1
|
Wang YT, Hsieh YC, Wu TY. In silico validation of allosteric inhibitors targeting Zika virus NS2B-NS3 protease. Phys Chem Chem Phys 2024; 26:27684-27693. [PMID: 39469836 DOI: 10.1039/d4cp02867h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The Zika virus (ZIKV), a member of the Flaviviridae family, poses a major threat to human health because of the lack of effective antiviral drugs. Although the NS2B-NS3 protease of ZIKV (NS2B-NS3pro) is regarded as a major target for antiviral inhibitors, viral mutations can lead to ineffective competitive inhibitors. Allosteric inhibitors bind to highly conserved nonprotease active sites, induce conformational changes in the protease active site, and prevent substrate binding. Currently, no molecular simulation techniques are available for accurately predicting and analysing conformational changes in the protease catalytic domain. In this study, we developed a combined approach that involves blind docking, Gaussian accelerated molecular dynamics, two-dimensional potential of mean force profiling, density functional theory (DFT) calculations, and interaction region indicator (IRI) analysis and employed it to examine the allosteric inhibitor-01 molecule and its interaction with ZIKV NS2B-NS3pro. Our results indicated that the binding of inhibitor-01 to NS2B-NS3pro resulted in two major conformational states, state I and state II, which in turn changed the volume of the protease active site from 1014 Å3 to 710 and 820 Å3, respectively. These two states had an inactive catalytic domain (residues His116, Asp140, and Ser200). DFT and IRI analyses revealed that, in state I, Lys138 and Gln139 formed hydrogen bonds with inhibitor-01, whereas Lys138, Leu214, Asn217, Val220, and Ile221 engaged in van der Waals interactions with inhibitor-01. Advancements in computational techniques and power are expected to facilitate further progress in overcoming challenges associated with designing allosteric inhibitors for viral proteases.
Collapse
Affiliation(s)
- Yeng-Tseng Wang
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Taiwan, ROC.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
| | - Yuan-Chin Hsieh
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan, ROC
| | - Tin-Yu Wu
- Department of Management Information Systems, National Pingtung University of Science and Technology, Taiwan, ROC
| |
Collapse
|
2
|
Stokely AM, Votapka LW, Hock MT, Teitgen AE, McCammon JA, McCulloch AD, Amaro RE. NetSci: A Library for High Performance Biomolecular Simulation Network Analysis Computation. J Chem Inf Model 2024; 64:7966-7976. [PMID: 39364881 DOI: 10.1021/acs.jcim.4c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
We present the NetSci program-an open-source scientific software package designed for estimating mutual information (MI) between data sets using GPU acceleration and a k-nearest-neighbor algorithm. This approach significantly enhances calculation speed, achieving improvements of several orders of magnitude over traditional CPU-based methods, with data set size limits dictated only by available hardware. To validate NetSci, we accurately compute MI for an analytically verifiable two-dimensional Gaussian distribution and replicate the generalized correlation (GC) analysis previously conducted on the B1 domain of protein G. We also apply NetSci to molecular dynamics simulations of the Sarcoendoplasmic Reticulum Calcium-ATPase (SERCA) pump, exploring the allosteric mechanisms and pathways influenced by ATP and 2'-deoxy-ATP (dATP) binding. Our analysis reveals distinct allosteric effects induced by ATP compared to dATP, with predicted information pathways from the bound nucleotide to the calcium-binding domain differing based on the nucleotide involved. NetSci proves to be a valuable tool for estimating MI and GC in various data sets and is particularly effective for analyzing intraprotein communication and information transfer.
Collapse
Affiliation(s)
- Andrew M Stokely
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80307, United States
| | - Lane W Votapka
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Marcus T Hock
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Abigail E Teitgen
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, United States
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Rommie E Amaro
- Department of Molecular Biology, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Ugurlu SY, McDonald D, He S. MEF-AlloSite: an accurate and robust Multimodel Ensemble Feature selection for the Allosteric Site identification model. J Cheminform 2024; 16:116. [PMID: 39444016 PMCID: PMC11515501 DOI: 10.1186/s13321-024-00882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024] Open
Abstract
A crucial mechanism for controlling the actions of proteins is allostery. Allosteric modulators have the potential to provide many benefits compared to orthosteric ligands, such as increased selectivity and saturability of their effect. The identification of new allosteric sites presents prospects for the creation of innovative medications and enhances our comprehension of fundamental biological mechanisms. Allosteric sites are increasingly found in different protein families through various techniques, such as machine learning applications, which opens up possibilities for creating completely novel medications with a diverse variety of chemical structures. Machine learning methods, such as PASSer, exhibit limited efficacy in accurately finding allosteric binding sites when relying solely on 3D structural information.Scientific ContributionPrior to conducting feature selection for allosteric binding site identification, integration of supporting amino-acid-based information to 3D structural knowledge is advantageous. This approach can enhance performance by ensuring accuracy and robustness. Therefore, we have developed an accurate and robust model called Multimodel Ensemble Feature Selection for Allosteric Site Identification (MEF-AlloSite) after collecting 9460 relevant and diverse features from the literature to characterise pockets. The model employs an accurate and robust multimodal feature selection technique for the small training set size of only 90 proteins to improve predictive performance. This state-of-the-art technique increased the performance in allosteric binding site identification by selecting promising features from 9460 features. Also, the relationship between selected features and allosteric binding sites enlightened the understanding of complex allostery for proteins by analysing selected features. MEF-AlloSite and state-of-the-art allosteric site identification methods such as PASSer2.0 and PASSerRank have been tested on three test cases 51 times with a different split of the training set. The Student's t test and Cohen's D value have been used to evaluate the average precision and ROC AUC score distribution. On three test cases, most of the p-values ( < 0.05 ) and the majority of Cohen's D values ( > 0.5 ) showed that MEF-AlloSite's 1-6% higher mean of average precision and ROC AUC than state-of-the-art allosteric site identification methods are statistically significant.
Collapse
Affiliation(s)
- Sadettin Y Ugurlu
- School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Shan He
- School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- AIA Insights Ltd, Birmingham, UK.
| |
Collapse
|
4
|
Wu D, Salsbury FR. Allosteric Modulation of Thrombin by Thrombomodulin: Insights from Logistic Regression and Statistical Analysis of Molecular Dynamics Simulations. ACS OMEGA 2024; 9:23086-23100. [PMID: 38826540 PMCID: PMC11137727 DOI: 10.1021/acsomega.4c03375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024]
Abstract
Thrombomodulin (TM), a transmembrane receptor integral to the anticoagulant pathway, governs thrombin's substrate specificity via interaction with thrombin's anion-binding exosite I. Despite its established role, the precise mechanisms underlying this regulatory function are yet to be fully unraveled. In this study, we deepen the understanding of these mechanisms through eight independent 1 μs all-atom simulations, analyzing thrombin both in its free form and when bound to TM fragments TM456 and TM56. Our investigations revealed distinct and significant conformational changes in thrombin mediated by the binding of TM56 and TM456. While TM56 predominantly influences motions within exosite I, TM456 orchestrates coordinated alterations across various loop regions, thereby unveiling a multifaceted modulatory role that extends beyond that of TM56. A highlight of our study is the identification of critical hydrogen bonds that undergo transformations during TM56 and TM456 binding, shedding light on the pivotal allosteric influence exerted by TM4 on thrombin's structural dynamics. This work offers a nuanced appreciation of TM's regulatory role in blood coagulation, paving the way for innovative approaches in the development of anticoagulant therapies and expanding the horizons in oncology therapeutics through a deeper understanding of molecular interactions in the coagulation pathway.
Collapse
Affiliation(s)
- Dizhou Wu
- Department of Physics, Wake
Forest University, Winston-Salem, North Carolina 27106, United
States
| | - Freddie R. Salsbury
- Department of Physics, Wake
Forest University, Winston-Salem, North Carolina 27106, United
States
| |
Collapse
|
5
|
Iljina M, Mazal H, Dayananda A, Zhang Z, Stan G, Riven I, Haran G. Single-molecule FRET probes allosteric effects on protein-translocating pore loops of a AAA+ machine. Biophys J 2024; 123:374-388. [PMID: 38196191 PMCID: PMC10870172 DOI: 10.1016/j.bpj.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
AAA+ proteins (ATPases associated with various cellular activities) comprise a family of powerful ring-shaped ATP-dependent translocases that carry out numerous vital substrate-remodeling functions. ClpB is a AAA+ protein disaggregation machine that forms a two-tiered hexameric ring, with flexible pore loops protruding into its center and binding to substrate proteins. It remains unknown whether these pore loops contribute only passively to substrate-protein threading or have a more active role. Recently, we have applied single-molecule FRET spectroscopy to directly measure the dynamics of substrate-binding pore loops in ClpB. We have reported that the three pore loops of ClpB (PL1-3) undergo large-scale fluctuations on the microsecond timescale that are likely to be mechanistically important for disaggregation. Here, using single-molecule FRET, we study the allosteric coupling between the pore loops and the two nucleotide-binding domains of ClpB (NBD1-2). By mutating the conserved Walker B motifs within the NBDs to abolish ATP hydrolysis, we demonstrate how the nucleotide state of each NBD tunes pore-loop dynamics. This effect is surprisingly long-ranged; in particular, PL2 and PL3 respond differentially to a Walker B mutation in either NBD1 or NBD2, as well as to mutations in both. We characterize the conformational dynamics of pore loops and the allosteric paths connecting NBDs to pore loops by molecular dynamics simulations and find that both principal motions and allosteric paths can be altered by changing the ATPase state of ClpB. Remarkably, PL3, which is highly conserved in AAA+ machines, is found to favor an upward conformation when only NBD1 undergoes ATP hydrolysis but a downward conformation when NBD2 is active. These results explicitly demonstrate a significant long-range allosteric effect of ATP hydrolysis sites on pore-loop dynamics. Pore loops are therefore established as active participants that undergo ATP-dependent conformational changes to translocate substrate proteins through the central pores of AAA+ machines.
