1
|
Maistriaux LC, Laurent MJ, Jeanguenin L, Prado SA, Nader J, Welcker C, Charcosset A, Tardieu F, Nicolas SD, Chaumont F. Genetic variability of aquaporin expression in maize: From eQTLs to a MITE insertion regulating PIP2;5 expression. PLANT PHYSIOLOGY 2024; 196:368-384. [PMID: 38839061 PMCID: PMC11376376 DOI: 10.1093/plphys/kiae326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Plant aquaporins are involved in numerous physiological processes, such as cellular homeostasis, tissue hydraulics, transpiration, and nutrient supply, and are key players of the response to environmental cues. While varying expression patterns of aquaporin genes have been described across organs, developmental stages, and stress conditions, the underlying regulation mechanisms remain elusive. Hence, this work aimed to shed light on the expression variability of 4 plasma membrane intrinsic protein (PIP) genes in maize (Zea mays) leaves, and its genetic causes, through expression quantitative trait locus (eQTL) mapping across a 252-hybrid diversity panel. Significant genetic variability in PIP transcript abundance was observed to different extents depending on the isoforms. The genome-wide association study mapped numerous eQTLs, both local and distant, thus emphasizing the existing natural diversity of PIP gene expression across the studied panel and the potential to reveal regulatory actors and mechanisms. One eQTL associated with PIP2;5 expression variation was characterized. Genomic sequence comparison and in vivo reporter assay attributed, at least partly, the local eQTL to a transposon-containing polymorphism in the PIP2;5 promoter. This work paves the way to the molecular understanding of PIP gene regulation and its possible integration into larger networks regulating physiological and stress adaptation processes.
Collapse
Affiliation(s)
- Laurie C Maistriaux
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Maxime J Laurent
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Linda Jeanguenin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | | | - Joseph Nader
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Claude Welcker
- INRAE, LEPSE, Université de Montpellier, 34060 Montpellier, France
| | - Alain Charcosset
- INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - François Tardieu
- INRAE, LEPSE, Université de Montpellier, 34060 Montpellier, France
| | - Stéphane D Nicolas
- INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Redd PS, Diaz S, Weidner D, Benjamin J, Hancock CN. Mobility of mPing and its associated elements is regulated by both internal and terminal sequences. Mob DNA 2023; 14:1. [PMID: 36774502 PMCID: PMC9921582 DOI: 10.1186/s13100-023-00289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/04/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND DNA transposable elements are mobilized by a "cut and paste" mechanism catalyzed by the binding of one or more transposase proteins to terminal inverted repeats (TIRs) to form a transpositional complex. Study of the rice genome indicates that the mPing element has experienced a recent burst in transposition compared to the closely related Ping and Pong elements. A previously developed yeast transposition assay allowed us to probe the role of both internal and terminal sequences in the mobilization of these elements. RESULTS We observed that mPing and a synthetic mPong element have significantly higher transposition efficiency than the related autonomous Ping and Pong elements. Systematic mutation of the internal sequences of both mPing and mPong identified multiple regions that promote or inhibit transposition. Simultaneous alteration of single bases on both mPing TIRs resulted in a significant reduction in transposition frequency, indicating that each base plays a role in efficient transposase binding. Testing chimeric mPing and mPong elements verified the important role of both the TIRs and internal regulatory regions. Previous experiments showed that the G at position 16, adjacent to the 5' TIR, allows mPing to have higher mobility. Alteration of the 16th and 17th base from mPing's 3' end or replacement of the 3' end with Pong 3' sequences significantly increased transposition frequency. CONCLUSIONS As the transposase proteins were consistent throughout this study, we conclude that the observed transposition differences are due to the element sequences. The presence of sub-optimal internal regions and TIR bases supports a model in which transposable elements self-limit their activity to prevent host damage and detection by host regulatory mechanisms. Knowing the role of the TIRs, adjacent sub-TIRs, and internal regulatory sequences allows for the creation of hyperactive elements.
Collapse
Affiliation(s)
- Priscilla S. Redd
- grid.267160.40000 0000 9205 7135Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC 29801 USA
| | - Stephanie Diaz
- grid.267160.40000 0000 9205 7135Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC 29801 USA ,grid.66859.340000 0004 0546 1623Present address: Bayer Pharmaceuticals, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - David Weidner
- grid.267160.40000 0000 9205 7135Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC 29801 USA
| | - Jazmine Benjamin
- grid.267160.40000 0000 9205 7135Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC 29801 USA ,grid.265892.20000000106344187Present address: Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - C. Nathan Hancock
- grid.267160.40000 0000 9205 7135Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC 29801 USA
| |
Collapse
|
3
|
Bajus M, Macko-Podgórni A, Grzebelus D, Baránek M. A review of strategies used to identify transposition events in plant genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1080993. [PMID: 36531345 PMCID: PMC9751208 DOI: 10.3389/fpls.2022.1080993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Transposable elements (TEs) were initially considered redundant and dubbed 'junk DNA'. However, more recently they were recognized as an essential element of genome plasticity. In nature, they frequently become active upon exposition of the host to stress conditions. Even though most transposition events are neutral or even deleterious, occasionally they may happen to be beneficial, resulting in genetic novelty providing better fitness to the host. Hence, TE mobilization may promote adaptability and, in the long run, act as a significant evolutionary force. There are many examples of TE insertions resulting in increased tolerance to stresses or in novel features of crops which are appealing to the consumer. Possibly, TE-driven de novo variability could be utilized for crop improvement. However, in order to systematically study the mechanisms of TE/host interactions, it is necessary to have suitable tools to globally monitor any ongoing TE mobilization. With the development of novel potent technologies, new high-throughput strategies for studying TE dynamics are emerging. Here, we present currently available methods applied to monitor the activity of TEs in plants. We divide them on the basis of their operational principles, the position of target molecules in the process of transposition and their ability to capture real cases of actively transposing elements. Their possible theoretical and practical drawbacks are also discussed. Finally, conceivable strategies and combinations of methods resulting in an improved performance are proposed.
Collapse
Affiliation(s)
- Marko Bajus
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Alicja Macko-Podgórni
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Miroslav Baránek
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| |
Collapse
|
4
|
Monden Y, Tanaka H, Funakoshi R, Sunayama S, Yabe K, Kimoto E, Matsumiya K, Yoshikawa T. Comprehensive survey of transposon mPing insertion sites and transcriptome analysis for identifying candidate genes controlling high protein content of rice. FRONTIERS IN PLANT SCIENCE 2022; 13:969582. [PMID: 36119631 PMCID: PMC9479144 DOI: 10.3389/fpls.2022.969582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Rice is the most important crop species in the world, being staple food of more than 80% of people in Asia. About 80% of rice grain is composed of carbohydrates (starch), with its protein content as low as 7-8%. Therefore, increasing the protein content of rice offers way to create a stable protein source that contributes to improving malnutrition and health problems worldwide. We detected two rice lines harboring a significantly higher protein content (namely, HP5-7 and HP7-5) in the EG4 population. The EG4 strain of rice is a unique material in that the transposon mPing has high transpositional activity and high copy numbers under natural conditions. Other research indicated that mPing is abundant in the gene-rich euchromatic regions, suggesting that mPing amplification should create new allelic variants, novel regulatory networks, and phenotypic changes in the EG4 population. Here, we aimed to identify the candidate genes and/or mPing insertion sites causing high protein content by comprehensively identifying the mPing insertion sites and carrying out an RNA-seq-based transcriptome analysis. By utilizing the next-generation sequencing (NGS)-based methods, ca. 570 mPing insertion sites were identified per line in the EG4 population. Our results also indicated that mPing apparently has a preference for inserting itself in the region near a gene, with 38 genes in total found to contain the mPing insertion in the HP lines, of which 21 and 17 genes were specific to HP5-7 and HP7-5, respectively. Transcriptome analysis revealed that most of the genes related to protein synthesis (encoding glutelin, prolamin, and globulin) were up-regulated in HP lines relative to the control line. Interestingly, the differentially expressed gene (DEG) analysis revealed that the expression levels of many genes related to photosynthesis decreased in both HP lines; this suggests the amount of starch may have decreased, indirectly contributing to the increased protein content. The high-protein lines studied here are expected to contribute to the development of high protein-content rice by introducing valuable phenotypic traits such as high and stable yield, disease resistance, and abundant nutrients.
Collapse
Affiliation(s)
- Yuki Monden
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hirona Tanaka
- Faculty of Agriculture, Okayama University, Okayama, Japan
| | | | | | - Kiyotaka Yabe
- Faculty of Agriculture, Kyoto University, Kyoto, Japan
| | - Eri Kimoto
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
5
|
Sheeja TE, Kumar IPV, Giridhari A, Minoo D, Rajesh MK, Babu KN. Amplified Fragment Length Polymorphism: Applications and Recent Developments. Methods Mol Biol 2021; 2222:187-218. [PMID: 33301096 DOI: 10.1007/978-1-0716-0997-2_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AFLP or amplified fragment length polymorphism is a PCR-based molecular technique that uses selective amplification of a subset of digested DNA fragments from any source to generate and compare unique fingerprints of genomes. It is more efficient in terms of time, economy, reproducibility, informativeness, resolution, and sensitivity, compared to other popular DNA markers. Besides, it requires very small quantities of DNA and no prior genome information. This technique is widely used in plants for taxonomy, genetic diversity, phylogenetic analysis, construction of high-resolution genetic maps, and positional cloning of genes, to determine relatedness among cultivars and varietal identity, etc. The review encompasses in detail the various applications of AFLP in plants and the major advantages and disadvantages. The review also considers various modifications of this technique and novel developments in detection of polymorphism. A wet-lab protocol is also provided.
Collapse
Affiliation(s)
- Thotten Elampilay Sheeja
- Indian Institute of Spices Research, Kozhikode, Kerala, India.
