung S, Schultz G, Mafiz AI, Bevels E, Jaskula K, Brownell K, Lantz E, Strickland A. Antimicrobial effects of a borate-based bioactive glass wound matrix on wound-relevant pathogens. J Wound Care 2023; 32:763-772. [PMID: 38060418 DOI: 10.12968/jowc.2023.32.12.763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE The antimicrobial effects of a borate-based bioactive glass matrix (BBBGM) on clinically relevant microorganisms was investigated for up to seven days in vitro. METHOD A total of 19 wound-relevant pathogens were studied using the in vitro AATCC 100 test method. RESULTS The reduction of viable Gram-negative and Gram-positive bacteria and yeasts at days 4 and 7 post-culture on the BBBGM was significant (> 4log10) in most cases. Mould counts were reduced (<2log10) during the seven-day assessment, indicating that mould viability and reproduction was inhibited. The cell count of each organism was reduced at seven days indicating that the BBBGM not only reduced the viable cell count, but that the cell count did not recover during the seven-day period, indicating a sustained reduction in pathogenic activity. CONCLUSION Based on the present results, the use of a BBBGM as a pathogenic barrier should be considered as a tool for combating pathogenic colonisation and infection in acute and hard-to-heal (chronic) wounds.
Collapse
|
4
|
Ekdahl LI, Salcedo JA, Dungan MM, Mason DV, Myagmarsuren D, Murphy HA. Selection on plastic adherence leads to hyper-multicellular strains and incidental virulence in the budding yeast. eLife 2023; 12:e81056. [PMID: 37916911 PMCID: PMC10764007 DOI: 10.7554/elife.81056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/01/2023] [Indexed: 11/03/2023] Open
Abstract
Many disease-causing microbes are not obligate pathogens; rather, they are environmental microbes taking advantage of an ecological opportunity. The existence of microbes whose life cycle does not require a host and are not normally pathogenic, yet are well-suited to host exploitation, is an evolutionary puzzle. One hypothesis posits that selection in the environment may favor traits that incidentally lead to pathogenicity and virulence, or serve as pre-adaptations for survival in a host. An example of such a trait is surface adherence. To experimentally test the idea of 'accidental virulence', replicate populations of Saccharomyces cerevisiae were evolved to attach to a plastic bead for hundreds of generations. Along with plastic adherence, two multicellular phenotypes- biofilm formation and flor formation- increased; another phenotype, pseudohyphal growth, responded to the nutrient limitation. Thus, experimental selection led to the evolution of highly-adherent, hyper-multicellular strains. Wax moth larvae injected with evolved hyper-multicellular strains were significantly more likely to die than those injected with evolved non-multicellular strains. Hence, selection on plastic adherence incidentally led to the evolution of enhanced multicellularity and increased virulence. Our results support the idea that selection for a trait beneficial in the open environment can inadvertently generate opportunistic, 'accidental' pathogens.
Collapse
Affiliation(s)
- Luke I Ekdahl
- Department of Biology, College of William and MaryWilliamsburgUnited States
| | - Juliana A Salcedo
- Department of Biology, College of William and MaryWilliamsburgUnited States
| | - Matthew M Dungan
- Department of Biology, College of William and MaryWilliamsburgUnited States
| | - Despina V Mason
- Department of Biology, College of William and MaryWilliamsburgUnited States
| | | | - Helen A Murphy
- Department of Biology, College of William and MaryWilliamsburgUnited States
| |
Collapse
|
5
|
Vion C, Brambati M, Da Costa G, Richard T, Marullo P. Endo metabolomic profiling of flor and wine yeasts reveals a positive correlation between intracellular metabolite load and the specific glycolytic flux during wine fermentation. Front Microbiol 2023; 14:1227520. [PMID: 37928666 PMCID: PMC10620685 DOI: 10.3389/fmicb.2023.1227520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
This study explored the intracellular metabolic variations between 17 strains of Saccharomyces cerevisiae belonging to two different genetic populations: flor and wine yeasts, in the context of alcoholic fermentation. These two populations are closely related as they share the same ecological niche but display distinct genetic characteristics. A protocol was developed for intracellular metabolites extraction and 1H-NMR analysis. This methodology allowed us to identify and quantify 21 intracellular metabolites at two different fermentation steps: the exponential and stationary phases. This work provided evidence of significant differences in the abundance of intracellular metabolites, which are strain- and time-dependent, thus revealing complex interactions. Moreover, the differences in abundance appeared to be correlated with life-history traits such as average cell size and specific glycolytic flux, which revealed unsuspected phenotypic correlations between metabolite load and fermentation activity.
Collapse
Affiliation(s)
- Charlotte Vion
- Biolaffort, Bordeaux, France
- UMR Oenologie 1366, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, Paris, France
| | - Mathilde Brambati
- Biolaffort, Bordeaux, France
- UMR Oenologie 1366, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, Paris, France
| | - Grégory Da Costa
- UMR Oenologie 1366, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, Paris, France
| | - Tristan Richard
- UMR Oenologie 1366, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, Paris, France
| | - Philippe Marullo
- Biolaffort, Bordeaux, France
- UMR Oenologie 1366, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, Paris, France
| |
Collapse
|
6
|
Britton SJ, Rogers LJ, White JS, Neven H, Maskell DL. Disparity in pseudohyphal morphogenic switching response to the quorum sensing molecule 2-phenylethanol in commercial brewing strains of Saccharomyces cerevisiae. FEMS MICROBES 2023; 4:xtad002. [PMID: 37333439 PMCID: PMC10117810 DOI: 10.1093/femsmc/xtad002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 12/03/2023] Open
Abstract
Saccharomyces cerevisiae can undergo filamentous growth in response to specific environmental stressors, particularly nitrogen-limitation, whereby cells undergo pseudohyphal differentiation, a process where cells transition from a singular ellipsoidal appearance to multicellular filamentous chains from the incomplete scission of the mother-daughter cells. Previously, it was demonstrated that filamentous growth in S. cerevisiae is co-regulated by multiple signaling networks, including the glucose-sensing RAS/cAMP-PKA and SNF pathways, the nutrient-sensing TOR pathway, the filamentous growth MAPK pathway, and the Rim101 pathway, and can be induced by quorum-sensing aromatic alcohols, such as 2-phenylethanol. However, the prevalent research on the yeast-pseudohyphal transition and its induction by aromatic alcohols in S. cerevisiae has been primarily limited to the strain Σ1278b. Due to the prospective influence of quorum sensing on commercial fermentation, the native variation of yeast-to-filamentous phenotypic transition and its induction by 2-phenylethanol in commercial brewing strains was investigated. Image analysis software was exploited to enumerate the magnitude of whole colony filamentation in 16 commercial strains cultured on nitrogen-limiting SLAD medium; some supplemented with exogenous 2-phenylethanol. The results demonstrate that phenotypic switching is a generalized, highly varied response occurring only in select brewing strains. Nevertheless, strains exhibiting switching behavior altered their filamentation response to exogenous concentrations of 2-phenylethanol.
Collapse
Affiliation(s)
- Scott J Britton
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom
- Research & Development, Brewery Duvel Moortgat, 2870 Puurs-Sint-Amands, Belgium
| | | | - Jane S White
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom
| | - Hedwig Neven
- Research & Development, Brewery Duvel Moortgat, 2870 Puurs-Sint-Amands, Belgium
- Department M2S, Centre for Food and Microbial Technology (CLMT), KU Leuven, 3000 Leuven, Belgium
| | - Dawn L Maskell
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom
| |
Collapse
|
7
|
Britton SJ, Rogers LJ, White JS, Maskell DL. HYPHAEdelity: a quantitative image analysis tool for assessing peripheral whole colony filamentation. FEMS Yeast Res 2022; 22:6832773. [PMID: 36398755 PMCID: PMC9697609 DOI: 10.1093/femsyr/foac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The yeast Saccharomyces cerevisiae, also known as brewer's yeast, can undergo a reversible stress-responsive transition from individual ellipsoidal cells to chains of elongated cells in response to nitrogen- or carbon starvation. Whole colony morphology is frequently used to evaluate phenotypic switching response; however, quantifying two-dimensional top-down images requires each pixel to be characterized as belonging to the colony or background. While feasible for a small number of colonies, this labor-intensive assessment process is impracticable for larger datasets. The software tool HYPHAEdelity has been developed to semi-automate the assessment of two-dimensional whole colony images and quantify the magnitude of peripheral whole colony yeast filamentation using image analysis tools intrinsic to the OpenCV Python library. The software application functions by determining the total area of filamentous growth, referred to as the f-measure, by subtracting the area of the inner colony boundary from the outer-boundary area associated with hyphal projections. The HYPHAEdelity application was validated against automated and manually pixel-counted two-dimensional top-down images of S. cerevisiae colonies exhibiting varying degrees of filamentation. HYPHAEdelity's f-measure results were comparable to areas determined through a manual pixel enumeration method and found to be more accurate than other whole colony filamentation software solutions.
