1
|
Marinaro C, Marino A, Bianchi AR, Berman B, Trifuoggi M, Marano A, Palumbo G, Chianese T, Scudiero R, Rosati L, De Maio A, Lettieri G, Piscopo M. Molecular and toxicological mechanisms behind the effects of chromium (VI) on the male reproductive system of Mytilus galloprovincialis: First evidence for poly-ADP-ribosylation of protamine-like II. Chem Biol Interact 2024; 401:111186. [PMID: 39116916 DOI: 10.1016/j.cbi.2024.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Studies on the molecular mechanisms of heavy metal toxicity in invertebrate reproduction are limited. Given that PARP-catalysed ADP-ribosylation is also involved in counteracting heavy metal toxicity and maintaining genomic integrity, and that PARylation is implicated in chromatin remodelling but its role in sperm chromatin remains to be elucidated, we investigated the effects of chromium(VI) at 1, 10 and 100 nM on the reproductive health of Mytilus galloprovincialis. The damage to the gonads was assessed by morphological analyses and the damage indices PARP and ɣH2A.X were measured. Changes in the binding of protamine-like (PL) to DNA and the possibility of poly(ADP-ribosyl)ation of PL proteins were also investigated. Gonadal chromium accumulation and morphological damage were found, especially when the mussels were exposed to the highest dose of chromium(VI). In addition, the maximum expression of gonadal ɣH2A.X and PARP were obtained at 100 and 10 nM Cr(VI), respectively. Interestingly, for the first time in all exposed conditions, poly(ADP)-ribosylation was detected on PL-II, which, together with PL-III and PL-IV, are the major nuclear basic proteins of Mytilus galloprovincialis sperm chromatin. Since PL-II is involved in the final high level of sperm chromatin compaction, this post-translational modification altered the binding of the PL protein to DNA, favouring the action of micrococcal nuclease on sperm chromatin. This study provides new insights into the effects of chromium(VI) on Mytilus galloprovincialis reproductive system and proposes a molecular mechanism hypothesis describing the toxic effects of this metal on PL-DNA binding, sperm chromatin and gonads.
Collapse
Affiliation(s)
- Carmela Marinaro
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Alberto Marino
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Anna Rita Bianchi
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Bruno Berman
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, 21,80126, Naples, Italy
| | - Alessandra Marano
- Department of Chemical Sciences, University of Naples Federico II, 21,80126, Naples, Italy
| | - Giancarlo Palumbo
- Commodity Science Laboratory, Department of Economics, Management and Institutions, University of Naples Federico II, 80126, Naples, Italy
| | - Teresa Chianese
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Rosaria Scudiero
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy; CIRAM, Centro Interdipartimentale di Ricerca "Ambiente", University Federico II, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Anna De Maio
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy.
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy.
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy.
| |
Collapse
|
2
|
Leyden MR, Michalik P, Baruffaldi L, Mahmood S, Kalani L, Hunt DF, Eirin-Lopez JM, Andrade MC, Shabanowitz J, Ausió J. The protamines of the noble false widow spider Steatoda nobilis provide an example of liquid-liquid phase separation chromatin transitions during spermiogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597381. [PMID: 38895387 PMCID: PMC11185589 DOI: 10.1101/2024.06.04.597381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
While there is extensive information about sperm nuclear basic proteins (SNBP) in vertebrates, there is very little information about Arthropoda by comparison. This paper aims to contribute to filling this gap by analyzing these proteins in the sperm of the noble false widow spider Steatoda nobilis (Order Araneae, Family Theridiidae). To this end, we have developed a protein extraction method that allows the extraction of cysteine-containing protamines suitable for the preparation and analysis of SNBPs from samples where the amount of starting tissue material is limited. We carried out top-down mass spectrometry sequencing and molecular phylogenetic analyses to characterize the protamines of S. nobilis and other spiders. We also used electron microscopy to analyze the chromatin organization of the sperm, and we found it to exhibit liquid-liquid phase spinodal decomposition during the late stages of spermiogenesis. These studies further our knowledge of the distribution of SNBPs within the animal kingdom and provide additional support for a proposed evolutionary origin of many protamines from a histone H1 (H5) replication-independent precursor.
Collapse
Affiliation(s)
- Melissa R. Leyden
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Peter Michalik
- Zoologisches Institut und Museum, Universität Greifswald, Greifswald, Germany
| | - Luciana Baruffaldi
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Susheen Mahmood
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Ladan Kalani
- Department of Biochemistry and Microbiology, University of Victoria, Victoria BC V8W 2Y2, Canada
| | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Jose Maria Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, Florida, USA
| | - Maydianne C.B. Andrade
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria BC V8W 2Y2, Canada
| |
Collapse
|
3
|
Ausió J, Knox A, Kim BH, Humphrey E, Gowen B, Minamino N, von Aderkas P. The sperm nuclear basic proteins of the sword fern ( Polystichum munitum). Biochem Cell Biol 2024; 102:285-290. [PMID: 38346284 DOI: 10.1139/bcb-2023-0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Sperm nuclear basic proteins (SNBPs) were isolated from extracted antheridia-rich male gametophytes raised from spores of the swordfern, Polystichum munitum. Electrophoretic (acetic acid-urea PAGE and SDS-PAGE) and chromatographic (rp-HPLC) characterization of the nuclear proteins exhibited the characteristics of the histone (H-type). In both types of gel electrophoresis, histones H1, H2A, and H2B showed an altered electrophoretic mobility corresponding to that which is routinely observed for the histones in other plants. Histones present during spermatogenesis of the fern P. munitum were compared with the few current SNBPs known to be present in higher and lower evolutionary plant clades. A transition from an early protamine (P-type) SNBPs in charophytes and bryophytes to the (H-type) SNBP observed here is reminiscent of similar reversions observed in the animal kingdom.
Collapse
Affiliation(s)
- Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Alistair Knox
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Bo-Hyun Kim
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Elaine Humphrey
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Brent Gowen
- Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Patrick von Aderkas
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
4
|
Leyden MR, Gowen B, Gonzalez-Romero R, Eirin-Lopez JM, Kim BH, Hayashi F, McCartney J, Zhang PC, Kubo-Irie M, Shabanowitz J, Hunt DF, Ferree P, Kasinsky H, Ausió J. Protamines and the sperm nuclear basic proteins Pandora's Box of insects. Biochem Cell Biol 2024; 102:238-251. [PMID: 38408323 DOI: 10.1139/bcb-2023-0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Insects are the largest group of animals when it comes to the number and diversity of species. Yet, with the exception of Drosophila, no information is currently available on the primary structure of their sperm nuclear basic proteins (SNBPs). This paper represents the first attempt in this regard and provides information about six species of Neoptera: Poecillimon thessalicus, Graptosaltria nigrofuscata, Apis mellifera, Nasonia vitripennis, Parachauliodes continentalis, and Tribolium castaneum. The SNBPs of these species were characterized by acetic acid urea gel electrophoresis (AU-PAGE) and high-performance liquid chromatography fractionated. Protein sequencing was obtained using a combination of mass spectrometry sequencing, Edman N-terminal degradation sequencing and genome mining. While the SNBPs of several of these species exhibit a canonical arginine-rich protamine nature, a few of them exhibit a protamine-like composition. They appear to be the products of extensive cleavage processing from a precursor protein which are sometimes further processed by other post-translational modifications that are likely involved in the chromatin transitions observed during spermiogenesis in these organisms.
Collapse
Affiliation(s)
- Melissa R Leyden
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Brent Gowen
- Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Rodrigo Gonzalez-Romero
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jose Maria Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, USA
- Florida International University, Miami, FL, USA
| | - Bo-Hyun Kim
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Fumio Hayashi
- Department of Biology, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji, Tokyo 192-0397, Japan
| | - Jay McCartney
- Institute of Natural Sciences, Massey University, Palmerston North, Manawatu, New Zealand
| | - Patrick C Zhang
- W.M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| | - Miyoko Kubo-Irie
- Biological Laboratory, The Open University of Japan, Wakaba, Mihama-ku, Chiba, 261-8506, Japan
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA
| | - Patrick Ferree
- W.M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| | - Harold Kasinsky
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
5
|
Takeuchi Y, Sato S, Nagasato C, Motomura T, Okuda S, Kasahara M, Takahashi F, Yoshikawa S. Sperm-specific histone H1 in highly condensed sperm nucleus of Sargassum horneri. Sci Rep 2024; 14:3387. [PMID: 38336896 PMCID: PMC10858212 DOI: 10.1038/s41598-024-53729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Spermatogenesis is one of the most dramatic changes in cell differentiation. Remarkable chromatin condensation of the nucleus is observed in animal, plant, and algal sperm. Sperm nuclear basic proteins (SNBPs), such as protamine and sperm-specific histone, are involved in chromatin condensation of the sperm nucleus. Among brown algae, sperm of the oogamous Fucales algae have a condensed nucleus. However, the existence of sperm-specific SNBPs in Fucales algae was unclear. Here, we identified linker histone (histone H1) proteins in the sperm and analyzed changes in their gene expression pattern during spermatogenesis in Sargassum horneri. A search of transcriptomic data for histone H1 genes in showed six histone H1 genes, which we named ShH1.1a, ShH1b, ShH1.2, ShH1.3, ShH1.4, and ShH1.5. Analysis of SNBPs using SDS-PAGE and LC-MS/MS showed that sperm nuclei contain histone ShH1.2, ShH1.3, and ShH1.4 in addition to core histones. Both ShH1.2 and ShH1.3 genes were expressed in the vegetative thallus and the male and female receptacles (the organs producing antheridium or oogonium). Meanwhile, the ShH1.4 gene was expressed in the male receptacle but not in the vegetative thallus and female receptacles. From these results, ShH1.4 may be a sperm-specific histone H1 of S. horneri.
