1
|
Bergman MT, Zhang W, Liu Y, Jang H, Nussinov R. Binding Modalities and Phase-Specific Regulation of Cyclin/Cyclin-Dependent Kinase Complexes in the Cell Cycle. J Phys Chem B 2024; 128:9315-9326. [PMID: 39314090 DOI: 10.1021/acs.jpcb.4c03243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Cyclin-dependent kinases (CDKs) are activated upon cyclin-binding to enable progression through the cell cycle. Dominant CDKs and cyclins in mammalian cells include CDK1, CDK2, CDK4, and CDK6 and corresponding cyclins A, B, D, and E. While only certain, "typical" cyclin/CDK complexes are primarily responsible for cell cycle progression, "atypical" cyclin/CDK complexes can form and sometimes perform the same roles as typical complexes. We asked what structural features of cyclins and CDKs favor the formation of typical complexes, a vital yet not fully explored question. We use computational docking and biophysical analyses to exhaustively evaluate the structure and stability of all CDK and cyclin complexes listed above. We find that binding of the complexes is generally stronger for typical than for atypical complexes, especially when the CDK is in an active conformation. Typical complexes have denser clusters, indicating that they have more defined cyclin-binding sites than atypical complexes. Our results help explain three notable features of cyclin/CDK function in the cell cycle: (i) why CDK4 and cyclin-D have exceptionally high specificity for each other; (ii) why both cyclin-A and cyclin-B strongly activate CDK1, whereas CDK2 is only strongly activated by cyclin-A; and (iii) why cyclin-E normally activates CDK2 but not CDK1. Overall, this work reveals the binding modalities of cyclin/CDK complexes, how the modalities lead to the preference for typical complexes versus atypical complexes, and how binding modalities differ between typical complexes. Our observations suggest targeting CDK catalytic actions through destabilizing their native differential cyclin interfaces.
Collapse
Affiliation(s)
- Michael T Bergman
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
2
|
Huang Y, Liu W, Zhao C, Shi X, Zhao Q, Jia J, Wang A. Targeting cyclin-dependent kinases: From pocket specificity to drug selectivity. Eur J Med Chem 2024; 275:116547. [PMID: 38852339 DOI: 10.1016/j.ejmech.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The development of selective modulators of cyclin-dependent kinases (CDKs), a kinase family with numerous members and functional variations, is a significant preclinical challenge. Recent advancements in crystallography have revealed subtle differences in the highly conserved CDK pockets. Exploiting these differences has proven to be an effective strategy for achieving excellent drug selectivity. While previous reports briefly discussed the structural features that lead to selectivity in individual CDK members, attaining inhibitor selectivity requires consideration of not only the specific structures of the target CDK but also the features of off-target members. In this review, we summarize the structure-activity relationships (SARs) that influence selectivity in CDK drug development and analyze the pocket features that lead to selectivity using molecular-protein binding models. In addition, in recent years, novel CDK modulators have been developed, providing more avenues for achieving selectivity. These cases were also included. We hope that these efforts will assist in the development of novel CDK drugs.
Collapse
Affiliation(s)
- Yaoguang Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Wenwu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing, 100084, People's Republic of China
| | - Changhao Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China
| | - Xiaoyu Shi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qingchun Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| | - Jingming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Anhua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
3
|
Guo Z, Duan Y, Sun K, Zheng T, Liu J, Xu S, Xu J. Advances in SHP2 tunnel allosteric inhibitors and bifunctional molecules. Eur J Med Chem 2024; 275:116579. [PMID: 38889611 DOI: 10.1016/j.ejmech.2024.116579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
SHP2 is a non-receptor tyrosine phosphatase encoded by PTPN11, which performs the functions of regulating cell proliferation, differentiation, apoptosis, and survival through removing tyrosine phosphorylation and modulating various signaling pathways. The overexpression of SHP2 or its mutations is related to developmental diseases and several cancers. Numerous allosteric inhibitors with striking inhibitory potency against SHP2 allosteric pockets have recently been identified, and several SHP2 tunnel allosteric inhibitors have been applied in clinical trials to treat cancers. However, based on clinical results, the efficacy of single-agent treatments has been proven to be suboptimal. Most clinical trials involving SHP2 inhibitors have adopted drug combination strategies. This review briefly discusses the research progress on SHP2 allosteric inhibitors and pathway-dependent drug combination strategies for SHP2 in cancer therapy. In addition, we summarize the current bifunctional molecules of SHP2 and elaborate on the design and structural optimization strategies of these bifunctional molecules in detail, offering further direction for the research on novel SHP2 inhibitors.
Collapse
Affiliation(s)
- Zhichao Guo
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yiping Duan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Kai Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Tiandong Zheng
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Jie Liu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| | - Shengtao Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| | - Jinyi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
4
|
Sánchez-Mora A, Briñez E, Pico A, González-Sebastián L, Antonio Cruz-Navarrro J, Arenaza-Corona A, Puentes-Díaz N, Alí-Torres J, Reyes-Márquez V, Morales-Morales D. Synthesis of Para-Acetylated Functionalized Ni(II)-POCOP Pincer Complexes and Their Cytotoxicity Evaluation Against Human Cancer Cell Lines. Chem Biodivers 2024; 21:e202400995. [PMID: 39001660 DOI: 10.1002/cbdv.202400995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024]
Abstract
A series of three Ni(II)-POCOP complexes para-functionalized with an acetoxyl fragment were synthesized. All complexes (2 a-c) were fully characterized through standard analytical techniques. The molecular structure of complex 2 b was unambiguously determined by single-crystal X-ray diffraction, revealing that the metal center is situated in a slightly distorted square-planar environment. Additionally, the acetoxy fragment at the para-position of the phenyl ring was found to be present. The in vitro cytotoxic activity of all complexes was assessed on six human cancer cell lines. Notably, complex 2 b exhibited selective activity against K-562 (chronic myelogenous leukemia) and MCF-7 (mammary adenocarcinoma) with IC50 values of 7.32±0.60 μM and 14.36±0.02 μM, respectively. Furthermore, this compound showed negligible activity on the healthy cell line COS-7, highlighting the potential therapeutic application of 2 b. The cytotoxic evaluations were further complemented with molecular docking calculations to explore the potential biological targets of complex 2 b, revealing interactions with cluster differentiation protein 1a (CD1 A, PDB: 1xz0) for K-562 and with the progesterone receptor for MCF-7.
Collapse
Affiliation(s)
- Arturo Sánchez-Mora
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - Edwin Briñez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - Alejandro Pico
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - Lucero González-Sebastián
- Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Ciudad de México, C.P. 09340, México
| | - J Antonio Cruz-Navarrro
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - Antonino Arenaza-Corona
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - Nicolás Puentes-Díaz
- Departamento de Química, Universidad Nacional de Colombia -Sede Bogotá, Bogotá DC, Colombia
| | - Jorge Alí-Torres
- Departamento de Química, Universidad Nacional de Colombia -Sede Bogotá, Bogotá DC, Colombia
| | - Viviana Reyes-Márquez
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Luis Encinas y Rosales s/n, Hermosillo, Sonora, C.P. 83000, Mexico
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| |
Collapse
|
5
|
Rani N, Kumar P. Exploring Natural Compounds as Potential CDK4 Inhibitors for Therapeutic Intervention in Neurodegenerative Diseases through Computational Analysis. Mol Biotechnol 2024:10.1007/s12033-024-01258-8. [PMID: 39207668 DOI: 10.1007/s12033-024-01258-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024]
Abstract
CDK4 is a member of the serine-threonine kinase family, which has been found to be overexpressed in a plethora of studies related to neurodegenerative diseases. CDK4 is one of the most validated therapeutic targets for neurodegenerative diseases. Hence, the discovery of potent inhibitors of CDK4 is a promising candidate in the drug discovery field. Firstly, the reference drug Palbociclib was identified from the available literature as a potential candidate against target CDK4. In the present study, the Collection of Open Natural Products (COCONUT) database was accessed for determining potential CDK4 inhibitors using computational approaches based on the Tanimoto algorithm for similarity with the target drug, i.e., Palbociclib. The potential candidates were analyzed using SWISSADME, and the best candidates were filtered based on Lipinski's Rule of 5, Brenk, blood-brain barrier permeability, and Pains parameter. Further, the molecular docking protocol was accessed for the filtered compounds to anticipate the CDK4-ligand binding score, which was validated by the fastDRH web-based server. Based on the best docking score so obtained, the best four natural compounds were chosen for further molecular dynamic simulation to assess their stability with CDK4. In this study, two natural products, with COCONUT Database compound ID-CNP0396493 and CNP0070947, have been identified as the most suitable candidates for neuroprotection.
Collapse
Affiliation(s)
- Neetu Rani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, 110042, India.
| |
Collapse
|
6
|
Zhang W, Liu Y, Jang H, Nussinov R. Slower CDK4 and faster CDK2 activation in the cell cycle. Structure 2024; 32:1269-1280.e2. [PMID: 38703777 PMCID: PMC11316634 DOI: 10.1016/j.str.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/08/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
Dysregulation of cyclin-dependent kinases (CDKs) impacts cell proliferation, driving cancer. Here, we ask why the cyclin-D/CDK4 complex governs cell cycle progression through the longer G1 phase, whereas cyclin-E/CDK2 regulates the shorter G1/S phase transition. We consider available experimental cellular and structural data including cyclin-E's high-level burst, sustained duration of elevated cyclin-D expression, and explicit solvent molecular dynamics simulations of the inactive monomeric and complexed states, to establish the conformational tendencies along the landscape of the distinct activation scenarios of cyclin-D/CDK4 and cyclin-E/CDK2 in the G1 phase and G1/S transition of the cell cycle, respectively. These lead us to propose slower activation of cyclin-D/CDK4 and rapid activation of cyclin-E/CDK2. We provide the mechanisms through which this occurs, offering innovative CDK4 drug design considerations. Our insightful mechanistic work addresses a compelling cell cycle regulation question and illuminates the distinct activation speeds between the G1 and the G1/S phases, which are crucial for function.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
7
|
Xu Z, Liu Y, Song B, Ren B, Xu X, Lin R, Zhu X, Chen C, Yang S, Zhu Y, Jiang W, Li W, Xia Y, Hu L, Chen S, Chan CC, Li J, Zhang X, Yang L, Tian X, Ding CZ. Discovery and preclinical evaluations of TQB3616, a novel CDK4-biased inhibitor. Bioorg Med Chem Lett 2024; 107:129769. [PMID: 38670537 DOI: 10.1016/j.bmcl.2024.129769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Among small-molecule CDK4/6 inhibitors (palbociclib, ribociclib, and abemaciclib) approved for metastatic breast cancers, abemaciclib has a more tolerable adverse effects in clinic. This is attributable to preferential inhibition of CDK4 over CDK6. In our search for a biased CDK4 inhibitor, we discovered a series of pyrimidine-indazole inhibitors. SAR studies led us to TQB3616 as a preferential CDK4 inhibitor. TQB3616 exhibited improvements in both enzymatic and cellular proliferation inhibitory potency when tested side-by-side with the FDA approved palbociclib and abemaciclib. TQB3616 also possessed favorable PK profile in multiple species. These differentiated properties, together with excellent GLP safety profile warranted TQB3616 moving to clinic. TQB3616 entered into clinical development in 2019 and currently in phase III clinical trials (NCT05375461, NCT05365178).