Collapse
Affiliation(s)
- Marija Iljina
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Hisham Mazal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Ashan Dayananda
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio
| | - Zhaocheng Zhang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio
| | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio.
| | - Inbal Riven
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Madsen JJ, Yu W. Dynamic Nature of Staphylococcus aureus Type I Signal Peptidases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576923. [PMID: 38328037 PMCID: PMC10849702 DOI: 10.1101/2024.01.23.576923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Molecular dynamics simulations are used to interrogate the dynamic nature of Staphylococcus aureus Type I signal peptidases, SpsA and SpsB, including the impact of the P29S mutation of SpsB. Fluctuations and plasticity- rigidity characteristics vary among the proteins, particularly in the extracellular domain. Intriguingly, the P29S mutation, which influences susceptibility to arylomycin antibiotics, affect the mechanically coupled motions in SpsB. The integrity of the active site is crucial for catalytic competency, and variations in sampled structural conformations among the proteins are consistent with diverse peptidase capabilities. We also explored the intricate interactions between the proteins and the model S. aureus membrane. It was observed that certain membrane-inserted residues in the loop around residue 50 (50s) and C-terminal loops, beyond the transmembrane domain, give rise to direct interactions with lipids in the bilayer membrane. Our findings are discussed in the context of functional knowledge about these signal peptidases, offering additional understanding of dynamic aspects relevant to some cellular processes with potential implications for drug targeting strategies.
Collapse
Affiliation(s)
- Jesper J. Madsen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States of America
- Center for Global Health and Infectious Diseases Research, Global and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida 33612, United States of America
| | - Wenqi Yu
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, Florida 33612, United States of America
| |
Collapse
|
7
|
Wu D, Prem A, Xiao J, Salsbury FR. Thrombin - A Molecular Dynamics Perspective. Mini Rev Med Chem 2024; 24:1112-1124. [PMID: 37605420 DOI: 10.2174/1389557523666230821102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 08/23/2023]
Abstract
Thrombin is a crucial enzyme involved in blood coagulation, essential for maintaining circulatory system integrity and preventing excessive bleeding. However, thrombin is also implicated in pathological conditions such as thrombosis and cancer. Despite the application of various experimental techniques, including X-ray crystallography, NMR spectroscopy, and HDXMS, none of these methods can precisely detect thrombin's dynamics and conformational ensembles at high spatial and temporal resolution. Fortunately, molecular dynamics (MD) simulation, a computational technique that allows the investigation of molecular functions and dynamics in atomic detail, can be used to explore thrombin behavior. This review summarizes recent MD simulation studies on thrombin and its interactions with other biomolecules. Specifically, the 17 studies discussed here provide insights into thrombin's switch between 'slow' and 'fast' forms, active and inactive forms, the role of Na+ binding, the effects of light chain mutation, and thrombin's interactions with other biomolecules. The findings of these studies have significant implications for developing new therapies for thrombosis and cancer. By understanding thrombin's complex behavior, researchers can design more effective drugs and treatments that target thrombin.
Collapse
Affiliation(s)
- Dizhou Wu
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Athul Prem
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Jiajie Xiao
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
- Freenome, South San Francisco, CA, 94080, USA
| | - Freddie R Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| |
Collapse
|
8
|
Gheeraert A, Lesieur C, Batista VS, Vuillon L, Rivalta I. Connected Component Analysis of Dynamical Perturbation Contact Networks. J Phys Chem B 2023; 127:7571-7580. [PMID: 37641933 PMCID: PMC10493978 DOI: 10.1021/acs.jpcb.3c04592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Describing protein dynamical networks through amino acid contacts is a powerful way to analyze complex biomolecular systems. However, due to the size of the systems, identifying the relevant features of protein-weighted graphs can be a difficult task. To address this issue, we present the connected component analysis (CCA) approach that allows for fast, robust, and unbiased analysis of dynamical perturbation contact networks (DPCNs). We first illustrate the CCA method as applied to a prototypical allosteric enzyme, the imidazoleglycerol phosphate synthase (IGPS) enzyme from Thermotoga maritima bacteria. This approach was shown to outperform the clustering methods applied to DPCNs, which could not capture the propagation of the allosteric signal within the protein graph. On the other hand, CCA reduced the DPCN size, providing connected components that nicely describe the allosteric propagation of the signal from the effector to the active sites of the protein. By applying the CCA to the IGPS enzyme in different conditions, i.e., at high temperature and from another organism (yeast IGPS), and to a different enzyme, i.e., a protein kinase, we demonstrated how CCA of DPCNs is an effective and transferable tool that facilitates the analysis of protein-weighted networks.
Collapse
Affiliation(s)
- Aria Gheeraert
- Laboratoire
de Mathématiques (LAMA), Université
Savoie Mont Blanc, CNRS, 73376 Le Bourget du Lac, France
- Dipartimento
di Chimica Industriale “Toso Montanari”, Alma Mater
Studiorum, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Claire Lesieur
- Univ.
Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole
Centrale de Lyon, Ampère UMR5005, Villeurbanne 69622, France
- Institut
Rhônalpin des Systèmes Complexes, IXXI-ENS-Lyon, Lyon 69007, France
| | - Victor S. Batista
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Laurent Vuillon
- Laboratoire
de Mathématiques (LAMA), Université
Savoie Mont Blanc, CNRS, 73376 Le Bourget du Lac, France
- Institut
Rhônalpin des Systèmes Complexes, IXXI-ENS-Lyon, Lyon 69007, France
| | - Ivan Rivalta
- Dipartimento
di Chimica Industriale “Toso Montanari”, Alma Mater
Studiorum, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
- ENS
de Lyon,
CNRS, Laboratoire de Chimie UMR 5182, 69364 Lyon, France
| |
Collapse
|
9
|
Cato ML, D'Agostino EH, Spurlin RM, Flynn AR, Cornelison JL, Johnson AM, Fujita RA, Abraham SM, Jui NT, Ortlund EA. Comparison of activity, structure, and dynamics of SF-1 and LRH-1 complexed with small molecule modulators. J Biol Chem 2023; 299:104921. [PMID: 37328104 PMCID: PMC10407255 DOI: 10.1016/j.jbc.2023.104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Steroidogenic factor-1 (SF-1) is a phospholipid-sensing nuclear receptor expressed in the adrenal glands, gonads, and hypothalamus which controls steroidogenesis and metabolism. There is significant therapeutic interest in SF-1 because of its oncogenic properties in adrenocortical cancer. Synthetic modulators are attractive for targeting SF-1 for clinical and laboratory purposes due to the poor pharmaceutical properties of its native phospholipid ligands. While small molecule agonists targeting SF-1 have been synthesized, no crystal structures have been reported of SF-1 in complexes with synthetic compounds. This has prevented the establishment of structure-activity relationships that would enable better characterization of ligand-mediated activation and improvement in current chemical scaffolds. Here, we compare the effects of small molecules in SF-1 and its close homolog, liver receptor homolog-1 (LRH-1), and identify several molecules that specifically activate LRH-1. We also report the first crystal structure of SF-1 in complex with a synthetic agonist that displays low nanomolar affinity and potency for SF-1. We use this structure to explore the mechanistic basis for small molecule agonism of SF-1, especially compared to LRH-1, and uncover unique signaling pathways that drive LRH-1 specificity. Molecular dynamics simulations reveal differences in protein dynamics at the pocket mouth as well as ligand-mediated allosteric communication from this region to the coactivator binding interface. Our studies, therefore, shed important insight into the allostery driving SF-1 activity and show potential for modulation of LRH-1 over SF-1.
Collapse
Affiliation(s)
- Michael L Cato
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Emma H D'Agostino
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Autumn R Flynn
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | | | - Alyssa M Johnson
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | - Rei A Fujita
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah M Abraham
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nathan T Jui
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
10
|
Komives EA. Dynamic allostery in thrombin-a review. Front Mol Biosci 2023; 10:1200465. [PMID: 37457835 PMCID: PMC10339233 DOI: 10.3389/fmolb.2023.1200465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Thrombin is a serine protease that catalyzes a large number of different reactions including proteolytic cleave of fibrinogen to make the fibrin clot (procoagulant activity), of the protease activated receptors (for cell signaling) and of protein C generating activated protein C (anticoagulant activity). Thrombin has an effector binding site called the anion binding exosite 1 that is allosterically coupled to the active site. In this review, we survey results from thermodynamic characterization of the allosteric coupling as well as hydrogen-deuterium exchange mass spectrometry to reveal which parts of the thrombin structure are changed upon effector binding and/or mutagenesis, and finally NMR spectroscopy to characterize the different timescales of motions elicited by the effectors. We also relate the experimental work to computational network analysis of the thrombin-thrombomodulin complex.
Collapse
|
11
|
Wu D, Salsbury FR. Unraveling the Role of Hydrogen Bonds in Thrombin via Two Machine Learning Methods. J Chem Inf Model 2023; 63:3705-3718. [PMID: 37285464 PMCID: PMC11164249 DOI: 10.1021/acs.jcim.3c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrogen bonds play a critical role in the folding and stability of proteins, such as proteins and nucleic acids, by providing strong and directional interactions. They help to maintain the secondary and 3D structure of proteins, and structural changes in these molecules often result from the formation or breaking of hydrogen bonds. To gain insights into these hydrogen bonding networks, we applied two machine learning models - a logistic regression model and a decision tree model - to study four variants of thrombin: wild-type, ΔK9, E8K, and R4A. Our results showed that both models have their unique advantages. The logistic regression model highlighted potential key residues (GLU295) in thrombin's allosteric pathways, while the decision tree model identified important hydrogen bonding motifs. This information can aid in understanding the mechanisms of folding in proteins and has potential applications in drug design and other therapies. The use of these two models highlights their usefulness in studying hydrogen bonding networks in proteins.