- Division of Crop Improvement and Biotechnology, ICAR-Indian Institute of Spices Research, Kozhikode, Kerala, India.
| | | | | | | | | | | |
Collapse
|
6
|
Comparative Study of Pine Reference Genomes Reveals Transposable Element Interconnected Gene Networks. Genes (Basel) 2020; 11:genes11101216. [PMID: 33081418 PMCID: PMC7602945 DOI: 10.3390/genes11101216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sequencing the giga-genomes of several pine species has enabled comparative genomic analyses of these outcrossing tree species. Previous studies have revealed the wide distribution and extraordinary diversity of transposable elements (TEs) that occupy the large intergenic spaces in conifer genomes. In this study, we analyzed the distribution of TEs in gene regions of the assembled genomes of Pinus taeda and Pinus lambertiana using high-performance computing resources. The quality of draft genomes and the genome annotation have significant consequences for the investigation of TEs and these aspects are discussed. Several TE families frequently inserted into genes or their flanks were identified in both species’ genomes. Potentially important sequence motifs were identified in TEs that could bind additional regulatory factors, promoting gene network formation with faster or enhanced transcription initiation. Node genes that contain many TEs were observed in multiple potential transposable element-associated networks. This study demonstrated the increased accumulation of TEs in the introns of stress-responsive genes of pines and suggests the possibility of rewiring them into responsive networks and sub-networks interconnected with node genes containing multiple TEs. Many such regulatory influences could lead to the adaptive environmental response clines that are characteristic of naturally spread pine populations.
Collapse
|
7
|
Genomic diversity generated by a transposable element burst in a rice recombinant inbred population. Proc Natl Acad Sci U S A 2020; 117:26288-26297. [PMID: 33020276 PMCID: PMC7584900 DOI: 10.1073/pnas.2015736117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Genomes of all characterized higher eukaryotes harbor examples of transposable element (TE) bursts-the rapid amplification of TE copies throughout a genome. Despite their prevalence, understanding how bursts diversify genomes requires the characterization of actively transposing TEs before insertion sites and structural rearrangements have been obscured by selection acting over evolutionary time. In this study, rice recombinant inbred lines (RILs), generated by crossing a bursting accession and the reference Nipponbare accession, were exploited to characterize the spread of the very active Ping/mPing family through a small population and the resulting impact on genome diversity. Comparative sequence analysis of 272 individuals led to the identification of over 14,000 new insertions of the mPing miniature inverted-repeat transposable element (MITE), with no evidence for silencing of the transposase-encoding Ping element. In addition to new insertions, Ping-encoded transposase was found to preferentially catalyze the excision of mPing loci tightly linked to a second mPing insertion. Similarly, structural variations, including deletion of rice exons or regulatory regions, were enriched for those with break points at one or both ends of linked mPing elements. Taken together, these results indicate that structural variations are generated during a TE burst as transposase catalyzes both the high copy numbers needed to distribute linked elements throughout the genome and the DNA cuts at the TE ends known to dramatically increase the frequency of recombination.
Collapse
|
8
|
Miniature inverted-repeat transposable elements (MITEs), derived insertional polymorphism as a tool of marker systems for molecular plant breeding. Mol Biol Rep 2020; 47:3155-3167. [PMID: 32162128 DOI: 10.1007/s11033-020-05365-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/29/2020] [Indexed: 12/20/2022]
Abstract
Plant molecular breeding is expected to give significant gains in cultivar development through development and utilization of suitable molecular marker systems for genetic diversity analysis, rapid DNA fingerprinting, identification of true hybrids, trait mapping and marker-assisted selection. Transposable elements (TEs) are the most abundant component in a genome and being used as genetic markers in the plant molecular breeding. Here, we review on the high copious transposable element belonging to class-II DNA TEs called "miniature inverted-repeat transposable elements" (MITEs). MITEs are ubiquitous, short and non-autonomous DNA transposable elements which have a tendency to insert into genes and genic regions have paved a way for the development of functional DNA marker systems in plant genomes. This review summarises the characteristics of MITEs, principles and methodologies for development of MITEs based DNA markers, bioinformatics tools and resources for plant MITE discovery and their utilization in crop improvement.
Collapse
|
9
|
Bhat RS, Shirasawa K, Monden Y, Yamashita H, Tahara M. Developing Transposable Element Marker System for Molecular Breeding. Methods Mol Biol 2020; 2107:233-251. [PMID: 31893450 DOI: 10.1007/978-1-0716-0235-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Transposable element (TE) marker system was developed considering the useful properties of the transposable elements such as their large number in the animal and plant genomes, high rate of insertion polymorphism, and ease of detection. Various methods have been employed for developing a large number of TE markers in several crop plants for genomics studies. Here we describe some of these methods including the recent whole genome search. We also review the application of TE markers in molecular breeding.
Collapse
Affiliation(s)
- R S Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, Karnataka, India.
| | - K Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Y Monden
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - H Yamashita
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - M Tahara
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
10
|
Gao D, Chu Y, Xia H, Xu C, Heyduk K, Abernathy B, Ozias-Akins P, Leebens-Mack JH, Jackson SA. Horizontal Transfer of Non-LTR Retrotransposons from Arthropods to Flowering Plants. Mol Biol Evol 2019; 35:354-364. [PMID: 29069493 PMCID: PMC5850137 DOI: 10.1093/molbev/msx275] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Even though lateral movements of transposons across families and even phyla within multicellular eukaryotic kingdoms have been found, little is known about transposon transfer between the kingdoms Animalia and Plantae. We discovered a novel non-LTR retrotransposon, AdLINE3, in a wild peanut species. Sequence comparisons and phylogenetic analyses indicated that AdLINE3 is a member of the RTE clade, originally identified in a nematode and rarely reported in plants. We identified RTE elements in 82 plants, spanning angiosperms to algae, including recently active elements in some flowering plants. RTE elements in flowering plants were likely derived from a single family we refer to as An-RTE. Interestingly, An-RTEs show significant DNA sequence identity with non-LTR retroelements from 42 animals belonging to four phyla. Moreover, the sequence identity of RTEs between two arthropods and two plants was higher than that of homologous genes. Phylogenetic and evolutionary analyses of RTEs from both animals and plants suggest that the An-RTE family was likely transferred horizontally into angiosperms from an ancient aphid(s) or ancestral arthropod(s). Notably, some An-RTEs were recruited as coding sequences of functional genes participating in metabolic or other biochemical processes in plants. This is the first potential example of horizontal transfer of transposons between animals and flowering plants. Our findings help to understand exchanges of genetic material between the kingdom Animalia and Plantae and suggest arthropods likely impacted on plant genome evolution.
Collapse
Affiliation(s)
- Dongying Gao
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA
| | - Ye Chu
- Department of Horticulture, University of Georgia, Tifton, GA
| | - Han Xia
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA.,Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Chunming Xu
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA
| | - Karolina Heyduk
- Department of Plant Biology, University of Georgia, Athens, GA
| | - Brian Abernathy
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA
| | | | | | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA
| |
Collapse
|
11
|
Hsu CC, Lai PH, Chen TC, Tsai WC, Hsu JL, Hsiao YY, Wu WL, Tsai CH, Chen WH, Chen HH. PePIF1, a P-lineage of PIF-like transposable element identified in protocorm-like bodies of Phalaenopsis orchids. BMC Genomics 2019; 20:25. [PMID: 30626325 PMCID: PMC6327408 DOI: 10.1186/s12864-018-5420-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 12/27/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Orchids produce a colorless protocorm by symbiosis with fungi upon seed germination. For mass production of orchids, the prevailing approaches are both generation of protocorm-like bodies (PLBs) from callus and multiplication of adventitious buds on inflorescence. However, somaclonal variations occur during micropropagation. RESULTS We isolated the two most expressed transposable elements belonging to P Instability Factor (PIF)-like transposons. Among them, a potential autonomous element was identified by similarity analysis against the whole-genome sequence of Phalaenopsis equestris and named PePIF1. It contains a 19-bp terminal inverted repeat flanked by a 3-bp target site duplication and two coding regions encoding ORF1- and transposase-like proteins. Phylogenetic analysis revealed that PePIF1 belongs to a new P-lineage of PIF. Furthermore, two distinct families, PePIF1a and PePIF1b, with 29 and 37 putative autonomous elements, respectively, were isolated, along with more than 3000 non-autonomous and miniature inverted-repeat transposable element (MITE)-like elements. Among them, 828 PePIF1-related elements were inserted in 771 predicted genes. Intriguingly, PePIF1 was transposed in the somaclonal variants of Phalaenopsis cultivars, as revealed by transposon display, and the newly inserted genes were identified and sequenced. CONCLUSION A PIF-like element, PePIF1, was identified in the Phalaenopsis genome and actively transposed during micropropagation. With the identification of PePIF1, we have more understanding of the Phalaenopsis genome structure and somaclonal variations during micropropagation for use in orchid breeding and production.
Collapse
Affiliation(s)
- Chia-Chi Hsu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Han Lai
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Tien-Chih Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences, National Chung Hsing University, Tainan, Taiwan
| | - Jui-Lin Hsu
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Yun Hsiao
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Luan Wu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Huei Chen
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Hwa Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Institute of Tropical Plant Sciences, National Chung Hsing University, Tainan, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
12
|
Mutator-Based Transposon Display: A Genetic Tool for Evolutionary and Crop-Improvement Studies in Maize. Mol Biotechnol 2018; 60:799-809. [DOI: 10.1007/s12033-018-0118-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
Ramekar RV, Sa KJ, Park KC, Roy N, Kim NS, Lee JK. Construction of genetic linkage map and identification of QTLs related to agronomic traits in maize using DNA transposon-based markers. BREEDING SCIENCE 2018; 68:465-473. [PMID: 30369821 PMCID: PMC6198908 DOI: 10.1270/jsbbs.18017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Transposable elements (TEs), are a rich source for molecular marker development as they constitute a significant fraction of the eukaryotic genome and impact the overall genome structure. Here, we utilize Mutator-based transposon display (Mu-TD), and CACTA-derived sequence-characterized amplified regions (SCAR) anchored by simple sequence repeats and single nucleotide polymorphisms to locate quantitative trait loci (QTLs) linked to agriculturally important traits on a genetic map. Specifically, we studied recombinant inbred line populations derived from a cross between dent corn and waxy corn. The resulting linkage map included 259 Mu-anchored fragments, 34 SCARs, and 614 SSR markers distributed throughout the ten maize chromosomes. Linkage analysis revealed three SNP loci associated with kernel starch synthesis genes (sh2, su1, wx1) linked to either Mu-TD loci or SSR markers, which may be useful for maize breeding programs. In addition, we used QTL analysis to determine the chromosomal location of traits related to grain yield and kernel quality. We identified 24 QTLs associated with nine traits located on nine out of ten maize chromosomes. Among these, 13 QTLs involved Mu loci and two involved SCARs. This study demonstrates the potential use of DNA transposon-based markers to construct linkage maps and identify QTLs linked to agronomic traits.