Collapse
Affiliation(s)
- Zhaobing Xu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Yingchun Liu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Baohui Song
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Bingjie Ren
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Xiongbin Xu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Ruibin Lin
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Xiaoyu Zhu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Chen Chen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Shuqun Yang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Yusong Zhu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Wen Jiang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Wei Li
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Yuanfeng Xia
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Lihong Hu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Shuhui Chen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Chi-Chung Chan
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Jian Li
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China
| | - Xiquan Zhang
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No. 1099 Fuying Rd, Jiangning District, Nanjing, Jiangsu Province 211122, PR China
| | - Ling Yang
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No. 1099 Fuying Rd, Jiangning District, Nanjing, Jiangsu Province 211122, PR China
| | - Xin Tian
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No. 1099 Fuying Rd, Jiangning District, Nanjing, Jiangsu Province 211122, PR China
| | - Charles Z Ding
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, PR China.
| |
Collapse
|
8
|
Burley SK, Wu-Wu A, Dutta S, Ganesan S, Zheng SXF. Impact of structural biology and the protein data bank on us fda new drug approvals of low molecular weight antineoplastic agents 2019-2023. Oncogene 2024; 43:2229-2243. [PMID: 38886570 PMCID: PMC11245395 DOI: 10.1038/s41388-024-03077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Open access to three-dimensional atomic-level biostructure information from the Protein Data Bank (PDB) facilitated discovery/development of 100% of the 34 new low molecular weight, protein-targeted, antineoplastic agents approved by the US FDA 2019-2023. Analyses of PDB holdings, the scientific literature, and related documents for each drug-target combination revealed that the impact of structural biologists and public-domain 3D biostructure data was broad and substantial, ranging from understanding target biology (100% of all drug targets), to identifying a given target as likely druggable (100% of all targets), to structure-guided drug discovery (>80% of all new small-molecule drugs, made up of 50% confirmed and >30% probable cases). In addition to aggregate impact assessments, illustrative case studies are presented for six first-in-class small-molecule anti-cancer drugs, including a selective inhibitor of nuclear export targeting Exportin 1 (selinexor, Xpovio), an ATP-competitive CSF-1R receptor tyrosine kinase inhibitor (pexidartinib,Turalia), a non-ATP-competitive inhibitor of the BCR-Abl fusion protein targeting the myristoyl binding pocket within the kinase catalytic domain of Abl (asciminib, Scemblix), a covalently-acting G12C KRAS inhibitor (sotorasib, Lumakras or Lumykras), an EZH2 methyltransferase inhibitor (tazemostat, Tazverik), and an agent targeting the basic-Helix-Loop-Helix transcription factor HIF-2α (belzutifan, Welireg).
Collapse
Affiliation(s)
- Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| | - Amy Wu-Wu
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shuchismita Dutta
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Steven X F Zheng
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| |
Collapse
|
9
|
Tang W, Shen T, Chen Z. In silico discovery of potential PPI inhibitors for anti-lung cancer activity by targeting the CCND1-CDK4 complex via the P21 inhibition mechanism. Front Chem 2024; 12:1404573. [PMID: 38957406 PMCID: PMC11217521 DOI: 10.3389/fchem.2024.1404573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Non-Small Cell Lung Cancer (NSCLC) is a prevalent and deadly form of lung cancer worldwide with a low 5-year survival rate. Current treatments have limitations, particularly for advanced-stage patients. P21, a protein that inhibits the CCND1-CDK4 complex, plays a crucial role in cell proliferation. Computer-Aided Drug Design (CADD) based on pharmacophores can screen and design PPI inhibitors targeting the CCND1-CDK4 complex. By analyzing known inhibitors, key pharmacophores are identified, and computational methods are used to screen potential PPI inhibitors. Molecular docking, pharmacophore matching, and structure-activity relationship studies optimize the inhibitors. This approach accelerates the discovery of CCND1-CDK4 PPI inhibitors for NSCLC treatment. Molecular dynamics simulations of CCND1-CDK4-P21 and CCND1-CDK4 complexes showed stable behavior, comprehensive sampling, and P21's impact on complex stability and hydrogen bond formation. A pharmacophore model facilitated virtual screening, identifying compounds with favorable binding affinities. Further simulations confirmed the stability and interactions of selected compounds, including 513457. This study demonstrates the potential of CADD in optimizing PPI inhibitors targeting the CCND1-CDK4 complex for NSCLC treatment. Extended simulations and experimental validations are necessary to assess their efficacy and safety.
Collapse
Affiliation(s)
| | | | - Zhoumiao Chen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Zhang W, Liu Y, Jang H, Nussinov R. CDK2 and CDK4: Cell Cycle Functions Evolve Distinct, Catalysis-Competent Conformations, Offering Drug Targets. JACS AU 2024; 4:1911-1927. [PMID: 38818077 PMCID: PMC11134382 DOI: 10.1021/jacsau.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Cyclin-dependent kinases (CDKs), particularly CDK4 and CDK2, are crucial for cell cycle progression from the Gap 1 (G1) to the Synthesis (S) phase by phosphorylating targets such as the Retinoblastoma Protein (Rb). CDK4, paired with cyclin-D, operates in the long G1 phase, while CDK2 with cyclin-E, manages the brief G1-to-S transition, enabling DNA replication. Aberrant CDK signaling leads to uncontrolled cell proliferation, which is a hallmark of cancer. Exactly how they accomplish their catalytic phosphorylation actions with distinct efficiencies poses the fundamental, albeit overlooked question. Here we combined available experimental data and modeling of the active complexes to establish their conformational functional landscapes to explain how the two cyclin/CDK complexes differentially populate their catalytically competent states for cell cycle progression. Our premise is that CDK catalytic efficiencies could be more important for cell cycle progression than the cyclin-CDK biochemical binding specificity and that efficiency is likely the prime determinant of cell cycle progression. We observe that CDK4 is more dynamic than CDK2 in the ATP binding site, the regulatory spine, and the interaction with its cyclin partner. The N-terminus of cyclin-D acts as an allosteric regulator of the activation loop and the ATP-binding site in CDK4. Integrated with a suite of experimental data, we suggest that the CDK4 complex is less capable of remaining in the active catalytically competent conformation, and may have a lower catalytic efficiency than CDK2, befitting their cell cycle time scales, and point to critical residues and motifs that drive their differences. Our mechanistic landscape may apply broadly to kinases, and we propose two drug design strategies: (i) allosteric Inhibition by conformational stabilization for targeting allosteric CDK4 regulation by cyclin-D, and (ii) dynamic entropy-optimized targeting which leverages the dynamic, entropic aspects of CDK4 to optimize drug binding efficacy.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yonglan Liu
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department
of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
11
|
Yao Y, Zhang Q, Li Z, Zhang H. MDM2: current research status and prospects of tumor treatment. Cancer Cell Int 2024; 24:170. [PMID: 38741108 DOI: 10.1186/s12935-024-03356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Mousedouble minute 2 (MDM2) is one of the molecules activated by p53 and plays an important role in the regulation of p53. MDM2 is generally believed to function as a negative regulator of p53 by facilitating its ubiquitination and subsequent degradation. Consequently, blocked p53 activity often fails in damaged cells to undergo cell cycle arrest or apoptosis. Given that around 50% of human cancers involve the inactivation of p53 through genetic mutations, and directly targeting p53 through drug development has limited feasibility, targeting molecular regulation related to p53 has great potential and has become a research hotspot. For example, developing drugs that target the interaction between p53 and MDM2. Such drugs aim to reactivate p53 by targeting either MDM2 binding or p53 phosphorylation. Researchers have identified various compounds that can serve as inhibitors, either by directly binding to MDM2 or by modifying p53 through phosphorylation. Furthermore, a significant correlation exists between the expression of MDM2 in tumors and the effectiveness of immunotherapy, predominantly in the context of immune checkpoint inhibition. This review presents a comprehensive overview of the molecular characteristics of MDM2 and the current state of research on MDM2-targeting inhibitors. It includes a review of the impact of MDM2 targeting on the efficacy of immunotherapy, providing guidance and direction for the development of drugs targeting the p53-MDM2 interaction and optimization of immunotherapy.
Collapse
Affiliation(s)
- Yumei Yao
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China
| | - Qian Zhang
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China
| | - Zhi Li
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China
| | - Hushan Zhang
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China.
- Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, 650302, People's Republic of China.
| |
Collapse
|
12
|
Mao Y, Wu C, Wang X, Zhang F, Qi X, Li X, Li P, Tang B. Fluorescence imaging sheds light on the immune evasion mechanisms of hepatic stellate cells mediated by superoxide anion. Commun Biol 2024; 7:558. [PMID: 38730013 PMCID: PMC11087649 DOI: 10.1038/s42003-024-06245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Whether and how the reactive oxygen species generated by hepatic stellate cells (HSCs) promote immune evasion of hepatocellular carcinoma (HCC) remains mysterious. Therefore, investigating the function of superoxide anion (O2•-), the firstly generated reactive oxygen species, during the immune evasion become necessary. In this work, we establish a novel in situ imaging method for visualization of O2•- changes in HSCs based on a new two-photon fluorescence probe TPH. TPH comprises recognition group for O2•- and HSCs targeting peptides. We observe that O2•- in HSCs gradually rose, impairing the infiltration of CD8+ T cells in HCC mice. Further studies reveal that the cyclin-dependent kinase 4 is deactivated by O2•-, and then cause the up-regulation of PD-L1. Our work provides molecular insights into HSC-mediated immune evasion of HCC, which may represent potential targets for HCC immunotherapy.
Collapse
Affiliation(s)
- Yuantao Mao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Chuanchen Wu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Fanghui Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xinru Qi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xia Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China.
- Laoshan Laboratory, 168 Wenhai Middle Rd, Aoshanwei Jimo, Qingdao, 266237, Shandong, China.
| |
Collapse
|
13
|
Paternot S, Raspé E, Meiller C, Tarabichi M, Assié J, Libert F, Remmelink M, Bisteau X, Pauwels P, Blum Y, Le Stang N, Tabone‐Eglinger S, Galateau‐Sallé F, Blanquart C, Van Meerbeeck JP, Berghmans T, Jean D, Roger PP. Preclinical evaluation of CDK4 phosphorylation predicts high sensitivity of pleural mesotheliomas to CDK4/6 inhibition. Mol Oncol 2024; 18:866-894. [PMID: 36453028 PMCID: PMC10994244 DOI: 10.1002/1878-0261.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with limited therapeutic options. We evaluated the impact of CDK4/6 inhibition by palbociclib in 28 MPM cell lines including 19 patient-derived ones, using various approaches including RNA-sequencing. Palbociclib strongly and durably inhibited the proliferation of 23 cell lines, indicating a unique sensitivity of MPM to CDK4/6 inhibition. When observed, insensitivity to palbociclib was mostly explained by the lack of active T172-phosphorylated CDK4. This was associated with high p16INK4A (CDKN2A) levels that accompany RB1 defects or inactivation, or (unexpectedly) CCNE1 overexpression in the presence of wild-type RB1. Prolonged palbociclib treatment irreversibly inhibited proliferation despite re-induction of cell cycle genes upon drug washout. A senescence-associated secretory phenotype including various potentially immunogenic components was irreversibly induced. Phosphorylated CDK4 was detected in 80% of 47 MPMs indicating their sensitivity to CDK4/6 inhibitors. Its absence in some highly proliferative MPMs was linked to very high p16 (CDKN2A) expression, which was also observed in public datasets in tumours from short-survival patients. Our study supports the evaluation of CDK4/6 inhibitors for MPM treatment, in monotherapy or combination therapy.