Collapse
Affiliation(s)
- Dizhou Wu
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, United States
| | - Freddie R Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, United States
| |
Collapse
|
12
|
Moosavi-Movahedi Z, Salehi N, Habibi-Rezaei M, Qassemi F, Karimi-Jafari MH. Intermediate-aided allostery mechanism for α-glucosidase by Xanthene-11v as an inhibitor using residue interaction network analysis. J Mol Graph Model 2023; 122:108495. [PMID: 37116337 DOI: 10.1016/j.jmgm.2023.108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
Exploring allosteric inhibition and the discovery of new inhibitor binding sites are important studies in protein regulation mechanisms and drug discovery. Structural and network-based analyses of trajectories resulting from molecular dynamics (MD) simulations have been developed to discover protein dynamics, landscape, functions, and allosteric regions. Here, an experimentally suggested non-competitive inhibitor, xanthene-11v, was considered to explore its allosteric inhibition mechanism in α-glucosidase MAL12. Comparative structural and network analyses were applied to eight 250 ns independent MD simulations, four of which were performed in the free state and four of which were performed in ligand-bound forms. Projected two-dimensional free energy landscapes (FEL) were constructed from the probabilistic distribution of conformations along the first two principal components. The post-simulation analyses of the coordinates, side-chain torsion angles, non-covalent interaction networks, network communities, and their centralities were performed on α-glucosidase conformations and the intermediate sub-states. Important communities of residues have been found that connect the allosteric site to the active site. Some of these residues like Thr307, Arg312, TYR344, ILE345, Phe357, Asp406, Val407, Asp408, and Leu436 are the key messengers in the transition pathway between allosteric and active sites. Evaluating the probability distribution of distances between gate residues including Val407 in one community and Phe158, and Pro65 in another community depicted the closure of this gate due to the inhibitor binding. Six macro states of protein were deduced from the topology of FEL and analysis of conformational preference of free and ligand-bound systems to these macro states shows a combination of lock-and-key, conformational selection, and induced fit mechanisms are effective in ligand binding. All these results reveal structural states, allosteric mechanisms, and key players in the inhibition pathway of α-glucosidase by xanthene-11v.
Collapse
Affiliation(s)
- Zahra Moosavi-Movahedi
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Najmeh Salehi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | | | | | - Mohammad Hossein Karimi-Jafari
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
13
|
Liu J, Amaral LAN, Keten S. A new approach for extracting information from protein dynamics. Proteins 2023; 91:183-195. [PMID: 36094321 PMCID: PMC9844508 DOI: 10.1002/prot.26421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/19/2023]
Abstract
Increased ability to predict protein structures is moving research focus towards understanding protein dynamics. A promising approach is to represent protein dynamics through networks and take advantage of well-developed methods from network science. Most studies build protein dynamics networks from correlation measures, an approach that only works under very specific conditions, instead of the more robust inverse approach. Thus, we apply the inverse approach to the dynamics of protein dihedral angles, a system of internal coordinates, to avoid structural alignment. Using the well-characterized adhesion protein, FimH, we show that our method identifies networks that are physically interpretable, robust, and relevant to the allosteric pathway sites. We further use our approach to detect dynamical differences, despite structural similarity, for Siglec-8 in the immune system, and the SARS-CoV-2 spike protein. Our study demonstrates that using the inverse approach to extract a network from protein dynamics yields important biophysical insights.
Collapse
Affiliation(s)
- Jenny Liu
- Department of Mechanical Engineering, Northwestern University
| | - Luís A. N. Amaral
- Department of Chemical and Biological Engineering, Northwestern University
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University
| |
Collapse
|
14
|
Celebi M, Akten ED. Altered Dynamics of S. aureus Phosphofructokinase via Bond Restraints at Two Distinct Allosteric Binding Sites. J Mol Biol 2022; 434:167646. [PMID: 35623412 DOI: 10.1016/j.jmb.2022.167646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
The effect of perturbation at the allosteric site was investigated through several replicas of molecular dynamics (MD) simulations conducted on bacterial phosphofructokinase (SaPFK). In our previous work, an alternative binding site was estimated to be allosteric in addition to the experimentally reported one. To highlight the effect of both allosteric sites on receptor's dynamics, MD runs were carried out on apo forms with and without perturbation. Perturbation was achieved via incorporating multiple bond restraints for residue pairs located at the allosteric site. Restraints applied to the predicted site caused one dimer to stiffen, whereas an increase in mobility was detected in the same dimer when the experimentally resolved site was restrained. Fluctuations in Cα-Cα distances which is used to disclose residues with high potential of communication indicated a marked increase in signal transmission within each dimer as the receptor switched to a restrained state. Cross-correlation of positional fluctuations indicated an overall decrease in the magnitude of both positive and negative correlations when restraints were employed on the predicted allosteric site whereas an exact opposite effect was observed for the reported site. Finally, mutual correspondence between positional fluctuations noticeably increased with restraints on predicted allosteric site, whereas an opposite effect was observed for restraints applied on experimentally reported one. In view of these findings, it is clear that the perturbation of either one of two allosteric sites effected the dynamics of the receptor with a distinct and contrasting character.
Collapse
Affiliation(s)
- Metehan Celebi
- Integrated Graduate School, Department of Physics, AG Structural Dynamics and Function of Biological Systems, Freie University Berlin, Berlin, Germany
| | - Ebru Demet Akten
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey.
| |
Collapse
|
15
|
Cato ML, Cornelison JL, Spurlin RM, Courouble VV, Patel AB, Flynn AR, Johnson AM, Okafor CD, Frank F, D’Agostino EH, Griffin PR, Jui NT, Ortlund EA. Differential Modulation of Nuclear Receptor LRH-1 through Targeting Buried and Surface Regions of the Binding Pocket. J Med Chem 2022; 65:6888-6902. [PMID: 35503419 PMCID: PMC10026694 DOI: 10.1021/acs.jmedchem.2c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liver receptor homologue-1 (LRH-1) is a phospholipid-sensing nuclear receptor that has shown promise as a target for alleviating intestinal inflammation and metabolic dysregulation in the liver. LRH-1 contains a large ligand-binding pocket, but generating synthetic modulators has been challenging. We have had recent success generating potent and efficacious agonists through two distinct strategies. We targeted residues deep within the pocket to enhance compound binding and residues at the mouth of the pocket to mimic interactions made by phospholipids. Here, we unite these two designs into one molecule to synthesize the most potent LRH-1 agonist to date. Through a combination of global transcriptomic, biochemical, and structural studies, we show that selective modulation can be driven through contacting deep versus surface polar regions in the pocket. While deep pocket contacts convey high affinity, contacts with the pocket mouth dominate allostery and provide a phospholipid-like transcriptional response in cultured cells.
Collapse
Affiliation(s)
- Michael L. Cato
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | | | | | | | - Anamika B. Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Autumn R. Flynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | | | - C. Denise Okafor
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Emma H. D’Agostino
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | | | - Nathan T. Jui
- Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
- Corresponding Author:
| |
Collapse
|
16
|
Yao XQ, Hamelberg D. From Distinct to Differential Conformational Dynamics to Map Allosteric Communication Pathways in Proteins. J Phys Chem B 2022; 126:2612-2620. [PMID: 35319195 DOI: 10.1021/acs.jpcb.2c00199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Initiation of biological processes involving protein-ligand binding, transient protein-protein interactions, or amino acid modifications alters the conformational dynamics of proteins. Accompanying these biological processes are ensuing coupled atomic level conformational changes within the proteins. These conformational changes collectively connect multiple amino acid residues at distal allosteric, binding, and/or active sites. Local changes due to, for example, binding of a regulatory ligand at an allosteric site initiate the allosteric regulation. The allosteric signal propagates throughout the protein structure, causing changes at distal sites, activating, deactivating, or modifying the function of the protein. Hence, dynamical responses within protein structures to stimuli contain critical information on protein function. In this Perspective, we examine the description of allosteric regulation from protein dynamical responses and associated alternative and emerging computational approaches to map allosteric communication pathways between distal sites in proteins at the atomic level.
Collapse
Affiliation(s)
- Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
17
|
Liu J, Amaral LAN, Keten S. A new approach for extracting information from protein dynamics. ARXIV 2022:arXiv:2203.08387v1. [PMID: 35313540 PMCID: PMC8936122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Increased ability to predict protein structures is moving research focus towards understanding protein dynamics. A promising approach is to represent protein dynamics through networks and take advantage of well-developed methods from network science. Most studies build protein dynamics networks from correlation measures, an approach that only works under very specific conditions, instead of the more robust inverse approach. Thus, we apply the inverse approach to the dynamics of protein dihedral angles, a system of internal coordinates, to avoid structural alignment. Using the well-characterized adhesion protein, FimH, we show that our method identifies networks that are physically interpretable, robust, and relevant to the allosteric pathway sites. We further use our approach to detect dynamical differences, despite structural similarity, for Siglec-8 in the immune system, and the SARS-CoV-2 spike protein. Our study demonstrates that using the inverse approach to extract a network from protein dynamics yields important biophysical insights.
Collapse
Affiliation(s)
- Jenny Liu
- Department of Mechanical Engineering, Northwestern University
| | - Luís A N Amaral
- Department of Chemical and Biological Engineering, Northwestern University
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University
| |
Collapse
|
18
|
Sorensen AB, Greisen PJ, Madsen JJ, Lund J, Andersen G, Wulff-Larsen PG, Pedersen AA, Gandhi PS, Overgaard MT, Østergaard H, Olsen OH. A systematic approach for evaluating the role of surface-exposed loops in trypsin-like serine proteases applied to the 170 loop in coagulation factor VIIa. Sci Rep 2022; 12:3747. [PMID: 35260627 PMCID: PMC8904457 DOI: 10.1038/s41598-022-07620-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Proteases play a major role in many vital physiological processes. Trypsin-like serine proteases (TLPs), in particular, are paramount in proteolytic cascade systems such as blood coagulation and complement activation. The structural topology of TLPs is highly conserved, with the trypsin fold comprising two β-barrels connected by a number of variable surface-exposed loops that provide a surprising capacity for functional diversity and substrate specificity. To expand our understanding of the roles these loops play in substrate and co-factor interactions, we employ a systematic methodology akin to the natural truncations and insertions observed through evolution of TLPs. The approach explores a larger deletion space than classical random or directed mutagenesis. Using FVIIa as a model system, deletions of 1–7 amino acids through the surface exposed 170 loop, a vital allosteric regulator, was introduced. All variants were extensively evaluated by established functional assays and computational loop modelling with Rosetta. The approach revealed detailed structural and functional insights recapitulation and expanding on the main findings in relation to 170 loop functions elucidated over several decades using more cumbersome crystallization and single deletion/mutation methodologies. The larger deletion space was key in capturing the most active variant, which unexpectedly had a six-amino acid truncation. This variant would have remained undiscovered if only 2–3 deletions were considered, supporting the usefulness of the methodology in general protease engineering approaches. Our findings shed further light on the complex role that surface-exposed loops play in TLP function and supports the important role of loop length in the regulation and fine-tunning of enzymatic function throughout evolution.