Collapse
Affiliation(s)
- Scott J Britton
- Corresponding author: Institute for Biological Chemistry, Biophysics and Bioengineering, John Muir Building, Heriot-Watt University, Riccarton, Edinburgh, Scotland, United Kingdom, EH14 4AS. Tel: +32470205380; E-mail:
| | | | - Jane S White
- Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom EH14 4AS
| | - Dawn L Maskell
- Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom EH14 4AS
| |
Collapse
|
8
|
Descorps-Declère S, Richard GF. Megasatellite formation and evolution in vertebrate genes. Cell Rep 2022; 40:111347. [PMID: 36103826 DOI: 10.1016/j.celrep.2022.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/28/2022] [Accepted: 08/23/2022] [Indexed: 11/03/2022] Open
Abstract
Since formation of the first proto-eukaryotes, gene repertoire and genome complexity have significantly increased. Among genetic elements responsible for this increase are tandem repeats. Here we describe a genome-wide analysis of large tandem repeats, called megasatellites, in 58 vertebrate genomes. Two bursts occurred, one after the radiation between Agnatha and Gnathostomata fishes and the second one in therian mammals. Megasatellites are enriched in subtelomeric regions and frequently encoded in genes involved in transcription regulation, intracellular trafficking, and cell membrane metabolism, reminiscent of what is observed in fungus genomes. The presence of many introns within young megasatellites suggests that an exon-intron DNA segment is first duplicated and amplified before accumulation of mutations in intronic parts partially erases the megasatellite in such a way that it becomes detectable only in exons. Our results suggest that megasatellite formation and evolution is a dynamic and still ongoing process in vertebrate genomes.
Collapse
Affiliation(s)
- Stéphane Descorps-Declère
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 25 rue du Dr Roux, 75015 Paris, France.
| | - Guy-Franck Richard
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Natural & Synthetic Genome Instabilities, 25 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
9
|
García-Ríos E, Guillamón JM. Genomic Adaptations of Saccharomyces Genus to Wine Niche. Microorganisms 2022; 10:microorganisms10091811. [PMID: 36144411 PMCID: PMC9500811 DOI: 10.3390/microorganisms10091811] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Wine yeast have been exposed to harsh conditions for millennia, which have led to adaptive evolutionary strategies. Thus, wine yeasts from Saccharomyces genus are considered an interesting and highly valuable model to study human-drive domestication processes. The rise of whole-genome sequencing technologies together with new long reads platforms has provided new understanding about the population structure and the evolution of wine yeasts. Population genomics studies have indicated domestication fingerprints in wine yeast, including nucleotide variations, chromosomal rearrangements, horizontal gene transfer or hybridization, among others. These genetic changes contribute to genetically and phenotypically distinct strains. This review will summarize and discuss recent research on evolutionary trajectories of wine yeasts, highlighting the domestication hallmarks identified in this group of yeast.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Spain
- Department of Science, Universidad Internacional de Valencia-VIU, Pintor Sorolla 21, 46002 Valencia, Spain
- Correspondence:
| | - José Manuel Guillamón
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Avda. Agustín Escardino, 7, 46980 Paterna, Spain
| |
Collapse
|
10
|
Sherry Wines: Worldwide Production, Chemical Composition and Screening Conception for Flor Yeasts. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The manufacturing of sherry wines is a unique, carefully regulated process, from harvesting to quality control of the finished product, involving dynamic biological aging in a “criadera-solera” system or some other techniques. Specialized “flor” strains of the yeast Saccharomyces cerevisiae play the central role in the sherry manufacturing process. As a result, sherry wines have a characteristic and unique chemical composition that determines their organoleptic properties (such as color, odor, and taste) and distinguishes them from all other types of wine. The use of modern methods of genetics and biotechnology contributes to a deep understanding of the microbiology of sherry production and allows us to define a new methodology for breeding valuable flor strains. This review discusses the main sherry-producing regions and the chemical composition of sherry wines, as well as genetic, oenological, and other selective markers for flor strains that can be used for screening novel candidates that are promising for sherry production among environmental isolates.
Collapse
|
11
|
Saguez C, Viterbo D, Descorps-Declère S, Cormack BP, Dujon B, Richard GF. Functional variability in adhesion and flocculation of yeast megasatellite genes. Genetics 2022; 221:iyac042. [PMID: 35274698 PMCID: PMC9071537 DOI: 10.1093/genetics/iyac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Megasatellites are large tandem repeats found in all fungal genomes but especially abundant in the opportunistic pathogen Candida glabrata. They are encoded in genes involved in cell-cell interactions, either between yeasts or between yeast and human cells. In the present work, we have been using an iterative genetic system to delete several Candida glabrata megasatellite-containing genes and found that 2 of them were positively involved in adhesion to epithelial cells, whereas 3 genes negatively controlled adhesion. Two of the latter, CAGL0B05061g or CAGL0A04851g, were also negative regulators of yeast-to-yeast adhesion, making them central players in controlling Candida glabrata adherence properties. Using a series of synthetic Saccharomyces cerevisiae strains in which the FLO1 megasatellite was replaced by other tandem repeats of similar length but different sequences, we showed that the capacity of a strain to flocculate in liquid culture was unrelated to its capacity to adhere to epithelial cells or to invade agar. Finally, to understand how megasatellites were initially created and subsequently expanded, an experimental evolution system was set up, in which modified yeast strains containing different megasatellite seeds were grown in bioreactors for more than 200 generations and selected for their ability to sediment at the bottom of the culture tube. Several flocculation-positive mutants were isolated. Functionally relevant mutations included general transcription factors as well as a 230-kbp segmental duplication.
Collapse
Affiliation(s)
- Cyril Saguez
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
- Present address: Abolis Biotechnologies, 5 Rue Henri Desbruères, Evry 91030, France
| | - David Viterbo
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
| | - Stéphane Descorps-Declère
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Paris F-75015, France
| | - Brendan P Cormack
- Department of Molecular Biology & Genetics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Bernard Dujon
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
| | - Guy-Franck Richard
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Genétique des Génomes, Paris F-75015, France
| |
Collapse
|
12
|
Lutz S, Van Dyke K, Feraru MA, Albert FW. Multiple epistatic DNA variants in a single gene affect gene expression in trans. Genetics 2022; 220:iyab208. [PMID: 34791209 PMCID: PMC8733636 DOI: 10.1093/genetics/iyab208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 01/08/2023] Open
Abstract
DNA variants that alter gene expression in trans are important sources of phenotypic variation. Nevertheless, the identity of trans-acting variants remains poorly understood. Single causal variants in several genes have been reported to affect the expression of numerous distant genes in trans. Whether these simple molecular architectures are representative of trans-acting variation is unknown. Here, we studied the large RAS signaling regulator gene IRA2, which contains variants with extensive trans-acting effects on gene expression in the yeast Saccharomyces cerevisiae. We used systematic CRISPR-based genome engineering and a sensitive phenotyping strategy to dissect causal variants to the nucleotide level. In contrast to the simple molecular architectures known so far, IRA2 contained at least seven causal nonsynonymous variants. The effects of these variants were modulated by nonadditive, epistatic interactions. Two variants at the 5'-end affected gene expression and growth only when combined with a third variant that also had no effect in isolation. Our findings indicate that the molecular basis of trans-acting genetic variation may be considerably more complex than previously appreciated.
Collapse
Affiliation(s)
- Sheila Lutz
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Krisna Van Dyke
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew A Feraru
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Frank W Albert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
FLO11, a Developmental Gene Conferring Impressive Adaptive Plasticity to the Yeast Saccharomyces cerevisiae. Pathogens 2021; 10:pathogens10111509. [PMID: 34832664 PMCID: PMC8617999 DOI: 10.3390/pathogens10111509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has a remarkable ability to adapt its lifestyle to fluctuating or hostile environmental conditions. This adaptation most often involves morphological changes such as pseudofilaments, biofilm formation, or cell aggregation in the form of flocs. A prerequisite for these phenotypic changes is the ability to self-adhere and to adhere to abiotic surfaces. This ability is conferred by specialized surface proteins called flocculins, which are encoded by the FLO genes family in this yeast species. This mini-review focuses on the flocculin encoded by FLO11, which differs significantly from other flocculins in domain sequence and mode of genetic and epigenetic regulation, giving it an impressive plasticity that enables yeast cells to swiftly adapt to hostile environments or into new ecological niches. Furthermore, the common features of Flo11p with those of adhesins from pathogenic yeasts make FLO11 a good model to study the molecular mechanism underlying cell adhesion and biofilm formation, which are part of the initial step leading to fungal infections.
Collapse
|
14
|
Peltier E, Vion C, Abou Saada O, Friedrich A, Schacherer J, Marullo P. Flor Yeasts Rewire the Central Carbon Metabolism During Wine Alcoholic Fermentation. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:733513. [PMID: 37744152 PMCID: PMC10512321 DOI: 10.3389/ffunb.2021.733513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 09/26/2023]
Abstract
The identification of natural allelic variations controlling quantitative traits could contribute to decipher metabolic adaptation mechanisms within different populations of the same species. Such variations could result from human-mediated selection pressures and participate to the domestication. In this study, the genetic causes of the phenotypic variability of the central carbon metabolism of Saccharomyces cerevisiae were investigated in the context of the enological fermentation. The genetic determinism of this trait was found out by a quantitative trait loci (QTL) mapping approach using the offspring of two strains belonging to the wine genetic group of the species. A total of 14 QTL were identified from which 8 were validated down to the gene level by genetic engineering. The allelic frequencies of the validated genes within 403 enological strains showed that most of the validated QTL had allelic variations involving flor yeast specific alleles. Those alleles were brought in the offspring by one parental strain that contains introgressions from the flor yeast genetic group. The causative genes identified are functionally linked to quantitative proteomic variations that would explain divergent metabolic features of wine and flor yeasts involving the tricarboxylic acid cycle (TCA), the glyoxylate shunt and the homeostasis of proton and redox cofactors. Overall, this work led to the identification of genetic factors that are hallmarks of adaptive divergence between flor yeast and wine yeast in the wine biotope. These results also reveal that introgressions originated from intraspecific hybridization events promoted phenotypic variability of carbon metabolism observed in wine strains.