Collapse
Affiliation(s)
- Sabine Paternot
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Eric Raspé
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Clément Meiller
- Université de ParisCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Functional Genomics of Solid TumorsFrance
| | - Maxime Tarabichi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Jean‐Baptiste Assié
- Université de ParisCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Functional Genomics of Solid TumorsFrance
- CEpiA (Clinical Epidemiology and Ageing), EA 7376‐IMRBUniversity Paris‐Est CréteilFrance
- GRC OncoThoParisEst, Service de Pneumologie, CHI Créteil, UPECCréteilFrance
| | - Frederick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
- BRIGHTCore, ULBBrusselsBelgium
| | - Myriam Remmelink
- Department of Pathology, Erasme HospitalUniversité Libre de BruxellesBelgium
| | - Xavier Bisteau
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE)Integrated Personalized and Precision Oncology Network (IPPON)WilrijkBelgium
- Department of PathologyAntwerp University HospitalEdegemBelgium
| | - Yuna Blum
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le CancerParisFrance
- Present address:
IGDR UMR 6290, CNRS, Université de Rennes 1France
| | - Nolwenn Le Stang
- MESOBANK, Department of Biopathology, Centre Léon BérardLyonFrance
| | | | - Françoise Galateau‐Sallé
- MESOBANK, Department of Biopathology, Centre Léon BérardLyonFrance
- Cancer Research Center INSERM U1052‐CNRS 5286RLyonFrance
| | | | | | - Thierry Berghmans
- Clinic of Thoracic OncologyInstitut Jules Bordet, Université Libre de BruxellesBrusselsBelgium
| | - Didier Jean
- Université de ParisCentre de Recherche des Cordeliers, Inserm, Sorbonne Université, Functional Genomics of Solid TumorsFrance
| | - Pierre P. Roger
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)Université Libre de BruxellesBelgium
- ULB‐Cancer Research Center (U‐CRC)Université Libre de BruxellesBelgium
| |
Collapse
|
14
|
Meller A, Kelly D, Smith LG, Bowman GR. Toward physics-based precision medicine: Exploiting protein dynamics to design new therapeutics and interpret variants. Protein Sci 2024; 33:e4902. [PMID: 38358129 PMCID: PMC10868452 DOI: 10.1002/pro.4902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
The goal of precision medicine is to utilize our knowledge of the molecular causes of disease to better diagnose and treat patients. However, there is a substantial mismatch between the small number of food and drug administration (FDA)-approved drugs and annotated coding variants compared to the needs of precision medicine. This review introduces the concept of physics-based precision medicine, a scalable framework that promises to improve our understanding of sequence-function relationships and accelerate drug discovery. We show that accounting for the ensemble of structures a protein adopts in solution with computer simulations overcomes many of the limitations imposed by assuming a single protein structure. We highlight studies of protein dynamics and recent methods for the analysis of structural ensembles. These studies demonstrate that differences in conformational distributions predict functional differences within protein families and between variants. Thanks to new computational tools that are providing unprecedented access to protein structural ensembles, this insight may enable accurate predictions of variant pathogenicity for entire libraries of variants. We further show that explicitly accounting for protein ensembles, with methods like alchemical free energy calculations or docking to Markov state models, can uncover novel lead compounds. To conclude, we demonstrate that cryptic pockets, or cavities absent in experimental structures, provide an avenue to target proteins that are currently considered undruggable. Taken together, our review provides a roadmap for the field of protein science to accelerate precision medicine.
Collapse
Affiliation(s)
- Artur Meller
- Department of Biochemistry and Molecular BiophysicsWashington University in St. LouisSt. LouisMissouriUSA
- Medical Scientist Training ProgramWashington University in St. LouisSt. LouisMissouriUSA
- Departments of Biochemistry & Biophysics and BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Devin Kelly
- Departments of Biochemistry & Biophysics and BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Louis G. Smith
- Departments of Biochemistry & Biophysics and BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Gregory R. Bowman
- Departments of Biochemistry & Biophysics and BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
15
|
Khan M, Singh K, Khan S, Ahmad B, Khushal A, Yingning S. Computational exploration of allosteric inhibitors targeting CDK4/CDK6 proteins: a promising approach for multi-target drug development. J Biomol Struct Dyn 2024:1-19. [PMID: 38174658 DOI: 10.1080/07391102.2023.2300121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Cyclin-dependent kinases (CDKs) play a pivotal role in orchestrating the intricate regulation of the cell cycle, a fundamental process governing cell growth and division. In particular, CDK4 and CDK6 are critical for the transition from the G1 phase to the S phase, where Deoxyribonucleic acid (DNA) replication occurs, and their dysregulation is linked to various diseases, notably cancer. While ATP-binding site inhibitors for CDKs are well-documented, this study focuses on uncovering allosteric inhibitors, providing a fresh perspective on CDK inhibition. Computational techniques were employed in this investigation, utilizing Molecular Operating Environment (MOE) for virtual screening of a drug-like compound library. Moreover, the stability of the most promising binding inhibitors was assessed through Molecular Dynamics (MD) simulations and MMPBSA/MMGBSA analyses. The outcome reveals that three inhibitors (C1, C2, and C3) exhibited the strongest binding affinity for CDK4/CDK6, as corroborated by docking and simulation analyses. The computed binding energies ranged from -6.1 to -7.6 kcal/mol, underscoring the potency of these allosteric inhibitors. Notably, this study identifies key residues (PHE31, HIS95, HIS100, VAL101, ASP102, ASP104, and THR107) that play pivotal roles in mediating inhibitor binding within the allosteric sites. Among the findings, the C1-CDK4 complex and C2-CDK6 complex emerge as particularly promising inhibitors, exhibiting high binding energies, favorable interaction patterns, and sustained presence within the active site. This study contributes significantly to the pursuit of multi-target drugs against CDK4/CDK6 proteins, with potential implications for the development of innovative therapies across various disorders, including cancer and other cell cycle-related conditions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahmood Khan
- College of Life Sciences and agricultural forestry, Qiqihar University, Qiqihar, China
| | - Kamaljot Singh
- Department of Chemistry, faculty of Applied Sciences, Sri Guru Granth Sahib World University, Punjab, India
| | - Sara Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Basharat Ahmad
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Aneela Khushal
- Department of Chemistry, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Sun Yingning
- College of Life Sciences and agricultural forestry, Qiqihar University, Qiqihar, China
| |
Collapse
|
16
|
Schmitz M, Kaltheuner IH, Anand K, Düster R, Moecking J, Monastyrskyi A, Duckett DR, Roush WR, Geyer M. The reversible inhibitor SR-4835 binds Cdk12/cyclin K in a noncanonical G-loop conformation. J Biol Chem 2024; 300:105501. [PMID: 38016516 PMCID: PMC10767194 DOI: 10.1016/j.jbc.2023.105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023] Open
Abstract
Inhibition of cyclin-dependent kinases (CDKs) has evolved as an emerging anticancer strategy. In addition to the cell cycle-regulating CDKs, the transcriptional kinases Cdk12 and Cdk13 have become the focus of interest as they mediate a variety of functions, including the transition from transcription initiation to elongation and termination, precursor mRNA splicing, and intronic polyadenylation. Here, we determine the crystal structure of the small molecular inhibitor SR-4835 bound to the Cdk12/cyclin K complex at 2.68 Å resolution. The compound's benzimidazole moiety is embedded in a unique hydrogen bond network mediated by the kinase hinge region with flanking hydroxy groups of the Y815 and D819 side chains. Whereas the SR-4835 head group targets the adenine-binding pocket, the kinase's glycine-rich loop is shifted down toward the activation loop. Additionally, the αC-helix adopts an inward conformation, and the phosphorylated T-loop threonine interacts with all three canonical arginines, a hallmark of CDK activation that is altered in Cdk12 and Cdk13. Dose-response inhibition measurements with recombinant CMGC kinases show that SR-4835 is highly specific for Cdk12 and Cdk13 following a 10-fold lower potency for Cdk10. Whereas other CDK-targeting compounds exhibit tighter binding affinities and higher potencies for kinase inhibition, SR-4835 can be considered a selective transcription elongation antagonist. Our results provide the basis for a rational improvement of SR-4835 toward Cdk12 inhibition and a gain in selectivity over other transcription regulating CDKs.
Collapse
Affiliation(s)
| | | | - Kanchan Anand
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Robert Düster
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Jonas Moecking
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | | | - Derek R Duckett
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida, USA
| | - William R Roush
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, USA
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
17
|
Farghaly TA, Pashameah RA, Bayazeed A, Al-Soliemy AM, Alsaedi AMR, Harras MF. Design and Synthesis of New bis-oxindole and Spiro(triazole-oxindole) as CDK4 Inhibitors with Potent Anti-breast Cancer Activity. Med Chem 2024; 20:63-77. [PMID: 37723960 DOI: 10.2174/1573406419666230810124855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/18/2023] [Accepted: 07/05/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Since CDKs have been demonstrated to be overexpressed in a wide spectrum of human malignancies, their inhibition has been cited as an effective technique for anticancer drug development. METHODS In this context, new bis-oxindole/spiro-triazole-oxindole anti-breast cancer drugs with potential CDK4 inhibitory effects were produced in this work. The novel series of bis-oxindole/spirotriazole- oxindole were synthesized from the reaction of bis-oxindole with the aniline derivatives then followed by 1,3-dipolar cycloaddition of hydrazonoyl chloride. RESULTS The structure of these bis-oxindole/spiro-triazole-oxindole series was proven based on their spectral analyses. Most bis-oxindole and bis-spiro-triazole-oxindole compounds effectively inhibited the growth of MCF-7 (IC50 = 2.81-17.61 μM) and MDA-MB-231 (IC50 = 3.23-7.98 μM) breast cancer cell lines with low inhibitory activity against normal WI-38 cells. While the reference doxorubicin showed IC50 values of 7.43 μM against MCF-7 and 5.71 μM against the MDA-MB-231 cell line. Additionally, compounds 3b, 3c, 6b, and 6d revealed significant anti-CDK4 activity (IC50 = 0.157- 0.618 μM) compared to palbociclib (IC50 = 0.071 μM). Subsequent mechanistic investigations demonstrated that 3c was able to trigger tumor cell death through the induction of apoptosis. Moreover, it stimulated cancer cell cycle arrest in the G1 phase. Furthermore, western blotting disclosed that the 3c-induced cell cycle arrest may be mediated through p21 upregulation. CONCLUSION According to all of the findings, bis-oxindole 3c shows promise as a cancer treatment targeting CDK4.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Rami A Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Abrar Bayazeed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Amerah M Al-Soliemy
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Amani M R Alsaedi
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Marwa F Harras
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
18
|
Knight H, Abis G, Kaur M, Green HL, Krasemann S, Hartmann K, Lynham S, Clark J, Zhao L, Ruppert C, Weiss A, Schermuly RT, Eaton P, Rudyk O. Cyclin D-CDK4 Disulfide Bond Attenuates Pulmonary Vascular Cell Proliferation. Circ Res 2023; 133:966-988. [PMID: 37955182 PMCID: PMC10699508 DOI: 10.1161/circresaha.122.321836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a chronic vascular disease characterized, among other abnormalities, by hyperproliferative smooth muscle cells and a perturbed cellular redox and metabolic balance. Oxidants induce cell cycle arrest to halt proliferation; however, little is known about the redox-regulated effector proteins that mediate these processes. Here, we report a novel kinase-inhibitory disulfide bond in cyclin D-CDK4 (cyclin-dependent kinase 4) and investigate its role in cell proliferation and PH. METHODS Oxidative modifications of cyclin D-CDK4 were detected in human pulmonary arterial smooth muscle cells and human pulmonary arterial endothelial cells. Site-directed mutagenesis, tandem mass-spectrometry, cell-based experiments, in vitro kinase activity assays, in silico structural modeling, and a novel redox-dead constitutive knock-in mouse were utilized to investigate the nature and definitively establish the importance of CDK4 cysteine modification in pulmonary vascular cell proliferation. Furthermore, the cyclin D-CDK4 oxidation was assessed in vivo in the pulmonary arteries and isolated human pulmonary arterial smooth muscle cells of patients with pulmonary arterial hypertension and in 3 preclinical models of PH. RESULTS Cyclin D-CDK4 forms a reversible oxidant-induced heterodimeric disulfide dimer between C7/8 and C135, respectively, in cells in vitro and in pulmonary arteries in vivo to inhibit cyclin D-CDK4 kinase activity, decrease Rb (retinoblastoma) protein phosphorylation, and induce cell cycle arrest. Mutation of CDK4 C135 causes a kinase-impaired phenotype, which decreases cell proliferation rate and alleviates disease phenotype in an experimental mouse PH model, suggesting this cysteine is indispensable for cyclin D-CDK4 kinase activity. Pulmonary arteries and human pulmonary arterial smooth muscle cells from patients with pulmonary arterial hypertension display a decreased level of CDK4 disulfide, consistent with CDK4 being hyperactive in human pulmonary arterial hypertension. Furthermore, auranofin treatment, which induces the cyclin D-CDK4 disulfide, attenuates disease severity in experimental PH models by mitigating pulmonary vascular remodeling. CONCLUSIONS A novel disulfide bond in cyclin D-CDK4 acts as a rapid switch to inhibit kinase activity and halt cell proliferation. This oxidative modification forms at a critical cysteine residue, which is unique to CDK4, offering the potential for the design of a selective covalent inhibitor predicted to be beneficial in PH.