Collapse
Affiliation(s)
- Yu Takeuchi
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Shinya Sato
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Chikako Nagasato
- Field Science Center for Northern Biosphere, Muroran Marine Station, Hokkaido University, Muroran, 051-0013, Japan
| | - Taizo Motomura
- Field Science Center for Northern Biosphere, Muroran Marine Station, Hokkaido University, Muroran, 051-0013, Japan
| | - Shujiro Okuda
- Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi, Chuoku, Niigata, Niigata, 951-8501, Japan
| | - Masahiro Kasahara
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Fumio Takahashi
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, 274-8510, Japan
| | - Shinya Yoshikawa
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan.
| |
Collapse
|
6
|
A Molecular Mechanism to Explain the Nickel-Induced Changes in Protamine-like Proteins and Their DNA Binding Affecting Sperm Chromatin in Mytilus galloprovincialis: An In Vitro Study. Biomolecules 2023; 13:biom13030520. [PMID: 36979455 PMCID: PMC10046793 DOI: 10.3390/biom13030520] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/03/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Nickel is associated with reproductive toxicity, but little is known about the molecular mechanisms of nickel-induced effects on sperm chromatin and protamine-like proteins (PLs). In the present work, we analyzed PLs from Mytilus galloprovincialis by urea-acetic acid polyacrylamide gel electrophoresis (AU-PAGE) and SDS-PAGE and assessed their binding to DNA by Electrophoretic Mobility Shift Assay (EMSA) after exposing mussels to 5, 15, and 35 µM NiCl2 for 24 h. In addition, a time course of digestion with MNase and release of PLs from sperm nuclei by the NaCl gradient was performed. For all exposure doses, in AU-PAGE, there was an additional migrating band between PL-III and PL-IV, corresponding to a fraction of PLs in the form of peptides detected by SDS-PAGE. Alterations in DNA binding of PLs were observed by EMSA after exposure to 5 and 15 µM NiCl2, while, at all NiCl2 doses, increased accessibility of MNase to sperm chromatin was found. The latter was particularly relevant at 15 µM NiCl2, a dose at which increased release of PLII and PLIII from sperm nuclei and the highest value of nickel accumulated in the gonads were also found. Finally, at all exposure doses, there was also an increase in PARP expression, but especially at 5 µM NiCl2. A possible molecular mechanism for the toxic reproductive effects of nickel in Mytilus galloprovincialis is discussed.
Collapse
|
7
|
Török A, Browne MJG, Vilar JC, Patwal I, DuBuc TQ, Febrimarsa, Atcheson E, Frank U, Gornik SG, Flaus A. Hydrozoan sperm-specific SPKK motif-containing histone H2B variants stabilise chromatin with limited compaction. Development 2023; 150:286546. [PMID: 36633190 PMCID: PMC9903204 DOI: 10.1242/dev.201058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/02/2022] [Indexed: 01/13/2023]
Abstract
Many animals achieve sperm chromatin compaction and stabilisation by replacing canonical histones with sperm nuclear basic proteins (SNBPs) such as protamines during spermatogenesis. Hydrozoan cnidarians and echinoid sea urchins lack protamines and have evolved a distinctive family of sperm-specific histone H2Bs (spH2Bs) with extended N termini rich in SPK(K/R) motifs. Echinoid sperm packaging is regulated by spH2Bs. Their sperm is negatively buoyant and fertilises on the sea floor. Hydroid cnidarians undertake broadcast spawning but their sperm properties are poorly characterised. We show that Hydractinia echinata and H. symbiolongicarpus sperm chromatin possesses higher stability than somatic chromatin, with reduced accessibility to transposase Tn5 integration and to endonucleases in vitro. In contrast, nuclear dimensions are only moderately reduced in mature Hydractinia sperm. Ectopic expression of spH2B in the background of H2B.1 knockdown results in downregulation of global transcription and cell cycle arrest in embryos, without altering their nuclear density. Taken together, SPKK-containing spH2B variants act to stabilise chromatin and silence transcription in Hydractinia sperm with only limited chromatin compaction. We suggest that spH2Bs could contribute to sperm buoyancy as a reproductive adaptation.
Collapse
Affiliation(s)
- Anna Török
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Martin J. G. Browne
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Jordina C. Vilar
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Indu Patwal
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Timothy Q. DuBuc
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Febrimarsa
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Erwan Atcheson
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Uri Frank
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Sebastian G. Gornik
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland,Authors for correspondence (, )
| | - Andrew Flaus
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland,Authors for correspondence (, )
| |
Collapse
|
8
|
Chhetri KB, Jang YH, Lansac Y, Maiti PK. Effect of phosphorylation of protamine-like cationic peptide on the binding affinity to DNA. Biophys J 2022; 121:4830-4839. [PMID: 36168289 PMCID: PMC9808561 DOI: 10.1016/j.bpj.2022.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/10/2022] [Accepted: 09/21/2022] [Indexed: 01/07/2023] Open
Abstract
Protamines are more arginine-rich and more basic than histones and are responsible for providing a highly compacted shape to the sperm heads in the testis. Phosphorylation and dephosphorylation are two events that occur in the late phase of spermatogenesis before the maturation of sperms. In this work, we have studied the effect of phosphorylation of protamine-like cationic peptides using all-atom molecular dynamics simulations. Through thermodynamic analyses, we found that phosphorylation reduces the binding efficiency of such cationic peptides on DNA duplexes. Peptide phosphorylation leads to a less efficient DNA condensation, due to a competition between DNA-peptide and peptide-peptide interactions. We hypothesize that the decrease of peptide bonds between DNA together with peptide self-assembly might allow an optimal re-organization of chromatin and an efficient condensation through subsequent peptide dephosphorylation. Based on the globular and compact conformations of phosphorylated peptides mediated by arginine-phosphoserine H-bonding, we furthermore postulate that phosphorylated protamines could more easily intrude into chromatin and participate to histone release through disruption of histone-histone and histone-DNA binding during spermatogenesis.
Collapse
Affiliation(s)
- Khadka B Chhetri
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India; Department of Physics, Prithvinarayan Campus, Tribhuvan University, Pokhara, Nepal
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea; GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France.
| | - Yves Lansac
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France; Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris Saclay, Orsay, France.
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
9
|
Kasinsky HE, Gowen BE, Ausió J. Spermiogenic chromatin condensation patterning in several hexapods may involve phase separation dynamics by spinodal decomposition or microemulsion inversion (nucleation). Tissue Cell 2021; 73:101648. [PMID: 34537592 DOI: 10.1016/j.tice.2021.101648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
We have examined published transmission electron microscopy (TEM). photomicrographs of chromatin condensation patterning in developing sperm nuclei from five species of entognathous hexapods within the Classes Protura, Collembola, Diplura and five species of ancestral wingless insects in the Orders Archaeognatha and Zygentoma as well as in fifteen species of the winged insects. Each species reproduces by internal fertilization. Spatially quantitative analysis indicates that spermiogenic chromatin condensation patterning in several of these species may be due to spinodal decomposition (SD) or to microemulsion inversion (chromatin-in-nucleoplasm → nucleoplasm-in-chromatin), also known as nucleation (Nc). These are two different dynamic mechanisms of liquid-liquid phase separation (LLPS). They might either occur independently or co-exist during the chromatin condensation associated with insect spermiogenesis. For example, the chromatin condensation pattern such as that observed in transverse sections of developing sperm nuclei from the wingless insect Anurida maritima (Collembola) is: granules → fibers → lamellae (SD) → nucleation (Nc) → condensed nuclei. Similar transitions are also observed in other more recently evolved species within the Class Insecta. From the limited but comprehensive sample of entognathus and ectognathus hexapods analyzed here, it appears that LLPS of sperm chromatin during spermiogenesis has occurred quite pervasively within the subphylum Hexapoda, including insects.
Collapse
Affiliation(s)
- Harold E Kasinsky
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Brent E Gowen
- Department of Biology. University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada.
| |
Collapse
|
10
|
Ruseska I, Fresacher K, Petschacher C, Zimmer A. Use of Protamine in Nanopharmaceuticals-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1508. [PMID: 34200384 PMCID: PMC8230241 DOI: 10.3390/nano11061508] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022]
Abstract
Macromolecular biomolecules are currently dethroning classical small molecule therapeutics because of their improved targeting and delivery properties. Protamine-a small polycationic peptide-represents a promising candidate. In nature, it binds and protects DNA against degradation during spermatogenesis due to electrostatic interactions between the negatively charged DNA-phosphate backbone and the positively charged protamine. Researchers are mimicking this technique to develop innovative nanopharmaceutical drug delivery systems, incorporating protamine as a carrier for biologically active components such as DNA or RNA. The first part of this review highlights ongoing investigations in the field of protamine-associated nanotechnology, discussing the self-assembling manufacturing process and nanoparticle engineering. Immune-modulating properties of protamine are those that lead to the second key part, which is protamine in novel vaccine technologies. Protamine-based RNA delivery systems in vaccines (some belong to the new class of mRNA-vaccines) against infectious disease and their use in cancer treatment are reviewed, and we provide an update on the current state of latest developments with protamine as pharmaceutical excipient for vaccines.