Collapse
Affiliation(s)
- Emilien Peltier
- Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, ISVV, Université de Bordeaux, Bordeaux, France
- Biolaffort, Bordeaux, France
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Charlotte Vion
- Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, ISVV, Université de Bordeaux, Bordeaux, France
- Biolaffort, Bordeaux, France
| | - Omar Abou Saada
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | | | - Philippe Marullo
- Unité de Recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, ISVV, Université de Bordeaux, Bordeaux, France
- Biolaffort, Bordeaux, France
| |
Collapse
|
15
|
Bouyx C, Schiavone M, Teste MA, Dague E, Sieczkowski N, Julien A, François JM. The dual role of amyloid-β-sheet sequences in the cell surface properties of FLO11-encoded flocculins in Saccharomyces cerevisiae. eLife 2021; 10:e68592. [PMID: 34467855 PMCID: PMC8457840 DOI: 10.7554/elife.68592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/29/2021] [Indexed: 11/21/2022] Open
Abstract
Fungal adhesins (Als) or flocculins are family of cell surface proteins that mediate adhesion to diverse biotic and abiotic surfaces. A striking characteristic of Als proteins originally identified in the pathogenic Candida albicans is to form functional amyloids that mediate cis-interaction leading to the formation of adhesin nanodomains and trans-interaction between amyloid sequences of opposing cells. In this report, we show that flocculins encoded by FLO11 in Saccharomyces cerevisiae behave like adhesins in C. albicans. To do so, we show that the formation of nanodomains under an external physical force requires a threshold number of amyloid-forming sequences in the Flo11 protein. Then, using a genome editing approach, we constructed strains expressing variants of the Flo11 protein under the endogenous FLO11 promoter, leading to the demonstration that the loss of amyloid-forming sequences strongly reduces cell-cell interaction but has no effect on either plastic adherence or invasive growth in agar, both phenotypes being dependent on the N- and C-terminal ends of Flo11p. Finally, we show that the location of Flo11 is not altered either by the absence of amyloid-forming sequences or by the removal of the N- or C-terminus of the protein.
Collapse
Affiliation(s)
- Clara Bouyx
- Toulouse Biotechnology Institute, INSAToulouseFrance
| | - Marion Schiavone
- Toulouse Biotechnology Institute, INSAToulouseFrance
- Lallemand, Lallemand SASBlagnacFrance
| | | | | | | | | | | |
Collapse
|
16
|
High Foam Phenotypic Diversity and Variability in Flocculant Gene Observed for Various Yeast Cell Surfaces Present as Industrial Contaminants. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many contaminant yeast strains that survive inside fuel ethanol industrial vats show detrimental cell surface phenotypes. These harmful effects may include filamentation, invasive growth, flocculation, biofilm formation, and excessive foam production. Previous studies have linked some of these phenotypes to the expression of FLO genes, and the presence of gene length polymorphisms causing the expansion of FLO gene size appears to result in stronger flocculation and biofilm formation phenotypes. We performed here a molecular analysis of FLO1 and FLO11 gene polymorphisms present in contaminant strains of Saccharomyces cerevisiae from Brazilian fuel ethanol distilleries showing vigorous foaming phenotypes during fermentation. The size variability of these genes was correlated with cellular hydrophobicity, flocculation, and highly foaming phenotypes in these yeast strains. Our results also showed that deleting the primary activator of FLO genes (the FLO8 gene) from the genome of a contaminant and highly foaming industrial strain avoids complex foam formation, flocculation, invasive growth, and biofilm production by the engineered (flo8∆::BleR/flo8Δ::kanMX) yeast strain. Thus, the characterization of highly foaming yeasts and the influence of FLO8 in this phenotype open new perspectives for yeast strain engineering and optimization in the sugarcane fuel-ethanol industry.
Collapse
|
17
|
Lee DW, Hong CP, Thak EJ, Park SG, Lee CH, Lim JY, Seo JA, Kang HA. Integrated genomic and transcriptomic analysis reveals unique mechanisms for high osmotolerance and halotolerance in Hyphopichia yeast. Environ Microbiol 2021; 23:3499-3522. [PMID: 33830651 DOI: 10.1111/1462-2920.15464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/12/2021] [Accepted: 03/13/2021] [Indexed: 11/28/2022]
Abstract
The yeast species Hyphopichia is common in nature and strongly competitive under harsh environmental conditions. Here, we characterized Hyphopichia burtonii KJJ43 and H. pseudoburtonii KJS14, which exhibit strong halotolerance, using genomic and transcriptomic analyses. The genomes of H. burtonii and H. pseudoburtonii comprised eight chromosomes with 85.17% nucleotide identity and significant divergence in synteny. Notably, both Hyphopichia genomes possessed extended gene families of amino acid permeases and ATP-binding cassette (ABC) transporters, whose dynamic expression patterns during osmotic stress were revealed using transcriptome profiling. Intriguingly, we found unique features of the HOG pathway activated by Hog1p even under non-osmotic stress conditions and the upregulation of cytosolic Gpd1 protein during osmotic stress. Associated with hyperfilamentation growth under high osmotic conditions, a set of genes in the FLO family with induced expression in response to NaCl, KCl, and sorbitol supplementation were identified. Moreover, comparative transcriptome analysis reveals the NaCl-specific induction of genes involved in amino acid biosynthesis and metabolism, particularly BAT2. This suggests the potential association between oxoacid reaction involving branched-chain amino acids and osmotolerance. The combined omics analysis of two Hyphopichia species provides insights into the novel mechanisms involved in salt and osmo-stress tolerance exploited by diverse eukaryotic organisms.
Collapse
Affiliation(s)
- Dong Wook Lee
- Molecular Systems Biology Laboratory of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | | | - Eun Jung Thak
- Molecular Systems Biology Laboratory of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | | | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Jae Yun Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, South Korea
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, South Korea
| | - Hyun Ah Kang
- Molecular Systems Biology Laboratory of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
18
|
Gonzalez R, Morales P. Truth in wine yeast. Microb Biotechnol 2021; 15:1339-1356. [PMID: 34173338 PMCID: PMC9049622 DOI: 10.1111/1751-7915.13848] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Evolutionary history and early association with anthropogenic environments have made Saccharomyces cerevisiae the quintessential wine yeast. This species typically dominates any spontaneous wine fermentation and, until recently, virtually all commercially available wine starters belonged to this species. The Crabtree effect, and the ability to grow under fully anaerobic conditions, contribute decisively to their dominance in this environment. But not all strains of Saccharomyces cerevisiae are equally suitable as starter cultures. In this article, we review the physiological and genetic characteristics of S. cerevisiae wine strains, as well as the biotic and abiotic factors that have shaped them through evolution. Limited genetic diversity of this group of yeasts could be a constraint to solving the new challenges of oenology. However, research in this field has for many years been providing tools to increase this diversity, from genetic engineering and classical genetic tools to the inclusion of other yeast species in the catalogues of wine yeasts. On occasion, these less conventional species may contribute to the generation of interspecific hybrids with S. cerevisiae. Thus, our knowledge about wine strains of S. cerevisiae and other wine yeasts is constantly expanding. Over the last decades, wine yeast research has been a pillar for the modernisation of oenology, and we can be confident that yeast biotechnology will keep contributing to solving any challenges, such as climate change, that we may face in the future.
Collapse
Affiliation(s)
- Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos, km 6, Logroño, La Rioja, 26071, Spain
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos, km 6, Logroño, La Rioja, 26071, Spain
| |
Collapse
|
19
|
Essen LO, Vogt MS, Mösch HU. Diversity of GPI-anchored fungal adhesins. Biol Chem 2021; 401:1389-1405. [PMID: 33035180 DOI: 10.1515/hsz-2020-0199] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
Abstract
Selective adhesion of fungal cells to one another and to foreign surfaces is fundamental for the development of multicellular growth forms and the successful colonization of substrates and host organisms. Accordingly, fungi possess diverse cell wall-associated adhesins, mostly large glycoproteins, which present N-terminal adhesion domains at the cell surface for ligand recognition and binding. In order to function as robust adhesins, these glycoproteins must be covalently linkedto the cell wall via C-terminal glycosylphosphatidylinositol (GPI) anchors by transglycosylation. In this review, we summarize the current knowledge on the structural and functional diversity of so far characterized protein families of adhesion domains and set it into a broad context by an in-depth bioinformatics analysis using sequence similarity networks. In addition, we discuss possible mechanisms for the membrane-to-cell wall transfer of fungal adhesins by membrane-anchored Dfg5 transglycosidases.