Collapse
Affiliation(s)
- Rahul Vasudeo Ramekar
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Kyu Jin Sa
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Neha Roy
- Department of Molecular Bioscience, Institute of Bioscience and Biotechnology, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Nam-Soo Kim
- Department of Molecular Bioscience, Institute of Bioscience and Biotechnology, Kangwon National University,
Chuncheon, 24341,
Korea
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University,
Chuncheon, 24341,
Korea
| |
Collapse
|
14
|
Han MJ, Xu HE, Xiong XM, Zhang HH. Evolutionary dynamics of transposable elements during silkworm domestication. Genes Genomics 2018; 40:1041-1051. [DOI: 10.1007/s13258-018-0713-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/31/2018] [Indexed: 11/24/2022]
|
15
|
Gayathri M, Shirasawa K, Varshney RK, Pandey MK, Bhat RS. Development of AhMITE1 markers through genome-wide analysis in peanut (Arachis hypogaea L.). BMC Res Notes 2018; 11:10. [PMID: 29310707 PMCID: PMC5759262 DOI: 10.1186/s13104-017-3121-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/29/2017] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE In peanut, the DNA polymorphism is very low despite enormous phenotypic variations. This limits the use of genomics-assisted breeding to enhance peanut productivity. This study aimed to develop and validate new AhMITE1 and cleaved amplified polymorphic sequences (CAPS) markers. RESULTS In total, 2957 new AhMITE1 markers were developed in addition to identifying 465 already reported markers from the whole genome re-sequencing data (WGRS) of 33 diverse genotypes of peanut. The B sub-genome (1620) showed more number of markers than the A sub-genome (1337). Distribution also varied among the chromosomes of both the sub-genomes. Further, 52.6% of the markers were from genic regions; where 31.0% were from intronic regions and 5.2% were from exonic regions. Of the 343 randomly selected markers, 82.2% showed amplification validation, with up to 35.5% polymorphism. From the SNPs on the A03, B01, B02 and B03 chromosomes, 11,730 snip-SNPs (potential CAPS sites) were identified, and 500 CAPS markers were developed from chromosome A03. Of these markers, 30.0% showed validation and high polymorphism. This study demonstrated the potential of the WGRS data to develop AhMITE1 and CAPS markers, which showed high level of validation and polymorphism. These marker resources will be useful for various genetic studies and mapping in peanut.
Collapse
Affiliation(s)
- M. Gayathri
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, 580 005 India
| | - Kenta Shirasawa
- Department of Frontier Research, Kazusa DNA Research Institute, Chiba, 292-0818 Japan
| | - R. K. Varshney
- Center of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502 324 India
| | - M. K. Pandey
- Center of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502 324 India
| | - R. S. Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, 580 005 India
| |
Collapse
|
16
|
Tracking the genome-wide outcomes of a transposable element burst over decades of amplification. Proc Natl Acad Sci U S A 2017; 114:E10550-E10559. [PMID: 29158416 PMCID: PMC5724284 DOI: 10.1073/pnas.1716459114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rice (Oryza sativa) has a unique combination of attributes that made it an ideal host to track the natural behavior of very active transposable elements (TEs) over generations. In this study, we have exploited its small genome and propagation by self or sibling pollination to identify and characterize two strain pairs, EG4/HEG4 and A119/A123, undergoing bursts of the nonautonomous miniature inverted repeat transposable element mPing. Comparative sequence analyses of these strains have advanced our understanding of (i) factors that contribute to sustaining a TE burst for decades, (ii) features that distinguish a natural TE burst from bursts in cell culture or mutant backgrounds, and (iii) the extent to which TEs can rapidly diversify the genome of an inbred organism. To understand the success strategies of transposable elements (TEs) that attain high copy numbers, we analyzed two pairs of rice (Oryza sativa) strains, EG4/HEG4 and A119/A123, undergoing decades of rapid amplification (bursts) of the class 2 autonomous Ping element and the nonautonomous miniature inverted repeat transposable element (MITE) mPing. Comparative analyses of whole-genome sequences of the two strain pairs validated that each pair has been maintained for decades as inbreds since divergence from their respective last common ancestor. Strains EG4 and HEG4 differ by fewer than 160 SNPs and a total of 264 new mPing insertions. Similarly, strains A119 and A123 exhibited about half as many SNPs (277) as new mPing insertions (518). Examination of all other potentially active TEs in these genomes revealed only a single new insertion out of ∼40,000 loci surveyed. The virtual absence of any new TE insertions in these strains outside the mPing bursts demonstrates that the Ping/mPing family gradually attains high copy numbers by maintaining activity and evading host detection for dozens of generations. Evasion is possible because host recognition of mPing sequences appears to have no impact on initiation or maintenance of the burst. Ping is actively transcribed, and both Ping and mPing can transpose despite methylation of terminal sequences. This finding suggests that an important feature of MITE success is that host recognition does not lead to the silencing of the source of transposase.
Collapse
|
17
|
Singh S, Nandha PS, Singh J. Transposon-based genetic diversity assessment in wild and cultivated barley. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2017.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Guo C, Spinelli M, Ye C, Li QQ, Liang C. Genome-Wide Comparative Analysis of Miniature Inverted Repeat Transposable Elements in 19 Arabidopsis thaliana Ecotype Accessions. Sci Rep 2017; 7:2634. [PMID: 28572566 PMCID: PMC5454002 DOI: 10.1038/s41598-017-02855-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Miniature inverted repeat transposable elements (MITEs) are prevalent in eukaryotic genomes. They are known to critically influence the process of genome evolution and play a role in gene regulation. As the first study concentrated in the transposition activities of MITEs among different ecotype accessions within a species, we conducted a genome-wide comparative analysis by characterizing and comparing MITEs in 19 Arabidopsis thaliana accessions. A total of 343485 MITE putative sequences, including canonical, diverse and partial ones, were delineated from all 19 accessions. Within the entire population of MITEs sequences, 80.7% of them were previously unclassified MITEs, demonstrating a different genomic distribution and functionality compared to the classified MITEs. The interactions between MITEs and homologous genes across 19 accessions provided a fine source for analyzing MITE transposition activities and their impacts on genome evolution. Moreover, a significant proportion of MITEs were found located in the last exon of genes besides the ordinary intron locality, thus potentially modifying the end of genes. Finally, analysis of the impact of MITEs on gene expression suggests that migrations of MITEs have no detectable effect on the expression level for host genes across accessions.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | | | - Congting Ye
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China.
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA.
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
19
|
Stelmach K, Macko-Podgórni A, Machaj G, Grzebelus D. Miniature Inverted Repeat Transposable Element Insertions Provide a Source of Intron Length Polymorphism Markers in the Carrot ( Daucus carota L.). FRONTIERS IN PLANT SCIENCE 2017; 8:725. [PMID: 28536590 PMCID: PMC5422474 DOI: 10.3389/fpls.2017.00725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/19/2017] [Indexed: 05/27/2023]
Abstract
The prevalence of non-autonomous class II transposable elements (TEs) in plant genomes may serve as a tool for relatively rapid and low-cost development of gene-associated molecular markers. Miniature inverted-repeat transposable element (MITE) copies inserted within introns can be exploited as potential intron length polymorphism (ILP) markers. ILPs can be detected by PCR with primers anchored in exon sequences flanking the target introns. Here, we designed primers for 209 DcSto (Daucus carota Stowaway-like) MITE insertion sites within introns along the carrot genome and validated them as candidate ILP markers in order to develop a set of markers for genotyping the carrot. As a proof of concept, 90 biallelic DcS-ILP markers were selected and used to assess genetic diversity of 27 accessions comprising wild Daucus carota and cultivated carrot of different root shape. The number of effective alleles was 1.56, mean polymorphism informative content was 0.27, while the average observed and expected heterozygosity was 0.24 and 0.34, respectively. Sixty-seven loci showed positive values of Wright's fixation index. Using Bayesian approach, two clusters comprising four wild and 23 cultivated accessions, respectively, were distinguished. Within the cultivated carrot gene pool, four subclusters representing accessions from Chantenay, Danvers, Imperator, and Paris Market types were revealed. It is the first molecular evidence for root-type associated diversity structure in western cultivated carrot. DcS-ILPs detected substantial genetic diversity among the studied accessions and, showing considerable discrimination power, may be exploited as a tool for germplasm characterization and analysis of genome relationships. The developed set of DcS-ILP markers is an easily accessible molecular marker genotyping system based on TE insertion polymorphism.