Collapse
Affiliation(s)
| | | | | | - Andreas Zimmer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 1, 8010 Graz, Austria; (I.R.); (K.F.); (C.P.)
| |
Collapse
|
11
|
Dymek AM, Pecio A. Spermatogenesis in the inseminating African butterflyfish Pantodon buchholzi (Teleostei: Osteoglossiformes: Pantodontidae) with the revision of residual bodies formation. JOURNAL OF FISH BIOLOGY 2020; 97:1491-1506. [PMID: 32869341 DOI: 10.1111/jfb.14518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to analyse spermatogenesis in the African butterflyfish, Pantodon buchholzi, using transmission electron microscopy and scanning electron microscopy. P. buchholzi is the most basal teleost that exhibits insemination and produces a highly complex introsperm with the most elongate midpiece known in teleost fishes. Their early stages (spermatogonia and spermatocytes) do not differ greatly from those of other fishes, with the exception of Golgi apparatus degradation appearing as spindle-shaped bodies (SSBs). In round, early spermatids, the development of the flagellum begins after the migration of the centriolar complex towards the nucleus. Later, the elongation of the midpiece coincides with the displacement of the mitochondria and their fusion to produce nine mitochondrial derivatives (MDs). In these spermatids, the nucleus is situated laterally to the midpiece, with condensing chromatin in the centre of the nucleus. Within the midpiece, the flagellum is located within a cytoplasmic canal and is surrounded by a cytoplasmic sleeve containing fibres, MDs and a great amount of cytoplasm located on one side. During the next phase, nuclear rotation, the highly condensed chromatin is displaced to a position above the centriolar apparatus, whereas chromatin-free nucleoplasm is transferred to the cytoplasm. Later, this nucleoplasm, still surrounded by the nuclear membrane, is eliminated into the cyst lumen as the nucleoplasmic packet. Within the highly elongate spermatids, other excess organelles (SSBs, endoplasmic reticulum and mitochondria) are eliminated as residual bodies (RBs). Fully developed spermatozoa, which contain conical-shaped nuclei, eventually coalesce to form unencapsulated sperm packets (spermatozeugmata) that are surrounded by RBs at the level of the extremely elongate midpieces. Later, RBs are removed at the periphery of the cyst by means of phagocytosis by Sertoli cells.
Collapse
Affiliation(s)
- Anna M Dymek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| | - Anna Pecio
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| |
Collapse
|
12
|
D’Ippolito RA, Panepinto MC, Mahoney KE, Bai DL, Shabanowitz J, Hunt DF. Sequencing a Bispecific Antibody by Controlling Chain Concentration Effects When Using an Immobilized Nonspecific Protease. Anal Chem 2020; 92:10470-10477. [PMID: 32597636 PMCID: PMC8106826 DOI: 10.1021/acs.analchem.0c01126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Complete sequence coverage of monospecific antibodies was previously achieved using immobilized aspergillopepsin I in a single LC-MS/MS analysis. Bispecific antibodies are asymmetrical compared to their monospecific antibody counterparts, resulting in a decrease in the concentration of individual subunits. Four standard proteins were used to characterize the effect of a decrease in concentration when using this immobilized enzyme reactor. Low concentration samples resulted in the elimination of large peptide products due to a greater number of enzymatic cleavages. A competitive inhibitor rich in arginine residues reduced the number of enzymatic cleavages to the protein and retained large molecular weight products. The digestion of a bispecific antibody with competitive inhibition of aspergillopepsin I maintained large peptide products better suited for sequence reconstruction, resulting in complete sequence coverage from a single LC-MS/MS analysis.
Collapse
Affiliation(s)
- Robert A. D’Ippolito
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Maria C. Panepinto
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Keira E. Mahoney
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Dina L. Bai
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Donald F. Hunt
- Department of Chemistry and Department of Pathology, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
13
|
Chen T, Mu S, Sun Z, Zhang H, Li C, Guo M, Li Y, Kang X, Wang Z. Spermiogenic histone transitions and chromatin decondensation in Decapoda. Theriogenology 2020; 156:242-252. [PMID: 32777658 DOI: 10.1016/j.theriogenology.2020.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 01/12/2023]
Abstract
Decapoda are among of the most diverse groups of Crustacea with an important economic value, and have thus been the focus of various reproductive biology studies. Although spermatozoa are morphologically diverse, decapod spermatozoa possess common features, such as being non-motile and having uncondensed nuclear chromatin. Many scholars have studied uncondensed chromatin in decapod spermatozoa; however, the role of biologically regulated decondensation in spermatozoa remains unclear. In this study, histone changes in the spermatozoa of five commercially relevant aquatic crustacean species (Eriocheir sinensis, Scylla paramamosain, Procambarus clarkii, Fenneropenaeus chinensis, and Macrobrachium nipponense) were studied via liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunofluorescence. The LC-MS/MS results confirmed that all four core histones were present in the sperm nuclei of the five Decapoda species. Positive fluorescent signals from histones H2A, H2B, H3, and H4 were detected in the spermatozoa nuclei of E. sinensis, S. paramamosain and M. nipponense via immunofluorescence. Histone H2A was first identified in the membrane sheets or cytoplasm of mature sperm in P. clarkii and F. chinensis, whereas H3 and H4 were generally distributed in the nucleus of the spermatozoa. Histone H2B gradually disappeared during spermiogenesis and was not found in the sperm of P. clarkii and F. chinensis eventually. Our data suggest that core histones are instructive and necessary for chromatin decondensation in decapods spermatozoa. Thus, our results may help resolve the complex sperm histone code and provide a reference for the study of spermatozoa evolution in Decapoda.
Collapse
Affiliation(s)
- Tingrong Chen
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Zhe Sun
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Han Zhang
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Chao Li
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Mingsheng Guo
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yanqin Li
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding, 071002, China.
| | - Zhenshan Wang
- College of Life Sciences, Hebei University, Baoding, 071002, China.
| |
Collapse
|
14
|
de Vries JC, Barendrecht AD, Clark CC, Urbanus RT, Boross P, de Maat S, Maas C. Heparin Forms Polymers with Cell-free DNA Which Elongate Under Shear in Flowing Blood. Sci Rep 2019; 9:18316. [PMID: 31797980 PMCID: PMC6892814 DOI: 10.1038/s41598-019-54818-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/19/2019] [Indexed: 11/10/2022] Open
Abstract
Heparin is a widely used anticoagulant which inhibits factor Xa and thrombin through potentiation of antithrombin. We recently identified that the nucleic acid stain SYTOX reacts with platelet polyphosphate due to molecular similarities, some of which are shared by heparin. We attempted to study heparin in flowing blood by live-cell fluorescence microscopy, using SYTOX for heparin visualisation. Immunostaining was performed with monoclonal antibodies directed against various heparin-binding proteins. In addition, we studied modulation of heparin activity in coagulation assays, as well its effects on fibrin formation under flow in recalcified whole blood. We found that SYTOX-positive polymers appear in heparinised blood under flow. These polymers typically associate with platelet aggregates and their length (reversibly) increases with shear rate. Immunostaining revealed that of the heparin-binding proteins assessed, they only contain histones. In coagulation assays and flow studies on fibrin formation, we found that addition of exogenous histones reverses the anticoagulant effects of heparin. Furthermore, the polymers do not appear in the presence of DNase I, heparinase I/III, or the heparin antidote protamine. These findings suggest that heparin forms polymeric complexes with cell-free DNA in whole blood through a currently unidentified mechanism.
Collapse
Affiliation(s)
- Joost C de Vries
- Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Arjan D Barendrecht
- Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Chantal C Clark
- Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rolf T Urbanus
- Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Peter Boross
- Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Steven de Maat
- Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Coen Maas
- Department of Clinical Chemistry & Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
15
|
D'Ippolito RA, Minamino N, Rivera-Casas C, Cheema MS, Bai DL, Kasinsky HE, Shabanowitz J, Eirin-Lopez JM, Ueda T, Hunt DF, Ausió J. Protamines from liverwort are produced by post-translational cleavage and C-terminal di-aminopropanelation of several male germ-specific H1 histones. J Biol Chem 2019; 294:16364-16373. [PMID: 31527083 DOI: 10.1074/jbc.ra119.010316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/26/2019] [Indexed: 11/06/2022] Open
Abstract
Protamines are small, highly-specialized, arginine-rich, and intrinsically-disordered chromosomal proteins that replace histones during spermiogenesis in many organisms. Previous evidence supports the notion that, in the animal kingdom, these proteins have evolved from a primitive replication-independent histone H1 involved in terminal cell differentiation. Nevertheless, a direct connection between the two families of chromatin proteins is missing. Here, we primarily used electron transfer dissociation MS-based analyses, revealing that the protamines in the sperm of the liverwort Marchantia polymorpha result from post-translational cleavage of three precursor H1 histones. Moreover, we show that the mature protamines are further post-translationally modified by di-aminopropanelation, and previous studies have reported that they condense spermatid chromatin through a process consisting of liquid-phase assembly likely involving spinodal decomposition. Taken together, our results reveal that the interesting evolutionary ancestry of protamines begins with histone H1 in both the animal and plant kingdoms.