Collapse
Affiliation(s)
- Lars-Oliver Essen
- Department of Biochemistry, Faculty of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35043Marburg, Germany.,Center for Synthetic Microbiology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 6, D-35043Marburg, Germany
| | - Marian Samuel Vogt
- Department of Biochemistry, Faculty of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35043Marburg, Germany
| | - Hans-Ulrich Mösch
- Department of Genetics, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, D-35043Marburg, Germany.,Center for Synthetic Microbiology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 6, D-35043Marburg, Germany
| |
Collapse
|
20
|
Godara A, Kao KC. Adaptive laboratory evolution of β-caryophyllene producing Saccharomyces cerevisiae. Microb Cell Fact 2021; 20:106. [PMID: 34044821 PMCID: PMC8157465 DOI: 10.1186/s12934-021-01598-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background β-Caryophyllene is a plant terpenoid with therapeutic and biofuel properties. Production of terpenoids through microbial cells is a potentially sustainable alternative for production. Adaptive laboratory evolution is a complementary technique to metabolic engineering for strain improvement, if the product-of-interest is coupled with growth. Here we use a combination of pathway engineering and adaptive laboratory evolution to improve the production of β-caryophyllene, an extracellular product, by leveraging the antioxidant potential of the compound. Results Using oxidative stress as selective pressure, we developed an adaptive laboratory evolution that worked to evolve an engineered β-caryophyllene producing yeast strain for improved production within a few generations. This strategy resulted in fourfold increase in production in isolated mutants. Further increasing the flux to β-caryophyllene in the best evolved mutant achieved a titer of 104.7 ± 6.2 mg/L product. Genomic analysis revealed a gain-of-function mutation in the a-factor exporter STE6 was identified to be involved in significantly increased production, likely as a result of increased product export. Conclusion An optimized selection strategy based on oxidative stress was developed to improve the production of the extracellular product β-caryophyllene in an engineered yeast strain. Application of the selection strategy in adaptive laboratory evolution resulted in mutants with significantly increased production and identification of novel responsible mutations. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01598-z.
Collapse
Affiliation(s)
- Avinash Godara
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Katy C Kao
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA. .,Department of Chemical and Materials Engineering, San Jose State University, One Washington Sq, San Jose, CA, 95192, USA.
| |
Collapse
|
21
|
Dimopoulou M, Kefalloniti V, Tsakanikas P, Papanikolaou S, Nychas GJE. Assessing the Biofilm Formation Capacity of the Wine Spoilage Yeast Brettanomyces bruxellensis through FTIR Spectroscopy. Microorganisms 2021; 9:microorganisms9030587. [PMID: 33809238 PMCID: PMC7999561 DOI: 10.3390/microorganisms9030587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Brettanomyces bruxellensis is a wine spoilage yeast known to colonize and persist in production cellars. However, knowledge on the biofilm formation capacity of B. bruxellensis remains limited. The present study investigated the biofilm formation of 11 B. bruxellensis strains on stainless steel coupons after 3 h of incubation in an aqueous solution. FTIR analysis was performed for both planktonic and attached cells, while comparison of the obtained spectra revealed chemical groups implicated in the biofilm formation process. The increased region corresponding to polysaccharides and lipids clearly discriminated the obtained spectra, while the absorption peaks at the specific wavenumbers possibly reveal the presence of β-glucans, mannas and ergosterol. Unsupervised clustering and supervised classification were employed to identify the important wavenumbers of the whole spectra. The fact that all the metabolic fingerprints of the attached versus the planktonic cells were similar within the same cell phenotype class and different between the two phenotypes, implies a clear separation of the cell phenotype; supported by the results of the developed classification model. This study represents the first to succeed at applying a non-invasive technique to reveal the metabolic fingerprint implicated in the biofilm formation capacity of B. bruxellensis, underlying the homogenous mechanism within the yeast species.
Collapse
|
22
|
Vandermeulen MD, Cullen PJ. New Aspects of Invasive Growth Regulation Identified by Functional Profiling of MAPK Pathway Targets in Saccharomyces cerevisiae. Genetics 2020; 216:95-116. [PMID: 32665277 PMCID: PMC7463291 DOI: 10.1534/genetics.120.303369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
MAPK pathways are drivers of morphogenesis and stress responses in eukaryotes. A major function of MAPK pathways is the transcriptional induction of target genes, which produce proteins that collectively generate a cellular response. One approach to comprehensively understand how MAPK pathways regulate cellular responses is to characterize the individual functions of their transcriptional targets. Here, by examining uncharacterized targets of the MAPK pathway that positively regulates filamentous growth in Saccharomyces cerevisiae (fMAPK pathway), we identified a new role for the pathway in negatively regulating invasive growth. Specifically, four targets were identified that had an inhibitory role in invasive growth: RPI1, RGD2, TIP1, and NFG1/YLR042cNFG1 was a highly induced unknown open reading frame that negatively regulated the filamentous growth MAPK pathway. We also identified SFG1, which encodes a transcription factor, as a target of the fMAPK pathway. Sfg1p promoted cell adhesion independently from the fMAPK pathway target and major cell adhesion flocculin Flo11p, by repressing genes encoding presumptive cell-wall-degrading enzymes. Sfg1p also contributed to FLO11 expression. Sfg1p and Flo11p regulated different aspects of cell adhesion, and their roles varied based on the environment. Sfg1p also induced an elongated cell morphology, presumably through a cell-cycle delay. Thus, the fMAPK pathway coordinates positive and negative regulatory proteins to fine-tune filamentous growth resulting in a nuanced response. Functional analysis of other pathways' targets may lead to a more comprehensive understanding of how signaling cascades generate biological responses.
Collapse
Affiliation(s)
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, New York 14260-1300
| |
Collapse
|
23
|
Eldarov MA, Mardanov AV. Metabolic Engineering of Wine Strains of Saccharomyces cerevisiae. Genes (Basel) 2020; 11:E964. [PMID: 32825346 PMCID: PMC7565949 DOI: 10.3390/genes11090964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 01/26/2023] Open
Abstract
Modern industrial winemaking is based on the use of starter cultures of specialized wine strains of Saccharomyces cerevisiae yeast. Commercial wine strains have a number of advantages over natural isolates, and it is their use that guarantees the stability and reproducibility of industrial winemaking technologies. For the highly competitive wine market with new demands for improved wine quality, it has become increasingly critical to develop new wine strains and winemaking technologies. Novel opportunities for precise wine strain engineering based on detailed knowledge of the molecular nature of a particular trait or phenotype have recently emerged due to the rapid progress in genomic and "postgenomic" studies with wine yeast strains. The review summarizes the current achievements of the metabolic engineering of wine yeast, the results of recent studies and the prospects for the application of genomic editing technologies for improving wine S. cerevisiae strains.
Collapse
Affiliation(s)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| |
Collapse
|
24
|
Misas E, Escandón P, McEwen JG, Clay OK. The LUFS domain, its transcriptional regulator proteins, and drug resistance in the fungal pathogen Candida auris. Protein Sci 2020; 28:2024-2029. [PMID: 31503375 DOI: 10.1002/pro.3727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023]
Abstract
The LUFS domain (LUG/LUH, Flo8, single-strand DNA-binding protein [SSBP]) is a well-conserved and apparently ancient region found in diverse proteins and taxa. This domain, which has as its most obvious structural feature a series of three helices, has been identified in transcriptional regulator proteins of animals, plants, and fungi. Recently, in these pages (Wang et al., Protein Sci., 2019, 28:788-793), the first crystal structure of a LUFS domain was reported, for the human SSBP2, a transcriptional repressor. We briefly address how the new insights into LUFS structures might contribute to a better understanding of an important transcriptional activator of yeasts that contains the LUFS domain, Flo8, and consider how a focus on the LUFS domain and its variation could help us to understand etiologies of drug resistance in a recently emerged pathogenic fungus, Candida auris.
Collapse
Affiliation(s)
- Elizabeth Misas
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia.,Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Juan G McEwen
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia.,School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Oliver K Clay
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia.,Translational Microbiology and Emerging Diseases (MICROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
25
|
Contractions of the C-Terminal Domain of Saccharomyces cerevisiae Rpb1p Are Mediated by Rad5p. G3-GENES GENOMES GENETICS 2020; 10:2543-2551. [PMID: 32467128 PMCID: PMC7341143 DOI: 10.1534/g3.120.401409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The C-terminal domain (CTD) is an essential domain of the largest subunit of RNA polymerase II, Rpb1p, and is composed of 26 tandem repeats of a seven-amino acid sequence, YSPTSPS. Despite being an essential domain within an essential gene, we have previously demonstrated that the CTD coding region is genetically unstable. Furthermore, yeast with a truncated or mutated CTD sequence are capable of promoting spontaneous genetic expansion or contraction of this coding region to improve fitness. We investigated the mechanism by which the CTD contracts using a tet-off reporter system for RPB1 to monitor genetic instability within the CTD coding region. We report that contractions require the post-replication repair factor Rad5p but, unlike expansions, not the homologous recombination factors Rad51p and Rad52p. Sequence analysis of contraction events reveals that deleted regions are flanked by microhomologies. We also find that G-quadruplex forming sequences predicted by the QGRS Mapper are enriched on the noncoding strand of the CTD compared to the body of RPB1. Formation of G-quadruplexes in the CTD coding region could block the replication fork, necessitating post-replication repair. We propose that contractions of the CTD result when microhomologies misalign during Rad5p-dependent template switching via fork reversal.