Collapse
Affiliation(s)
- Anders B Sorensen
- Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark.,Department of Chemistry and Bioscience, Aalborg University, 9220, Ålborg, Denmark
| | | | - Jesper J Madsen
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL, 33612, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Jacob Lund
- Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Gorm Andersen
- Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark
| | | | | | | | - Michael T Overgaard
- Department of Chemistry and Bioscience, Aalborg University, 9220, Ålborg, Denmark
| | | | - Ole H Olsen
- Global Research, Novo Nordisk A/S, 2760, Måløv, Denmark. .,Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen, Denmark.
| |
Collapse
|
19
|
Yu Y, Dong X, Tang Y, Li L, Wei G. Mechanistic insight into the destabilization of p53TD tetramer by cancer-related R337H mutation: a molecular dynamics study. Phys Chem Chem Phys 2022; 24:5199-5210. [PMID: 35166747 DOI: 10.1039/d1cp05670k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The p53 protein is a tumor suppressor crucial for cell cycle and genome integrity. In a very large proportion of human cancers, p53 is frequently inactivated by mutations located in its DNA-binding domain (DBD). Some experimental studies reported that the inherited R337H mutation located in the p53 tetramerization domain (p53TD) can also result in destabilization of the p53 protein, and consequently lead to an organism prone to cancer setup. However, the underlying R337H mutation-induced structural destabilization mechanism is not well understood. Herein, we investigate the structural stability and dynamic property of the wild type p53TD tetramer and its cancer-related R337H mutant by performing multiple microsecond molecular dynamics simulations. It is found that R337H mutation destroys the R337-D352 hydrogen bonds, weakens the F341-F341 π-π stacking interaction and the hydrophobic interaction between aliphatic hydrocarbons of R337 and M340, leading to more solvent exposure of all the hydrophobic cores, and thus disrupting the structural integrity of the tetramer. Importantly, our simulations show for the first time that R337H mutation results in unfolding of the α-helix starting from the N-terminal region (residues 335RER(H)FEM340). Consistently, community network analyses reveal that R337H mutation reduces dynamical correlation and global connectivity of p53TD tetramer, which destabilizes the structure of the p53TD tetramer. This study provides the atomistic mechanism of R337H mutation-induced destabilization of p53TD tetramer, which might be helpful for in-depth understanding of the p53 loss-of-function mechanism.
Collapse
Affiliation(s)
- Yawei Yu
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Xuewei Dong
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yiming Tang
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Le Li
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Guanghong Wei
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
20
|
Pawnikar S, Bhattarai A, Wang J, Miao Y. Binding Analysis Using Accelerated Molecular Dynamics Simulations and Future Perspectives. Adv Appl Bioinform Chem 2022; 15:1-19. [PMID: 35023931 PMCID: PMC8747661 DOI: 10.2147/aabc.s247950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/20/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular recognition such as binding of small molecules, nucleic acids, peptides and proteins to their target receptors plays key roles in cellular function and has been targeted for therapeutic drug design. Molecular dynamics (MD) is a computational approach to analyze these binding processes at an atomistic level, which provides valuable understandings of the mechanisms of biomolecular recognition. However, the rather slow biomolecular binding events often present challenges for conventional MD (cMD), due to limited simulation timescales (typically over hundreds of nanoseconds to tens of microseconds). In this regard, enhanced sampling methods, particularly accelerated MD (aMD), have proven useful to bridge the gap and enable all-atom simulations of biomolecular binding events. Here, we will review the recent method developments of Gaussian aMD (GaMD), ligand GaMD (LiGaMD) and peptide GaMD (Pep-GaMD), which have greatly expanded our capabilities to simulate biomolecular binding processes. Spontaneous binding of various biomolecules to their receptors has been successfully simulated by GaMD. Microsecond LiGaMD and Pep-GaMD simulations have captured repetitive binding and dissociation of small-molecule ligands and highly flexible peptides, and thus enabled ligand/peptide binding thermodynamics and kinetics calculations. We will also present relevant application studies in simulations of important drug targets and future perspectives for rational computer-aided drug design.
Collapse
Affiliation(s)
- Shristi Pawnikar
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Apurba Bhattarai
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66047, USA
| |
Collapse
|
21
|
Peacock RB, McGrann T, Zaragoza S, Komives EA. How Thrombomodulin Enables W215A/E217A Thrombin to Cleave Protein C but Not Fibrinogen. Biochemistry 2022; 61:77-84. [PMID: 34978431 DOI: 10.1021/acs.biochem.1c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The W215A/E217A mutant thrombin is called "anticoagulant thrombin" because its activity toward its procoagulant substrate, fibrinogen, is reduced more than 500-fold whereas in the presence of thrombomodulin (TM) its activity toward its anticoagulant substrate, protein C, is reduced less than 10-fold. To understand how these mutations so dramatically alter one activity over the other, we compared the backbone dynamics of wild type thrombin to those of the W215A/E217A mutant thrombin by hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS). Our results show that the mutations cause the 170s, 180s, and 220s C-terminal β-barrel loops near the sites of mutation to exchange more, suggesting that the structure of this region is disrupted. Far from the mutation sites, residues at the N-terminus of the heavy chain, which need to be buried in the Ile pocket for correct structuring of the catalytic triad, also exchange much more than in wild type thrombin. TM binding causes reduced H/D exchange in these regions and also alters the dynamics of the β-strand that links the TM binding site to the catalytic Asp 102 in both wild type thrombin and in the W215A/E217A mutant thrombin. In contrast, whereas TM binding reduces the dynamics the 170, 180 and 220 s C-terminal β-barrel loops in WT thrombin, this region remains disordered in the W215A/E217A mutant thrombin. Thus, TM partially restores the catalytic activity of W215A/E217A mutant thrombin by allosterically altering its dynamics in a manner similar to that of wild type thrombin.
Collapse
Affiliation(s)
- Riley B Peacock
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| | - Taylor McGrann
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| | - Sofia Zaragoza
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| |
Collapse
|
22
|
Shrestha R, Garrett-Thomson S, Liu W, Almo SC, Fiser A. Allosteric regulation of binding specificity of HVEM for CD160 and BTLA ligands upon G89F mutation. Curr Res Struct Biol 2021; 3:337-345. [PMID: 34917954 PMCID: PMC8666650 DOI: 10.1016/j.crstbi.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/08/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022] Open
Abstract
Molecular interactions mediated by engagement of the Herpes virus entry mediator (HVEM) with members of TNF and Ig superfamily generate distinct signals in T cell activation pathways that modulate inflammatory and inhibitory responses. HVEM interacts with CD160 and B and T lymphocyte attenuator (BTLA), both members of the immunoglobulin (Ig) superfamily, which share a common binding site that is unique from that of LIGHT, a TNF ligand. BTLA or CD160 engagement with HVEM deliver inhibitory or stimulatory signals to the host immune response in a context dependent fashion, whereas HVEM engagement with LIGHT results in pro-inflammatory responses. We identified a mutation in human HVEM, G89F, which directly interferes with the human LIGHT interaction, but interestingly, also differentially modulates the binding of human BTLA and CD160 via an apparent allosteric mechanism involving recognition surfaces remote from the site of the mutation. Specifically, the G89F mutation enhances binding of CD160, while decreasing that of BTLA to HVEM in cell-based assays. Molecular dynamics simulations for wild-type and G89F mutant HVEM, bound to different sets of ligands, were performed to define the molecular basis of this unexpected allosteric effect. These results were leveraged to design additional human HVEM mutants with altered binding specificities.
Collapse
Affiliation(s)
- Rojan Shrestha
- Department of Systems and Computational Biology, USA
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Sarah Garrett-Thomson
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Weifeng Liu
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, USA
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| |
Collapse
|
23
|
Conformational dynamics of androgen receptors bound to agonists and antagonists. Sci Rep 2021; 11:15887. [PMID: 34354111 PMCID: PMC8342701 DOI: 10.1038/s41598-021-94707-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/13/2021] [Indexed: 11/09/2022] Open
Abstract
The androgen receptor (AR) is critical in the progression of prostate cancer (PCa). Small molecule antagonists that bind to the ligand binding domain (LBD) of the AR have been successful in treating PCa. However, the structural basis by which the AR antagonists manifest their therapeutic efficacy remains unclear, due to the lack of detailed structural information of the AR bound to the antagonists. We have performed accelerated molecular dynamics (aMD) simulations of LBDs bound to a set of ligands including a natural substrate (dihydrotestosterone), an agonist (RU59063) and three antagonists (bicalutamide, enzalutamide and apalutamide) as well as in the absence of ligand (apo). We show that the binding of AR antagonists at the substrate binding pocket alter the dynamic fluctuations of H12, thereby disrupting the structural integrity of the agonistic conformation of AR. Two antagonists, enzalutamide and apalutamide, induce considerable structural changes to the agonist conformation of LBD, when bound close to H12 of AR LBD. When the antagonists bind to the pocket with different orientations having close contact with H11, no significant conformational changes were observed, suggesting the AR remains in the functionally activated (agonistic) state. The simulations on a drug resistance mutant F876L bound to enzalutamide demonstrated that the mutation stabilizes the agonistic conformation of AR LBD, which compromises the efficacy of the antagonists. Principal component analysis (PCA) of the structural fluctuations shows that the binding of enzalutamide and apalutamide induce conformational fluctuations in the AR, which are markedly different from those caused by the agonist as well as another antagonist, bicalutamide. These fluctuations could only be observed with the use of aMD.