Collapse
Affiliation(s)
- Hannah Knight
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Giancarlo Abis
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, United Kingdom (G.A.)
| | - Manpreet Kaur
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Hannah L.H. Green
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Germany (S.K., K.H.)
| | - Kristin Hartmann
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Germany (S.K., K.H.)
| | - Steven Lynham
- Proteomics Core Facility, Centre of Excellence for Mass Spectrometry (S.L.), King’s College London, United Kingdom
| | - James Clark
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| | - Lan Zhao
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (L.Z.)
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center Giessen Biobank, Justus-Liebig-University Giessen, Germany (C.R.)
| | - Astrid Weiss
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Member of the German Center for Lung Research (DZL), Germany (A.W., R.T.S.)
| | - Ralph T. Schermuly
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Member of the German Center for Lung Research (DZL), Germany (A.W., R.T.S.)
| | - Philip Eaton
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (P.E.)
| | - Olena Rudyk
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence (H.K., M.K., H.L.H.G., J.C., O.R.), King’s College London, United Kingdom
| |
Collapse
|
19
|
Duan N, Hu X, Qiu H, Zhou R, Li Y, Lu W, Zhu Y, Shen S, Wu W, Yang F, Liu N. Targeting the E2F1/Rb/HDAC1 axis with the small molecule HR488B effectively inhibits colorectal cancer growth. Cell Death Dis 2023; 14:801. [PMID: 38062013 PMCID: PMC10703885 DOI: 10.1038/s41419-023-06205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 12/18/2023]
Abstract
Colorectal cancer (CRC), the third most common cancer worldwide, remains highly lethal as the disease only becomes symptomatic at an advanced stage. Growing evidence suggests that histone deacetylases (HDACs), a group of epigenetic enzymes overexpressed in precancerous lesions of CRC, may represent promising molecular targets for CRC treatment. Histone deacetylase inhibitors (HDACis) have gradually become powerful anti-cancer agents targeting epigenetic modulation and have been widely used in the clinical treatment of hematologic malignancies, while only few studies on the benefit of HDACis in the treatment of CRC. In the present study, we designed a series of small-molecule Thiazole-based HDACis, among which HR488B bound to HDAC1 with a high affinity and exerted effective anti-CRC activity both in vitro and in vivo. Moreover, we revealed that HR488B specifically suppressed the growth of CRC cells by inducing cell cycle G0/G1 arrest and apoptosis via causing mitochondrial dysfunction, reactive oxygen species (ROS) generation, and DNA damage accumulation. Importantly, we noticed that HR488B significantly decreased the expression of the E2F transcription factor 1 (E2F1), which was crucial for the inhibitory effect of HR488B on CRC. Mechanistically, HR488B obviously decreased the phosphorylation level of the retinoblastoma protein (Rb), and subsequently prevented the release of E2F1 from the E2F1/Rb/HDAC1 complex, which ultimately suppressed the growth of CRC cells. Overall, our study suggests that HR488B, a novel and efficient HDAC1 inhibitor, may be a potential candidate for CRC therapy in the future. Furthermore, targeting the E2F1/Rb/HDAC1 axis with HR488B provides a promising therapeutic avenue for CRC.
Collapse
Affiliation(s)
- Namin Duan
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xiaohui Hu
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Huiran Qiu
- School of Biological Science and Technology, University of Jinan, Jinan, P.R. China
| | - Rui Zhou
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yuru Li
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wenxia Lu
- School of Biological Science and Technology, University of Jinan, Jinan, P.R. China
| | - Yamin Zhu
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Shuang Shen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenhui Wu
- Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Feifei Yang
- School of Biological Science and Technology, University of Jinan, Jinan, P.R. China.
| | - Ning Liu
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
- Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai, China.
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA.
| |
Collapse
|
20
|
Pita JM, Raspé E, Coulonval K, Decaussin-Petrucci M, Tarabichi M, Dom G, Libert F, Craciun L, Andry G, Wicquart L, Leteurtre E, Trésallet C, Marlow LA, Copland JA, Durante C, Maenhaut C, Cavaco BM, Dumont JE, Costante G, Roger PP. CDK4 phosphorylation status and rational use for combining CDK4/6 and BRAF/MEK inhibition in advanced thyroid carcinomas. Front Endocrinol (Lausanne) 2023; 14:1247542. [PMID: 37964967 PMCID: PMC10641312 DOI: 10.3389/fendo.2023.1247542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Background CDK4/6 inhibitors (CDK4/6i) have been established as standard treatment against advanced Estrogen Receptor-positive breast cancers. These drugs are being tested against several cancers, including in combinations with other therapies. We identified the T172-phosphorylation of CDK4 as the step determining its activity, retinoblastoma protein (RB) inactivation, cell cycle commitment and sensitivity to CDK4/6i. Poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinomas, the latter considered one of the most lethal human malignancies, represent major clinical challenges. Several molecular evidence suggest that CDK4/6i could be considered for treating these advanced thyroid cancers. Methods We analyzed by two-dimensional gel electrophoresis the CDK4 modification profile and the presence of T172-phosphorylated CDK4 in a collection of 98 fresh-frozen tissues and in 21 cell lines. A sub-cohort of samples was characterized by RNA sequencing and immunohistochemistry. Sensitivity to CDK4/6i (palbociclib and abemaciclib) was assessed by BrdU incorporation/viability assays. Treatment of cell lines with CDK4/6i and combination with BRAF/MEK inhibitors (dabrafenib/trametinib) was comprehensively evaluated by western blot, characterization of immunoprecipitated CDK4 and CDK2 complexes and clonogenic assays. Results CDK4 phosphorylation was detected in all well-differentiated thyroid carcinomas (n=29), 19/20 PDTC, 16/23 ATC and 18/21 thyroid cancer cell lines, including 11 ATC-derived ones. Tumors and cell lines without phosphorylated CDK4 presented very high p16CDKN2A levels, which were associated with proliferative activity. Absence of CDK4 phosphorylation in cell lines was associated with CDK4/6i insensitivity. RB1 defects (the primary cause of intrinsic CDK4/6i resistance) were not found in 5/7 tumors without detectable phosphorylated CDK4. A previously developed 11-gene expression signature identified the likely unresponsive tumors, lacking CDK4 phosphorylation. In cell lines, palbociclib synergized with dabrafenib/trametinib by completely and permanently arresting proliferation. These combinations prevented resistance mechanisms induced by palbociclib, most notably Cyclin E1-CDK2 activation and a paradoxical stabilization of phosphorylated CDK4 complexes. Conclusion Our study supports further clinical evaluation of CDK4/6i and their combination with anti-BRAF/MEK therapies as a novel effective treatment against advanced thyroid tumors. Moreover, the complementary use of our 11 genes predictor with p16/KI67 evaluation could represent a prompt tool for recognizing the intrinsically CDK4/6i insensitive patients, who are potentially better candidates to immediate chemotherapy.
Collapse
Affiliation(s)
- Jaime M. Pita
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Eric Raspé
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Katia Coulonval
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Maxime Tarabichi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Geneviève Dom
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Frederick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
- BRIGHTCore, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ligia Craciun
- Tumor Bank of the Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Guy Andry
- Department of Head & Neck and Thoracic Surgery, Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurence Wicquart
- Tumorothèque du Groupement de Coopération Sanitaire-Centre Régional de Référence en Cancérologie (C2RC) de Lille, Lille, France
| | - Emmanuelle Leteurtre
- Department of Pathology, Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Inserm, Centre Hospitalo-Universitaire (CHU) Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | - Christophe Trésallet
- Department of General and Endocrine Surgery - Pitié-Salpêtrière Hospital, Sorbonne University, Assistance Publique des Hôpitaux de Paris, Paris, France
- Department of Digestive, Bariatric and Endocrine Surgery - Avicenne University Hospital, Paris Nord - Sorbonne University, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Laura A. Marlow
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Cosimo Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Carine Maenhaut
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Branca M. Cavaco
- Molecular Endocrinology Group, Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacques E. Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Giuseppe Costante
- Departments of Endocrinology and Medical Oncology, Institut Jules Bordet Comprehensive Cancer Center – Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pierre P. Roger
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) and Université Libre de Bruxelles (ULB)-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
21
|
Zhang W, Liu Y, Jang H, Nussinov R. Cell cycle progression mechanisms: slower cyclin-D/CDK4 activation and faster cyclin-E/CDK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553605. [PMID: 37790340 PMCID: PMC10542123 DOI: 10.1101/2023.08.16.553605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Dysregulation of cyclin-dependent kinases (CDKs) impacts cell proliferation, driving cancer. Here, we ask why the cyclin-D/CDK4 complex governs cell cycle progression through the longer G1 phase, whereas cyclin-E/CDK2 regulates the short G1/S phase transition. We consider the experimentally established high-level bursting of cyclin-E, and sustained duration of elevated cyclin-D expression in the cell, available experimental cellular and structural data, and comprehensive explicit solvent molecular dynamics simulations to provide the mechanistic foundation of the distinct activation scenarios of cyclin-D/CDK4 and cyclin-E/CDK2 in the G1 phase and G1/S transition of the cell cycle, respectively. These lead us to propose slower activation of cyclin-D/CDK4 and rapid activation of cyclin-E/CDK2. Importantly, we determine the mechanisms through which this occurs, offering innovative CDK4 drug design considerations. Our insightful mechanistic work addresses the compelling cell cycle regulation question and illuminates the distinct activation speeds in the G1 versus G1/S phases, which are crucial for cell function.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
22
|
Sowa-Kasprzak K, Totoń E, Kujawski J, Olender D, Lisiak N, Zaprutko L, Rubiś B, Kaczmarek M, Pawełczyk A. Synthesis, Cytotoxicity and Molecular Docking of New Hybrid Compounds by Combination of Curcumin with Oleanolic Acid. Biomedicines 2023; 11:1506. [PMID: 37371601 DOI: 10.3390/biomedicines11061506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Curcumin and oleanolic acid are natural compounds with high potential in medicinal chemistry. These products have been widely studied for their pharmacological properties and have been structurally modified to improve their bioavailability and therapeutic value. In the present study, we discuss how these compounds are utilized to develop bioactive hybrid compounds that are intended to target cancer cells. Using a bifunctional linker, succinic acid, to combine curcumin and triterpenoic oleanolic acid, several hybrid compounds were prepared. Their cytotoxicity against different cancer cell lines was evaluated and compared with the activity of curcumin (the IC50 value (24 h), for MCF7, HeLaWT and HT-29 cancer cells for KS5, KS6 and KS8 compounds was in the range of 20.6-94.4 µM, in comparison to curcumin 15.6-57.2 µM). Additionally, in silico studies were also performed. The computations determined the activity of the tested compounds towards proteins selected due to their similar binding modes and the nature of hydrogen bonds formed within the cavity of ligand-protein complexes. Overall, the curcumin-triterpene hybrids represent an important class of compounds for the development of effective anticancer agents also without the diketone moiety in the curcumin molecule. Moreover, some structural modifications in keto-enol moiety have led to obtaining more information about different chemical and biological activities. Results obtained may be of interest for further research into combinations of curcumin and oleanolic acid derivatives.