Collapse
|
26
|
Conacher CG, Rossouw D, Bauer FFB. Peer pressure: evolutionary responses to biotic pressures in wine yeasts. FEMS Yeast Res 2020; 19:5593956. [PMID: 31626300 DOI: 10.1093/femsyr/foz072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022] Open
Abstract
In the macroscopic world, ecological interactions between multiple species of fauna and flora are recognised as major role-players in the evolution of any particular species. By comparison, research on ecological interactions as a driver of evolutionary adaptation in microbial ecosystems has been neglected. The evolutionary history of the budding yeast Saccharomyces cerevisiae has been extensively researched, providing an unmatched foundation for exploring adaptive evolution of microorganisms. However, in most studies, the habitat is only defined by physical and chemical parameters, and little attention is paid to the impact of cohabiting species. Such ecological interactions arguably provide a more relevant evolutionary framework. Within the genomic phylogenetic tree of S. cerevisiae strains, wine associated isolates form a distinct clade, also matched by phenotypic evidence. This domestication signature in genomes and phenomes suggests that the wine fermentation environment is of significant evolutionary relevance. Data also show that the microbiological composition of wine fermentation ecosystems is dominated by the same species globally, suggesting that these species have co-evolved within this ecosystem. This system therefore presents an excellent model for investigating the origins and mechanisms of interspecific yeast interactions. This review explores the role of biotic stress in the adaptive evolution of wine yeast.
Collapse
Affiliation(s)
- C G Conacher
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch 7600, South Africa
| | - D Rossouw
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch 7600, South Africa
| | - F F B Bauer
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Private Bag X1, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
27
|
Bartle L, Sumby K, Sundstrom J, Jiranek V. The microbial challenge of winemaking: yeast-bacteria compatibility. FEMS Yeast Res 2020; 19:5513997. [PMID: 31187141 DOI: 10.1093/femsyr/foz040] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022] Open
Abstract
The diversity and complexity of wine environments present challenges for predicting success of fermentation. In particular, compatibility between yeast and lactic acid bacteria is affected by chemical and physical parameters that are strain and cultivar specific. This review focuses on the impact of compound production by microbes and physical interactions between microbes that ultimately influence how yeast and bacteria may work together during fermentation. This review also highlights the importance of understanding microbial interactions for yeast-bacteria compatibility in the wine context.
Collapse
Affiliation(s)
- Louise Bartle
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| | - Krista Sumby
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia.,Australian Research Council Training Centre for Innovative Wine Production, PMB1, Glen Osmond, SA, 5064, Australia
| | - Joanna Sundstrom
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia.,Australian Research Council Training Centre for Innovative Wine Production, PMB1, Glen Osmond, SA, 5064, Australia
| | - Vladimir Jiranek
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia.,Australian Research Council Training Centre for Innovative Wine Production, PMB1, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
28
|
Barré BP, Hallin J, Yue JX, Persson K, Mikhalev E, Irizar A, Holt S, Thompson D, Molin M, Warringer J, Liti G. Intragenic repeat expansion in the cell wall protein gene HPF1 controls yeast chronological aging. Genome Res 2020; 30:697-710. [PMID: 32277013 PMCID: PMC7263189 DOI: 10.1101/gr.253351.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 04/09/2020] [Indexed: 01/02/2023]
Abstract
Aging varies among individuals due to both genetics and environment, but the underlying molecular mechanisms remain largely unknown. Using a highly recombined Saccharomyces cerevisiae population, we found 30 distinct quantitative trait loci (QTLs) that control chronological life span (CLS) in calorie-rich and calorie-restricted environments and under rapamycin exposure. Calorie restriction and rapamycin extended life span in virtually all genotypes but through different genetic variants. We tracked the two major QTLs to the cell wall glycoprotein genes FLO11 and HPF1 We found that massive expansion of intragenic tandem repeats within the N-terminal domain of HPF1 was sufficient to cause pronounced life span shortening. Life span impairment by HPF1 was buffered by rapamycin but not by calorie restriction. The HPF1 repeat expansion shifted yeast cells from a sedentary to a buoyant state, thereby increasing their exposure to surrounding oxygen. The higher oxygenation altered methionine, lipid, and purine metabolism, and inhibited quiescence, which explains the life span shortening. We conclude that fast-evolving intragenic repeat expansions can fundamentally change the relationship between cells and their environment with profound effects on cellular lifestyle and longevity.
Collapse
Affiliation(s)
| | - Johan Hallin
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Jia-Xing Yue
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Karl Persson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | | | | | - Sylvester Holt
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| | - Dawn Thompson
- Ginkgo Bioworks Incorporated, Boston, Massachusetts 02210, USA
| | - Mikael Molin
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
| |
Collapse
|
29
|
Kishkovskaya SA, Tanashchuk TN, Shalamitskiy MY, Zagoryiko VI, Shiryaev MI, Avdanina DA, Eldarov MA, Ravin NV, Mardanov AV. Natural Yeast Strains of Saccharomyces cerevisiae that are Promising for Sherry Production. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820030060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Raposo CJ, McElroy KA, Fuchs SM. The Epithelial adhesin 1 tandem repeat region mediates protein display through multiple mechanisms. FEMS Yeast Res 2020; 20:foaa018. [PMID: 32301985 PMCID: PMC7199969 DOI: 10.1093/femsyr/foaa018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/15/2020] [Indexed: 01/18/2023] Open
Abstract
The pathogenic yeast Candida glabrata is reliant on a suite of cell surface adhesins that play a variety of roles necessary for transmission, establishment and proliferation during infection. One particular adhesin, Epithelial Adhesin 1 [Epa1p], is responsible for binding to host tissue, a process which is essential for fungal propagation. Epa1p structure consists of three domains: an N-terminal intercellular binding domain responsible for epithelial cell binding, a C-terminal GPI anchor for cell wall linkage and a serine/threonine-rich linker domain connecting these terminal domains. The linker domain contains a 40-amino acid tandem repeat region, which we have found to be variable in repeat copy number between isolates from clinical sources. We hypothesized that natural variation in Epa1p repeat copy may modulate protein function. To test this, we recombinantly expressed Epa1p with various repeat copy numbers in S. cerevisiae to determine how differences in repeat copy number affect Epa1p expression, surface display and binding to human epithelial cells. Our data suggest that repeat copy number variation has pleiotropic effects, influencing gene expression, protein surface display and shedding from the cell surface of the Epa1p adhesin. This study serves to demonstrate repeat copy number variation can modulate protein function through a number of mechanisms in order to contribute to pathogenicity of C. glabrata.
Collapse
Affiliation(s)
- Colin J Raposo
- Department of Biology , Tufts University, 200 Boston Ave Suite 4700, Medford, MA, USA 01255
| | - Kyle A McElroy
- Department of Biology , Tufts University, 200 Boston Ave Suite 4700, Medford, MA, USA 01255
- Allen Discovery Center, Tufts University, 200 Boston Ave Suite 4600, Medford, MA 02155
| | - Stephen M Fuchs
- Department of Biology , Tufts University, 200 Boston Ave Suite 4700, Medford, MA, USA 01255
- Allen Discovery Center, Tufts University, 200 Boston Ave Suite 4600, Medford, MA 02155
| |
Collapse
|
31
|
Mardanov AV, Eldarov MA, Beletsky AV, Tanashchuk TN, Kishkovskaya SA, Ravin NV. Transcriptome Profile of Yeast Strain Used for Biological Wine Aging Revealed Dynamic Changes of Gene Expression in Course of Flor Development. Front Microbiol 2020; 11:538. [PMID: 32308650 PMCID: PMC7145950 DOI: 10.3389/fmicb.2020.00538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 01/08/2023] Open
Abstract
Flor strains of Saccharomyces cerevisiae are principal microbial agents responsible for biological wine aging used for production of sherry-like wines. The flor yeast velum formed on the surface of fortified fermented must is a major adaptive and technological characteristic of flor yeasts that helps them to withstanding stressful winemaking conditions and ensures specific biochemical and sensory oxidative alterations typical for sherry wines. We have applied RNAseq technology for transcriptome analysis of an industrial flor yeast strain at different steps of velum development over 71 days under experimental winemaking conditions. Velum growth and maturation was accompanied by accumulation of aldehydes and acetales. We have identified 1490 differentially expressed genes including 816 genes upregulated and 674 downregulated more than 2-fold at mature biofilm stage as compared to the early biofilm. Distinct expression patterns of genes involved in carbon and nitrogen metabolism, respiration, cell cycle, DNA repair, cell adhesion, response to various stresses were observed. Many genes involved in response to different stresses, oxidative carbon metabolism, high affinity transport of sugars, glycerol utilization, sulfur metabolism, protein quality control and recycling, cell wall biogenesis, apoptosis were induced at the mature biofilm stage. Strong upregulation was observed for FLO11 flocculin while expression of other flocculins remained unaltered or moderately downregulated. Downregulated genes included those for proteins involved in glycolysis, transportation of ions, metals, aminoacids, sugars, indicating repression of some major transport and metabolic process at the mature biofilm stage. Presented results are important for in-depth understanding of cell response elicited by velum formation and sherry wine manufacturing conditions, and for the comprehension of relevant regulatory mechanisms. Such knowledge may help to better understand the molecular mechanisms that flor yeasts use to adapt to winemaking environments, establish the functions of previously uncharacterized genes, improve the technology of sherry- wine production, and find target genes for strain improvement.