Collapse
|
20
|
Li C, Li Y, Shi Y, Song Y, Zhang D, Buckler ES, Zhang Z, Li Y, Wang T. Analysis of recombination QTLs, segregation distortion, and epistasis for fitness in maize multiple populations using ultra-high-density markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1775-1784. [PMID: 27379519 DOI: 10.1007/s00122-016-2739-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
Using two nested association mapping populations and high-density markers, some important genomic regions controlling recombination frequency and segregation distortion were detected. Understanding the maize genomic features would be useful for the study of genetic diversity and evolution and for maize breeding. Here, we used two maize nested association mapping (NAM) populations separately derived in China (CN-NAM) and the US (US-NAM) to explore the maize genomic features. The two populations containing 36 families and about 7000 recombinant inbred lines were evaluated with genotyping-by-sequencing. Through the comparison between the two NAMs, we revealed that segregation distortion is little, whereas epistasis for fitness is present in the two maize NAM populations. When conducting quantitative trait loci (QTL) mapping for the total number of recombination events, we detected 14 QTLs controlling recombination. Using high-density markers to identify segregation distortion regions (SDRs), a total of 445 SDRs were detected within the 36 families, among which 15 common SDRs were found in at least ten families. About 80 % of the known maize gametophytic factors (ga) genes controlling segregation distortion were overlapped with highly significant SDRs. In addition, we also found that the regions with high recombination rate and high gene density usually tended to have little segregation distortion. This study will facilitate population genetic studies and gene cloning affecting recombination variation and segregation distortion in maize, which can improve plant breeding progress.
Collapse
Affiliation(s)
- Chunhui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongxiang Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunsu Shi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanchun Song
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dengfeng Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
| | - Zhiwu Zhang
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Tianyu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
21
|
Dynamics of a Novel Highly Repetitive CACTA Family in Common Bean (Phaseolus vulgaris). G3-GENES GENOMES GENETICS 2016; 6:2091-101. [PMID: 27185400 PMCID: PMC4938662 DOI: 10.1534/g3.116.028761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transposons are ubiquitous genomic components that play pivotal roles in plant gene and genome evolution. We analyzed two genome sequences of common bean (Phaseolus vulgaris) and identified a new CACTA transposon family named pvCACTA1. The family is extremely abundant, as more than 12,000 pvCACTA1 elements were found. To our knowledge, this is the most abundant CACTA family reported thus far. The computational and fluorescence in situ hybridization (FISH) analyses indicated that the pvCACTA1 elements were concentrated in terminal regions of chromosomes and frequently generated AT-rich 3 bp target site duplications (TSD, WWW, W is A or T). Comparative analysis of the common bean genomes from two domesticated genetic pools revealed that new insertions or excisions of pvCACTA1 elements occurred after the divergence of the two common beans, and some of the polymorphic elements likely resulted in variation in gene sequences. pvCACTA1 elements were detected in related species but not outside the Phaseolus genus. We calculated the molecular evolutionary rate of pvCACTA1 transposons using orthologous elements that indicated that most transposition events likely occurred before the divergence of the two gene pools. These results reveal unique features and evolution of this new transposon family in the common bean genome.
Collapse
|
22
|
Generation of a Maize B Centromere Minimal Map Containing the Central Core Domain. G3-GENES GENOMES GENETICS 2015; 5:2857-64. [PMID: 26511496 PMCID: PMC4683656 DOI: 10.1534/g3.115.022889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The maize B centromere has been used as a model for centromere epigenetics and as the basis for building artificial chromosomes. However, there are no sequence resources for this important centromere. Here we used transposon display for the centromere-specific retroelement CRM2 to identify a collection of 40 sequence tags that flank CRM2 insertion points on the B chromosome. These were confirmed to lie within the centromere by assaying deletion breakpoints from centromere misdivision derivatives (intracentromere breakages caused by centromere fission). Markers were grouped together on the basis of their association with other markers in the misdivision series and assembled into a pseudocontig containing 10.1 kb of sequence. To identify sequences that interact directly with centromere proteins, we carried out chromatin immunoprecipitation using antibodies to centromeric histone H3 (CENH3), a defining feature of functional centromeric sequences. The CENH3 chromatin immunoprecipitation map was interpreted relative to the known transmission rates of centromere misdivision derivatives to identify a centromere core domain spanning 33 markers. A subset of seven markers was mapped in additional B centromere misdivision derivatives with the use of unique primer pairs. A derivative previously shown to have no canonical centromere sequences (Telo3-3) lacks these core markers. Our results provide a molecular map of the B chromosome centromere and identify key sequences within the map that interact directly with centromeric histone H3.
Collapse
|
23
|
Gilbert DM, Bridges MC, Strother AE, Burckhalter CE, Burnette JM, Hancock CN. Precise repair of mPing excision sites is facilitated by target site duplication derived microhomology. Mob DNA 2015; 6:15. [PMID: 26347803 PMCID: PMC4561436 DOI: 10.1186/s13100-015-0046-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/28/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A key difference between the Tourist and Stowaway families of miniature inverted repeat transposable elements (MITEs) is the manner in which their excision alters the genome. Upon excision, Stowaway-like MITEs and the associated Mariner elements usually leave behind a small duplication and short sequences from the end of the element. These small insertions or deletions known as "footprints" can potentially disrupt coding or regulatory sequences. In contrast, Tourist-like MITEs and the associated PIF/Pong/Harbinger elements generally excise precisely, returning the genome to its original state. The purpose of this study was to determine the mechanisms underlying these excision differences, including the role of the host DNA repair mechanisms. RESULTS The transposition of the Tourist-like element, mPing, and the Stowaway-like element, 14T32, were evaluated using yeast transposition assays. Assays performed in yeast strains lacking non-homologous end joining (NHEJ) enzymes indicated that the excision sites of both elements were primarily repaired by NHEJ. Altering the target site duplication (TSD) sequences that flank these elements reduced the transposition frequency. Using yeast strains with the ability to repair the excision site by homologous repair showed that some TSD changes disrupt excision of the element. Changing the ends of mPing to produce non-matching TSDs drastically reduced repair of the excision site and resulted in increased generation of footprints. CONCLUSIONS Together these results indicate that the difference in Tourist and Stowaway excision sites results from transposition mechanism characteristics. The TSDs of both elements play a role in element excision, but only the mPing TSDs actively participate in excision site repair. Our data suggests that Tourist-like elements excise with staggered cleavage of the TSDs, which provides microhomology that facilitates precise repair. This slight modification in the transposition mechanism results in more efficient repair of the double stranded break, and thus, may be less harmful to host genomes by disrupting fewer genes.
Collapse
Affiliation(s)
- David M Gilbert
- Department of Biology and Geology, University of South Carolina Aiken, 471 University Parkway, Aiken, SC 29801 USA
| | - M Catherine Bridges
- Present Address: Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Ashley E Strother
- Department of Biology and Geology, University of South Carolina Aiken, 471 University Parkway, Aiken, SC 29801 USA
| | - Courtney E Burckhalter
- Department of Biology and Geology, University of South Carolina Aiken, 471 University Parkway, Aiken, SC 29801 USA
| | - James M Burnette
- Present Address: College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA 92521 USA
| | - C Nathan Hancock
- Department of Biology and Geology, University of South Carolina Aiken, 471 University Parkway, Aiken, SC 29801 USA
| |
Collapse
|
24
|
Chien YL, Lin CY, Lo KL, Cheng YM. Development and mapping of CL-repeat display markers on the maize B chromosome. Cytogenet Genome Res 2015; 144:227-36. [PMID: 25612674 DOI: 10.1159/000370173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2014] [Indexed: 11/19/2022] Open
Abstract
The CL-repeat is a repetitive sequence that is unique to the maize B chromosome, where it resides in the centromeric knob and the first 3 distal heterochromatic regions of the long arm. Given this organization, it would be desirable to identify molecular markers that are specifically distributed in the B chromosome. In this report, the CL-repeat has been used to develop a class of molecular markers for the maize B chromosome. To this end, a modified transposon display procedure designated as CL-repeat display was used to generate and display 26 genomic fragments that are specific to the B chromosome, all of which were cloned and sequenced. The sequences of 19 fragments were highly homologous to the 5' or 3' terminus of the CL-repeat. Five of these fragments also contained sequences that were homologous to sequences of the B chromosome centromere. Four of the other 7 fragments shared homology with B chromosome centromere sequences, and the remaining 3 were of unidentified sequences. Using 13 B-10L translocations with various breakpoints along the B chromosome long arm, the 26 CL-repeat display markers were mapped to definite regions of the B chromosome. This strategy should be feasible for the development of molecular markers for the B chromosome in maize and in other species where B chromosome-specific repeats have been identified.
Collapse
Affiliation(s)
- Yu-Lun Chien
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan, ROC
| | | | | | | |
Collapse
|
25
|
Development of Ty1-copia retrotransposon-based SSAP molecular markers for the study of genetic diversity in peach. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Abstract
Molecular markers, due to their stability, cost-effectiveness and ease of use provide an immensely popular tool for a variety of applications including genome mapping, gene tagging, genetic diversity diversity, phylogenetic analysis and forensic investigations. In the last three decades, a number of molecular marker techniques have been developed and exploited worldwide in different systems. However, only a handful of these techniques, namely RFLPs, RAPDs, AFLPs, ISSRs, SSRs and SNPs have received global acceptance. A recent revolution in DNA sequencing techniques has taken the discovery and application of molecular markers to high-throughput and ultrahigh-throughput levels. Although, the choice of marker will obviously depend on the targeted use, microsatellites, SNPs and genotyping by sequencing (GBS) largely fulfill most of the user requirements. Further, modern transcriptomic and functional markers will lead the ventures onto high-density genetic map construction, identification of QTLs, breeding and conservation strategies in times to come in combination with other high throughput techniques. This review presents an overview of different marker technologies and their variants with a comparative account of their characteristic features and applications.