Collapse
Affiliation(s)
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Ciro Rivera-Casas
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, Florida 33181
| | - Manjinder S Cheema
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Dina L Bai
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Harold E Kasinsky
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, Florida 33181
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan.,Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904.,Department of Pathology, University of Virginia, Charlottesville, Virginia 22903
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| |
Collapse
|
16
|
Chen T, Sun Z, Mu S, Jiang L, Li C, Li L, Guo M, Zhang Z, Kang X. Ultrastructure of spermiogenesis and the distribution of spermatozoal nuclear histones in the Japanese mantis shrimp, Oratosquilla oratoria (Crustacea: Stomatopoda). J Morphol 2019; 280:1170-1184. [PMID: 31141207 PMCID: PMC6771690 DOI: 10.1002/jmor.21008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
Abstract
The Japanese mantis shrimp Oratosquilla oratoria (Stomatopoda; Crustacea) is one of the most economically important aquatic species of Pacific shrimp and it is distributed from Japan to the coast of China, the Philippines, the Malay Peninsula, and the Hawaiian Islands. Early studies described certain characteristics of spermatogenesis and the sperm ultrastructure in Stomatopoda, but the composition of sperm basic nuclear proteins (SBNPs) remains completely unknown. We studied the sperm ultrastructure of O. oratoria using transmission electron microscopy and the histone composition using immunofluorescence and immunoelectron microscopy. We found that the spherical nucleus is adjacent to the electron translucent external coat, which occurs in early spermatids. The acrosomal structure begins to form at the junction of the nucleus and the external coat. At the mid-spermatid stage, part of the chromatin appears to be more electron-dense than the external coat side. The aflagellate sperm of O. oratoria, are rounded or slightly ovoid in shape and have a consistent granular nucleus, an acrosome structure of pushpin shape and a spherical vesicular body in which faintly granular material is scattered. The acrosome consists of an acrosomal vesicle, perforatorium, and subacrosomal material. The sperm contains histones H2A, H2B, H3, H4, H3.3, H2AX, and H2AZ as well as some histone modifications, that is, H3K9me3, H3K4me2, H3S10ph, H4Kac, and H2A + H4S1ph. Histones are localized not only in the nucleus of the sperm but also in other structures outside the nucleus. The results may provide new perspectives for systematic studies of crustaceans and their sperm chromatin components. These findings extend the study of the sperm structure of Stomatopoda and provide basic data to elucidate the epigenetic mechanism of fertilization.
Collapse
Affiliation(s)
- Tingrong Chen
- College of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Zhe Sun
- College of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Lingling Jiang
- College of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Chao Li
- College of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Lu Li
- College of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Mingshen Guo
- College of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Zhaohui Zhang
- Department of Reproductive Medicine, Baoding No. 1 Central Hospital, Baoding, Hebei, China
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding, Hebei, China
| |
Collapse
|
17
|
De Guglielmo V, Puoti R, Notariale R, Maresca V, Ausió J, Troisi J, Verrillo M, Basile A, Febbraio F, Piscopo M. Alterations in the properties of sperm protamine-like II protein after exposure of Mytilus galloprovincialis (Lamarck 1819) to sub-toxic doses of cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:600-606. [PMID: 30496991 DOI: 10.1016/j.ecoenv.2018.11.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/17/2018] [Accepted: 11/16/2018] [Indexed: 05/25/2023]
Abstract
Protamine-like proteins (PL-II, PL-III and PL-IV) represent the major basic nuclear component of Mytilus galloprovincialis L sperm chromatin. The present study investigates the effects induced on the properties of PL-II protein after exposure of Mytilus galloprovincialis L for 24 h to 1.5 and 5 µM CdCl2. We found cadmium accumulation in protamine-like proteins with a linear grow up with the exposition dose. In particular, after 5 µM CdCl2 mussels exposure, the mobility of PL-II band changed in SDS-PAGE, suggesting structural rearrangement in presence of cadmium. Structural analysis using fluorescent probes, indicated that at 5 µM CdCl2 the complete conformational change of PL-II protein was reached. In the same condition of mussels exposure of 5 µM CdCl2, PL-II protein changed its DNA binding mode, which determined a closer DNA binding, because higher amount of NaCl were required for PL-II protein release by sperm nuclei. These results supported the hypothesis that mussel exposure to this CdCl2 dose, although lower to toxic ones, affects the properties of this protein and as a consequence chromatin organization of spermatozoa that is essential for the success of fertilization.
Collapse
Affiliation(s)
- Virgilia De Guglielmo
- University of Naples Federico II, Dept. of Biology, via Cinthia, 80126 Naples, Italy
| | - Raffaela Puoti
- University of Naples Federico II, Dept. of Biology, via Cinthia, 80126 Naples, Italy
| | - Rosaria Notariale
- University of Naples Federico II, Dept. of Biology, via Cinthia, 80126 Naples, Italy
| | - Viviana Maresca
- University of Naples Federico II, Dept. of Biology, via Cinthia, 80126 Naples, Italy
| | - Juan Ausió
- University of Victoria, Dept. of Biochemistry & Microbiology, Victoria, British Columbia, Canada
| | - Jacopo Troisi
- Theoreo srl-spin-off dell'Universita` degli Studi di Salerno, 84090 Salerno, Italy
| | - Mariavittoria Verrillo
- University of Naples Federico II, Dept. of Agricultural Sciences, Via Università 100, 84055 Portici, Italy
| | - Adriana Basile
- University of Naples Federico II, Dept. of Biology, via Cinthia, 80126 Naples, Italy
| | - Ferdinando Febbraio
- CNR, Institute of Protein Biochemistry, via Pietro Castellino 111, 80131 Naples, Italy.
| | - Marina Piscopo
- University of Naples Federico II, Dept. of Biology, via Cinthia, 80126 Naples, Italy.
| |
Collapse
|
18
|
Lettieri G, Mollo V, Ambrosino A, Caccavale F, Troisi J, Febbraio F, Piscopo M. Molecular effects of copper on the reproductive system of mytilus galloprovincialis. Mol Reprod Dev 2019; 86:1357-1368. [PMID: 30648312 DOI: 10.1002/mrd.23114] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/11/2019] [Indexed: 01/21/2023]
Abstract
This study aims to assess the effects induced by 24 hr exposure to a subtoxic copper concentration on the reproductive system (gonads, spermatozoa, and protamine-like [PL] proteins) of Mytilus galloprovincialis. Inductively coupled plasma-mass spectrometry indicated accumulation of this metal in gonads, spermatozoa, and PL proteins of exposed mussels. Further, real-time polymerase chain reaction analyses showed altered expression levels of mt10 and PL proteins genes in spermatozoa and gonads, respectively, of exposed mussels. Protamine-like proteins, which represent the main basic component of sperm chromatin of this organism, showed a higher DNA binding affinity and a different DNA binding mode in exposed mussels. Moreover, an increased amount of NaCl was required for the release from sperm nuclei of PL-III, the main PL protein component. Finally, PL proteins extracted from exposed mussels promoted DNA oxidative damage in the presence of H 2 O 2. These results demonstrate that the tolerable copper amount could also affect the properties of PL proteins and determine the negative effects on the reproductive system of this organism. These analyses could be useful to develop quick and efficient chromatin-based genotoxicity tests for pollution biomonitoring programs.
Collapse
Affiliation(s)
- Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Velia Mollo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Alessia Ambrosino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Filomena Caccavale
- Department of Biology, University of Naples Federico II, Naples, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Jacopo Troisi
- Theoreo srl-spin-off, Company of the University of Salerno, Salerno, Italy
| | - Ferdinando Febbraio
- Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
19
|
Mostek A, Slowinska M, Judycka S, Karol H, Ciereszko A, Dietrich MA. Identification of oxidatively modified proteins due to cryopreservation of carp semen. J Anim Sci 2018. [PMID: 29534196 DOI: 10.1093/jas/sky063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
During semen cryopreservation, spermatozoa are exposed to physical and chemical stressors that result in their functional and structural damage. Growing evidence suggests that most cryoinjuries result from oxidative stress accompanying sperm cryopreservation. Elevated amounts of reactive oxygen species (ROS) generated during cryopreservation can react with sperm macromolecules, including proteins. The goal of this study was to investigate the oxidative modifications (measured as carbonylation level changes) of carp spermatozoa proteins triggered by the cryopreservation process. Flow cytometry and computer-assisted sperm analysis were used to evaluate changes in viability, ROS level, and motility of spermatozoa. The spermatozoa proteins that were specifically carbonylated were identified and quantified by Western blotting, in conjunction with 2-dimensional electrophoresis (2D-oxyblot) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Cryopreservation decreased spermatozoa motility (P < 0.01) and viability (P < 0.0001) and significantly increased (P < 0.0001) the number of ROS-positive cells. We identified 25 protein spots, corresponding to 19 proteins, with increases (P < 0.05) in carbonylation level due to freezing/thawing. The identified proteins are involved in motility, metabolism, calcium-ion binding, signal transduction, protein folding, and intracellular transport. The results suggest that carbonylation of flagellar proteins can result in motility disorders and may contribute to the reduced percentage of motile spermatozoa and disturbances in movement trajectory after sperm cryopreservation. Moreover, cryopreservation may contribute to impaired cellular respiration, ATP regeneration, disturbances of Ca2+ turnover, unfolding of cytoplasmic or histone proteins, disturbances of cell signaling and intracellular transport, and reduced membrane stability. Our results contribute to the knowledge concerning cryoinjury and to further development of a modified cryopreservation procedure aimed at minimizing oxidative damage of carp sperm proteins.