Collapse
Affiliation(s)
- Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A Eldarov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Tatiana N Tanashchuk
- Research Institute of Viticulture and Winemaking "Magarach" of the Russian Academy of Sciences, Yalta, Russia
| | - Svetlana A Kishkovskaya
- Research Institute of Viticulture and Winemaking "Magarach" of the Russian Academy of Sciences, Yalta, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
32
|
Oppler ZJ, Parrish ME, Murphy HA. Variation at an adhesin locus suggests sociality in natural populations of the yeast Saccharomyces cerevisiae. Proc Biol Sci 2019; 286:20191948. [PMID: 31615361 PMCID: PMC6834051 DOI: 10.1098/rspb.2019.1948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Microbes engage in numerous social behaviours that are critical for survival and reproduction, and that require individuals to act as a collective. Various mechanisms ensure that collectives are composed of related, cooperating cells, thus allowing for the evolution and stability of these traits, and for selection to favour traits beneficial to the collective. Since microbes are difficult to observe directly, sociality in natural populations can instead be investigated using evolutionary genetic signatures, as social loci can be evolutionary hotspots. The budding yeast has been studied for over a century, yet little is known about its social behaviour in nature. Flo11 is a highly regulated cell adhesin required for most laboratory social phenotypes; studies suggest it may function in cell recognition and its heterogeneous expression may be adaptive for collectives such as biofilms. We investigated this locus and found positive selection in the areas implicated in cell-cell interaction, suggesting selection for kin discrimination. We also found balancing selection at an upstream activation site, suggesting selection on the level of variegated gene expression. Our results suggest this model yeast is surprisingly social in natural environments and is probably engaging in various forms of sociality. By using genomic data, this research provides a glimpse of otherwise unobservable interactions.
Collapse
Affiliation(s)
- Zachary J Oppler
- Department of Biology, William & Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA
| | - Meadow E Parrish
- Department of Biology, William & Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA
| | - Helen A Murphy
- Department of Biology, William & Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA
| |
Collapse
|
33
|
Peltier E, Friedrich A, Schacherer J, Marullo P. Quantitative Trait Nucleotides Impacting the Technological Performances of Industrial Saccharomyces cerevisiae Strains. Front Genet 2019; 10:683. [PMID: 31396264 PMCID: PMC6664092 DOI: 10.3389/fgene.2019.00683] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae is certainly the prime industrial microorganism and is related to many biotechnological applications including food fermentations, biofuel production, green chemistry, and drug production. A noteworthy characteristic of this species is the existence of subgroups well adapted to specific processes with some individuals showing optimal technological traits. In the last 20 years, many studies have established a link between quantitative traits and single-nucleotide polymorphisms found in hundreds of genes. These natural variations constitute a pool of QTNs (quantitative trait nucleotides) that modulate yeast traits of economic interest for industry. By selecting a subset of genes functionally validated, a total of 284 QTNs were inventoried. Their distribution across pan and core genome and their frequency within the 1,011 Saccharomyces cerevisiae genomes were analyzed. We found that 150 of the 284 QTNs have a frequency lower than 5%, meaning that these variants would be undetectable by genome-wide association studies (GWAS). This analysis also suggests that most of the functional variants are private to a subpopulation, possibly due to their adaptive role to specific industrial environment. In this review, we provide a literature survey of their phenotypic impact and discuss the opportunities and the limits of their use for industrial strain selection.
Collapse
Affiliation(s)
- Emilien Peltier
- Department Sciences du vivant et de la sante, Université de Bordeaux, UR Œnologie EA 4577, Bordeaux, France
- Biolaffort, Bordeaux, France
| | - Anne Friedrich
- Department Micro-organismes, Génomes, Environnement, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Department Micro-organismes, Génomes, Environnement, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Philippe Marullo
- Department Sciences du vivant et de la sante, Université de Bordeaux, UR Œnologie EA 4577, Bordeaux, France
- Biolaffort, Bordeaux, France
| |
Collapse
|
34
|
Cooper DG, Fassler JS. Med15: Glutamine-Rich Mediator Subunit with Potential for Plasticity. Trends Biochem Sci 2019; 44:737-751. [PMID: 31036407 DOI: 10.1016/j.tibs.2019.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
The Mediator complex is required for basal activity of the RNA polymerase (Pol) II transcriptional apparatus and for responsiveness to some activator proteins. Med15, situated in the Mediator tail, plays a role in transmitting regulatory information from distant DNA-bound transcription factors to the transcriptional apparatus poised at promoters. Yeast Med15 and its orthologs share an unusual, glutamine-rich amino acid composition. Here, we discuss this sequence feature and the tendency of polyglutamine tracts to vary in length among strains of Saccharomyces cerevisiae, and we propose that different polyglutamine tract lengths may be adaptive within certain domestication habitats.
Collapse
Affiliation(s)
- David G Cooper
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
35
|
Abstract
Filamentous growth is a fungal morphogenetic response that is critical for virulence in some fungal species. Many aspects of filamentous growth remain poorly understood. We have identified an aspect of filamentous growth in the budding yeast Saccharomyces cerevisiae and the human pathogen Candida albicans where cells behave collectively to invade surfaces in aggregates. These responses may reflect an extension of normal filamentous growth, as they share the same signaling pathways and effector processes. Aggregate responses may involve cooperation among individual cells, because aggregation was stimulated by cell adhesion molecules, secreted enzymes, and diffusible molecules that promote quorum sensing. Our study may provide insights into the genetic basis of collective cellular responses in fungi. The study may have ramifications in fungal pathogenesis, in situations where collective responses occur to promote virulence. Many fungal species, including pathogens, undergo a morphogenetic response called filamentous growth, where cells differentiate into a specialized cell type to promote nutrient foraging and surface colonization. Despite the fact that filamentous growth is required for virulence in some plant and animal pathogens, certain aspects of this behavior remain poorly understood. By examining filamentous growth in the budding yeast Saccharomyces cerevisiae and the opportunistic pathogen Candida albicans, we identify responses where cells undergo filamentous growth in groups of cells or aggregates. In S. cerevisiae, aggregate invasive growth was regulated by signaling pathways that control normal filamentous growth. These pathways promoted aggregation in part by fostering aspects of microbial cooperation. For example, aggregate invasive growth required cellular contacts mediated by the flocculin Flo11p, which was produced at higher levels in aggregates than cells undergoing regular invasive growth. Aggregate invasive growth was also stimulated by secreted enzymes, like invertase, which produce metabolites that are shared among cells. Aggregate invasive growth was also induced by alcohols that promote density-dependent filamentous growth in yeast. Aggregate invasive growth also required highly polarized cell morphologies, which may affect the packing or organization of cells. A directed selection experiment for aggregating phenotypes uncovered roles for the fMAPK and RAS pathways, which indicates that these pathways play a general role in regulating aggregate-based responses in yeast. Our study extends the range of responses controlled by filamentation regulatory pathways and has implications in understanding aspects of fungal biology that may be relevant to fungal pathogenesis. IMPORTANCE Filamentous growth is a fungal morphogenetic response that is critical for virulence in some fungal species. Many aspects of filamentous growth remain poorly understood. We have identified an aspect of filamentous growth in the budding yeast Saccharomyces cerevisiae and the human pathogen Candida albicans where cells behave collectively to invade surfaces in aggregates. These responses may reflect an extension of normal filamentous growth, as they share the same signaling pathways and effector processes. Aggregate responses may involve cooperation among individual cells, because aggregation was stimulated by cell adhesion molecules, secreted enzymes, and diffusible molecules that promote quorum sensing. Our study may provide insights into the genetic basis of collective cellular responses in fungi. The study may have ramifications in fungal pathogenesis, in situations where collective responses occur to promote virulence.
Collapse
|
36
|
Layers of Cryptic Genetic Variation Underlie a Yeast Complex Trait. Genetics 2019; 211:1469-1482. [PMID: 30787041 PMCID: PMC6456305 DOI: 10.1534/genetics.119.301907] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/14/2019] [Indexed: 01/13/2023] Open
Abstract
To better understand cryptic genetic variation, Lee et al. comprehensively map the genetic basis of a trait that is typically suppressed in a yeast cross. By determining how three different genetic perturbations give rise... Cryptic genetic variation may be an important contributor to heritable traits, but its extent and regulation are not fully understood. Here, we investigate the cryptic genetic variation underlying a Saccharomyces cerevisiae colony phenotype that is typically suppressed in a cross of the laboratory strain BY4716 (BY) and a derivative of the clinical isolate 322134S (3S). To do this, we comprehensively dissect the trait’s genetic basis in the BYx3S cross in the presence of three different genetic perturbations that enable its expression. This allows us to detect and compare the specific loci that interact with each perturbation to produce the trait. In total, we identify 21 loci, all but one of which interact with just a subset of the perturbations. Beyond impacting which loci contribute to the trait, the genetic perturbations also alter the extent of additivity, epistasis, and genotype–environment interaction among the detected loci. Additionally, we show that the single locus interacting with all three perturbations corresponds to the coding region of the cell surface gene FLO11. While nearly all of the other remaining loci influence FLO11 transcription in cis or trans, the perturbations tend to interact with loci in different pathways and subpathways. Our work shows how layers of cryptic genetic variation can influence complex traits. Here, these layers mainly represent different regulatory inputs into the transcription of a single key gene.