Collapse
Affiliation(s)
- Katarzyna Sowa-Kasprzak
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland
| | - Jacek Kujawski
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Dorota Olender
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland
| | - Lucjusz Zaprutko
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Diagnostics and Immunology, Gene Therapy Unit, Greater Poland Cancer Centre, Garbary 15 Str., 61-866 Poznań, Poland
| | - Anna Pawełczyk
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| |
Collapse
|
23
|
Bose P, Agrahari AK, Singh R, Singh M, Kumar S, Singh RK, Tiwari VK. Click inspired synthesis of piperazine-triazolyl sugar-conjugates as potent anti-Hela activity. Carbohydr Res 2023; 529:108846. [PMID: 37245419 DOI: 10.1016/j.carres.2023.108846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
To imbibe the aim of synthesizing water-soluble and biocompatible motif, a click-inspired piperazine glycoconjugate has been devised up. In this report, we present a focused approach to design and synthesis of versatile sugar-appended triazoles through 'Click Chemistry' along with their pharmacological studies on cyclin-dependent kinases (CDKs) and cell cytotoxicity on cancer cells using in silico and in vitro approaches, respectively. The study has inclusively recognized the galactose- and mannose-derived piperazine conjugates as the promising motifs. The findings suggested that the galactosyl bis-triazolyl piperazine analogue 10b is the most CDK interactive derivative and also possess significant anticancer activity.
Collapse
Affiliation(s)
- Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India; Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Rajan Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Mala Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Sunil Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Rakesh K Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
24
|
Zhao J, Wu Y, Xiao T, Cheng C, Zhang T, Gao Z, Hu S, Ren Z, Yu X, Yang F, Li G. A specific anti-cyclin D1 intrabody represses breast cancer cell proliferation by interrupting the cyclin D1-CDK4 interaction. Breast Cancer Res Treat 2023; 198:555-568. [PMID: 36808524 DOI: 10.1007/s10549-023-06866-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/18/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Cyclin D1 overexpression may contribute to development of various cancers, including breast cancer, and thus may serve as a key cancer diagnostic marker and therapeutic target. In our previous study, we generated a cyclin D1-specific single-chain variable fragment antibody (ADκ) from a human semi-synthetic single-chain variable fragment library. ADκ specifically interacted with recombinant and endogenous cyclin D1 proteins through an unknown molecular basis to inhibit HepG2 cell growth and proliferation. RESULTS Here, using phage display and in silico protein structure modeling methods combined with cyclin D1 mutational analysis, key residues that bind to ADκ were identified. Notably, residue K112 within the cyclin box was required for cyclin D1-ADκ binding. In order to elucidate the molecular mechanism underlying ADκ anti-tumor effects, a cyclin D1-specific nuclear localization signal-containing intrabody (NLS-ADκ) was constructed. When expressed within cells, NLS-ADκ interacted specifically with cyclin D1 to significantly inhibit cell proliferation, induce G1-phase arrest, and trigger apoptosis of MCF-7 and MDA-MB-231 breast cancer cells. Moreover, the NLS-ADκ-cyclin D1 interaction blocked binding of cyclin D1 to CDK4 and inhibited RB protein phosphorylation, resulting in altered expression of downstream cell proliferation-related target genes. CONCLUSION We identified amino acid residues in cyclin D1 that may play key roles in the ADκ-cyclin D1 interaction. A nuclear localization antibody against cyclin D1 (NLS-ADκ) was constructed and successfully expressed in breast cancer cells. NLS-ADκ exerted tumor suppressor effects via blocking the binding of CDK4 to cyclin D1 and inhibiting phosphorylation of RB. The results presented here demonstrate anti-tumor potential of intrabody-based cyclin D1-targeted breast cancer therapy.
Collapse
Affiliation(s)
- Jialiang Zhao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yan Wu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, China
| | - Tong Xiao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Cheng Cheng
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Tong Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ziyang Gao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Siyuan Hu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ze Ren
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xinze Yu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Fang Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
25
|
Nagare S, Lokhande KB, Swamy KV. Docking and simulation studies on cyclin D/CDK4 complex for targeting cell cycle arrest in cancer using flavanone and its congener. J Mol Model 2023; 29:90. [PMID: 36881272 DOI: 10.1007/s00894-023-05496-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Flavanone compounds are naturally occurring phytochemicals present in most of citrus fruits reported to be a potential anticancer moiety as it majorly participates in the inhibition of the cell cycle, apoptosis, and angiogenesis. Because of poor bioavailability, natural flavanones were not used as therapeutic targets so flavanone congeners were prepared by modifying at B-functional group using compound libraries such as PubChem Database. Cyclin-dependent kinase is primarily activating the cell cycle and potentiating the M phase, in order to control the cell cycle in cancer cyclin-dependent pathway was targeted and potential cyclin D/CDK4 receptor protein was retrieved from Protein Data Bank (PDBID:2W9Z). The binding site was determined using FlexX docking. Flavanone and its congeners were docked against the 2W9Z receptor protein with the docking software FlexX. For validation of docking results, molecular dynamics simulations of the best-fitting molecule were carried out using Desmond Package. Noncovalent interactions like hydrogen bonds, electrostatic interaction, and Van der walls potentials for stable conformations were calculated. Thus, upon docking and molecular dynamics studies, we discovered the potential flavanone derivatives such as Flavanone 20, Flavanone 25, and Flavanone 29, will become a potential drug target in controlling cell cycle arrest and may become a futuristic candidate in targeting cancer.
Collapse
Affiliation(s)
- Sagar Nagare
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, India, 400614.,Bioinformatics Research Laboratory, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Tathawade Campus, Tathawade, Pune, Maharashtra, India, 411033
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Tathawade Campus, Tathawade, Pune, Maharashtra, India, 411033.,Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, 201314, India
| | - K Venkateswara Swamy
- Bioinformatics and Drug Discovery Group, MIT School of Bioengineering Science and Research, MIT Art, Design and Technology University, Pune, Maharashtra, India, 412201.
| |
Collapse
|
26
|
Hope I, Endicott JA, Watt JE. Emerging approaches to CDK inhibitor development, a structural perspective. RSC Chem Biol 2023; 4:146-164. [PMID: 36794018 PMCID: PMC9906319 DOI: 10.1039/d2cb00201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Aberrant activity of the cyclin-dependent kinase family is frequently noted in a number of diseases identifying them as potential targets for drug development. However, current CDK inhibitors lack specificity owing to the high sequence and structural conservation of the ATP binding cleft across family members, highlighting the necessity of finding novel modes of CDK inhibition. The wealth of structural information regarding CDK assemblies and inhibitor complexes derived from X-ray crystallographic studies has been recently complemented through the use of cryo-electron microscopy. These recent advances have provided insights into the functional roles and regulatory mechanisms of CDKs and their interaction partners. This review explores the conformational malleability of the CDK subunit, the importance of SLiM recognition sites in CDK complexes, the progress made in chemically induced CDK degradation and how these studies can contribute to CDK inhibitor design. Additionally, fragment-based drug discovery can be utilised to identify small molecules that bind to allosteric sites on the CDK surface employing interactions which mimic those of native protein-protein interactions. These recent structural advances in CDK inhibitor mechanisms and in chemical probes which do not occupy the orthosteric ATP binding site can provide important insights for targeted CDK therapies.
Collapse
Affiliation(s)
- Ian Hope
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Jane A Endicott
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Jessica E Watt
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Paul O'Gorman Building, Framlington Place Newcastle upon Tyne NE2 4HH UK
| |
Collapse
|
27
|
Zaman N, Yousaf R, Akhtar Z, Sikander Azam S. Modulating Structural Dynamics of Dual Drugs for CDK4 Complex Addressing Prostate Cancer. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
28
|
Nag A, Dhull N, Gupta A. Evaluation of tea (Camellia sinensis L.) phytochemicals as multi-disease modulators, a multidimensional in silico strategy with the combinations of network pharmacology, pharmacophore analysis, statistics and molecular docking. Mol Divers 2023; 27:487-509. [PMID: 35536529 PMCID: PMC9086669 DOI: 10.1007/s11030-022-10437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
Tea (Camellia sinensis L.) is considered as to be one of the most consumed beverages globally and a reservoir of phytochemicals with immense health benefits. Despite numerous advantages, tea compounds lack a robust multi-disease target study. In this work, we presented a unique in silico approach consisting of molecular docking, multivariate statistics, pharmacophore analysis, and network pharmacology approaches. Eight tea phytochemicals were identified through literature mining, namely gallic acid, catechin, epigallocatechin gallate, epicatechin, epicatechin gallate (ECG), quercetin, kaempferol, and ellagic acid, based on their richness in tea leaves. Further, exploration of databases revealed 30 target proteins related to the pharmacological properties of tea compounds and multiple associated diseases. Molecular docking experiment with eight tea compounds and all 30 proteins revealed that except gallic acid all other seven phytochemicals had potential inhibitory activities against these targets. The docking experiment was validated by comparing the binding affinities (Kcal mol-1) of the compounds with known drug molecules for the respective proteins. Further, with the aid of the application of statistical tools (principal component analysis and clustering), we identified two major clusters of phytochemicals based on their chemical properties and docking scores (Kcal mol-1). Pharmacophore analysis of these clusters revealed the functional descriptors of phytochemicals, related to the ligand-protein docking interactions. Tripartite network was constructed based on the docking scores, and it consisted of seven tea phytochemicals (gallic acid was excluded) targeting five proteins and ten associated diseases. Epicatechin gallate (ECG)-hepatocyte growth factor receptor (PDB id 1FYR) complex was found to be highest in docking performance (10 kcal mol-1). Finally, molecular dynamic simulation showed that ECG-1FYR could make a stable complex in the near-native physiological condition.
Collapse
Affiliation(s)
- Anish Nag
- Department of Life Sciences, Christ (Deemed to be University), Bangalore, India.
| | - Nikhil Dhull
- Department of Life Sciences, Christ (Deemed to be University), Bangalore, India
| | - Ashmita Gupta
- Department of Life Sciences, Christ (Deemed to be University), Bangalore, India
| |
Collapse
|
29
|
Thirumal Kumar D, Shaikh N, Bithia R, Karthick V, George Priya Doss C, Magesh R. Computational screening and structural analysis of Gly201Arg and Gly201Asp missense mutations in human cyclin-dependent kinase 4 protein. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:57-96. [PMID: 37061341 DOI: 10.1016/bs.apcsb.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
The regulatory proteins, cyclins, and cyclin-dependent kinases (CDKs) control the cell cycle progression. CDK4 gene mutations are associated with certain cancers such as melanoma, breast cancer, and rhabdomyosarcoma. Therefore, understanding the mechanisms of cell cycle control and cell proliferation is essential in developing cancer treatment regimens. In this study, we obtained cancer-causing CDK4 mutations from the COSMIC database and subjected them to a series of in silico analyses to identify the most significant mutations. An overall of 238 mutations (119 missense mutations) retrieved from the COSMIC database were investigated for the pathogenic and destabilizing properties using the PredictSNP and iStable algorithms. Further, the amino acid position of the most pathogenic and destabilizing mutations were analyzed to understand the nature of amino acid conservation across the species during the evolution. We observed that the missense mutations G201R and G201D were more significant and the Glycine at position 201 was found to highly conserved. These significant mutations were subjected to molecular dynamics simulation analysis to understand the protein's structural changes. The results from molecular dynamics simulations revealed that both G201R and G201D of CDK4 are capable of altering the protein's native form. On comparison among the most significant mutations, G201R disrupted the protein structure higher than the protein with G201D.