Collapse
Affiliation(s)
- Agnieszka Mostek
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima, Olsztyn, Poland
| | - Mariola Slowinska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima, Olsztyn, Poland
| | - Sylwia Judycka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima, Olsztyn, Poland
| | - Halina Karol
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima, Olsztyn, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima, Olsztyn, Poland
| | - Mariola A Dietrich
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima, Olsztyn, Poland
| |
Collapse
|
20
|
Barrachina F, Anastasiadi D, Jodar M, Castillo J, Estanyol JM, Piferrer F, Oliva R. Identification of a complex population of chromatin-associated proteins in the European sea bass (Dicentrarchus labrax) sperm. Syst Biol Reprod Med 2018; 64:502-517. [PMID: 29939100 DOI: 10.1080/19396368.2018.1482383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A very common conception about the function of the spermatozoon is that its unique role is to transmit the paternal genome to the next generation. Most of the sperm genome is known to be condensed in many species by protamines, which are small and extremely positively charged proteins (50-70% arginine) with the functions of streamlining the sperm cell and protecting its DNA. However, more recently, it has been shown in mammals that 2-10% of its mature sperm chromatin is also associated to a complex population of histones and chromatin-associated proteins differentially distributed in the genome. These proteins are transferred to the oocyte upon fertilization and may be involved in the epigenetic marking of the paternal genome. However, little information is so far available on the additional potential sperm chromatin proteins present in other protamine-containing non-mammalian vertebrates detected through high-throughput mass spectrometry. Thus, we started the present work with the goal of characterizing the mature sperm proteome of the European sea bass, with a particular focus on the sperm chromatin, chosen as a representative of non-mammalian vertebrate protamine-containing species. Proteins were isolated by acidic extraction from purified sperm cells and from purified sperm nuclei, digested with trypsin, and subsequently the peptides were separated using liquid chromatography and identified through tandem mass spectrometry. A total of 296 proteins were identified. Of interest, the presence of 94 histones and other chromatin-associated proteins was detected, in addition to the protamines. These results provide phylogenetically strategic information, indicating that the coexistence of histones, additional chromatin proteins, and protamines in sperm is not exclusive of mammals, but is also present in other protamine-containing vertebrates. Thus, it indicates that the epigenetic marking of the sperm chromatin, first demonstrated in mammals, could be more fundamental and conserved than previously thought. Abbreviations: AU-PAGE: acetic acid-urea polyacrylamide gel electrophoresis; CPC: chromosomal passenger complex; DTT: dithiothreitol; EGA: embryonic genome activation; FDR: false discovery rate; GO: Gene Ontology; IAA: iodoacetamide; LC: liquid chromatography; LC-MS/MS: liquid chromatography coupled to tandem mass spectrometry; MS: mass spectrometry; MS/MS: tandem mass spectrometry; MW: molecular weight; PAGE: polyacrylamide gel electrophoresis; PBS: phosphate buffered saline; SDS: sodium dodecyl sulfate; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; TCA: trichloroacetic acid.
Collapse
Affiliation(s)
- Ferran Barrachina
- a Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences , University of Barcelona , Barcelona , Spain.,b Biochemistry and Molecular Genetics Service , Hospital Clínic , Barcelona , Spain
| | - Dafni Anastasiadi
- c Institut de Ciències del Mar , Consejo Superior de Investigaciones Científicas , Barcelona , Spain
| | - Meritxell Jodar
- a Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences , University of Barcelona , Barcelona , Spain.,b Biochemistry and Molecular Genetics Service , Hospital Clínic , Barcelona , Spain
| | - Judit Castillo
- a Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences , University of Barcelona , Barcelona , Spain.,b Biochemistry and Molecular Genetics Service , Hospital Clínic , Barcelona , Spain
| | - Josep Maria Estanyol
- d Proteomics Unit, Scientific and Technological Centers from the University of Barcelona , University of Barcelona , Barcelona , Spain
| | - Francesc Piferrer
- c Institut de Ciències del Mar , Consejo Superior de Investigaciones Científicas , Barcelona , Spain
| | - Rafael Oliva
- a Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences , University of Barcelona , Barcelona , Spain.,b Biochemistry and Molecular Genetics Service , Hospital Clínic , Barcelona , Spain
| |
Collapse
|
21
|
Delaney K, Mailler J, Wenda JM, Gabus C, Steiner FA. Differential Expression of Histone H3.3 Genes and Their Role in Modulating Temperature Stress Response in Caenorhabditis elegans. Genetics 2018; 209:551-565. [PMID: 29636369 PMCID: PMC5972426 DOI: 10.1534/genetics.118.300909] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/08/2018] [Indexed: 01/12/2023] Open
Abstract
Replication-independent variant histones replace canonical histones in nucleosomes and act as important regulators of chromatin function. H3.3 is a major variant of histone H3 that is remarkably conserved across taxa and is distinguished from canonical H3 by just four key amino acids. Most genomes contain two or more genes expressing H3.3, and complete loss of the protein usually causes sterility or embryonic lethality. Here, we investigate the developmental expression patterns of the five Caenorhabditis elegans H3.3 homologs and identify two previously uncharacterized homologs to be restricted to the germ line. Despite these specific expression patterns, we find that neither loss of individual H3.3 homologs nor the knockout of all five H3.3-coding genes causes sterility or lethality. However, we demonstrate an essential role for the conserved histone chaperone HIRA in the nucleosomal loading of all H3.3 variants. This requirement can be bypassed by mutation of the H3.3-specific residues to those found in H3. While even removal of all H3.3 homologs does not result in lethality, it leads to reduced fertility and viability in response to high-temperature stress. Thus, our results show that H3.3 is nonessential in C. elegans but is critical for ensuring adequate response to stress.
Collapse
Affiliation(s)
- Kamila Delaney
- Department of Molecular Biology, Institute of Genetics and Genomics in Geneva, University of Geneva, 1211, Switzerland
| | - Jonathan Mailler
- Department of Molecular Biology, Institute of Genetics and Genomics in Geneva, University of Geneva, 1211, Switzerland
| | - Joanna M Wenda
- Department of Molecular Biology, Institute of Genetics and Genomics in Geneva, University of Geneva, 1211, Switzerland
| | - Caroline Gabus
- Department of Molecular Biology, Institute of Genetics and Genomics in Geneva, University of Geneva, 1211, Switzerland
| | - Florian A Steiner
- Department of Molecular Biology, Institute of Genetics and Genomics in Geneva, University of Geneva, 1211, Switzerland
| |
Collapse
|
22
|
Abstract
In this chapter, a short evolutionary history and comparative analysis of sperm nuclear basic proteins (SNBPs) in marine invertebrates are presented based on some of the most recent publications in the field and building upon previously published reviews on the topic. Putative functions of SNBPs in sperm chromatin beyond DNA packaging will also be discussed with a primary focus on outstanding research questions.In somatic cells of all metazoans, DNA is packaged into tightly folded and dynamically accessible chromatin by canonical histones H2A, H2B, H3 and H4. Sperm chromatin of many animals, on the other hand, is organised by small yet structurally highly heterogeneous proteins called SNBPs, which can package sperm DNA on their own or in combination with each other. In extreme cases, sperm chromatin is condensed into a volume 6-10 times smaller than that of a somatic nucleus. SNBPs are classified into three major groups: H1 histone-type proteins (H-type SNBPs), protamines (P-type SNBPs) and protamine-like proteins (PL-type SNBPs). P-type SNBPs are mostly found in vertebrates, while PL-type SNBPs are ubiquitous in many invertebrate phyla. PL-type and P-type SNBPs evolved from histone H-type SNBP precursors through vertical evolution. Porifera, Ctenophora and Crustacea, Echinoidea (phylum Echinodermata) and Hydrozoa (phylum Hydrozoa) lack SNBPs. Echinoidea and Hydrozoa, however, evolved novel nucleosomal histone variants with specific roles during spermatogenesis. Seemingly, chromatin condensation plays a critical role in the silencing and tight packing of the genome within the sperm nucleus of most animals. However, the question of what necessitates the compaction of some sperm DNA beyond classical nucleosomal packaging while other sperm function using 'normal' histones remains unanswered to date.
Collapse
Affiliation(s)
- Anna Török
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| | - Sebastian G Gornik
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
23
|
Rivera-Casas C, Gonzalez-Romero R, Garduño RA, Cheema MS, Ausio J, Eirin-Lopez JM. Molecular and Biochemical Methods Useful for the Epigenetic Characterization of Chromatin-Associated Proteins in Bivalve Molluscs. Front Physiol 2017; 8:490. [PMID: 28848447 PMCID: PMC5550673 DOI: 10.3389/fphys.2017.00490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Bivalve molluscs constitute a ubiquitous taxonomic group playing key functions in virtually all ecosystems, and encompassing critical commercial relevance. Along with a sessile and filter-feeding lifestyle in most cases, these characteristics make bivalves model sentinel organisms routinely used for environmental monitoring studies in aquatic habitats. The study of epigenetic mechanisms linking environmental exposure and specific physiological responses (i.e., environmental epigenetics) stands out as a very innovative monitoring strategy, given the role of epigenetic modifications in acclimatization and adaptation. Furthermore, the heritable nature of many of those modifications constitutes a very promising avenue to explore the applicability of epigenetic conditioning and selection in management and restoration strategies. Chromatin provides a framework for the study of environmental epigenetic responses. Unfortunately, chromatin and epigenetic information are very limited in most non-traditional model organisms and even completely lacking in most environmentally and ecologically relevant organisms. The present work aims to provide a comprehensive and reproducible experimental workflow for the study of bivalve chromatin. First, a series of guidelines for the molecular isolation of genes encoding chromatin-associated proteins is provided, including information on primers suitable for conventional PCR, Rapid Amplification of cDNA Ends (RACE), genome walking and quantitative PCR (qPCR) experiments. This section is followed by the description of methods specifically developed for the analysis of histone and SNBP proteins in different bivalve tissues, including protein extraction, purification, separation and immunodetection. Lastly, information about available antibodies, their specificity and performance is also provided. The tools and protocols described here complement current epigenetic analyses (usually limited to DNA methylation) by incorporating the study of structural elements modulating chromatin dynamics.