Collapse
|
37
|
Mechanisms of Yeast Adaptation to Wine Fermentations. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:37-59. [PMID: 30911888 DOI: 10.1007/978-3-030-13035-0_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cells face genetic and/or environmental changes in order to outlast and proliferate. Characterization of changes after stress at different "omics" levels is crucial to understand the adaptation of yeast to changing conditions. Wine fermentation is a stressful situation which yeast cells have to cope with. Genome-wide analyses extend our cellular physiology knowledge by pointing out the mechanisms that contribute to sense the stress caused by these perturbations (temperature, ethanol, sulfites, nitrogen, etc.) and related signaling pathways. The model organism, Saccharomyces cerevisiae, was studied in response to industrial stresses and changes at different cellular levels (transcriptomic, proteomic, and metabolomics), which were followed statically and/or dynamically in the short and long terms. This chapter focuses on the response of yeast cells to the diverse stress situations that occur during wine fermentations, which induce perturbations, including nutritional changes, ethanol stress, temperature stress, oxidative stress, etc.
Collapse
|
38
|
Zhao X, Su L, Schaack S, Sadd BM, Sun C. Tandem Repeats Contribute to Coding Sequence Variation in Bumblebees (Hymenoptera: Apidae). Genome Biol Evol 2018; 10:3176-3187. [PMID: 30398620 PMCID: PMC6286909 DOI: 10.1093/gbe/evy244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2018] [Indexed: 01/02/2023] Open
Abstract
Tandem repeats (TRs) are highly dynamic regions of the genome. Mutations at these loci represent a significant source of genetic variation and can facilitate rapid adaptation. Bumblebees are important pollinating insects occupying a wide range of habitats. However, to date, molecular mechanisms underlying the potential adaptation of bumblebees to diverse habitats are largely unknown. In the present study, we investigate how TRs contribute to genetic variation in bumblebees, thus potentially facilitating adaptation. We identified 26,595 TRs from the assembled 18 chromosome sequences of the buff-tailed bumblebee (Bombus terrestris), 66.7% of which reside in genic regions. We also compared TRs found in B. terrestris with those present in the assembled genome sequence of a congener, B. impatiens. We found that a total of 1,137 TRs were variable in length between the two sequenced bumblebee species, and further analysis reveals that 101 of them are located within coding regions. These 101 TRs are responsible for coding sequence variation and correspond to protein sequence length variation between the two bumblebee species. The variability of identified TRs in coding regions between bumblebees was confirmed by PCR amplification of a subset of loci. Functional classification of bumblebee genes where coding sequences include variable-length TRs suggests that a majority of genes (87%) that could be assigned to a protein class are related to transcriptional regulation. Our results show that TRs contribute to coding sequence variation in bumblebees, and thus may facilitate the adaptation of bumblebees through diversifying proteins involved in controlling gene expression.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Su
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, Oregon, USA
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Cheng Sun
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
39
|
David-Vaizant V, Alexandre H. Flor Yeast Diversity and Dynamics in Biologically Aged Wines. Front Microbiol 2018; 9:2235. [PMID: 30319565 PMCID: PMC6167421 DOI: 10.3389/fmicb.2018.02235] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/03/2018] [Indexed: 11/29/2022] Open
Abstract
Wine biological aging is characterized by the development of yeast strains that form a biofilm on the wine surface after alcoholic fermentation. These yeasts, known as flor yeasts, form a velum that protects the wine from oxidation during aging. Thirty-nine velums aged from 1 to 6 years were sampled from “Vin jaune” from two different cellars. We show for the first time that these velums possess various aspects in term of color and surface aspects. Surprisingly, the heterogeneous velums are mostly composed of one species, S. cerevisiae. Scanning electron microscope observations of these velums revealed unprecedented biofilm structures and various yeast morphologies formed by the sole S. cerevisiae species. Our results highlight that different strains of Saccharomyces are present in these velums. Unexpectedly, in the same velum, flor yeast strain succession occurred during aging, supporting the assumption that environmental changes are responsible for these shifts. Despite numerous sample wine analyses, very few flor yeasts could be isolated from wine following alcoholic fermentation, suggesting that flor yeast development results from the colonization of yeast present in the aging cellar. We analyzed the FLO11 and ICR1 sequence of different S. cerevisiae strains in order to understand how the same strain of S. cerevisiae could form various types of biofilm. Among the strains analyzed, some were heterozygote at the FLO11 locus, while others presented two different alleles of ICR1 (wild type and a 111 bp deletion). We could not find a strong link between strain genotypes and velum characteristics. The same strain in different wines could form a velum having very different characteristics, highlighting a matrix effect.
Collapse
Affiliation(s)
- Vanessa David-Vaizant
- AgroSup Dijon, PAM UMR A 02.102, Université Bourgogne Franche-Comté, Dijon, France.,Equipe VAlMiS, Institut Universitaire de la Vigne et du Vin, Dijon, France
| | - Hervé Alexandre
- AgroSup Dijon, PAM UMR A 02.102, Université Bourgogne Franche-Comté, Dijon, France.,Equipe VAlMiS, Institut Universitaire de la Vigne et du Vin, Dijon, France
| |
Collapse
|
40
|
Mutlu N, Kumar A. Messengers for morphogenesis: inositol polyphosphate signaling and yeast pseudohyphal growth. Curr Genet 2018; 65:119-125. [PMID: 30101372 DOI: 10.1007/s00294-018-0874-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
In response to various environmental stimuli and stressors, the budding yeast Saccharomyces cerevisiae can initiate a striking morphological transition from its classic growth mode as isolated single cells to a filamentous form in which elongated cells remain connected post-cytokinesis in multi-cellular pseudohyphae. The formation of pseudohyphal filaments is regulated through an expansive signaling network, encompassing well studied and highly conserved pathways enabling changes in cell polarity, budding, cytoskeletal organization, and cell adhesion; however, changes in metabolite levels underlying the pseudohyphal growth transition are less well understood. We have recently identified a function for second messenger inositol polyphosphates (InsPs) in regulating pseudohyphal growth. InsPs are formed through the cleavage of membrane-bound phosphatidylinositol 4,5-bisphosphate (PIP2), and these soluble compounds are now being appreciated as important regulators of diverse processes, from phosphate homeostasis to cell migration. We find that kinases in the InsP pathway are required for wild-type pseudohyphal growth, and that InsP species exhibit characteristic profiles under conditions promoting filamentation. Ratios of the doubly phosphorylated InsP7 isoforms 5PP-InsP5 to 1PP-InsP5 are elevated in mutants exhibiting exaggerated pseudohyphal growth. Interestingly, S. cerevisiae mutants deleted of the mitogen-activated protein kinases (MAPKs) Kss1p or Fus3p or the AMP-activated kinase (AMPK) family member Snf1p display mutant InsP profiles, suggesting that these signaling pathways may contribute to the regulatory mechanism controlling InsP levels. Consequently, analyses of yeast pseudohyphal growth may be informative in identifying mechanisms regulating InsPs, while indicating a new function for these conserved second messengers in modulating cell stress responses and morphogenesis.
Collapse
Affiliation(s)
- Nebibe Mutlu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
41
|
Lipke PN. What We Do Not Know about Fungal Cell Adhesion Molecules. J Fungi (Basel) 2018; 4:jof4020059. [PMID: 29772751 PMCID: PMC6023273 DOI: 10.3390/jof4020059] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
There has been extensive research on structure and function of fungal cell adhesion molecules, but the most of the work has been about adhesins in Candida albicans and Saccharomyces cerevisiae. These yeasts are members of a single ascomycete order, and adhesion molecules from the six other fungal phyla are only sparsely described in the literature. In these other phyla, most of the research is at the cellular level, rather than at the molecular level, so there has been little characterization of the adhesion molecules themselves. A catalog of known adhesins shows some common features: high Ser/Thr content, tandem repeats, N- and O-glycosylations, GPI anchors, dibasic sequence motifs, and potential amyloid-forming sequences. However, none of these features is universal. Known ligands include proteins and glycans on homologous cells and host cells. Existing and novel tools can exploit the availability of genome sequences to identify and characterize new fungal adhesins. These include bioinformatics tools and well-established yeast surface display models, which could be coupled with an adhesion substrate array. Thus, new knowledge could be exploited to answer key questions in fungal ecology, animal and plant pathogenesis, and roles of biofilms in infection and biomass turnover.