Collapse
Affiliation(s)
- D Thirumal Kumar
- Faculty of Allied Health Sciences, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Nishaat Shaikh
- Mahimkar Lab [Tobacco Carcinogenesis Lab], Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer [ACTREC], TATA Memorial Centre, Navi Mumbai, Maharashtra, India
| | - R Bithia
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - V Karthick
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| | - R Magesh
- Department of Biotechnology, FBMS&T, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, Tamil Nadu, India
| |
Collapse
|
30
|
Waheeb AS. Spectroscopic, characterization and bioactivity studies of new Ni (II), Cu (II) and Ag (I) complexes with didentate (N,N) donar azo dye ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Crystal structure of active CDK4-cyclin D and mechanistic basis for abemaciclib efficacy. NPJ Breast Cancer 2022; 8:126. [PMID: 36446794 PMCID: PMC9709041 DOI: 10.1038/s41523-022-00494-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Despite the biological and therapeutic relevance of CDK4/6 for the treatment of HR+, HER2- advanced breast cancer, the detailed mode of action of CDK4/6 inhibitors is not completely understood. Of particular interest, phosphorylation of CDK4 at T172 (pT172) is critical for generating the active conformation, yet no such crystal structure has been reported to date. We describe here the x-ray structure of active CDK4-cyclin D3 bound to the CDK4/6 inhibitor abemaciclib and discuss the key aspects of the catalytically-competent complex. Furthermore, the effect of CDK4/6 inhibitors on CDK4 T172 phosphorylation has not been explored, despite its role as a potential biomarker of CDK4/6 inhibitor response. We show mechanistically that CDK4/6i stabilize primed (pT172) CDK4-cyclin D complex and selectively displace p21 in responsive tumor cells. Stabilization of active CDK4-cyclin D1 complex can lead to pathway reactivation following alternate dosing regimen. Consequently, sustained binding of abemaciclib to CDK4 leads to potent cell cycle inhibition in breast cancer cell lines and prevents rebound activation of downstream signaling. Overall, our study provides key insights demonstrating that prolonged treatment with CDK4/6 inhibitors and composition of the CDK4/6-cyclin D complex are both critical determinants of abemaciclib efficacy, with implications for this class of anticancer therapy.
Collapse
|
32
|
Zhaojun C, Lulin T, Xin F, Abdel-Nasser S, Zunguo L, Xiong L. Hydroxy-γ-sanshool from Zanthoxylum bungeanum (prickly ash) induces apoptosis of human colorectal cancer cell by activating P53 and Caspase 8. Front Nutr 2022; 9:914638. [PMID: 35978957 PMCID: PMC9376619 DOI: 10.3389/fnut.2022.914638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Sanshools, long-chain polyunsaturated amides in Zanthoxylum bungeanum (prickly ash), have important bioactivity. The objective was to assess inhibitory effects and molecular mechanisms of sanshools isolated from supercritical fluid (SCF) extract on human colon adenocarcinoma cells (HCT-116) cultured in vitro. Cells were exposed to various concentrations (0, 50, 90, or 130 μM) of sanshools for 24 or 48 h, with assessment of apoptosis and cell cycle arrest as well as regulatory gene and protein expression associated with apoptosis and the cell cycle. Sanshools profoundly inhibited growth of HCT-116 cells, with hydroxy-γ-sanshool (HRS) being the optimal active component (IC50 = 88.01 μM) inhibiting cell proliferation and having no cytotoxic effect to normal cells (IC50 = 481.52 μM) by CCK-8 assay. In HCT-116 cells, HRS inhibited cell growth, induced morphological distortion, and arrested the cell cycle at G1 phase (50.31 ± 4.13% vs. 72.16 ± 8.14% in Control and 130 μM HRS, respectively), and also caused programmed cell death in a dose-dependent manner. The percentage of apoptotic cells were remarkably increased after treated with HRS (6.2, 11.9, 19.8, and 30.7% for 0, 50, 90, and 130 μM, respectively). Moreover, in HCT-116 cells, HRS significantly inhibited mRNA and protein levels of Cyclin D1, CDK4, PCNA, and increased mRNA and protein levels of P21, P53, Fas, and Caspase 8. Furthermore, inhibitors of P53 and Caspase 8 proteins significantly mitigated the HRS-induced cell cycle arrest and apoptosis. In conclusion, our study provides evidence that HRS induced human colorectal cancer cell apoptosis by up-regulating P53 and Caspase 8.
Collapse
Affiliation(s)
- Chen Zhaojun
- College of Food Science, Southwest University, Chongqing, China.,Guizhou Provincial Academy of Agricultural Sciences, Guiyang, China
| | - Tan Lulin
- Guizhou Provincial Academy of Agricultural Sciences, Guiyang, China
| | - Feng Xin
- College of Food Science, Southwest University, Chongqing, China
| | | | - Lei Zunguo
- Guizhou Provincial Academy of Agricultural Sciences, Guiyang, China
| | - Liu Xiong
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
33
|
Feng C, Cheng Z, Xu Z, Tian Y, Tian H, Liu F, Luo D, Wang Y. EmCyclinD-EmCDK4/6 complex is involved in the host EGF-mediated proliferation of Echinococcus multilocularis germinative cells via the EGFR-ERK pathway. Front Microbiol 2022; 13:968872. [PMID: 36033888 PMCID: PMC9410764 DOI: 10.3389/fmicb.2022.968872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The larval stage of the tapeworm Echinococcus multilocularis causes alveolar echinococcosis (AE), one of the most lethal helminthic infections in humans. The tumor-like growth and development of the metacestode larvae within host organs are driven by a population of somatic stem cells, the germinative cells, which represent the only proliferative cells in the parasite. Host-derived factors have been shown to promote germinative cell proliferation. Since cells sense the external signal mainly in G1 phase of the cell cycle, host factors are expected to exert impacts on the machinery regulating G1/S phase of the germinative cells, which still remains largely unknown in E. multilocularis. In this study, we described the characterization of two key members of the G1/S phase cell-cycle regulation, EmCyclinD and EmCDK4/6. Our data show that EmCyclinD and EmCDK4/6 display significant sequence similarity to their respective mammalian homologs, and that EmCyclinD interacts with EmCDK4/6, forming a kinase-active complex to activate its substrate Rb1. EmCyclinD was actively expressed in the germinative cells. Addition of human EGF caused an elevated expression of EmCyclinD while inhibition of the EGFR-ERK signaling pathway in the parasite reduced the expression of EmCyclinD and downstream transcriptional factors. Treatment with Palbociclib, a specific CDK4/6 inhibitor, downregulated the expression of cell cycle-related factors and impeded germinative cell proliferation and vesicle formation from protoscoleces. Our data demonstrated that the EmCyclinD-EmCDK4/6 complex participates in the cell cycle regulation of germinative cells which is mediated by host EGF via the EGFR-ERK-EmCyclinD pathway in E. multilocularis.
Collapse
Affiliation(s)
- Chonglv Feng
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhe Cheng
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Zhe Cheng,
| | - Zhijian Xu
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ye Tian
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huimin Tian
- Medical College, Xiamen University, Xiamen, Fujian, China
| | - Fan Liu
- Medical College, Xiamen University, Xiamen, Fujian, China
| | - Damin Luo
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yanhai Wang
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- *Correspondence: Yanhai Wang,
| |
Collapse
|
34
|
Ning S, Wang H, Zeng C, Zhao Y. Prediction of allosteric druggable pockets of cyclin-dependent kinases. Brief Bioinform 2022; 23:6643454. [PMID: 35830869 DOI: 10.1093/bib/bbac290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclin-dependent kinase (Cdk) proteins play crucial roles in the cell cycle progression and are thus attractive drug targets for therapy against such aberrant cell cycle processes as cancer. Since most of the available Cdk inhibitors target the highly conserved catalytic ATP pocket and their lack of specificity often lead to side effects, it is imperative to identify and characterize less conserved non-catalytic pockets capable of interfering with the kinase activity allosterically. However, a systematic analysis of these allosteric druggable pockets is still in its infancy. Here, we summarize the existing Cdk pockets and their selectivity. Then, we outline a network-based pocket prediction approach (NetPocket) and illustrate its utility for systematically identifying the allosteric druggable pockets with case studies. Finally, we discuss potential future directions and their challenges.
Collapse
Affiliation(s)
- Shangbo Ning
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| | - Huiwen Wang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC 20052, USA
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
35
|
Wang H, Wu D, Gao C, Teng H, Zhao Y, He Z, Chen W, Zong Y, Du R. Seco-Lupane Triterpene Derivatives Induce Ferroptosis through GPX4/ACSL4 Axis and Target Cyclin D1 to Block the Cell Cycle. J Med Chem 2022; 65:10014-10044. [PMID: 35801495 DOI: 10.1021/acs.jmedchem.2c00664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, 70 new seco-lupane triterpene derivatives were designed, synthesized, and characterized, and their in vitro anticancer activities were evaluated. Structure-activity relationship studies showed that most compounds inhibited the growth of a variety of tumor cells in vitro. With the extension of alkyl chains, the activity of azole compounds gradually increased while that of indole compounds first increased and then decreased. Moreover, all indole derivatives showed stronger anticancer activity than azole derivatives. In addition, compound 21 showed the strongest inhibitory effect on HepG2 cells with an IC50 value of 0.97 μM. Mechanistic studies showed that compound 21 coregulates the cell death process by inducing ferroptosis and regulating the cell cycle. In conclusion, compound 21 can be used as a ferroptosis inducer and cycle blocker to regulate the HepG2 death process, and it has the potential to become an effective new drug for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Haohao Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Di Wu
- Department of Breast Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Chunyu Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Hongbo Teng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China.,Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China.,Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China.,Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China.,Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China.,Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| |
Collapse
|
36
|
Preparation of Novel Pyrazolo[4,3- e]tetrazolo[1,5- b][1,2,4]triazine Sulfonamides and Their Experimental and Computational Biological Studies. Int J Mol Sci 2022; 23:ijms23115892. [PMID: 35682571 PMCID: PMC9180621 DOI: 10.3390/ijms23115892] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides constitute a novel class of heterocyclic compounds with broad biological activity, including anticancer properties. Investigated in this study, MM-compounds (MM134, MM136, MM137, and MM139) exhibited cytotoxic and proapoptotic activity against cancer cell lines (BxPC-3, PC-3, and HCT-116) in nanomolar concentrations without causing cytotoxicity in normal cells (L929 and WI38). In silico predictions indicate that tested compounds exhibit favorable pharmacokinetic profiles and may exert anticancer activity through the inhibition of BTK kinase, the AKT-mTOR pathway and PD1-PD-L1 interaction. Our findings point out that these sulfonamide derivatives may constitute a source of new anticancer drugs after optimization.