Collapse
Affiliation(s)
- Atul Grover
- a Biotechnology Division , Defence Institute of Bio Energy Research , Goraparao, P.O. Arjunpur , Haldwani , Uttarakhand , India and
| | - P C Sharma
- b University School of Biotechnology, Guru Gobind Singh Indraprastha University , Dwarka Sec. 16C , New Delhi , India
| |
Collapse
|
27
|
Murukarthick J, Sampath P, Lee SC, Choi BS, Senthil N, Liu S, Yang TJ. BrassicaTED - a public database for utilization of miniature transposable elements in Brassica species. BMC Res Notes 2014; 7:379. [PMID: 24948109 PMCID: PMC4077149 DOI: 10.1186/1756-0500-7-379] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/13/2014] [Indexed: 12/04/2022] Open
Abstract
Background MITE, TRIM and SINEs are miniature form transposable elements (mTEs) that are ubiquitous and dispersed throughout entire plant genomes. Tens of thousands of members cause insertion polymorphism at both the inter- and intra- species level. Therefore, mTEs are valuable targets and resources for development of markers that can be utilized for breeding, genetic diversity and genome evolution studies. Taking advantage of the completely sequenced genomes of Brassica rapa and B. oleracea, characterization of mTEs and building a curated database are prerequisite to extending their utilization for genomics and applied fields in Brassica crops. Findings We have developed BrassicaTED as a unique web portal containing detailed characterization information for mTEs of Brassica species. At present, BrassicaTED has datasets for 41 mTE families, including 5894 and 6026 members from 20 MITE families, 1393 and 1639 members from 5 TRIM families, 1270 and 2364 members from 16 SINE families in B. rapa and B. oleracea, respectively. BrassicaTED offers different sections to browse structural and positional characteristics for every mTE family. In addition, we have added data on 289 MITE insertion polymorphisms from a survey of seven Brassica relatives. Genes with internal mTE insertions are shown with detailed gene annotation and microarray-based comparative gene expression data in comparison with their paralogs in the triplicated B. rapa genome. This database also includes a novel tool, K BLAST (Karyotype BLAST), for clear visualization of the locations for each member in the B. rapa and B. oleracea pseudo-genome sequences. Conclusions BrassicaTED is a newly developed database of information regarding the characteristics and potential utility of mTEs including MITE, TRIM and SINEs in B. rapa and B. oleracea. The database will promote the development of desirable mTE-based markers, which can be utilized for genomics and breeding in Brassica species. BrassicaTED will be a valuable repository for scientists and breeders, promoting efficient research on Brassica species. BrassicaTED can be accessed at http://im-crop.snu.ac.kr/BrassicaTED/index.php.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea.
| |
Collapse
|
28
|
Genome-wide comparative analysis of 20 miniature inverted-repeat transposable element families in Brassica rapa and B. oleracea. PLoS One 2014; 9:e94499. [PMID: 24747717 PMCID: PMC3991616 DOI: 10.1371/journal.pone.0094499] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/17/2014] [Indexed: 12/25/2022] Open
Abstract
Miniature inverted-repeat transposable elements (MITEs) are ubiquitous, non-autonomous class II transposable elements. Here, we conducted genome-wide comparative analysis of 20 MITE families in B. rapa, B. oleracea, and Arabidopsis thaliana. A total of 5894 and 6026 MITE members belonging to the 20 families were found in the whole genome pseudo-chromosome sequences of B. rapa and B. oleracea, respectively. Meanwhile, only four of the 20 families, comprising 573 members, were identified in the Arabidopsis genome, indicating that most of the families were activated in the Brassica genus after divergence from Arabidopsis. Copy numbers varied from 4 to 1459 for each MITE family, and there was up to 6-fold variation between B. rapa and B. oleracea. In particular, analysis of intact members showed that whereas eleven families were present in similar copy numbers in B. rapa and B. oleracea, nine families showed copy number variation ranging from 2- to 16-fold. Four of those families (BraSto-3, BraTo-3, 4, 5) were more abundant in B. rapa, and the other five (BraSto-1, BraSto-4, BraTo-1, 7 and BraHAT-1) were more abundant in B. oleracea. Overall, 54% and 51% of the MITEs resided in or within 2 kb of a gene in the B. rapa and B. oleracea genomes, respectively. Notably, 92 MITEs were found within the CDS of annotated genes, suggesting that MITEs might play roles in diversification of genes in the recently triplicated Brassica genome. MITE insertion polymorphism (MIP) analysis of 289 MITE members showed that 52% and 23% were polymorphic at the inter- and intra-species levels, respectively, indicating that there has been recent MITE activity in the Brassica genome. These recently activated MITE families with abundant MIP will provide useful resources for molecular breeding and identification of novel functional genes arising from MITE insertion.
Collapse
|
29
|
Nybom H, Weising K, Rotter B. DNA fingerprinting in botany: past, present, future. INVESTIGATIVE GENETICS 2014; 5:1. [PMID: 24386986 PMCID: PMC3880010 DOI: 10.1186/2041-2223-5-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/02/2013] [Indexed: 12/20/2022]
Abstract
Almost three decades ago Alec Jeffreys published his seminal Nature papers on the use of minisatellite probes for DNA fingerprinting of humans (Jeffreys and colleagues Nature 1985, 314:67-73 and Nature 1985, 316:76-79). The new technology was soon adopted for many other organisms including plants, and when Hilde Nybom, Kurt Weising and Alec Jeffreys first met at the very First International Conference on DNA Fingerprinting in Berne, Switzerland, in 1990, everybody was enthusiastic about the novel method that allowed us for the first time to discriminate between humans, animals, plants and fungi on the individual level using DNA markers. A newsletter coined "Fingerprint News" was launched, T-shirts were sold, and the proceedings of the Berne conference filled a first book on "DNA fingerprinting: approaches and applications". Four more conferences were about to follow, one on each continent, and Alec Jeffreys of course was invited to all of them. Since these early days, methodologies have undergone a rapid evolution and diversification. A multitude of techniques have been developed, optimized, and eventually abandoned when novel and more efficient and/or more reliable methods appeared. Despite some overlap between the lifetimes of the different technologies, three phases can be defined that coincide with major technological advances. Whereas the first phase of DNA fingerprinting ("the past") was dominated by restriction fragment analysis in conjunction with Southern blot hybridization, the advent of the PCR in the late 1980s gave way to the development of PCR-based single- or multi-locus profiling techniques in the second phase. Given that many routine applications of plant DNA fingerprinting still rely on PCR-based markers, we here refer to these methods as "DNA fingerprinting in the present", and include numerous examples in the present review. The beginning of the third phase actually dates back to 2005, when several novel, highly parallel DNA sequencing strategies were developed that increased the throughput over current Sanger sequencing technology 1000-fold and more. High-speed DNA sequencing was soon also exploited for DNA fingerprinting in plants, either in terms of facilitated marker development, or directly in the sense of "genotyping-by-sequencing". Whereas these novel approaches are applied at an ever increasing rate also in non-model species, they are still far from routine, and we therefore treat them here as "DNA fingerprinting in the future".
Collapse
Affiliation(s)
- Hilde Nybom
- Department of Plant Breeding–Balsgård, Swedish University for Agricultural Sciences, Fjälkestadsvägen 459, Kristianstad 29194, Sweden
| | - Kurt Weising
- Plant Molecular Systematics, Institute of Biology, University of Kassel, Kassel 34109, Germany
| | - Björn Rotter
- GenXPro GmbH, Altenhöferallee 3, Frankfurt 60438, Germany
| |
Collapse
|
30
|
Genetic mapping and QTL analysis for yield and agronomic traits with an F2:3 population derived from a waxy corn × sweet corn cross. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0157-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Chen J, Hu Q, Zhang Y, Lu C, Kuang H. P-MITE: a database for plant miniature inverted-repeat transposable elements. Nucleic Acids Res 2013; 42:D1176-81. [PMID: 24174541 PMCID: PMC3964958 DOI: 10.1093/nar/gkt1000] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Miniature inverted-repeat transposable elements (MITEs) are prevalent in eukaryotic species including plants. MITE families vary dramatically and usually cannot be identified based on homology. In this study, we de novo identified MITEs from 41 plant species, using computer programs MITE Digger, MITE-Hunter and/or Repetitive Sequence with Precise Boundaries (RSPB). MITEs were found in all, but one (Cyanidioschyzon merolae), species. Combined with the MITEs identified previously from the rice genome, >2.3 million sequences from 3527 MITE families were obtained from 41 plant species. In general, higher plants contain more MITEs than lower plants, with a few exceptions such as papaya, with only 538 elements. The largest number of MITEs is found in apple, with 237 302 MITE sequences. The number of MITE sequences in a genome is significantly correlated with genome size. A series of databases (plant MITE databases, P-MITE), available online at http://pmite.hzau.edu.cn/django/mite/, was constructed to host all MITE sequences from the 41 plant genomes. The databases are available for sequence similarity searches (BLASTN), and MITE sequences can be downloaded by family or by genome. The databases can be used to study the origin and amplification of MITEs, MITE-derived small RNAs and roles of MITEs on gene and genome evolution.
Collapse
Affiliation(s)
- Jiongjiong Chen
- Department of Vegetable Crops, Key Laboratory of Horticulture Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | | | | | | | | |
Collapse
|
32
|
Sampath P, Lee SC, Lee J, Izzah NK, Choi BS, Jin M, Park BS, Yang TJ. Characterization of a new high copy Stowaway family MITE, BRAMI-1 in Brassica genome. BMC PLANT BIOLOGY 2013; 13:56. [PMID: 23547712 PMCID: PMC3626606 DOI: 10.1186/1471-2229-13-56] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 03/18/2013] [Indexed: 05/29/2023]
Abstract
BACKGROUND Miniature inverted-repeat transposable elements (MITEs) are expected to play important roles in evolution of genes and genome in plants, especially in the highly duplicated plant genomes. Various MITE families and their roles in plants have been characterized. However, there have been fewer studies of MITE families and their potential roles in evolution of the recently triplicated Brassica genome. RESULTS We identified a new MITE family, BRAMI-1, belonging to the Stowaway super-family in the Brassica genome. In silico mapping revealed that 697 members are dispersed throughout the euchromatic regions of the B. rapa pseudo-chromosomes. Among them, 548 members (78.6%) are located in gene-rich regions, less than 3 kb from genes. In addition, we identified 516 and 15 members in the 470 Mb and 15 Mb genomic shotgun sequences currently available for B. oleracea and B. napus, respectively. The resulting estimated copy numbers for the entire genomes were 1440, 1464 and 2490 in B. rapa, B. oleracea and B. napus, respectively. Concurrently, only 70 members of the related Arabidopsis ATTIRTA-1 MITE family were identified in the Arabidopsis genome. Phylogenetic analysis revealed that BRAMI-1 elements proliferated in the Brassica genus after divergence from the Arabidopsis lineage. MITE insertion polymorphism (MIP) was inspected for 50 BRAMI-1 members, revealing high levels of insertion polymorphism between and within species of Brassica that clarify BRAMI-1 activation periods up to the present. Comparative analysis of the 71 genes harbouring the BRAMI-1 elements with their non-insertion paralogs (NIPs) showed that the BRAMI-1 insertions mainly reside in non-coding sequences and that the expression levels of genes with the elements differ from those of their NIPs. CONCLUSION A Stowaway family MITE, named as BRAMI-1, was gradually amplified and remained present in over than 1400 copies in each of three Brassica species. Overall, 78% of the members were identified in gene-rich regions, and it is assumed that they may contribute to the evolution of duplicated genes in the highly duplicated Brassica genome. The resulting MIPs can serve as a good source of DNA markers for Brassica crops because the insertions are highly dispersed in the gene-rich euchromatin region and are polymorphic between or within species.