Collapse
Affiliation(s)
- Peter N Lipke
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
- The Graduate Center, City University of New York, New York, NY 10016, USA.
| |
Collapse
|
42
|
Eldarov MA, Beletsky AV, Tanashchuk TN, Kishkovskaya SA, Ravin NV, Mardanov AV. Whole-Genome Analysis of Three Yeast Strains Used for Production of Sherry-Like Wines Revealed Genetic Traits Specific to Flor Yeasts. Front Microbiol 2018; 9:965. [PMID: 29867869 PMCID: PMC5962777 DOI: 10.3389/fmicb.2018.00965] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/25/2018] [Indexed: 12/31/2022] Open
Abstract
Flor yeast strains represent a specialized group of Saccharomyces cerevisiae yeasts used for biological wine aging. We have sequenced the genomes of three flor strains originated from different geographic regions and used for production of sherry-like wines in Russia. According to the obtained phylogeny of 118 yeast strains, flor strains form very tight cluster adjacent to the main wine clade. SNP analysis versus available genomes of wine and flor strains revealed 2,270 genetic variants in 1,337 loci specific to flor strains. Gene ontology analysis in combination with gene content evaluation revealed a complex landscape of possibly adaptive genetic changes in flor yeast, related to genes associated with cell morphology, mitotic cell cycle, ion homeostasis, DNA repair, carbohydrate metabolism, lipid metabolism, and cell wall biogenesis. Pangenomic analysis discovered the presence of several well-known "non-reference" loci of potential industrial importance. Events of gene loss included deletions of asparaginase genes, maltose utilization locus, and FRE-FIT locus involved in iron transport. The latter in combination with a flor-yeast-specific mutation in the Aft1 transcription factor gene is likely to be responsible for the discovered phenotype of increased iron sensitivity and improved iron uptake of analyzed strains. Expansion of the coding region of the FLO11 flocullin gene and alteration of the balance between members of the FLO gene family are likely to positively affect the well-known propensity of flor strains for velum formation. Our study provides new insights in the nature of genetic variation in flor yeast strains and demonstrates that different adaptive properties of flor yeast strains could have evolved through different mechanisms of genetic variation.
Collapse
Affiliation(s)
- Mikhail A. Eldarov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Tatiana N. Tanashchuk
- All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences, Yalta, Russia
| | - Svetlana A. Kishkovskaya
- All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences, Yalta, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
43
|
Davies HM, Nofal SD, McLaughlin EJ, Osborne AR. Repetitive sequences in malaria parasite proteins. FEMS Microbiol Rev 2018; 41:923-940. [PMID: 29077880 DOI: 10.1093/femsre/fux046] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
Five species of parasite cause malaria in humans with the most severe disease caused by Plasmodium falciparum. Many of the proteins encoded in the P. falciparum genome are unusually enriched in repetitive low-complexity sequences containing a limited repertoire of amino acids. These repetitive sequences expand and contract dynamically and are among the most rapidly changing sequences in the genome. The simplest repetitive sequences consist of single amino acid repeats such as poly-asparagine tracts that are found in approximately 25% of P. falciparum proteins. More complex repeats of two or more amino acids are also common in diverse parasite protein families. There is no universal explanation for the occurrence of repetitive sequences and it is possible that many confer no function to the encoded protein and no selective advantage or disadvantage to the parasite. However, there are increasing numbers of examples where repetitive sequences are important for parasite protein function. We discuss the diverse roles of low-complexity repetitive sequences throughout the parasite life cycle, from mediating protein-protein interactions to enabling the parasite to evade the host immune system.
Collapse
Affiliation(s)
- Heledd M Davies
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Stephanie D Nofal
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Emilia J McLaughlin
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Andrew R Osborne
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, Malet Street, London, WC1E 7HX, United Kingdom
| |
Collapse
|
44
|
Steenwyk JL, Rokas A. Copy Number Variation in Fungi and Its Implications for Wine Yeast Genetic Diversity and Adaptation. Front Microbiol 2018; 9:288. [PMID: 29520259 PMCID: PMC5826948 DOI: 10.3389/fmicb.2018.00288] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/07/2018] [Indexed: 11/13/2022] Open
Abstract
In recent years, copy number (CN) variation has emerged as a new and significant source of genetic polymorphisms contributing to the phenotypic diversity of populations. CN variants are defined as genetic loci that, due to duplication and deletion, vary in their number of copies across individuals in a population. CN variants range in size from 50 base pairs to whole chromosomes, can influence gene activity, and are associated with a wide range of phenotypes in diverse organisms, including the budding yeast Saccharomyces cerevisiae. In this review, we introduce CN variation, discuss the genetic and molecular mechanisms implicated in its generation, how they can contribute to genetic and phenotypic diversity in fungal populations, and consider how CN variants may influence wine yeast adaptation in fermentation-related processes. In particular, we focus on reviewing recent work investigating the contribution of changes in CN of fermentation-related genes in yeast wine strains and offer notable illustrations of such changes, including the high levels of CN variation among the CUP genes, which confer resistance to copper, a metal with fungicidal properties, and the preferential deletion and duplication of the MAL1 and MAL3 loci, respectively, which are responsible for metabolizing maltose and sucrose. Based on the available data, we propose that CN variation is a substantial dimension of yeast genetic diversity that occurs largely independent of single nucleotide polymorphisms. As such, CN variation harbors considerable potential for understanding and manipulating yeast strains in the wine fermentation environment and beyond.
Collapse
Affiliation(s)
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
45
|
Abstract
Genome sequencing has greatly contributed to our understanding of parasitic protozoa. This is particularly the case for Cryptosporidium species (phylum Apicomplexa) which are difficult to propagate. Because of their polymorphic nature, simple sequence repeats have been used extensively as genotypic markers to differentiate between isolates, but no global analysis of amino acid repeats in Cryptosporidium genomes has been reported. Taking advantage of several newly sequenced Cryptosporidium genomes, a comparative analysis of single-amino-acid repeats (SAARs) in seven species was undertaken. This analysis revealed a striking difference between the SAAR profile of the gastric and intestinal species which infect mammals and one species which infects birds. In average, total SAAR length in gastric species is only 25% of the cumulative SAAR length in the genome of Cryptosporidium parvum, Cryptosporidium hominis and Cryptosporidium meleagridis, species infectious to humans. The SAAR profile in the avian parasite Cryptosporidium baileyi stands out due to the presence of long asparagine repeats. Cryptosporidium baileyi proteins with repeats ⩾20 residues are significantly enriched in regulatory functions. As postulated for the related apicomplexan species Plasmodium falciparum, these observations suggest that Cryptosporidium SAARs evolve in response to selective pressure. The putative selective mechanisms driving SAAR evolution in Cryptosporidium species are unknown.
Collapse
|
46
|
Draft Genome Sequence of the Wine Yeast Strain Saccharomyces cerevisiae I-328. GENOME ANNOUNCEMENTS 2018; 6:6/5/e01520-17. [PMID: 29437095 PMCID: PMC5794942 DOI: 10.1128/genomea.01520-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Saccharomyces cerevisiae I-328 is a yeast strain used for production of sherry-like wine in Russia. Here we report the draft genome sequence of this strain, which will facilitate comparative genomic studies of yeast strains used for winemaking.
Collapse
|
47
|
Moreno-García J, Coi AL, Zara G, García-Martínez T, Mauricio JC, Budroni M. Study of the role of the covalently linked cell wall protein (Ccw14p) and yeast glycoprotein (Ygp1p) within biofilm formation in a flor yeast strain. FEMS Yeast Res 2018; 18:4822139. [DOI: 10.1093/femsyr/foy005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/22/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
- J Moreno-García
- Department of Microbiology, University of Córdoba, Agrifood Campus of International Excellence ceiA3, 14014 Córdoba, Spain
| | - A L Coi
- Department of Agricultural Science, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - G Zara
- Department of Agricultural Science, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - T García-Martínez
- Department of Microbiology, University of Córdoba, Agrifood Campus of International Excellence ceiA3, 14014 Córdoba, Spain
| | - J C Mauricio
- Department of Microbiology, University of Córdoba, Agrifood Campus of International Excellence ceiA3, 14014 Córdoba, Spain
| | - M Budroni
- Department of Agricultural Science, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| |
Collapse
|
48
|
Brunet T, King N. The Origin of Animal Multicellularity and Cell Differentiation. Dev Cell 2017; 43:124-140. [PMID: 29065305 PMCID: PMC6089241 DOI: 10.1016/j.devcel.2017.09.016] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/31/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022]
Abstract
Over 600 million years ago, animals evolved from a unicellular or colonial organism whose cell(s) captured bacteria with a collar complex, a flagellum surrounded by a microvillar collar. Using principles from evolutionary cell biology, we reason that the transition to multicellularity required modification of pre-existing mechanisms for extracellular matrix synthesis and cytokinesis. We discuss two hypotheses for the origin of animal cell types: division of labor from ancient plurifunctional cells and conversion of temporally alternating phenotypes into spatially juxtaposed cell types. Mechanistic studies in diverse animals and their relatives promise to deepen our understanding of animal origins and cell biology.
Collapse
Affiliation(s)
- Thibaut Brunet
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Nicole King
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
49
|
Marsit S, Leducq JB, Durand É, Marchant A, Filteau M, Landry CR. Evolutionary biology through the lens of budding yeast comparative genomics. Nat Rev Genet 2017; 18:581-598. [DOI: 10.1038/nrg.2017.49] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Abstract
ABSTRACT
In this article, we review some of the best-studied fungi used as food sources, in particular, the cheese fungi, the truffles, and the fungi used for drink fermentation such as beer, wine, and sake. We discuss their history of consumption by humans and the genomic mechanisms of adaptation during artificial selection.
Collapse
|