Collapse
|
37
|
Luo L, Wang Q, Liao Y. The Inhibitors of CDK4/6 from a Library of Marine Compound Database: A Pharmacophore, ADMET, Molecular Docking and Molecular Dynamics Study. Mar Drugs 2022; 20:md20050319. [PMID: 35621970 PMCID: PMC9144134 DOI: 10.3390/md20050319] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 11/22/2022] Open
Abstract
Background: CDK4/6 (Cyclin-dependent kinases 4/6) are the key promoters of cell cycle transition from G1 phase to S phase. Thus, selective inhibition of CDK4/6 is a promising cancer treatment. Methods: A total of 52,765 marine natural products were screened for CDK4/6. To screen out better natural compounds, pharmacophore models were first generated, then the absorption, distribution, metabolism, elimination, and toxicity (ADMET) were tested, followed by molecular docking. Finally, molecular dynamics simulation was carried out to verify the binding characteristics of the selected compounds. Results: Eighty-seven marine small molecules were screened based on the pharmacophore model. Then, compounds 41369 and 50843 were selected according to the ADMET and molecular docking score for further kinetic simulation evaluation. Finally, through molecular dynamics analysis, it was confirmed that compound 50843 maintained a stable conformation with the target protein, so it has the opportunity to become an inhibitor of CDK4/6. Conclusion: Through structure-based pharmacophore modeling, ADMET, the molecular docking method and molecular dynamics (MD) simulation, marine natural compound 50843 was proposed as a promising marine inhibitor of CDK4/6.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China
- Correspondence:
| | - Qu Wang
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (Q.W.); (Y.L.)
| | - Yinglin Liao
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (Q.W.); (Y.L.)
| |
Collapse
|
38
|
Therapeutics Targeting p53-MDM2 Interaction to Induce Cancer Cell Death. Int J Mol Sci 2022; 23:ijms23095005. [PMID: 35563397 PMCID: PMC9103871 DOI: 10.3390/ijms23095005] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Named as the guardian of the genome, p53 is a tumor suppressor that regulates cell function, often through many different mechanisms such as DNA repair, apoptosis, cell cycle arrest, senescence, metabolism, and autophagy. One of the genes that p53 activates is MDM2, which forms a negative feedback loop since MDM2 induces the degradation of p53. When p53 activity is inhibited, damaged cells do not undergo cell cycle arrest or apoptosis. As 50% of human cancers inactivate p53 by mutation, current research focuses on reactivating p53 by developing drugs that target the p53-MDM2 interaction, which includes the binding of MDM2 and phosphorylation of p53. The objective of this article is to provide a short list and description of p53-MDM2 antagonists that may be excellent candidates for inducing cancer cell death. Relevant articles were searched for and identified using online databases such as PubMed and ScienceDirect. Increasing p53 levels, by targeting the p53-MDM2 interaction, can help p53 play its role as a tumor suppressor and induce cancer cell death. Researchers have identified different compounds that can act as inhibitors, either by directly binding to MDM2 or by modifying p53 with phosphorylation. The results associated with the drugs demonstrate the importance of targeting such interactions to inhibit cancer cell growth, which indicates that the use of the compounds may improve cancer therapeutics.
Collapse
|
39
|
Nasir NM, Alsalim TA, El-Arabey AA, Abdalla M. Anticancer, antioxidant activities and molecular docking study of thiazolidine-4-one and thiadiazol derivatives. J Biomol Struct Dyn 2022; 41:3976-3992. [PMID: 35467480 DOI: 10.1080/07391102.2022.2060306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Liver cancer accounts for a major portion of the global cancer burden. In many nations, the prevalence of this condition has risen in recent decades. New series of thiazolidinones and thiadiazolidine have been designed, synthesized, and evaluated for potential antioxidant and antihepatocarcinogenic activity. The antioxidant activity was evaluated using a DPPH assay. Furthermore, we examined the compounds against Hepg-2 cells using MTT assay, flow cytometry analysis through the cell cycle, reactive oxygen species, and apoptosis. The result showed that compound 6b has the highest antioxidant activity with IC50 = 60.614 ± 0.739 µM. The anticancer activity showed that compounds 5 and 6b have significant toxicity against liver cancer cells Hepg2, IC50 values (9.082 and 4.712) µM, respectively. Flow cytometry experiments revealed that compound 5 arrested Hepg-2 cells in the S process, while compound 6b arrested Hepg-2 cells in the G1. Compound 6b had a greater reduction in reactive oxygen species and late apoptosis than compound 5. Substantially, compound 5 had affinity energies of -7.6 and -8.5 for Akt and CDK4 proteins, respectively, but compound 6b had affinity energies of -7.8 and -10.1 for Akt1 and CDK4 proteins, respectively. Consequently, compound 6b had lower binding energies than compound 5. In this work, we used multiple bioinformatics methods to shed light on the prospective therapeutic use of these series as novel candidates to target immune cells in the tumor microenvironment of hepatocellular carcinomas such as CD8+ T cells, endothelial cells, and hematopoietic stem cells.
Collapse
Affiliation(s)
- Noor M Nasir
- Department of Chemistry, Faculty of Education for Pure Sciences, University of Basrah, Basrah, Iraq
| | - Tahseen A Alsalim
- Department of Chemistry, Faculty of Education for Pure Sciences, University of Basrah, Basrah, Iraq
| | - Amr Ahmed El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Shandong Province, People's Republic of China
| |
Collapse
|
40
|
Chen X, Shu C, Li W, Hou Q, Luo G, Yang K, Wu X. Discovery of a Novel Src Homology-2 Domain Containing Protein Tyrosine Phosphatase-2 (SHP2) and Cyclin-Dependent Kinase 4 (CDK4) Dual Inhibitor for the Treatment of Triple-Negative Breast Cancer. J Med Chem 2022; 65:6729-6747. [PMID: 35447031 DOI: 10.1021/acs.jmedchem.2c00063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The treatment of triple-negative breast cancer (TNBC) remains a huge clinical challenge and dual-targeted small-molecule drugs might provide new therapeutic options for this type of breast cancer. In this work, we discovered a series of SHP2 and CDK4 dual inhibitors through a fused pharmacophore strategy and structural optimization. Notably, lead compound 10 with excellent SHP2 (IC50 = 4.3 nM) and CDK4 (IC50 = 18.2 nM) inhibitory activities effectively induced G0/G1 arrest to prevent the proliferation of TNBC cell lines. Furthermore, compound 10 showed great in vivo pharmacokinetic properties (F = 45.8%) and exerted significant antitumor efficacy in the EMT6 syngeneic mouse model. Western blotting and immunohistochemical analysis confirmed that 10 effectively targeted on both SHP2 and CDK4 and activated the immune response in tumors. These results indicate that lead compound 10, as the first SHP2 and CDK4 dual inhibitor, merits further development for treating TNBC.
Collapse
Affiliation(s)
- Xiaoyu Chen
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chengxia Shu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenqiang Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qiangqiang Hou
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guangmei Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Kexin Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoxing Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
41
|
Wang S, Han S, Cheng W, Miao R, Li S, Tian X, Kan Q. Design, Synthesis, and Biological Evaluation of 2-Anilino-4-Triazolpyrimidine Derivatives as CDK4/HDACs Inhibitors. Drug Des Devel Ther 2022; 16:1083-1097. [PMID: 35431540 PMCID: PMC9012344 DOI: 10.2147/dddt.s351049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose To enhance the cytotoxicities of our obtained CDK4 inhibitors and get CDK4/HDACs inhibitors with potent enzymatic inhibitory and anti-proliferative activities. Methods A series of novel CDK4/HDACs inhibitors were designed and synthesized by incorporating the HDAC pharmacophores (hydroxylamine or o-diaminoaniline) into the basic structure of our newly obtained 2-anilino-4-triazolpyrimidine based CDK4 inhibitors. The enzymatic inhibitory (HDAC1, CDK2, CDK4, and CDK6) activities and cytotoxicities of these compounds were evaluated. Moreover, HDAC isoforms inhibitory activity, cell cycle arrest assay, cell apoptosis analysis, cell migration, and cell colony formation assay were performed for the representative compound 11k. Results Most of these compounds showed excellent HDAC1 inhibitory activities (IC50s: 0.68~244.5 nM) and anti-proliferative activities against cancer cell lines. Some compounds displayed potent CDK4 inhibitory activities and a certain selectivity towards CDK2 and CDK6. Compound 11k exhibited potent enzymatic (CDK4: IC50=23.59 nM; HDAC1: IC50=61.11 nM; HDAC2: IC50=80.62 nM; HDAC6: IC50=45.33 nM) and anti-proliferative activities against H460, MDA-MB-468, HCT116, and HepG2 cell lines with IC50 values 1.20, 1.34, 2.07, and 2.66 μM, respectively. Further mechanistic studies revealed that compound 11k could arrest the cell cycle in G0/G1 phase and induce apoptosis in HCT116 and MDA-MB-468 cells. In addition, compound 11k significantly inhibited the migration and cell colony formation of H460 and HCT116 cells. Conclusion This study suggested that the incorporation of the HDAC pharmacophore into CDK4 inhibitor scaffold to design CDK/HDAC inhibitors might be a tractable strategy to enhance the antitumor potency of compounds.
Collapse
Affiliation(s)
- Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Siyuan Han
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Ruoyang Miao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Shasha Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
- Correspondence: Xin Tian; Quancheng Kan, Email ;
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| |
Collapse
|
42
|
Li C, Zhao X, He Y, Li Z, Qian J, Zhang L, Ye Q, Qiu F, Lian P, Qian M, Zhang H. The functional role of inherited CDKN2A variants in childhood acute lymphoblastic leukemia. Pharmacogenet Genomics 2022; 32:43-50. [PMID: 34369425 PMCID: PMC8694244 DOI: 10.1097/fpc.0000000000000451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Genetic alterations in CDKN2A tumor suppressor gene on chromosome 9p21 confer a predisposition to childhood acute lymphoblastic leukemia (ALL). Genome-wide association studies have identified missense variants in CDKN2A associated with the development of ALL. This study systematically evaluated the effects of CDKN2A coding variants on ALL risk. METHODS We genotyped the CDKN2A coding region in 308 childhood ALL cases enrolled in CCCG-ALL-2015 clinical trials by Sanger Sequencing. Cell growth assay, cell cycle assay, MTT-based cell toxicity assay, and western blot were performed to assess the CDKN2A coding variants on ALL predisposition. RESULTS We identified 10 novel exonic germline variants, including 6 missense mutations (p.A21V, p.G45A and p.V115L of p16INK4A; p.T31R, p.R90G, and p.R129L of p14ARF) and 1 nonsense mutation and 1 heterozygous termination codon mutation in exon 2 (p16INK4A p.S129X). Functional studies indicate that five novel variants resulted in reduced tumor suppressor activity of p16INK4A, and increased the susceptibility to the leukemic transformation of hematopoietic progenitor cells. Compared to other variants, p.H142R contributes higher sensitivity to CDK4/6 inhibitors. CONCLUSION These findings provide direct insight into the influence of inherited genetic variants at the CDKN2A coding region on the development of ALL and the precise clinical application of CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Chunjie Li
- Department of Hematology/Oncology
- Institute of Pediatrics, Affiliated Guangzhou Women and Children’s Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
| | - Xinying Zhao
- Department of Hematology/Oncology
- Institute of Pediatrics, Affiliated Guangzhou Women and Children’s Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
| | | | - Ziping Li
- Department of Hematology/Oncology
- Institute of Pediatrics, Affiliated Guangzhou Women and Children’s Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
| | - Jiabi Qian
- Department of Hematology/Oncology
- Institute of Pediatrics, Affiliated Guangzhou Women and Children’s Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
| | - Li Zhang
- Department of Hematology/Oncology
| | - Qian Ye
- Department of Hematology/Oncology
| | - Fei Qiu
- Bioinspired Engineering and Biomechanics Center, Xi’an Jiaotong University, Xi’an, China
| | - Peng Lian
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Maoxiang Qian
- Institute of Pediatrics and Department of Hematology and Oncology, Children’s Hospital of Fudan University, National Children’s Medical Center, the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | | |
Collapse
|
43
|
Li X, Yang T, Hu M, Yang Y, Tang M, Deng D, Liu K, Fu S, Tan Y, Wang H, Chen Y, Zhang C, Guo Y, Peng B, Si W, Yang Z, Chen L. Synthesis and biological evaluation of 6-(pyrimidin-4-yl)-1H-pyrazolo[4,3-b]pyridine derivatives as novel dual FLT3/CDK4 inhibitors. Bioorg Chem 2022; 121:105669. [DOI: 10.1016/j.bioorg.2022.105669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/02/2022]
|
44
|
Rees DC. Medicines for millions of patients. RSC Med Chem 2022; 13:7-12. [PMID: 35211673 PMCID: PMC8792827 DOI: 10.1039/d1md00279a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
In this opinion piece I share personal anecdotes from three drug discovery projects, sugammadex an anaesthetic reversal agent from Organon Scotland, and ribociclib and erdafitinib, both oncology drugs arising from Astex UK collaborations with Novartis and Janssen respectively. These drugs have been used to treat millions of patients. The learnings from this research focus on innovation, teamwork, and collaborations. Drug discovery, even with its frustrations and disappointments can be a great career for scientists in industry, in academia, or in a not-for-profit institute, who want their research to alleviate human suffering.