Collapse
Affiliation(s)
- Perumal Sampath
- Dept. of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sang-Choon Lee
- Dept. of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Jonghoon Lee
- Dept. of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Nur Kholilatul Izzah
- Dept. of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Beom-Soon Choi
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Mina Jin
- National Academy of Agricultural Science, Rural Development Administration, 150 Suinro, Suwon, 441-707, Republic of Korea
| | - Beom-Seok Park
- National Academy of Agricultural Science, Rural Development Administration, 150 Suinro, Suwon, 441-707, Republic of Korea
| | - Tae-Jin Yang
- Dept. of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|
33
|
Abstract
The DNA polymorphisms caused by insertion and excision of transposable elements (TEs) are applicable in studying genome dynamics, genetic diversity, and molecular evolution, generating genome-wide molecular maps and investigating functional attributes of transposons in epigenetics and diseases. Identification of individual mutations caused by TEs using the principles of amplified fragment length polymorphism assay is a reliable and cost-effective approach. The method relies upon selective polymerase chain reaction (PCR) of flanking regions of TE insertion sites in the genome. A detailed procedure is described in this chapter that outlines each step starting from the preparation of PCR template to identification and isolation of the polymorphic bands. The approach outlined in this protocol can be adopted to identify individual polymorphisms caused by any transposon in any organism.
Collapse
|
34
|
Shirasawa K, Hirakawa H, Tabata S, Hasegawa M, Kiyoshima H, Suzuki S, Sasamoto S, Watanabe A, Fujishiro T, Isobe S. Characterization of active miniature inverted-repeat transposable elements in the peanut genome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1429-38. [PMID: 22294450 PMCID: PMC3336055 DOI: 10.1007/s00122-012-1798-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/05/2012] [Indexed: 05/19/2023]
Abstract
Miniature inverted-repeat transposable elements (MITEs), some of which are known as active nonautonomous DNA transposons, are found in the genomes of plants and animals. In peanut (Arachis hypogaea), Ah-MITE1 has been identified in a gene for fatty-acid desaturase, and possessed excision activity. However, the AhMITE1 distribution and frequency of excision have not been determined for the peanut genome. In order to characterize AhMITE1s, their genomic diversity and transposition ability was investigated. Southern blot analysis indicated high AhMITE1 copy number in the genomes of A. hypogaea, A. magna and A. monticola, but not in A. duranensis. A total of 504 AhMITE1s were identified from the MITE-enriched genomic libraries of A. hypogaea. The representative AhMITE1s exhibited a mean length of 205.5 bp and a GC content of 30.1%, with AT-rich, 9 bp target site duplications and 25 bp terminal inverted repeats. PCR analyses were performed using primer pairs designed against both flanking sequences of each AhMITE1. These analyses detected polymorphisms at 169 out of 411 insertional loci in the four peanut lines. In subsequent analyses of 60 gamma-irradiated mutant lines, four Ah-MITE1 excisions showed footprint mutations at the 109 loci tested. This study characterizes AhMITE1s in peanut and discusses their use as DNA markers and mutagens for the genetics, genomics and breeding of peanut and its relatives.
Collapse
Affiliation(s)
- Kenta Shirasawa
- Department of Plant Genome Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zerjal T, Rousselet A, Mhiri C, Combes V, Madur D, Grandbastien MA, Charcosset A, Tenaillon MI. Maize genetic diversity and association mapping using transposable element insertion polymorphisms. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1521-1537. [PMID: 22350086 DOI: 10.1007/s00122-012-1807-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 01/31/2012] [Indexed: 05/31/2023]
Abstract
Transposable elements are the major component of the maize genome and presumably highly polymorphic yet they have not been used in population genetics and association analyses. Using the Transposon Display method, we isolated and converted into PCR-based markers 33 Miniature Inverted Repeat Transposable Elements (MITE) polymorphic insertions. These polymorphisms were genotyped on a population-based sample of 26 American landraces for a total of 322 plants. Genetic diversity was high and partitioned within and among landraces. The genetic groups identified using Bayesian clustering were in agreement with published data based on SNPs and SSRs, indicating that MITE polymorphisms reflect maize genetic history. To explore the contribution of MITEs to phenotypic variation, we undertook an association mapping approach in a panel of 367 maize lines phenotyped for 26 traits. We found a highly significant association between the marker ZmV1-9, on chromosome 1, and male flowering time. The variance explained by this association is consistent with a flowering delay of +123 degree-days. This MITE insertion is located at only 289 nucleotides from the 3' end of a Cytochrome P450-like gene, a region that was never identified in previous association mapping or QTL surveys. Interestingly, we found (i) a non-synonymous mutation located in the exon 2 of the gene in strong linkage disequilibrium with the MITE polymorphism, and (ii) a perfect sequence homology between the MITE sequence and a maize siRNA that could therefore potentially interfere with the expression of the Cytochrome P450-like gene. Those two observations among others offer exciting perspectives to validate functionally the role of this region on phenotypic variation.
Collapse
Affiliation(s)
- Tatiana Zerjal
- CNRS, UMR 0320/UMR 8120 Génétique Végétale, Ferme Du Moulon, 91190 Gif sur Yvette, France.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Dong HT, Zhang L, Zheng KL, Yao HG, Chen J, Yu FC, Yu XX, Mao BZ, Zhao D, Yao J, Li DB. A Gaijin-like miniature inverted repeat transposable element is mobilized in rice during cell differentiation. BMC Genomics 2012; 13:135. [PMID: 22500940 PMCID: PMC3352178 DOI: 10.1186/1471-2164-13-135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 04/13/2012] [Indexed: 12/24/2022] Open
Abstract
Background Miniature inverted repeat transposable element (MITE) is one type of transposable element (TE), which is largely found in eukaryotic genomes and involved in a wide variety of biological events. However, only few MITEs were proved to be currently active and their physiological function remains largely unknown. Results We found that the amplicon discrepancy of a gene locus LOC_Os01g0420 in different rice cultivar genomes was resulted from the existence of a member of Gaijin-like MITEs (mGing). This result indicated that mGing transposition was occurred at this gene locus. By using a modified transposon display (TD) analysis, the active transpositions of mGing were detected in rice Jiahua No. 1 genome under three conditions: in seedlings germinated from the seeds received a high dose γ-ray irradiation, in plantlets regenerated from anther-derived calli and from scutellum-derived calli, and were confirmed by PCR validation and sequencing. Sequence analysis revealed that single nucleotide polymorphisms (SNPs) or short additional DNA sequences at transposition sites post mGing transposition. It suggested that sequence modification was possibly taken place during mGing transposition. Furthermore, cell re-differentiation experiment showed that active transpositions of both mGing and mPing (another well studied MITE) were identified only in regenerated plantlets. Conclusions It is for the first time that mGing active transposition was demonstrated under γ-ray irradiation or in cell re-differentiation process in rice. This newly identified active MITE will provide a foundation for further analysis of the roles of MITEs in biological process.
Collapse
Affiliation(s)
- Hai-Tao Dong
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yang X, Yu Y, Jiang L, Lin X, Zhang C, Ou X, Osabe K, Liu B. Changes in DNA methylation and transgenerational mobilization of a transposable element (mPing) by the topoisomerase II inhibitor, etoposide, in rice. BMC PLANT BIOLOGY 2012; 12:48. [PMID: 22482475 PMCID: PMC3480845 DOI: 10.1186/1471-2229-12-48] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 03/24/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND Etoposide (epipodophyllotoxin) is a chemical commonly used as an anti-cancer drug which inhibits DNA synthesis by blocking topoisomerase II activity. Previous studies in animal cells have demonstrated that etoposide constitutes a genotoxic stress which may induce genomic instability including mobilization of normally quiescent transposable elements (TEs). However, it remained unknown whether similar genetically mutagenic effects could be imposed by etoposide in plant cells. Also, no information is available with regard to whether the drug may cause a perturbation of epigenetic stability in any organism. RESULTS To investigate whether etoposide could generate genetic and/or epigenetic instability in plant cells, we applied etoposide to germinating seeds of six cultivated rice (Oryza sativa L.) genotypes including both subspecies, japonica and indica. Based on the methylation-sensitive gel-blotting results, epigenetic changes in DNA methylation of three TEs (Tos17, Osr23 and Osr36) and two protein-encoding genes (Homeobox and CDPK-related genes) were detected in the etoposide-treated plants (S0 generation) in four of the six studied japonica cultivars, Nipponbare, RZ1, RZ2, and RZ35, but not in the rest japonica cultivar (Matsumae) and the indica cultivar (93-11). DNA methylation changes in the etoposide-treated S0 rice plants were validated by bisulfite sequencing at both of two analyzed loci (Tos17 and Osr36). Transpositional activity was tested for eight TEs endogenous to the rice genome in both the S0 plants and their selfed progenies (S1 and S2) of one of the cultivars, RZ1, which manifested heritable phenotypic variations. Results indicated that no transposition occurred in the etoposide-treated S0 plants for any of the TEs. Nonetheless, a MITE transposon, mPing, showed rampant mobilization in the S1 and S2 progenies descended from the drug-treated S0 plants. CONCLUSIONS Our results demonstrate that etoposide imposes a similar genotoxic stress on plant cells as it does on animal and human cells, which may induce transgenerational genomic instability by instigating transpositional activation of otherwise dormant TEs. In addition, we show for the first time that etoposide may induce epigenetic instability in the form of altered DNA methylation patterns in eukaryotes. However, penetrance of the genotoxic effects of etoposide on plant cells, as being reflected as genetic and epigenetic instability, appears to be in a strictly genotype- and/or generation-dependent manner.