Collapse
|
24
|
Chatzigoulas A, Cournia Z. Rational design of allosteric modulators: Challenges and successes. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1529] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexios Chatzigoulas
- Biomedical Research Foundation Academy of Athens Athens Greece
- Department of Informatics and Telecommunications National and Kapodistrian University of Athens Athens Greece
| | - Zoe Cournia
- Biomedical Research Foundation Academy of Athens Athens Greece
| |
Collapse
|
25
|
Foster CA, Silversmith RE, Immormino RM, Vass LR, Kennedy EN, Pazy Y, Collins EJ, Bourret RB. Role of Position K+4 in the Phosphorylation and Dephosphorylation Reaction Kinetics of the CheY Response Regulator. Biochemistry 2021; 60:2130-2151. [PMID: 34167303 DOI: 10.1021/acs.biochem.1c00246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two-component signaling is a primary method by which microorganisms interact with their environments. A kinase detects stimuli and modulates autophosphorylation activity. The signal propagates by phosphotransfer from the kinase to a response regulator, eliciting a response. Response regulators operate over a range of time scales, corresponding to their related biological processes. Response regulator active site chemistry is highly conserved, but certain variable residues can influence phosphorylation kinetics. An Ala-to-Pro substitution (K+4, residue 113) in the Escherichia coli response regulator CheY triggers a constitutively active phenotype; however, the A113P substitution is too far from the active site to directly affect phosphochemistry. To better understand the activating mechanism(s) of the substitution, we analyzed receiver domain sequences to characterize the evolutionary role of the K+4 position. Although most featured Pro, Leu, Ile, and Val residues, chemotaxis-related proteins exhibited atypical Ala, Gly, Asp, and Glu residues at K+4. Structural and in silico analyses revealed that CheY A113P adopted a partially active configuration. Biochemical data showed that A113P shifted CheY toward a more activated state, enhancing autophosphorylation. By characterizing CheY variants, we determined that this functionality was transmitted through a hydrophobic network bounded by the β5α5 loop and the α1 helix of CheY. This region also interacts with the phosphodonor CheAP1, suggesting that binding generates an activating perturbation similar to the A113P substitution. Atypical residues like Ala at the K+4 position likely serve two purposes. First, restricting autophosphorylation may minimize background noise generated by intracellular phosphodonors such as acetyl phosphate. Second, optimizing interactions with upstream partners may help prime the receiver domain for phosphorylation.
Collapse
Affiliation(s)
- Clay A Foster
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ruth E Silversmith
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Robert M Immormino
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Luke R Vass
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily N Kennedy
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yael Pazy
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Edward J Collins
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Robert B Bourret
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
26
|
Peacock RB, Komives EA. Hydrogen/Deuterium Exchange and Nuclear Magnetic Resonance Spectroscopy Reveal Dynamic Allostery on Multiple Time Scales in the Serine Protease Thrombin. Biochemistry 2021; 60:3441-3448. [PMID: 34159782 DOI: 10.1021/acs.biochem.1c00277] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A deeper understanding of how hydrogen/deuterium exchange mass spectrometry (HDX-MS) reveals allostery is important because HDX-MS can reveal allostery in systems that are not amenable to nuclear magnetic resonance (NMR) spectroscopy. We were able to study thrombin and its complex with thrombomodulin, an allosteric regulator, by both HDX-MS and NMR. In this Perspective, we compare and contrast the results from both experiments and from molecular dynamics simulations. NMR detects changes in the chemical environment around the protein backbone N-H bond vectors, providing residue-level information about the conformational exchange between distinct states. HDX-MS detects changes in amide proton solvent accessibility and H-bonding. Taking advantage of NMR relaxation dispersion measurements of the time scale of motions, we draw conclusions about the motions reflected in HDX-MS experiments. Both experiments detect allostery, but they reveal different components of the allosteric transition. The insights gained from integrating NMR and HDX-MS into thrombin dynamics enable a clearer interpretation of the evidence for allostery revealed by HDX-MS in larger protein complexes and assemblies that are not amenable to NMR.
Collapse
Affiliation(s)
- Riley B Peacock
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| |
Collapse
|
27
|
Foutch D, Pham B, Shen T. Protein conformational switch discerned via network centrality properties. Comput Struct Biotechnol J 2021; 19:3599-3608. [PMID: 34257839 PMCID: PMC8246261 DOI: 10.1016/j.csbj.2021.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Network analysis has emerged as a powerful tool for examining structural biology systems. The spatial organization of the components of a biomolecular structure has been rendered as a graph representation and analyses have been performed to deduce the biophysical and mechanistic properties of these components. For proteins, the analysis of protein structure networks (PSNs), especially via network centrality measurements and cluster coefficients, has led to identifying amino acid residues that play key functional roles and classifying amino acid residues in general. Whether these network properties examined in various studies are sensitive to subtle (yet biologically significant) conformational changes remained to be addressed. Here, we focused on four types of network centrality properties (betweenness, closeness, degree, and eigenvector centralities) for conformational changes upon ligand binding of a sensor protein (constitutive androstane receptor) and an allosteric enzyme (ribonucleotide reductase). We found that eigenvector centrality is sensitive and can distinguish salient structural features between protein conformational states while other centrality measures, especially closeness centrality, are less sensitive and rather generic with respect to the structural specificity. We also demonstrated that an ensemble-informed, modified PSN with static edges removed (which we term PSN*) has enhanced sensitivity at discerning structural changes.
Collapse
Affiliation(s)
- David Foutch
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bill Pham
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Tongye Shen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.,UT-ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
28
|
Mapping the Intramolecular Communications among Different Glutamate Dehydrogenase States Using Molecular Dynamics. Biomolecules 2021; 11:biom11060798. [PMID: 34072154 PMCID: PMC8228935 DOI: 10.3390/biom11060798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
Glutamate dehydrogenase (GDH) is a ubiquitous enzyme that catalyzes the reversible oxidative deamination of glutamate to α-ketoglutarate. It acts as an important branch-point enzyme between carbon and nitrogen metabolisms. Due to the multifaceted roles of GDH in cancer, hyperinsulinism/hyperammonemia, and central nervous system development and pathologies, tight control of its activity is necessitated. To date, several GDH structures have been solved in its closed form; however, intrinsic structural information in its open and apo forms are still deficient. Moreover, the allosteric communications and conformational changes taking place in the three different GDH states are not well studied. To mitigate these drawbacks, we applied unbiased molecular dynamic simulations (MD) and network analysis to three different GDH states i.e., apo, active, and inactive forms, for investigating their modulatory mechanisms. In this paper, based on MD and network analysis, crucial residues important for signal transduction, conformational changes, and maps of information flow among the different GDH states were elucidated. Moreover, with the recent findings of allosteric modulators, an allosteric wiring illustration of GDH intramolecular signal transductions would be of paramount importance to obtain the process of this enzyme regulation. The structural insights gained from this study will pave way for large-scale screening of GDH regulators and could support researchers in the design and development of new and potent GDH ligands.
Collapse
|
29
|
Serine protease dynamics revealed by NMR analysis of the thrombin-thrombomodulin complex. Sci Rep 2021; 11:9354. [PMID: 33931701 PMCID: PMC8087772 DOI: 10.1038/s41598-021-88432-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023] Open
Abstract
Serine proteases catalyze a multi-step covalent catalytic mechanism of peptide bond cleavage. It has long been assumed that serine proteases including thrombin carry-out catalysis without significant conformational rearrangement of their stable two-β-barrel structure. We present nuclear magnetic resonance (NMR) and hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments on the thrombin-thrombomodulin (TM) complex. Thrombin promotes procoagulative fibrinogen cleavage when fibrinogen engages both the anion binding exosite 1 (ABE1) and the active site. It is thought that TM promotes cleavage of protein C by engaging ABE1 in a similar manner as fibrinogen. Thus, the thrombin-TM complex may represent the catalytically active, ABE1-engaged thrombin. Compared to apo- and active site inhibited-thrombin, we show that thrombin-TM has reduced μs-ms dynamics in the substrate binding (S1) pocket consistent with its known acceleration of protein C binding. Thrombin-TM has increased μs-ms dynamics in a β-strand connecting the TM binding site to the catalytic aspartate. Finally, thrombin-TM had doublet peaks indicative of dynamics that are slow on the NMR timescale in residues along the interface between the two β-barrels. Such dynamics may be responsible for facilitating the N-terminal product release and water molecule entry that are required for hydrolysis of the acyl-enzyme intermediate.
Collapse
|
30
|
Madsen JJ, Olsen OH. Conformational Plasticity-Rigidity Axis of the Coagulation Factor VII Zymogen Elucidated by Atomistic Simulations of the N-Terminally Truncated Factor VIIa Protease Domain. Biomolecules 2021; 11:549. [PMID: 33917935 PMCID: PMC8068379 DOI: 10.3390/biom11040549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/22/2022] Open
Abstract
The vast majority of coagulation factor VII (FVII), a trypsin-like protease, circulates as the inactive zymogen. Activated FVII (FVIIa) is formed upon proteolytic activation of FVII, where it remains in a zymogen-like state and it is fully activated only when bound to tissue factor (TF). The catalytic domains of trypsin-like proteases adopt strikingly similar structures in their fully active forms. However, the dynamics and structures of the available corresponding zymogens reveal remarkable conformational plasticity of the protease domain prior to activation in many cases. Exactly how ligands and cofactors modulate the conformational dynamics and function of these proteases is not entirely understood. Here, we employ atomistic simulations of FVIIa (and variants hereof, including a TF-independent variant and N-terminally truncated variants) to provide fundamental insights with atomistic resolution into the plasticity-rigidity interplay of the protease domain conformations that appears to govern the functional response to proteolytic and allosteric activation. We argue that these findings are relevant to the FVII zymogen, whose structure has remained elusive despite substantial efforts. Our results shed light on the nature of FVII and demonstrate how conformational dynamics has played a crucial role in the evolutionary adaptation of regulatory mechanisms that were not present in the ancestral trypsin. Exploiting this knowledge could lead to engineering of protease variants for use as next-generation hemostatic therapeutics.