Collapse
Affiliation(s)
- Ciro Rivera-Casas
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International UniversityNorth Miami, FL, United States
| | - Rodrigo Gonzalez-Romero
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International UniversityNorth Miami, FL, United States
| | - Rafael A Garduño
- Department of Microbiology and Immunology, Dalhousie UniversityHalifax, NS, Canada
| | - Manjinder S Cheema
- Department of Biochemistry and Microbiology, University of VictoriaVictoria, BC, Canada
| | - Juan Ausio
- Department of Biochemistry and Microbiology, University of VictoriaVictoria, BC, Canada
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International UniversityNorth Miami, FL, United States
| |
Collapse
|
24
|
Török A, Schiffer PH, Schnitzler CE, Ford K, Mullikin JC, Baxevanis AD, Bacic A, Frank U, Gornik SG. The cnidarian Hydractinia echinata employs canonical and highly adapted histones to pack its DNA. Epigenetics Chromatin 2016; 9:36. [PMID: 27602058 PMCID: PMC5011920 DOI: 10.1186/s13072-016-0085-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022] Open
Abstract
Background Cnidarians are a group of early branching animals including corals, jellyfish and hydroids that are renowned for their high regenerative ability, growth plasticity and longevity. Because cnidarian genomes are conventional in terms of protein-coding genes, their remarkable features are likely a consequence of epigenetic regulation. To facilitate epigenetics research in cnidarians, we analysed the histone complement of the cnidarian model organism Hydractinia echinata using phylogenomics, proteomics, transcriptomics and mRNA in situ hybridisations. Results We find that the Hydractinia genome encodes 19 histones and analyse their spatial expression patterns, genomic loci and replication-dependency. Alongside core and other replication-independent histone variants, we find several histone replication-dependent variants, including a rare replication-dependent H3.3, a female germ cell-specific H2A.X and an unusual set of five H2B variants, four of which are male germ cell-specific. We further confirm the absence of protamines in Hydractinia. Conclusions Since no protamines are found in hydroids, we suggest that the novel H2B variants are pivotal for sperm DNA packaging in this class of Cnidaria. This study adds to the limited number of full histone gene complements available in animals and sets a comprehensive framework for future studies on the role of histones and their post-translational modifications in cnidarian epigenetics. Finally, it provides insight into the evolution of spermatogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0085-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Török
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Philipp H Schiffer
- Genetics Environment and Evolution, University College London, London, UK
| | - Christine E Schnitzler
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 USA ; Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080 USA
| | - Kris Ford
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080 USA ; Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - James C Mullikin
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 USA ; NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Rockville, MD 20852 USA
| | - Andreas D Baxevanis
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Antony Bacic
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Biosciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Uri Frank
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Sebastian G Gornik
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
25
|
Maruyama D, Ohtsu M, Higashiyama T. Cell fusion and nuclear fusion in plants. Semin Cell Dev Biol 2016; 60:127-135. [PMID: 27473789 DOI: 10.1016/j.semcdb.2016.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
Abstract
Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall.
Collapse
Affiliation(s)
- Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.
| | - Mina Ohtsu
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tetsuya Higashiyama
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
26
|
Alvi ZA, Chu TC, Schawaroch V, Klaus AV. Genomic and expression analysis of transition proteins in Drosophila. SPERMATOGENESIS 2015; 5:e1178518. [PMID: 27512614 PMCID: PMC4964972 DOI: 10.1080/21565562.2016.1178518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 02/04/2023]
Abstract
The current study was aimed at analyzing putative protein sequences of the transition protein-like proteins in 12 Drosophila species based on the reference sequences of transition protein-like protein (Tpl (94D) ) expressed in Drosophila melanogaster sperm nuclei. Transition proteins aid in transforming chromatin from a histone-based nucleosome structure to a protamine-based structure during spermiogenesis - the post-meiotic stage of spermatogenesis. Sequences were obtained from NCBI Ref-Seq database using NCBI ORF-Finder (PSI-BLAST). Sequence alignments and analysis of the amino acid content indicate that orthologs for Tpl (94D) are present in the melanogaster species subgroup (D. simulans, D. sechellia, D. erecta, and D. yakuba), D. ananassae, and D. pseudoobscura, but absent in D. persmilis, D. willistoni, D. mojavensis, D. virilis, and D. grimshawi. Transcriptome next generation sequence (RNA-Seq) data for testes and ovaries was used to conduct differential gene expression analysis for Tpl (94D) in D. melanogaster, D. simulans, D. yakuba, D. ananassae, and D. pseudoobscura. The identified Tpl (94D) orthologs show high expression in the testes as compared to the ovaries. Additionally, 2 isoforms of Tpl (94D) were detected in D. melanogaster with isoform A being much more highly expressed than isoform B. Functional analyses of the conserved region revealed that the same high mobility group (HMG) box/DNA binding region is conserved for both Drosophila Tpl (94D) and Drosophila protamine-like proteins (MST35Ba and MST35Bb). Based on the rigorous bioinformatic approach and the conservation of the HMG box reported in this work, we suggest that the Drosophila Tpl (94D) orthologs should be classified as their own transition protein group.
Collapse
Affiliation(s)
- Zain A. Alvi
- Department of Biological Sciences; Seton Hall University; South Orange, NJ USA
| | - Tin-Chun Chu
- Department of Biological Sciences; Seton Hall University; South Orange, NJ USA
| | | | - Angela V Klaus
- Department of Biological Sciences; Seton Hall University; South Orange, NJ USA
| |
Collapse
|
27
|
Spermiogenesis and biflagellate spermatozoon of the teleost fish Lampanyctus crocodilus (Myctophiformes, Myctophidae): ultrastructure and characterisation of its sperm basic nuclear proteins. Cell Tissue Res 2015; 361:619-32. [DOI: 10.1007/s00441-015-2119-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
28
|
Vassalli QA, Caccavale F, Avagnano S, Murolo A, Guerriero G, Fucci L, Ausió J, Piscopo M. New insights into protamine-like component organization in Mytilus galloprovincialis' sperm chromatin. DNA Cell Biol 2014; 34:162-9. [PMID: 25494411 DOI: 10.1089/dna.2014.2631] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have analyzed Mytilus galloprovincialis' sperm chromatin, which consists of three protamine-like proteins, PL-II, PL-III, and PL-IV, in addition to a residual amount of the four core histones. We have probed the structure of this sperm chromatin through digestion with micrococcal nuclease (MNase) in combination with salt fractionation. Furthermore, we used the electrophoretic mobility shift assay to define DNA-binding mode of PL-II and PL-III and turbidimetric assays to determine their self-association ability in the presence of sodium phosphate. Although in literature it is reported that M. galloprovincialis' sperm chromatin lacks nucleosomal organization, our results obtained by MNase digestion suggest the existence of a likely unusual organization, in which there would be a more accessible location of PL-II/PL-IV when compared with PL-III and core histones. So, we hypothesize that in M. galloprovincialis' sperm chromatin organization DNA is wrapped around a PL-III protein core and core histones and PL-II and PL-IV are bound to the flanking DNA regions (similarly to somatic histone H1). Furthermore, we propose that PL's K/R ratio affects their DNA-binding mode and self-association ability as reported previously for somatic and sperm H1 histones.
Collapse
|
29
|
Kanippayoor RL, Alpern JHM, Moehring AJ. Protamines and spermatogenesis in Drosophila and Homo sapiens : A comparative analysis. SPERMATOGENESIS 2014; 3:e24376. [PMID: 23885304 PMCID: PMC3710222 DOI: 10.4161/spmg.24376] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 12/20/2022]
Abstract
The production of mature and motile sperm is a detailed process that utilizes many molecular players to ensure the faithful execution of spermatogenesis. In most species that have been examined, spermatogenesis begins with a single cell that undergoes dramatic transformation, culminating with the hypercompaction of DNA into the sperm head by replacing histones with protamines. Precise execution of the stages of spermatogenesis results in the production of motile sperm. While comparative analyses have been used to identify similarities and differences in spermatogenesis between species, the focus has primarily been on vertebrate spermatogenesis, particularly mammals. To understand the evolutionary basis of spermatogenetic variation, however, a more comprehensive comparison is needed. In this review, we examine spermatogenesis and the final packaging of DNA into the sperm head in the insect Drosophila melanogaster and compare it to spermatogenesis in Homo sapiens.