Collapse
Affiliation(s)
- David C Rees
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| |
Collapse
|
45
|
Han T, Zhang L, Tong W, Zhao J, Wang W. Exploring the interaction of calycosin with cyclin D1 protein as a regulator of cell cycle progression in lung cancer cells. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
46
|
Coulonval K, Vercruysse V, Paternot S, Pita JM, Corman R, Raspé E, Roger PP. Monoclonal antibodies to activated CDK4: use to investigate normal and cancerous cell cycle regulation and involvement of phosphorylations of p21 and p27. Cell Cycle 2021; 21:12-32. [PMID: 34913830 PMCID: PMC8837260 DOI: 10.1080/15384101.2021.1984663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cyclin-dependent kinase 4 (CDK4) is a master integrator that couples mitogenic/oncogenic signaling with the cell division cycle. It is deregulated in most cancers and inhibitors of CDK4 have become standard of care drugs for metastatic estrogen-receptor positive breast cancers and are being evaluated in a variety of other cancers. We previously characterized the T-loop phosphorylation at T172 of CDK4 as the highly regulated step that determines the activity of cyclin D-CDK4 complexes. Moreover we demonstrated that the highly variable detection of T172-phosphorylated CDK4 signals the presence or absence of the active CDK4 targeted by the CDK4/6 inhibitory drugs, which predicts the tumor cell sensitivity to these drugs including palbociclib. To date, the phosphorylation of CDK4 has been very poorly studied because only few biochemical techniques and reagents are available for it. In addition, the available ones including 2D-IEF separation of CDK4 modified forms are considered too tedious. The present report describes the generation, selection and characterization of the first monoclonal antibodies that specifically recognize the active CDK4 phosphorylated on its T172 residue. One key to this success was the immunization with a long phosphopeptide corresponding to the complete activation segment of CDK4. These monoclonal antibodies specifically recognize T172-phosphorylated CDK4 in a variety of assays, including western blotting, immunoprecipitation and, as a capture antibody, a sensitive ELISA from cell lysates. The specific immunoprecipitation of T172-phosphorylated CDK4 allowed to clarify the involvement of phosphorylations of co-immunoprecipitated p21 and p27, showing a privileged interaction of T172-phosphorylated CDK4 with S130-phosphorylated p21 and S10-phosphorylated p27.
Abbreviations:
2D: two-dimensional; CAK: CDK-activating kinase; CDK: cyclin-dependent kinase; HAT: Hypoxanthine-Aminopterin-Thymidine; FBS: fetal bovine serum; IP: immunoprecipitation; ID: immunodetection; mAb: monoclonal antibody; PAGE: polyacrylamide gel electrophoresis; PBS: phosphate buffer saline; pRb: retinoblastoma susceptibility protein; SDS: sodium dodecyl sulfate; DTT: dithiotreitol; TET: tetracyclin repressor; Avi: Avi tag; TEV: tobacco etch virus cleavage site; EGFP: enhanced green fluorescent protein; BirA: bifunctional protein biotin ligase BirA; IRES: internal ribosome entry site; HIS: poly-HIS purification tag; DELFIA: dissociation-enhanced lanthanide fluorescent immunoassay; 3-MBPP1: 1-(1,1-dimethylethyl)-3[(3-methylphenyl) methyl]-1H-pyrazolo[3,4-d] pyrimidin-4-amine; BSA: bovine serum albumin; ECL: Enhanced chemiluminescence
Collapse
Affiliation(s)
- Katia Coulonval
- Institute of Interdisciplinary Research (Iribhm) and ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Vincent Vercruysse
- Institute of Interdisciplinary Research (Iribhm) and ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Sabine Paternot
- Institute of Interdisciplinary Research (Iribhm) and ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Jaime M Pita
- Institute of Interdisciplinary Research (Iribhm) and ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Robert Corman
- Kaneka Eurogentec, Liège Science Park, Seraing, Belgium
| | - Eric Raspé
- Institute of Interdisciplinary Research (Iribhm) and ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Pierre P Roger
- Institute of Interdisciplinary Research (Iribhm) and ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| |
Collapse
|
47
|
Liang JW, Li WQ, Nian QY, Xie SH, Yang L, Meng FH. Synthesis and identification of a novel skeleton of N-(pyridin-3-yl) proline as a selective CDK4/6 inhibitor with anti-breast cancer activities. Bioorg Chem 2021; 119:105547. [PMID: 34906858 DOI: 10.1016/j.bioorg.2021.105547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/26/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022]
Abstract
CDK4/6 were attractive chemotherapeutic targets for the treatment of malignant tumors, CDK4/6 selective inhibitors have made outstanding contributions in the treatment of breast cancer. However, these inhibitors share a single skeleton of N-(pyridin-2-yl) pyrimidin-2-amine which cannot overcome the side effects in clinical application. In our previous study, an N'- acetylpyrrolidine-1-carbohydrazide was hit as the initial fragment by analyzing the active site characteristics of CDK6. Two series of N-(pyridin-3-yl) proline were obtained by fragment growth method. The QSAR study was carried out according to the in vitro activities data against CDK4/6, and two compounds 7c and 7p with potent inhibitory activities were found to interact with CDK4 in different binding conformation. They showed potential inhibition of cell proliferation against the breast cancer cell, and 7c exhibited promised anti-breast cancer effect in vivo.
Collapse
Affiliation(s)
- Jing-Wei Liang
- School of Pharmacy, China Medical University, Shen Yang, China
| | - Wan-Qiu Li
- School of Pharmacy, China Medical University, Shen Yang, China
| | - Qing-Yang Nian
- School of Pharmacy, China Medical University, Shen Yang, China
| | - Si-Hua Xie
- School of Pharmacy, China Medical University, Shen Yang, China
| | - Lulu Yang
- School of Pharmacy, China Medical University, Shen Yang, China
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, Shen Yang, China.
| |
Collapse
|
48
|
Lokhande KB, Ghosh P, Nagar S, Venkateswara Swamy K. Novel B, C-ring truncated deguelin derivatives reveals as potential inhibitors of cyclin D1 and cyclin E using molecular docking and molecular dynamic simulation. Mol Divers 2021; 26:2295-2309. [PMID: 34626304 DOI: 10.1007/s11030-021-10334-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022]
Abstract
The overexpression of cyclin D1 and cyclin E due to their oncogenic potential and amplification has been associated with a higher mortality rate in many cancers. The deguelin is a natural compound, has shown promising anti-cancer activity by directly binding cyclin D1 and cyclin E and thus suppressing its function. The C7a atomic position of deguelin structure contains a proton that generates stabilized radical, as a result, decomposed deguelin reduces its structural stability and significantly decreases its biological activity. To design deguelin derivatives with the reduced potential side effect, series of B, C-ring truncated derivatives were investigated as cyclin D1 and cyclin E inhibitors. R-group-based enumeration was implemented in the deguelin scaffold using the R-group enumeration module of Schrödinger. Drug-Like filters like, REOS and PAINs series were applied to the enumerated compound library to remove compounds containing reactive functional groups. Further, screened compounds were docked within the ligand-binding cavity of cyclin D1 and cyclin E crystal structure, using Glide SP and XP protocol to obtain docking poses. Enrichment calculations were done using SchrÖdinger software, with 1000 decoy compounds (from DUD.E database) and 60 compounds (XP best poses) along with deguelin, to validate the docking protocol. The receiver operating characteristic (ROC) curve indicates R2 = 0.94 for cyclin D1 and R2 = 0.79 for cyclin E, suggesting that the docking protocol is valid. Besides, we explored molecular dynamics simulation to probe the binding stability of deguelin and its derivatives within the binding cavity of cyclin D1 and cyclin E structures which are associated with the cyclin D1 and cyclin E inhibitory mechanism.
Collapse
Affiliation(s)
- Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, 411033, India
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, 411007, India
| | - Shuchi Nagar
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, 411033, India
| | - K Venkateswara Swamy
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, 411033, India. .,Bioinformatics and Drug Discovery Group, MIT School of Bioengineering Science & Research, MIT Art, Design and Technology University, Pune, 412201, India.
| |
Collapse
|
49
|
Adamopoulos PG, Athanasopoulou K, Tsiakanikas P, Scorilas A. A comprehensive nanopore sequencing methodology deciphers the complete transcriptional landscape of cyclin-dependent kinase 4 (CDK4) in human malignancies. FEBS J 2021; 289:712-729. [PMID: 34535948 DOI: 10.1111/febs.16201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Cyclin-dependent kinase 4 (CDK4) is a member of the cyclin-dependent kinases, a family of protein kinases with outstanding roles in signaling pathways, transcription regulation, and cell division. Defective or overactivated CDK4/cyclin D1 pathway leads to enhanced cellular proliferation, thus being implicated in human cancers. Although the biological role of CDK4 has been extensively studied, its pre-mRNA processing mechanism under normal or pathological conditions is neglected. Thus, the identification of novel CDK4 mRNA transcripts, especially protein-coding ones, could lead to the identification of new diagnostic and/or prognostic biomarkers or new therapeutic targets. In the present study, instead of using the 'gold standard' direct RNA sequencing application, we designed and employed a targeted nanopore sequencing approach, which offers higher sequencing depth and enables the thorough investigation of new mRNAs of any target gene. Our study elucidates for the first time the complex transcriptional landscape of the human CDK4 gene, highlighting the existence of previously unknown CDK4 transcripts with new alternative splicing events and protein-coding capacities. The relative expression levels of each novel CDK4 transcript in human malignancies were elucidated with custom qPCR-based assays. The presented wide spectrum of CDK4 transcripts (CDK4 v.2-v.42) is only the first step to distinguish and assemble the missing pieces regarding the exact functions and implications of this fundamental kinase in cellular homeostasis and pathophysiology.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Athanasopoulou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
50
|
Susanti NMP, Tjahjono DH. Cyclin-Dependent Kinase 4 and 6 Inhibitors in Cell Cycle Dysregulation for Breast Cancer Treatment. Molecules 2021; 26:molecules26154462. [PMID: 34361615 PMCID: PMC8348313 DOI: 10.3390/molecules26154462] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
In cell development, the cell cycle is crucial, and the cycle progression’s main controllers are endogenous CDK inhibitors, cyclin-dependent kinases (CDKs), and cyclins. In response to the mitogenic signal, cyclin D is produced and retinoblastoma protein (Rb) is phosphorylated due to activated CDK4/CDK6. This causes various proteins required in the cell cycle progression to be generated. In addition, complexes of CDK1-cyclin A/B, CDK2-cyclin E/A, and CDK4/CDK6-cyclin D are required in each phase of this progression. Cell cycle dysregulation has the ability to lead to cancer. Based on its role in the cell cycle, CDK has become a natural target of anticancer therapy. Therefore, understanding the CDK structures and the complex formed with the drug, helps to foster the development of CDK inhibitors. This development starts from non-selective CDK inhibitors to selective CDK4/CDK6 inhibitors, and these have been applied in clinical cancer treatment. However, these inhibitors currently require further development for various hematologic malignancies and solid tumors, based on the results demonstrated. In drug development, the main strategy is primarily to prevent and asphyxiate drug resistance, thus a determination of specific biomarkers is required to increase the therapy’s effectiveness as well as patient selection suitability in order to avoid therapy failure. This review is expected to serve as a reference for early and advanced-stage researchers in designing new molecules or repurposing existing molecules as CDK4/CDK6 inhibitors to treat breast cancer.
Collapse
Affiliation(s)
- Ni Made Pitri Susanti
- School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132, Indonesia;
- Study Program of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Udaya, Jalan Bukit Jimbaran, Badung 80361, Indonesia
| | - Daryono Hadi Tjahjono
- School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132, Indonesia;
- Correspondence: ; Tel.: +62-812-2240-0120
| |
Collapse
|