Collapse
Affiliation(s)
- Xuejiao Yang
- Key Laboratory of Molecular Epigenetics of MOE, and Institute of Genetics & Cytology, Northeast Normal University, Changchun, 130024, China
| | - Yingjie Yu
- Key Laboratory of Molecular Epigenetics of MOE, and Institute of Genetics & Cytology, Northeast Normal University, Changchun, 130024, China
| | - Lily Jiang
- Key Laboratory of Molecular Epigenetics of MOE, and Institute of Genetics & Cytology, Northeast Normal University, Changchun, 130024, China
| | - Xiuyun Lin
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Chunyu Zhang
- Key Laboratory of Molecular Epigenetics of MOE, and Institute of Genetics & Cytology, Northeast Normal University, Changchun, 130024, China
| | - Xiufang Ou
- Key Laboratory of Molecular Epigenetics of MOE, and Institute of Genetics & Cytology, Northeast Normal University, Changchun, 130024, China
| | - Kenji Osabe
- CSIRO Plant Industry, Canberra, ACT, 2601, Australia
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE, and Institute of Genetics & Cytology, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
38
|
Analysis of genetic mapping in a waxy/dent maize RIL population using SSR and SNP markers. Genes Genomics 2012. [DOI: 10.1007/s13258-011-0208-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Identification of an active Mutator-like element (MULE) in rice (Oryza sativa). Mol Genet Genomics 2012; 287:261-71. [PMID: 22274888 DOI: 10.1007/s00438-012-0676-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/12/2012] [Indexed: 10/14/2022]
Abstract
Transposable elements (TEs) represent an important fraction of plant genomes and play a significant role in gene and genome evolution. Among all TE superfamilies discovered in plants, Mutator from maize (Zea mays) is the most active and mutagenic element. Mutator-like elements (MULEs) were identified in a wide range of plants. However, only few active MULEs have been reported, and the transposition mechanism of the elements is still poorly understood. In this study, an active MULE named Os3378 was discovered in rice (Oryza sativa) by a combination of computational and experimental approaches. The four newly identified Os3378 elements share more than 98% sequence identity between each other, and all of them encode transposases without any deletion derivatives, indicating their capability of autonomous transposition. Os3378 is present in the rice species with AA genome type but is absent in other non-AA genome species. A new insertion of Os3378 was identified in a rice somaclonal mutant Z418, and the element remained active in the descendants of the mutant for more than ten generations. Both germinal and somatic excision events of Os3378 were observed, and no footprint was detected after excision. Furthermore, the occurrence of somatic excision of Os3378 appeared to be associated with plant developmental stages and tissue types. Taken together, Os3378 is a unique active element in rice, which provides a valuable resource for further studying of transposition mechanism and evolution of MULEs.
Collapse
|
40
|
Dynamics of Vulmar/VulMITE group of transposable elements in Chenopodiaceae subfamily Betoideae. Genetica 2011; 139:1209-16. [PMID: 22170176 PMCID: PMC3247672 DOI: 10.1007/s10709-011-9622-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 12/05/2011] [Indexed: 12/15/2022]
Abstract
Transposable elements are important factors driving plant genome evolution. Upon their mobilization, novel insertion polymorphisms are being created. We investigated differences in copy number and insertion polymorphism of a group of Mariner-like transposable elements Vulmar and related VulMITE miniature inverted-repeat transposable elements (MITEs) in species representing subfamily Betoideae. Insertion sites of these elements were identified using a modified transposon display protocol, allowing amplification of longer fragments representing regions flanking insertion sites. Subsequently, a subset of TD fragments was converted into insertion site-based polymorphism (ISBP) markers. The investigated group of transposable elements was the most abundant in accessions representing the section Beta, showing intraspecific insertion polymorphisms likely resulting from their recent activity. In contrast, no unique insertions were observed for species of the genus Beta section Corollinae, while a set of section-specific insertions was observed in the genus Patellifolia, however, only two of them were polymorphic between P. procumbens and P. webbiana. We hypothesize that Vulmar and VulMITE elements were inactivated in the section Corollinae, while they remained active in the section Beta and the genus Patellifolia. The ISBP markers generally confirmed the insertion patterns observed with TD markers, including presence of distinct subsets of TE insertions specific to Beta and Patellifolia.
Collapse
|
41
|
Caceres M, Pupilli F, Ceccarelli M, Vaccino P, Sarri V, De Pace C, Cionini P. Cryptic Introgression of Dasypyrum villosum Parental DNA in Wheat Lines Derived from Intergeneric Hybridization. Cytogenet Genome Res 2011; 136:75-81. [DOI: 10.1159/000334275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2011] [Indexed: 11/19/2022] Open
|
42
|
Lu C, Chen J, Zhang Y, Hu Q, Su W, Kuang H. Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. Mol Biol Evol 2011; 29:1005-17. [PMID: 22096216 PMCID: PMC3278479 DOI: 10.1093/molbev/msr282] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Miniature inverted–repeat transposable elements (MITEs) are predicted to play important roles on genome evolution. We developed a BLASTN-based approach for de novo identification of MITEs and systematically analyzed MITEs in rice genome. The genome of rice cultivar Nipponbare (Oryza sativa ssp. japonica) harbors 178,533 MITE-related sequences classified into 338 families. Pairwise nucleotide diversity and phylogenetic tree analysis indicated that individual MITE families were resulted from one or multiple rounds of amplification bursts. The timing of amplification burst varied considerably between different MITE families or subfamilies. MITEs are associated with 23,623 (58.2%) genes in rice genome. At least 7,887 MITEs are transcribed and more than 3,463 were transcribed with rice genes. The MITE sequences transcribed with rice coding genes form 1,130 pairs of potential natural sense/antisense transcripts. MITEs generate 23.5% (183,837 of 781,885) of all small RNAs identified from rice. Some MITE families generated small RNAs mainly from the terminals, while other families generated small RNAs predominantly from the central region. More than half (51.8%) of the MITE-derived small RNAs were generated exclusively by MITEs located away from genes. Genome-wide analysis showed that genes associated with MITEs have significantly lower expression than genes away from MITEs. Approximately 14.8% of loci with full-length MITEs have presence/absence polymorphism between rice cultivars 93-11 (O. sativa ssp. indica) and Nipponbare. Considering that different sets of genes may be regulated by MITE-derived small RNAs in different genotypes, MITEs provide considerable diversity for O. sativa.
Collapse
Affiliation(s)
- Chen Lu
- Key Laboratory of Horticulture Biology, Ministry of Education and Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
Hirano R, Naito K, Fukunaga K, Watanabe KN, Ohsawa R, Kawase M. Genetic structure of landraces in foxtail millet (Setaria italica (L.) P. Beauv.) revealed with transposon display and interpretation to crop evolution of foxtail millet. Genome 2011; 54:498-506. [PMID: 21623678 DOI: 10.1139/g11-015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although the origin and domestication process of foxtail millet (Setaria italica subsp. italica (L.) P. Beauv.) has been studied by several groups, the issue is still ambiguous. It is essential to resolve this issue by studying a large number of accessions with sufficient markers covering the entire genome. Genetic structures were analyzed by transposon display (TD) using 425 accessions of foxtail millet and 12 of the wild ancestor green foxtail (Setaria italica subsp. viridis (L.) P. Beauv.). We used three recently active transposons (TSI-1, TSI-7, and TSI-10) as genome-wide markers and succeeded in demonstrating geographical structures of the foxtail millet. A neighbor-joining dendrogram based on TD grouped the foxtail millet accessions into eight major clusters, each of which consisted of accessions collected from adjacent geographical areas. Eleven out of 12 green foxtail accessions were grouped separately from the clusters of foxtail millet. These results indicated strong regional differentiations and a long history of cultivation in each region. Furthermore, we discuss the relationship between foxtail millet and green foxtail and suggest a monophyletic origin of foxtail millet domestication.
Collapse
Affiliation(s)
- Ryoko Hirano
- a Gene Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Heffer A, Pick L. Rapid isolation of gene homologs across taxa: Efficient identification and isolation of gene orthologs from non-model organism genomes, a technical report. EvoDevo 2011; 2:7. [PMID: 21362165 PMCID: PMC3055837 DOI: 10.1186/2041-9139-2-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/01/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tremendous progress has been made in the field of evo-devo through comparisons of related genes from diverse taxa. While the vast number of species in nature precludes a complete analysis of the molecular evolution of even one single gene family, this would not be necessary to understand fundamental mechanisms underlying gene evolution if experiments could be designed to systematically sample representative points along the path of established phylogenies to trace changes in regulatory and coding gene sequence. This isolation of homologous genes from phylogenetically diverse, representative species can be challenging, especially if the gene is under weak selective pressure and evolving rapidly. RESULTS Here we present an approach - Rapid Isolation of Gene Homologs across Taxa (RIGHT) - to efficiently isolate specific members of gene families. RIGHT is based upon modification and a combination of degenerate polymerase chain reaction (PCR) and gene-specific amplified fragment length polymorphism (AFLP). It allows targeted isolation of specific gene family members from any organism, only requiring genomic DNA. We describe this approach and how we used it to isolate members of several different gene families from diverse arthropods spanning millions of years of evolution. CONCLUSIONS RIGHT facilitates systematic isolation of one gene from large gene families. It allows for efficient gene isolation without whole genome sequencing, RNA extraction, or culturing of non-model organisms. RIGHT will be a generally useful method for isolation of orthologs from both distant and closely related species, increasing sample size and facilitating the tracking of molecular evolution of gene families and regulatory networks across the tree of life.