Collapse
|
30
|
Affiliation(s)
- Juan Ausió
- Department; of Biochemistry and Microbiology; University of Victoria; Victoria BC Canada
| |
Collapse
|
31
|
Ausió J, González-Romero R, Woodcock CL. Comparative structure of vertebrate sperm chromatin. J Struct Biol 2014; 188:142-55. [PMID: 25264147 DOI: 10.1016/j.jsb.2014.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 12/11/2022]
Abstract
A consistent feature of sperm nuclei is its exceptionally compact state in comparison with somatic nuclei. Here, we have examined the structural organization of sperm chromatin from representatives of three vertebrate lineages, bony fish (Danio rerio), birds (Gallus gallus domesticus) and mammals (Mus musculus) using light and transmission electron microscopy (TEM). Although the three sperm nuclei are all highly compact, they differ in morphology and in the complement of compaction-inducing proteins. Whereas zebrafish sperm retain somatic histones and a nucleosomal organization, in the rooster and mouse, histones are largely replaced by small, arginine-rich protamines. In contrast to the mouse, the rooster protamine contains no cysteine residues and lacks the potential stabilizing effects of S-S bonds. Protamine driven chromatin compaction results in a stable, highly condensed chromatin, markedly different from the somatic nucleosome-based beads-on-a-string architecture, but its structure remains poorly understood. When prepared gently for whole mount TEM, the rooster and mouse sperm chromatin reveal striking rod-like units 40-50 nm in width. Also present in the mouse, which has very flattened sperm nuclei, but not rooster, where nuclei take the form of elongated cylinders, are toroidal shaped structures, with an external diameter of about 90 nm. In contrast, similarly prepared zebrafish sperm exhibit nucleosomal chromatin. We also examined the early stages in the binding of salmine (the salmon protamine) to defined sequence DNA. These images suggest an initial side-by-side binding of linear DNA-protamine complexes leading to the nucleation of thin, flexible rods with the potential to bend, allowing the ends to come into contact and fuse to form toroidal structures. We discuss the relationship between these in vitro observations and the rods and toroids seen in nuclei, and suggest an explanation for the apparent absence of these structures in TEM images of fully condensed sperm nuclei.
Collapse
Affiliation(s)
- Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Rodrigo González-Romero
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | | |
Collapse
|
32
|
Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:155-68. [DOI: 10.1016/j.bbagrm.2013.08.004] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 01/25/2023]
|
33
|
Saperas N, Ausió J. Sperm nuclear basic proteins of tunicates and the origin of protamines. THE BIOLOGICAL BULLETIN 2013; 224:127-136. [PMID: 23995738 DOI: 10.1086/bblv224n3p127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Sperm nuclear basic proteins (SNBPs) are the chromosomal proteins that are found associated with DNA in sperm nuclei at the end of spermiogenesis. These highly specialized proteins can be classified into three major types: histone type (H-type), protamine-like type (PL-type), and protamine type (P-type). A hypothesis from early studies on the characterization of SNBPs proposed a mechanism for the vertical evolution of these proteins that involved an H1 → PL → P transition. However, the processes and mechanisms involved in such a transition were not understood. In particular, it was not clear how a molecular transition from a lysine-rich protein precursor (H1 histone) to the arginine-rich protamines might have taken place. In deuterostomes, the presence of SNBPs of the H-type in echinoderms and of protamines in the higher phylogenetic groups of vertebrates had long been known. The initial work on the characterization of tunicate SNBPs attempted to define the types and range of SNBPs that characterize this phylogenetically intermediate group. It was found that tunicate SNBPs belong to the PL-type. In this work we discuss how the study of SNBPs in the tunicates has been key to providing support to the H1 → PL → P transition. Most significantly, it was in tunicates that a potential molecular mechanism to explain the lysine-to-arginine transition was first reported.
Collapse
Affiliation(s)
- Núria Saperas
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Barcelona, Spain.
| | | |
Collapse
|
34
|
Fioretti FM, Febbraio F, Carbone A, Branno M, Carratore V, Fucci L, Ausió J, Piscopo M. A sperm nuclear basic protein from the sperm of the marine worm Chaetopterus variopedatus with sequence similarity to the arginine-rich C-termini of chordate protamine-likes. DNA Cell Biol 2012; 31:1392-402. [PMID: 22536787 DOI: 10.1089/dna.2011.1547] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The sperm nuclear basic proteins (SNBPs) of the marine annelid worm Chaetopterus variopedatus have been shown previously to consist of a mixture of two SNBPs: histone H1-like (CvH1) and C.variopedatus protamine-like (CvPL). Here, we report the structural characterization of CvPL. The protein has a molecular weight of 8370.5 Da, a K/R ratio of 0.34, and a secondary structure, which are intermediate between those of protamine (P) and protamine-like (PL) SNBPs. The N-terminal sequence of CvPL shows a high extent of similarity with the arginine-rich C-terminal domain of chordate PL-type SNBPs. Furthermore, the protein binds to DNA in a similar fashion as vertebrate PLs and their own CvH1, but in a way that is different from that of the lysine-rich somatic H1 histones. We have experimentally determined the molar ratio CvH1:CvPL to be ∼1:6 in C. variopedatus sperm. Based on all of these, a model is proposed for the organization of the sperm chromatin by CvH1 and CvPL.
Collapse
|
35
|
Ahmad W, Shabbiri K, Nazar N, Nazar S, Qaiser S, Shabbir Mughal MA. Human linker histones: interplay between phosphorylation and O-β-GlcNAc to mediate chromatin structural modifications. Cell Div 2011; 6:15. [PMID: 21749719 PMCID: PMC3149562 DOI: 10.1186/1747-1028-6-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 07/12/2011] [Indexed: 12/28/2022] Open
Abstract
Eukaryotic chromatin is a combination of DNA and histone proteins. It is established fact that epigenetic mechanisms are associated with DNA and histones. Initial studies emphasize on core histones association with DNA, however later studies prove the importance of linker histone H1 epigenetic. There are many types of linker histone H1 found in mammals. These subtypes are cell specific and their amount in different types of cells varies as the cell functions. Many types of post-translational modifications which occur on different residues in each subtype of linker histone H1 induce conformational changes and allow the different subtypes of linker histone H1 to interact with chromatin at different stages during cell cycle which results in the regulation of transcription and gene expression. Proposed O-glycosylation of linker histone H1 promotes condensation of chromatin while phosphorylation of linker histone H1 is known to activate transcription and gene regulation by decondensation of chromatin. Interplay between phosphorylation and O-β-GlcNAc modification on Ser and Thr residues in each subtype of linker histone H1 in Homo sapiens during cell cycle may result in diverse functional regulation of proteins. This in silico study describes the potential phosphorylation, o-glycosylation and their possible interplay sites on conserved Ser/Thr residues in various subtypes of linker histone H1 in Homo sapiens.
Collapse
Affiliation(s)
- Waqar Ahmad
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | | | | | | | | | | |
Collapse
|
36
|
Dootz R, Toma AC, Pfohl T. Structural and dynamic properties of linker histone H1 binding to DNA. BIOMICROFLUIDICS 2011; 5:24104. [PMID: 21629560 PMCID: PMC3104041 DOI: 10.1063/1.3587096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/15/2011] [Indexed: 05/11/2023]
Abstract
Found in all eukaryotic cells, linker histones H1 are known to bind to and rearrange nucleosomal linker DNA. In vitro, the fundamental nature of H1∕DNA interactions has attracted wide interest among research communities-from biologists to physicists. Hence, H1∕DNA binding processes and structural and dynamical information about these self-assemblies are of broad importance. Targeting a quantitative understanding of H1 induced DNA compaction mechanisms, our strategy is based on using small-angle x-ray microdiffraction in combination with microfluidics. The usage of microfluidic hydrodynamic focusing devices facilitates a microscale control of these self-assembly processes, which cannot be achieved using conventional bulk setups. In addition, the method enables time-resolved access to structure formation in situ, in particular, to transient intermediate states. The observed time dependent structure evolution shows that the H1∕DNA interaction can be described as a two-step process: an initial unspecific binding of H1 to DNA is followed by a rearrangement of molecules within the formed assemblies. The second step is most likely induced by interactions between the DNA and the H1's charged side chains. This leads to an increase in lattice spacing within the DNA∕protein assembly and induces a decrease in the correlation length of the mesophases, probably due to a local bending of the DNA.
Collapse
|
37
|
|
38
|
Awe S, Renkawitz-Pohl R. Histone H4 acetylation is essential to proceed from a histone- to a protamine-based chromatin structure in spermatid nuclei of Drosophila melanogaster. Syst Biol Reprod Med 2010; 56:44-61. [PMID: 20170286 DOI: 10.3109/19396360903490790] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In humans, other mammals, and also in Drosophila, the paternal genome in the sperm is highly condensed and organized mainly in a protamine-based chromatin structure. However, the timing and mechanism of the switch from a histone- to the protamine-based chromatin configuration is still poorly understood. We therefore established Drosophila in vitro cultures of cysts with 64 synchronously developing spermatids genetically marked with histone H2AvD-RFP and ProtamineB-eGFP. Live cell imaging showed that the switch from H2AvD-RFP to Protamine-eGFP chromatin takes approximately five hours, with a short but clear overlap of the presence of both histones and protamines. Moreover, cultured pupal testes showed H4 hyperacetylation at the canoe stage shortly before histone removal; a feature previously observed in the intact animal. We then used TSA to inhibit histone deacetylation and found that premature hyperacetylation was already induced at the round nuclei stage of spermatids. However, this premature hyperacetylation did not lead to a premature switch to the protamine-based chromatin structure, showing that histone hyperacetylation is not the sole inducer of the histone to protamine switch. Importantly, we observed that inactivation of histone acetyltransferases by anacardic acid blocks further differentiation and thus prevents the degradation of histones and the switch to a protamine-based chromatin. Thus, we conclude that H4 hyperacetylation is an essential feature but not the sole inducer of the histone to protamine switch during spermiogenesis.