Collapse
Affiliation(s)
- Jesper J. Madsen
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Ole H. Olsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| |
Collapse
|
31
|
Dodd T, Yao XQ, Hamelberg D, Ivanov I. Subsets of adjacent nodes (SOAN): a fast method for computing suboptimal paths in protein dynamic networks. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1893847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Thomas Dodd
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
32
|
Li C, Chen S, Huang T, Zhang F, Yuan J, Chang H, Li W, Han W. Conformational Changes of Glutamine 5'-Phosphoribosylpyrophosphate Amidotransferase for Two Substrates Analogue Binding: Insight from Conventional Molecular Dynamics and Accelerated Molecular Dynamics Simulations. Front Chem 2021; 9:640994. [PMID: 33718330 PMCID: PMC7953260 DOI: 10.3389/fchem.2021.640994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
Glutamine 5′-phosphoribosylpyrophosphate amidotransferase (GPATase) catalyzes the synthesis of phosphoribosylamine, pyrophosphate, and glutamate from phosphoribosylpyrophosphate, as well as glutamine at two sites (i.e., glutaminase and phosphoribosylpyrophosphate sites), through a 20 Å NH3 channel. In this study, conventional molecular dynamics (cMD) simulations and enhanced sampling accelerated molecular dynamics (aMD) simulations were integrated to characterize the mechanism for coordination catalysis at two separate active sites in the enzyme. Results of cMD simulations illustrated the mechanism by which two substrate analogues, namely, DON and cPRPP, affect the structural stability of GPATase from the perspective of dynamic behavior. aMD simulations obtained several key findings. First, a comparison of protein conformational changes in the complexes of GPATase–DON and GPATase–DON–cPRPP showed that binding cPRPP to the PRTase flexible loop (K326 to L350) substantially effected the formation of the R73-DON salt bridge. Moreover, only the PRTase flexible loop in the GPATase–DON–cPRPP complex could remain closed and had sufficient space for cPRPP binding, indicating that binding of DON to the glutamine loop had an impact on the PRTase flexible loop. Finally, both DON and cPRPP tightly bonded to the two domains, thereby inducing the glutamine loop and the PRTase flexible loop to move close to each other. This movement facilitated the transfer of NH3 via the NH3 channel. These theoretical results are useful to the ongoing research on efficient inhibitors related to GPATase.
Collapse
Affiliation(s)
- Congcong Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Siao Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Tianci Huang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Fangning Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Jiawei Yuan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Hao Chang
- Jilin Province TeyiFood Biotechnology Company Limited, Changchun, China
| | - Wannan Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| |
Collapse
|
33
|
Hong ST, Su YC, Wang YJ, Cheng TL, Wang YT. Anti-TNF Alpha Antibody Humira with pH-dependent Binding Characteristics: A constant-pH Molecular Dynamics, Gaussian Accelerated Molecular Dynamics, and In Vitro Study. Biomolecules 2021; 11:334. [PMID: 33672169 PMCID: PMC7926962 DOI: 10.3390/biom11020334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/17/2022] Open
Abstract
Humira is a monoclonal antibody that binds to TNF alpha, inactivates TNF alpha receptors, and inhibits inflammation. Neonatal Fc receptors can mediate the transcytosis of Humira-TNF alpha complex structures and process them toward degradation pathways, which reduces the therapeutic effect of Humira. Allowing the Humira-TNF alpha complex structures to dissociate to Humira and soluble TNF alpha in the early endosome to enable Humira recycling is crucial. We used the cytoplasmic pH (7.4), the early endosomal pH (6.0), and pKa of histidine side chains (6.0-6.4) to mutate the residues of complementarity-determining regions with histidine. Our engineered Humira (W1-Humira) can bind to TNF alpha in plasma at neutral pH and dissociate from the TNF alpha in the endosome at acidic pH. We used the constant-pH molecular dynamics, Gaussian accelerated molecular dynamics, two-dimensional potential mean force profiles, and in vitro methods to investigate the characteristics of W1-Humira. Our results revealed that the proposed Humira can bind TNF alpha with pH-dependent affinity in vitro. The W1-Humira was weaker than wild-type Humira at neutral pH in vitro, and our prediction results were close to the in vitro results. Furthermore, our approach displayed a high accuracy in antibody pH-dependent binding characteristics prediction, which may facilitate antibody drug design. Advancements in computational methods and computing power may further aid in addressing the challenges in antibody drug design.
Collapse
Affiliation(s)
- Shih-Ting Hong
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yu-Cheng Su
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin-Chu 300, Taiwan;
| | - Yu-Jen Wang
- Department of Mechanical and Electromechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yeng-Tseng Wang
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
34
|
Abstract
Community network analysis (CNA) of correlated protein motions allows modeling of signals propagation in allosteric proteic systems. From standard classical molecular dynamics (MD) simulations, protein motions can be analysed by means of mutual information between pairs of amino acid residues, providing dynamical weighted networks that contains fundamental information of the communication among amino acids. The CNA method has been successfully applied to a variety of allosteric systems including an enzyme, a nuclear receptor and a bacterial adaptive immune system, providing characterization of the allosteric pathways. This method is complementary to network analyses based on different metrics and it is particularly powerful for studying large proteic systems, as it provides a coarse-grained view of the communication flows within large and complex networks.
Collapse
Affiliation(s)
- Ivan Rivalta
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna, Italy.
- Univ Lyon, Ens de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, Lyon, France.
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
35
|
Villani G. A Time-Dependent Quantum Approach to Allostery and a Comparison With Light-Harvesting in Photosynthetic Phenomenon. Front Mol Biosci 2020; 7:156. [PMID: 33005625 PMCID: PMC7483663 DOI: 10.3389/fmolb.2020.00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/19/2020] [Indexed: 11/26/2022] Open
Abstract
The allosteric effect is one of the most important processes in regulating the function of proteins, and the elucidation of this phenomenon plays a significant role in understanding emergent behaviors in biological regulation. In this process, a perturbation, generated by a ligand in a part of the macromolecule (the allosteric site), moves along this system and reaches a specific (active) site, dozens of Ångströms away, with a great efficiency. The dynamics of this perturbation in the macromolecule can model precisely the allosteric process. In this article, we will be studying the general characteristics of allostery, using a time-dependent quantum approach to obtain rules that apply to this kind of process. Considering the perturbation as a wave that moves within the molecular system, we will characterize the allosteric process with three of the properties of this wave in the active site: (1) ta, the characteristic time for reaching that site, (2) Aa, the amplitude of the wave in this site, and (3) Ba, its corresponding spectral broadening. These three parameters, together with the process mechanism and the perturbation efficiency in the process, can describe the phenomenon. One of the main purposes of this paper is to link the parameters ta, Aa, and Ba and the perturbation efficiency to the characteristics of the system. There is another fundamental process for life that has some characteristics similar to allostery: the light-harvesting (LH) process in photosynthesis. Here, as in allostery, two distant macromolecular sites are involved—two sites dozens of Ångströms away. In both processes, it is particularly important that the perturbation is distributed efficiently without dissipating in the infinite degrees of freedom within the macromolecule. The importance of considering quantum effects in the LH process is well documented in literature, and the quantum coherences are experimentally proven by time-dependent spectroscopic techniques. Given the existing similarities between these two processes in macromolecules, in this work, we suggest using Quantum Mechanics (QM) to study allostery.
Collapse
Affiliation(s)
- Giovanni Villani
- Istituto di Chimica dei Composti OrganoMetallici (UOS Pisa) - CNR, Area della Ricerca di Pisa, Pisa, Italy
| |
Collapse
|
36
|
Rocha GV, Bastos LS, Costa MGS. Identification of potential allosteric binding sites in cathepsin K based on intramolecular communication. Proteins 2020; 88:1675-1687. [PMID: 32683717 DOI: 10.1002/prot.25985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/02/2020] [Accepted: 07/12/2020] [Indexed: 12/18/2022]
Abstract
Network theory methods and molecular dynamics (MD) simulations are accepted tools to study allosteric regulation. Indeed, dynamic networks built upon correlation analysis of MD trajectories provide detailed information about communication paths between distant sites. In this context, we aimed to understand whether the efficiency of intramolecular communication could be used to predict the allosteric potential of a given site. To this end, we performed MD simulations and network theory analyses in cathepsin K (catK), whose allosteric sites are well defined. To obtain a quantitative measure of the efficiency of communication, we designed a new protocol that enables the comparison between properties related to ensembles of communication paths obtained from different sites. Further, we applied our strategy to evaluate the allosteric potential of different catK cavities not yet considered for drug design. Our predictions of the allosteric potential based on intramolecular communication correlate well with previous catK experimental and theoretical data. We also discuss the possibility of applying our approach to other proteins from the same family.