Collapse
Affiliation(s)
- Alison Heffer
- Program in Molecular & Cell Biology and Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742, USA.
| | | |
Collapse
|
45
|
Abstract
Miniature inverted-repeat transposable elements (MITEs) are dispersed in large numbers within the genomes of eukaryotes although almost all are thought to be inactive. Plants have two major groups of such MITEs: Tourist and Stowaway. Mobile MITEs have been reported previously in rice but no active MITEs have been found in dicotyledons. Here, we provide evidence that Stowaway MITEs can be mobilized in the potato and that one of them causes a change of tuber skin color as an obvious phenotypic variation. In an original red-skinned potato clone, the gene encoding for a flavonoid 3',5'-hydroxylase, which is involved in purple anthocyanin synthesis, has been inactivated by the insertion of a Stowaway MITE named dTstu1 within the first exon. However, dTstu1 is absent from this gene in a purple somaclonal variant that was obtained as a regenerated plant from a protoplast culture of the red-skinned potato. The color change was attributed to reversion of flavonoid 3',5'-hydroxylase function by removal of dTstu1 from the gene. In this purple variant another specific transposition event has occurred involving a MITE closely related to dTstu1. Instead of being fossil elements, Stowaway MITEs, therefore, still have the ability to become active under particular conditions as represented by tissue culturing.
Collapse
|
46
|
Shu Y, Li Y, Zhu Y, Zhu Z, Lv D, Bai X, Cai H, Ji W, Guo D. Genome-wide identification of intron fragment insertion mutations and their potential use as SCAR molecular markers in the soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1-8. [PMID: 20162255 DOI: 10.1007/s00122-010-1285-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 01/24/2010] [Indexed: 05/04/2023]
Abstract
Introns often have a high probability of mutation as a result of DNA insertions and deletions (indels). In this study, 503 introns with exon-derived insertions were identified using a comprehensive search of the soybean genome. Of the 375 pairs of PCR primer sets designed for the loci in question, 161 primer sets amplified length polymorphism among nine soybean varieties and were identified as soybean gene-intron-driven functional sequence characterized amplified region (SCAR) markers. These SCAR markers are distributed among all 20 of the soybean chromosomes, and they developed from numerous genes involved in various physiological and biochemical processes that influence important agronomic traits of the soybean. The development of these novel gene-driven functional SCAR markers was fast and cost effective, and their use will facilitate molecular-assisted breeding of the soybean.
Collapse
Affiliation(s)
- Yongjun Shu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Data from maize show that centromeres strongly suppress crossing over and instead undergo frequent genetic exchange in the form of gene conversion. Centromeres are the most dynamic regions of the genome, yet they are typified by little or no crossing over, making it difficult to explain the origin of this diversity. To address this question, we developed a novel CENH3 ChIP display method that maps kinetochore footprints over transposon-rich areas of centromere cores. A high level of polymorphism made it possible to map a total of 238 within-centromere markers using maize recombinant inbred lines. Over half of the markers were shown to interact directly with kinetochores (CENH3) by chromatin immunoprecipitation. Although classical crossing over is fully suppressed across CENH3 domains, two gene conversion events (i.e., non-crossover marker exchanges) were identified in a mapping population. A population genetic analysis of 53 diverse inbreds suggests that historical gene conversion is widespread in maize centromeres, occurring at a rate >1×10−5/marker/generation. We conclude that gene conversion accelerates centromere evolution by facilitating sequence exchange among chromosomes. Centromeres, which harbor the attachment points for microtubules during cell division, are characterized by repetitive DNA, paucity of genes, and almost complete suppression of crossing over. The repetitive DNA within centromeres appears to evolve much faster than would be expected for genetically inert regions, however. Current explanations for this rapid evolution tend to be theoretical. On the one hand there are arguments that subtle forms of selection on selfish repeat sequences can explain the rapid rate of change, while on the other hand it seems plausible that some form of accelerated neutral evolution is occurring. Here, we address this question in maize, which is known for its excellent genetic mapping resources. We first developed a method for identifying hundreds of single copy markers in centromeres and confirmed that they lie within functional domains by using a chromatin immunoprecipitation assay for kinetochore protein CENH3. All markers were mapped in relation to each other. The data show that, whereas classical crossing over is suppressed, there is extensive genetic exchange in the form of gene conversion (by which short segments of one chromosome are copied onto the other). These results were confirmed by demonstrating that similar short exchange tracts are common among the centromeres from multiple diverse inbred lines of maize. Our study suggests that centromere diversity can be at least partially attributed to a high rate of previously “hidden” genetic exchange within the core kinetochore domains.
Collapse
|
48
|
WANG M, XU JS, WANG LL, ZHANG XY, ZHOU ZY. Pathogenicity and genetic divergence of two isolates of microsporidia Nosema bombycis. YI CHUAN = HEREDITAS 2009; 31:1121-6. [DOI: 10.3724/sp.j.1005.2009.01121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic Loci shaped primarily by retrotransposons. PLoS Genet 2009; 5:e1000743. [PMID: 19956743 PMCID: PMC2776974 DOI: 10.1371/journal.pgen.1000743] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 10/13/2009] [Indexed: 01/20/2023] Open
Abstract
We describe a comprehensive and general approach for mapping centromeres and present a detailed characterization of two maize centromeres. Centromeres are difficult to map and analyze because they consist primarily of repetitive DNA sequences, which in maize are the tandem satellite repeat CentC and interspersed centromeric retrotransposons of maize (CRM). Centromeres are defined epigenetically by the centromeric histone H3 variant, CENH3. Using novel markers derived from centromere repeats, we have mapped all ten centromeres onto the physical and genetic maps of maize. We were able to completely traverse centromeres 2 and 5, confirm physical maps by fluorescence in situ hybridization (FISH), and delineate their functional regions by chromatin immunoprecipitation (ChIP) with anti-CENH3 antibody followed by pyrosequencing. These two centromeres differ substantially in size, apparent CENH3 density, and arrangement of centromeric repeats; and they are larger than the rice centromeres characterized to date. Furthermore, centromere 5 consists of two distinct CENH3 domains that are separated by several megabases. Succession of centromere repeat classes is evidenced by the fact that elements belonging to the recently active recombinant subgroups of CRM1 colonize the present day centromeres, while elements of the ancestral subgroups are also found in the flanking regions. Using abundant CRM and non-CRM retrotransposons that inserted in and near these two centromeres to create a historical record of centromere location, we show that maize centromeres are fluid genomic regions whose borders are heavily influenced by the interplay of retrotransposons and epigenetic marks. Furthermore, we propose that CRMs may be involved in removal of centromeric DNA (specifically CentC), invasion of centromeres by non-CRM retrotransposons, and local repositioning of the CENH3. Centromeres tend to be the last regions to be assembled in genome projects, as their mapping is hampered by their characteristically high repeat DNA content and lack of genetic recombination. Using unique markers derived from these repeat-rich regions, we were able to generate and annotate physical maps of two maize centromeres. Functional centromeres are defined not so much by their primary DNA sequence as by the presence of CENH3, a special histone that replaces canonical histone H3 in centromeric nucleosomes. Little is known about how deposition of CENH3 is regulated, or about the interplay between centromeric repeats and CENH3. By graphing the density of CENH3 nucleosomes onto the physical map, we delineated the functional centromeres in today's maize genome. We then used the large number of LTR retrotransposon insertions, for which the corn genome is well known, as “archeological evidence” to reconstruct the historic centromere boundaries. This was possible because i) some retrotransposon families of maize (CRM) appear to possess a unique ability to preferentially target centromeres during integration and ii) insertion times of individual retrotransposons can be calculated. Here we show that the centromere boundaries in maize have changed over time and are heavily influenced by centromeric and non-centromeric repeats.
Collapse
|
50
|
Shan XH, Ou XF, Liu ZL, Dong YZ, Lin XY, Li XW, Liu B. Transpositional activation of mPing in an asymmetric nuclear somatic cell hybrid of rice and Zizania latifolia was accompanied by massive element loss. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:1325-33. [PMID: 19711051 DOI: 10.1007/s00122-009-1137-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Accepted: 08/12/2009] [Indexed: 05/09/2023]
Abstract
We have reported previously that the most active miniature inverted terminal repeat transposable element (MITE) of rice, mPing, was transpositionally mobilized in several rice recombinant inbred lines (RILs) derived from an introgressive hybridization between rice and wild rice (Zizania latifolia Griseb.). To further study the phenomenon of hybridization-induced mPing activity, we undertook the present study to investigate the element's behavior in a highly asymmetric somatic nuclear hybrid (SH6) of rice and Z. latifolia, which is similar in genomic composition to that of the RILs, though probably contains more introgressed alien chromatins from the donor species than the RILs. We found that mPing, together with its transposase-donor, Pong, underwent rampant transpositional activation in the somatic hybrid (SH6). Because possible effects of protoplast isolation and cell culture can be ruled out, we attribute the transpositional activation of mPing and Pong in SH6 to the process of asymmetric somatic hybridization, namely, one-step introgression of multiple chromatin segments of the donor species Z. latifolia into the recipient rice genome. A salient feature of mPing transposition in the somatic hybrid is that the element's activation was accompanied by massive loss of its original copies, i.e., abortive transpositions, which was not observed in previously reported cases of mPing activity. These data not only corroborated our earlier finding that wide hybridization and introgression may trigger transpositional activation of otherwise quiescent transposable elements, but also suggest that transpositional mobilization of a MITE like mPing can be accompanied by dramatic reduction of its original copy numbers under certain conditions, thus provide novel insights into the dynamics of MITEs in the course of genome evolution.
Collapse
Affiliation(s)
- X H Shan
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, 130024 Changchun, China
| | | | | | | | | | | | | |
Collapse
|