Collapse
Affiliation(s)
- Gisele V Rocha
- Programa de Computação Científica, Vice-Presidência de Educação, Informação e Comunicação, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure Paris Saclay, Centre National de la Recherche Scientifique, Cachan, France
| | - Leonardo S Bastos
- Programa de Computação Científica, Vice-Presidência de Educação, Informação e Comunicação, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Mauricio G S Costa
- Programa de Computação Científica, Vice-Presidência de Educação, Informação e Comunicação, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure Paris Saclay, Centre National de la Recherche Scientifique, Cachan, France
| |
Collapse
|
37
|
Verkhivker GM, Agajanian S, Hu G, Tao P. Allosteric Regulation at the Crossroads of New Technologies: Multiscale Modeling, Networks, and Machine Learning. Front Mol Biosci 2020; 7:136. [PMID: 32733918 PMCID: PMC7363947 DOI: 10.3389/fmolb.2020.00136] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Allosteric regulation is a common mechanism employed by complex biomolecular systems for regulation of activity and adaptability in the cellular environment, serving as an effective molecular tool for cellular communication. As an intrinsic but elusive property, allostery is a ubiquitous phenomenon where binding or disturbing of a distal site in a protein can functionally control its activity and is considered as the "second secret of life." The fundamental biological importance and complexity of these processes require a multi-faceted platform of synergistically integrated approaches for prediction and characterization of allosteric functional states, atomistic reconstruction of allosteric regulatory mechanisms and discovery of allosteric modulators. The unifying theme and overarching goal of allosteric regulation studies in recent years have been integration between emerging experiment and computational approaches and technologies to advance quantitative characterization of allosteric mechanisms in proteins. Despite significant advances, the quantitative characterization and reliable prediction of functional allosteric states, interactions, and mechanisms continue to present highly challenging problems in the field. In this review, we discuss simulation-based multiscale approaches, experiment-informed Markovian models, and network modeling of allostery and information-theoretical approaches that can describe the thermodynamics and hierarchy allosteric states and the molecular basis of allosteric mechanisms. The wealth of structural and functional information along with diversity and complexity of allosteric mechanisms in therapeutically important protein families have provided a well-suited platform for development of data-driven research strategies. Data-centric integration of chemistry, biology and computer science using artificial intelligence technologies has gained a significant momentum and at the forefront of many cross-disciplinary efforts. We discuss new developments in the machine learning field and the emergence of deep learning and deep reinforcement learning applications in modeling of molecular mechanisms and allosteric proteins. The experiment-guided integrated approaches empowered by recent advances in multiscale modeling, network science, and machine learning can lead to more reliable prediction of allosteric regulatory mechanisms and discovery of allosteric modulators for therapeutically important protein targets.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Steve Agajanian
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Peng Tao
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, TX, United States
| |
Collapse
|
38
|
Unveiling functional motions based on point mutations in biased signaling systems: A normal mode study on nerve growth factor bound to TrkA. PLoS One 2020; 15:e0231542. [PMID: 32497034 PMCID: PMC7272051 DOI: 10.1371/journal.pone.0231542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/26/2020] [Indexed: 11/19/2022] Open
Abstract
Many receptors elicit signal transduction by activating multiple intracellular pathways. This transduction can be triggered by a non-specific ligand, which simultaneously activates all the signaling pathways of the receptors. However, the binding of one biased ligand preferentially trigger one pathway over another, in a process called biased signaling. The identification the functional motions related to each of these distinct pathways has a direct impact on the development of new effective and specific drugs. We show here how to detect specific functional motions by considering the case of the NGF/TrkA-Ig2 complex. NGF-mediated TrkA receptor activation is dependent on specific structural motions that trigger the neuronal growth, development, and survival of neurons in nervous system. The R221W mutation in the ngf gene impairs nociceptive signaling. We discuss how the large-scale structural effects of this mutation lead to the suppression of collective motions necessary to induce TrkA activation of nociceptive signaling. Our results suggest that subtle changes in the NGF interaction network due to the point mutation are sufficient to inhibit the motions of TrkA receptors putatively linked to nociception. The methodological approach presented in this article, based jointly on the normal mode analysis and the experimentally observed functional alterations due to point mutations provides an essential tool to reveal the structural changes and motions linked to the disease, which in turn could be necessary for a drug design study.
Collapse
|
39
|
Wang YT, Cheng TL. Computational modeling of cyclic peptide inhibitor-MDM2/MDMX binding through global docking and Gaussian accelerated molecular dynamics simulations. J Biomol Struct Dyn 2020; 39:4005-4014. [PMID: 32448094 DOI: 10.1080/07391102.2020.1773317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
MDM2 and MDMX are potential targets for p53-dependent cancer therapy. Peptides are key in cellular immunology and oncology, and cyclic peptides generally have higher half-life than their linear counterparts. However, prediction of cyclic peptide-protein binding is challenging with normal molecular simulation approaches because of high peptide flexibility. Here, we used global peptide docking, normal molecular dynamics, Gaussian accelerated molecular dynamics (GaMD), two-dimensional (2D) potential of mean force (PMF) profiles, and solvated interaction energy (SIE) techniques to investigate the interactions of MDM2/MDMX with three N-to-C-terminal cyclic peptide-based inhibitors. We determined the possible cyclic peptide-MDM2/MDMX complex structures via 2D PMF profiles and SIE calculations. Our findings increase the accuracy of peptide-protein structural prediction, which may facilitate cyclic peptide drug design. Advancements in the computational methods and computing power may further aid in addressing the challenges in cyclic peptide drug design. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yeng-Tseng Wang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
40
|
Sodium-induced population shift drives activation of thrombin. Sci Rep 2020; 10:1086. [PMID: 31974511 PMCID: PMC6978324 DOI: 10.1038/s41598-020-57822-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/06/2020] [Indexed: 02/04/2023] Open
Abstract
The equilibrium between active E and inactive E* forms of thrombin is assumed to be governed by the allosteric binding of a Na+ ion. Here we use molecular dynamics simulations and Markov state models to sample transitions between active and inactive states. With these calculations we are able to compare thermodynamic and kinetic properties depending on the presence of Na+. For the first time, we directly observe sodium-induced conformational changes in long-timescale computer simulations. Thereby, we are able to explain the resulting change in activity. We observe a stabilization of the active form in presence of Na+ and a shift towards the inactive form in Na+-free simulations. We identify key structural features to quantify and monitor this conformational shift. These include the accessibility of the S1 pocket and the reorientation of W215, of R221a and of the Na+ loop. The structural characteristics exhibit dynamics at various timescales: Conformational changes in the Na+ binding loop constitute the slowest observed movement. Depending on its orientation, it induces conformational shifts in the nearby substrate binding site. Only after this shift, residue W215 is able to move freely, allowing thrombin to adopt a binding-competent conformation.
Collapse
|
41
|
Mays SG, Flynn AR, Cornelison JL, Okafor CD, Wang H, Wang G, Huang X, Donaldson HN, Millings EJ, Polavarapu R, Moore DD, Calvert JW, Jui NT, Ortlund EA. Development of the First Low Nanomolar Liver Receptor Homolog-1 Agonist through Structure-guided Design. J Med Chem 2019; 62:11022-11034. [PMID: 31419141 PMCID: PMC10026690 DOI: 10.1021/acs.jmedchem.9b00753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a key regulator of metabolism and inflammation, the orphan nuclear hormone receptor, liver receptor homolog-1 (LRH-1), has potential as a therapeutic target for diabetes, nonalcoholic fatty liver disease, and inflammatory bowel diseases (IBD). Discovery of LRH-1 modulators has been difficult, in part due to the tendency for synthetic compounds to bind unpredictably within the lipophilic binding pocket. Using a structure-guided approach, we exploited a newly discovered polar interaction to lock agonists in a consistent orientation. This enabled the discovery of the first low nanomolar LRH-1 agonist, one hundred times more potent than the best previous modulator. We elucidate a novel mechanism of action that relies upon specific polar interactions deep in the LRH-1 binding pocket. In an organoid model of IBD, the new agonist increases expression of LRH-1-controlled steroidogenic genes and promotes anti-inflammatory gene expression changes. These studies constitute major progress in developing LRH-1 modulators with potential clinical utility.
Collapse
Affiliation(s)
- Suzanne G. Mays
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Autumn R. Flynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | | | - C. Denise Okafor
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Hongtao Wang
- Department of Pediatrics, Section of Gastroenterology, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Guohui Wang
- Department of Pediatrics, Section of Gastroenterology, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Xiangsheng Huang
- Department of Pediatrics, Section of Gastroenterology, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Heather N. Donaldson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Elizabeth J. Millings
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Department of Surgery, Carlyle Fraser Heart Center, Emory University, Atlanta, Georgia 30322, USA
| | - Rohini Polavarapu
- Department of Surgery, Carlyle Fraser Heart Center, Emory University, Atlanta, Georgia 30322, USA
| | - David D. Moore
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - John W. Calvert
- Department of Surgery, Carlyle Fraser Heart Center, Emory University, Atlanta, Georgia 30322, USA
| | - Nathan T. Jui
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Corresponding Author Eric A. Ortlund, 1525 Clifton Rd. G235, Atlanta, GA 30322,
| |
Collapse
|
42
|
Bueren-Calabuig JA, G Bage M, Cowling VH, Pisliakov AV. Mechanism of allosteric activation of human mRNA cap methyltransferase (RNMT) by RAM: insights from accelerated molecular dynamics simulations. Nucleic Acids Res 2019; 47:8675-8692. [PMID: 31329932 PMCID: PMC7145595 DOI: 10.1093/nar/gkz613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 02/04/2023] Open
Abstract
The RNA guanine-N7 methyltransferase (RNMT) in complex with RNMT-activating miniprotein (RAM) catalyses the formation of a N7-methylated guanosine cap structure on the 5' end of nascent RNA polymerase II transcripts. The mRNA cap protects the primary transcript from exonucleases and recruits cap-binding complexes that mediate RNA processing, export and translation. By using microsecond standard and accelerated molecular dynamics simulations, we provide for the first time a detailed molecular mechanism of allosteric regulation of RNMT by RAM. We show that RAM selects the RNMT active site conformations that are optimal for binding of substrates (AdoMet and the cap), thus enhancing their affinity. Furthermore, our results strongly suggest the likely scenario in which the cap binding promotes the subsequent AdoMet binding, consistent with the previously suggested cooperative binding model. By employing the network community analyses, we revealed the underlying long-range allosteric networks and paths that are crucial for allosteric regulation by RAM. Our findings complement and explain previous experimental data on RNMT activity. Moreover, this study provides the most complete description of the cap and AdoMet binding poses and interactions within the enzyme's active site. This information is critical for the drug discovery efforts that consider RNMT as a promising anti-cancer target.
Collapse
Affiliation(s)
- Juan A Bueren-Calabuig
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Marcus G Bage
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Andrei V Pisliakov
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,Physics, School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK
| |
Collapse
|
43
|
Wako H, Endo S. Dynamic properties of oligomers that characterize low-frequency normal modes. Biophys Physicobiol 2019; 16:220-231. [PMID: 31984175 PMCID: PMC6976002 DOI: 10.2142/biophysico.16.0_220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/09/2019] [Indexed: 01/09/2023] Open
Abstract
Dynamics of oligomeric proteins (one trimer, two tetramers, and one hexamer) were studied by elastic network model-based normal mode analysis to characterize their large-scale concerted motions. First, the oligomer motions were simplified by considering rigid-body motions of individual subunits. The subunit motions were resolved into three components in a cylindrical coordinate system: radial, tangential, and axial ones. Single component is dominant in certain normal modes. However, more than one component is mixed in others. The subunits move symmetrically in certain normal modes and as a standing wave with several wave nodes in others. Secondly, special attention was paid to atoms on inter-subunit interfaces. Their displacement vectors were decomposed into intra-subunit deformative (internal) and rigid-body (external) motions in individual subunits. The fact that most of the cosines of the internal and external motion vectors were negative for the atoms on the inter-subunit interfaces, indicated their opposing movements. Finally, a structural network of residues defined for each normal mode was investigated; the network was constructed by connecting two residues in contact and moving coherently. The centrality measure “betweenness” of each residue was calculated for the networks. Several residues with significantly high betweenness were observed on the inter-subunit interfaces. The results indicate that these residues are responsible for oligomer dynamics. It was also observed that amino acid residues with significantly high betweenness were more conservative. This supports that the betweenness is an effective characteristic for identifying an important residue in protein dynamics.
Collapse
Affiliation(s)
- Hiroshi Wako
- School of Social Sciences, Waseda University, Shinjuku-ku, Tokyo 169-8050, Japan
| | - Shigeru Endo
- Department of Physics, School of Science, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
44
|
Yao XQ, Momin M, Hamelberg D. Establishing a Framework of Using Residue–Residue Interactions in Protein Difference Network Analysis. J Chem Inf Model 2019; 59:3222-3228. [DOI: 10.1021/acs.jcim.9b00320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Mohamed Momin
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
45
|
Astl L, Verkhivker GM. Atomistic Modeling of the ABL Kinase Regulation by Allosteric Modulators Using Structural Perturbation Analysis and Community-Based Network Reconstruction of Allosteric Communications. J Chem Theory Comput 2019; 15:3362-3380. [PMID: 31017783 DOI: 10.1021/acs.jctc.9b00119] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, we have examined the molecular mechanisms of allosteric regulation of the ABL tyrosine kinase at the atomic level. Atomistic modeling of the ABL complexes with a panel of allosteric modulators has been performed using a combination of molecular dynamics simulations, structural residue perturbation scanning, and a novel community analysis of the residue interaction networks. Our results have indicated that allosteric inhibitors and activators may exert a differential control on allosteric signaling between the kinase binding sites and functional regions. While the inhibitor binding can strengthen the closed ABL state and induce allosteric communications directed from the allosteric pocket to the ATP binding site, the DPH activator may induce a more dynamic open form and activate allosteric couplings between the ATP and substrate binding sites. By leveraging a network-centric theoretical framework, we have introduced a novel community analysis method and global topological parameters that have unveiled the hierarchical modularity and the intercommunity bridging sites in the residue interaction network. We have found that allosteric functional hotspots responsible for the kinase regulation may serve the intermodular bridges in the global interaction network. The central conclusion from this analysis is that the regulatory switch centers play a fundamental role in the modular network organization of ABL as the unique intercommunity bridges that connect the SH2 and SH3 domains with the catalytic core into a functional kinase assembly. The hierarchy of network organization in the ABL regulatory complexes may allow for the synergistic action of dense intercommunity links required for the robust signal transfer in the catalytic core and sparse network bridges acting as the regulatory control points that orchestrate allosteric transitions between the inhibited and active kinase forms.
Collapse
Affiliation(s)
- Lindy Astl
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology , Chapman University , One University Drive , Orange , California 92866 , United States
| | - Gennady M Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology , Chapman University , One University Drive , Orange , California 92866 , United States.,Department of Biomedical and Pharmaceutical Sciences , Chapman University School of Pharmacy , Irvine , California 92618 , United States
| |
Collapse
|
46
|
Gheeraert A, Pacini L, Batista VS, Vuillon L, Lesieur C, Rivalta I. Exploring Allosteric Pathways of a V-Type Enzyme with Dynamical Perturbation Networks. J Phys Chem B 2019; 123:3452-3461. [PMID: 30943726 DOI: 10.1021/acs.jpcb.9b01294] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Elucidation of the allosteric pathways in proteins is a computational challenge that strongly benefits from combination of atomistic molecular dynamics (MD) simulations and coarse-grained analysis of the complex dynamical network of chemical interactions based on graph theory. Here, we introduce and assess the performances of the dynamical perturbation network analysis of allosteric pathways in a prototypical V-type allosteric enzyme. Dynamical atomic contacts obtained from MD simulations are used to weight the allosteric protein graph, which involves an extended network of contacts perturbed by the effector binding in the allosteric site. The outcome showed good agreement with previously reported theoretical and experimental extended studies and it provided recognition of new potential allosteric spots that can be exploited in future mutagenesis experiments. Overall, the dynamical perturbation network analysis proved to be a powerful computational tool, complementary to other network-based approaches that can assist the full exploitation of allosteric phenomena for advances in protein engineering and rational drug design.
Collapse
Affiliation(s)
- Aria Gheeraert
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1 , Laboratoire de Chimie , F69342 Lyon , France
| | - Lorenza Pacini
- Institut Rhônalpin des systèmes complexes, IXXI-ENS-Lyon , 69007 Lyon , France.,LAMA , Univ. Savoie Mont Blanc, CNRS, LAMA , 73376 Le Bourget du Lac , France.,AMPERE, CNRS, Univ. Lyon , 69622 Lyon , France
| | - Victor S Batista
- Department of Chemistry and Energy Sciences Institute , Yale University , P.O. Box 208107, New Haven , Connecticut 06520-8107 , United States
| | - Laurent Vuillon
- LAMA , Univ. Savoie Mont Blanc, CNRS, LAMA , 73376 Le Bourget du Lac , France
| | - Claire Lesieur
- Institut Rhônalpin des systèmes complexes, IXXI-ENS-Lyon , 69007 Lyon , France.,AMPERE, CNRS, Univ. Lyon , 69622 Lyon , France
| | - Ivan Rivalta
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1 , Laboratoire de Chimie , F69342 Lyon , France.,Dipartimento di Chimica Industriale "Toso Montanari" , Università degli Studi di Bologna , Viale del Risorgimento 4 , I-40136 Bologna , Italy
| |
Collapse
|
47
|
Feher VA, Schiffer JM, Mermelstein DJ, Mih N, Pierce LCT, McCammon JA, Amaro RE. Mechanisms for Benzene Dissociation through the Excited State of T4 Lysozyme L99A Mutant. Biophys J 2019; 116:205-214. [PMID: 30606449 PMCID: PMC6349996 DOI: 10.1016/j.bpj.2018.09.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/23/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022] Open
Abstract
The atomic-level mechanisms that coordinate ligand release from protein pockets are only known for a handful of proteins. Here, we report results from accelerated molecular dynamics simulations for benzene dissociation from the buried cavity of the T4 lysozyme Leu99Ala mutant (L99A). In these simulations, benzene is released through a previously characterized, sparsely populated room-temperature excited state of the mutant, explaining the coincidence for experimentally measured benzene off rate and apo protein slow-timescale NMR relaxation rates between ground and excited states. The path observed for benzene egress is a multistep ligand migration from the buried cavity to ultimate release through an opening between the F/G-, H-, and I-helices and requires a number of cooperative multiresidue and secondary-structure rearrangements within the C-terminal domain of L99A. These rearrangements are identical to those observed along the ground state to excited state transitions characterized by molecular dynamic simulations run on the Anton supercomputer. Analyses of the molecular properties of the residues lining the egress path suggest that protein surface electrostatic potential may play a role in the release mechanism. Simulations of wild-type T4 lysozyme also reveal that benzene-egress-associated dynamics in the L99A mutant are potentially exaggerations of the substrate-processivity-related dynamics of the wild type.
Collapse
Affiliation(s)
| | | | - Daniel J Mermelstein
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Nathan Mih
- Department of Bioinformatics and Systems Biology, University of California San Diego, La Jolla, California
| | | | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California.
| |
Collapse
|
48
|
Zhang W, Xie J, Lai L. Correlation Between Allosteric and Orthosteric Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:89-105. [PMID: 31707701 DOI: 10.1007/978-981-13-8719-7_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Correlation between an allosteric site and its orthosteric site refers to the phenomenon that perturbations like ligand binding, mutation, or posttranslational modifications at the allosteric site leverage variation in the orthosteric site. Understanding this kind of correlation not only helps to disclose how information is transmitted in allosteric regulation but also provides clues for allosteric drug discovery. This chapter starts with an overview of correlation studies on allosteric and orthosteric sites and then introduces recent progress in evolutionary and simulation-based dynamic studies. Discussions and perspectives on future directions are also given.
Collapse
Affiliation(s)
- Weilin Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Center for Quantitative Biology, AAIS, Peking University, Beijing, China
| | - Juan Xie
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Center for Quantitative Biology, AAIS, Peking University, Beijing, China
| | - Luhua Lai
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Center for Quantitative Biology, AAIS, Peking University, Beijing, China.
| |
Collapse
|
49
|
He X, Ni D, Lu S, Zhang J. Characteristics of Allosteric Proteins, Sites, and Modulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:107-139. [DOI: 10.1007/978-981-13-8719-7_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Madsen JJ, Persson E, Olsen OH. Evolutionary conservation of the allosteric activation of factor VIIa by tissue factor in lamprey: comment. J Thromb Haemost 2018; 16:1450-1454. [PMID: 29733494 DOI: 10.1111/jth.14142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 11/28/2022]
Affiliation(s)
- J J Madsen
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - E Persson
- Hemophilia Biology, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - O H Olsen
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|