Collapse
Affiliation(s)
- Stephan Awe
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Marburg, Germany
| | | |
Collapse
|
39
|
González-Romero R, Ausió J, Méndez J, Eirín-López JM. Histone genes of the razor clam Solen marginatus unveil new aspects of linker histone evolution in protostomes. Genome 2010; 52:597-607. [PMID: 19767891 DOI: 10.1139/g09-034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The association of DNA with histones results in a nucleoprotein complex called chromatin that consists of repetitive nucleosomal subunits. Nucleosomes are joined together in the chromatin fiber by short stretches of linker DNA that interact with a wide diversity of linker H1 histones involved in chromatin compaction and dynamics. Although the long-term evolution of the H1 family has been the subject of different studies during the last 5 years, the lack of molecular data on replication-independent (RI) H1 variants from protostomes has been hampering attempts to complete the evolutionary picture of this histone family in eukaryotes, especially as it pertains to the functional specialization they impart to the chromatin structure in members of this bilaterian lineage. In an attempt to fill this gap, the present work characterizes the histone gene complement from the razor clam Solen marginatus. Molecular evolutionary analyses reveal that the H1 gene from this organism represents one of the few protostome RI H1 genes known to date, a notion which is further supported by its location within the monophyletic group encompassing the RI H1 variants in the overall phylogeny of eukaryotic H1 proteins. Although the detailed characterization of the nucleotide substitution patterns in RI H1 variants agrees with the model of birth-and-death evolution under strong purifying selection, maximum-likelihood approaches unveil the presence of adaptive selection during at least part of the evolutionary differentiation between protostomes and deuterostomes. The presence of increased levels of specialization in RI H1 proteins from deuterostomes as well as the significant differences observed in electrostatic properties between protostome and deuterostome RI H1s represent novel and important preliminary results for future studies of the functional differentiation of this histone H1 lineage across bilaterians.
Collapse
|
40
|
Eirín-López JM, Ausió J. Origin and evolution of chromosomal sperm proteins. Bioessays 2009; 31:1062-70. [PMID: 19708021 DOI: 10.1002/bies.200900050] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the eukaryotic cell, DNA compaction is achieved through its interaction with histones, constituting a nucleoprotein complex called chromatin. During metazoan evolution, the different structural and functional constraints imposed on the somatic and germinal cell lines led to a unique process of specialization of the sperm nuclear basic proteins (SNBPs) associated with chromatin in male germ cells. SNBPs encompass a heterogeneous group of proteins which, since their discovery in the nineteenth century, have been studied extensively in different organisms. However, the origin and controversial mechanisms driving the evolution of this group of proteins has only recently started to be understood. Here, we analyze in detail the histone hypothesis for the vertical parallel evolution of SNBPs, involving a "vertical" transition from a histone to a protamine-like and finally protamine types (H --> PL --> P), the last one of which is present in the sperm of organisms at the uppermost tips of the phylogenetic tree. In particular, the common ancestry shared by the protamine-like (PL)- and protamine (P)-types with histone H1 is discussed within the context of the diverse structural and functional constraints acting upon these proteins during bilaterian evolution.
Collapse
Affiliation(s)
- José M Eirín-López
- Departamento de Biología Celular y Molecular, Universidade da Coruña, Coruña, Spain
| | | |
Collapse
|
41
|
Kurtz K, Saperas N, Ausió J, Chiva M. Spermiogenic nuclear protein transitions and chromatin condensation. Proposal for an ancestral model of nuclear spermiogenesis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:149-63. [PMID: 19132734 DOI: 10.1002/jez.b.21271] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have chosen three species (Sparus aurata, Dicentrarchus labrax, and Monodonta turbinata) that represent different transition patterns in the composition and structure of spermiogenic nuclei. The transition patterns of these species are representative of spermiogenesis in a large number of animal species. We analyze: (a) nuclear protein exchange; (b) chromatin condensation pattern; and (c) histone acetylation during spermiogenic development. In the simplest spermiogenesis histones and nucleosomes remain in mature sperm. Chromatin of spermatids is organized into 20 nm granules, simultaneous with a nuclear volume reduction. The granules coalesce in the final stage of spermiogenesis. Granular chromatin is correlated with acetylation of histones H3 and H4, whereas final coalescence is associated with histone deacetylation. We also studied two other spermiogenesis where a basic protein substitutes histones. Each species has a very different substituting protein. One has a typical protamine of 34 amino acids; the other has a sperm nuclear basic proteins (SNBP) of 106 amino acids. In both, the structural transitions and histone acetylation pattern are similar: in early spermiogenesis chromatin is organized into 20 nm granules, and histones are significantly acetylated, while the nuclear volume decreases. Subsequently, acetylated histones are displaced by the protamine or SNBP. Histone substitution causes chromatin remodelling and additional reduction in nuclear volume. We analyze these three cases together with earlier works and propose that the formation of 20 nm granules containing acetylated H3 and H4 accomplishes the minimum functional requirement to be considered the most evolutionarily ancestral chromatin conformation preceding condensation in animal spermiogenesis.
Collapse
Affiliation(s)
- Kathryn Kurtz
- Department of Physiological Sciences II, Faculty of Medicine, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
42
|
Kurtz K, Martínez-Soler F, Ausió J, Chiva M. Histones and nucleosomes in Cancer sperm (Decapod: Crustacea) previously described as lacking basic DNA-associated proteins: a new model of sperm chromatin. J Cell Biochem 2009; 105:574-84. [PMID: 18655193 DOI: 10.1002/jcb.21857] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To date several studies have been carried out which indicate that DNA of crustacean sperm is neither bound nor organized by basic proteins and, contrary to the rest of spermatozoa, do not contain highly packaged chromatin. Since this is the only known case of this type among metazoan cells, we have re-examined the composition, and partially the structure, of the mature sperm chromatin of Cancer pagurus, which has previously been described as lacking basic DNA-associated proteins. The results we present here show that: (a) sperm DNA of C. pagurus is bound by histones forming nucleosomes of 170 base pairs, (b) the ratio [histones/DNA] in sperm of two Cancer species is 0.5 and 0.6 (w/w). This ratio is quite lower than the proportion [proteins/DNA] that we found in other sperm nuclei with histones or protamines, whose value is from 1.0 to 1.2 (w/w), (c) histone H4 is highly acetylated in mature sperm chromatin of C. pagurus. Other histones (H3 and H2B) are also acetylated, though the level is much lower than that of histone H4. The low ratio of histones to DNA, along with the high level of acetylation of these proteins, explains the non-compact, decondensed state of the peculiar chromatin in the sperm studied here. In the final section we offer an explanation for the necessity of such decondensed chromatin during gamete fertilization of this species.
Collapse
Affiliation(s)
- Kathryn Kurtz
- Faculty of Medicine, Department of Physiological Sciences II, University of Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
43
|
Eirín-López JM, González-Romero R, Dryhurst D, Méndez J, Ausió J. Long-Term Evolution of Histone Families: Old Notions and New Insights into Their Mechanisms of Diversification Across Eukaryotes. Evol Biol 2009. [DOI: 10.1007/978-3-642-00952-5_8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Wimalaratne SK, Wong RJ, Smith BG. A Preliminary Study of the Nuclear Basic Proteins from Hoki [Macruronus novaezelandiae(Hector) (Merlucciidae)] Milt, an Underutilized Resource. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2008. [DOI: 10.1080/10498850802369203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Suphamungmee W, Weerachatyanukul W, Poomtong T, Hanna P, Sobhon P. Morphological and biochemical alterations of abalone testicular germ cells and spawned sperm and their fertilizing ability. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:593-601. [PMID: 18449601 DOI: 10.1007/s10126-008-9097-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 12/06/2007] [Accepted: 03/15/2008] [Indexed: 05/26/2023]
Abstract
In this study, we aimed to detect morphological and biochemical changes in developing germ cells (Gc), testicular sperm (Tsp), and spawned sperm (Ssp) using capacitation-associated characteristics. Gradual changes in the profiles of two membrane proteins, namely NaCl- and detergent-extractable proteins, were observed as compared Gc with Tsp and Tsp with Ssp. These membrane modifications were accomplished mostly through the introduction of new protein sets, both peripheral and integral, into Tsp and Ssp membranes. Activation of serine proteases, particularly in Ssp detergent-extracted proteins with the molecular masses of 38-130 kDa was evident and marked a major difference between Ssp and Tsp. An increase in the level of tyrosine phosphorylation of the proteins ranging from 15 to 20 kDa was noted in Tsp and remained constant in Ssp. Specifically, these three capacitation-associated characteristics could be detected in Ssp, possessing full fertilizing capacity. The lack of an activated proteolytic activity in Tsp resulted in a delayed fertilization, but not affected fertilizing ability. We believe that these characteristics should be advantageous in predicting abalone sperm fertilizing capability, particularly in cases when isolated germ cells or purified Tsp are used in place of spawned sperm in abalone aquaculture.
Collapse
Affiliation(s)
- Worawit Suphamungmee
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | | | | | | | | |
Collapse
|
46
|
Abstract
An overview of the vertebrate members of a diverse family of basic DNA-binding proteins that are synthesized in the late-stage spermatids of many animals and plants and condense the spermatid genome into a genetically inactive state. The protamines are a diverse family of small arginine-rich proteins that are synthesized in the late-stage spermatids of many animals and plants and bind to DNA, condensing the spermatid genome into a genetically inactive state. Vertebrates have from one to 15 protamine genes per haploid genome, which are clustered together on the same chromosome. Comparison of protamine gene and amino-acid sequences suggests that the family evolved from specialized histones through protamine-like proteins to the true protamines. Structural elements present in all true protamines are a series of arginine-rich DNA-anchoring domains (often containing a mixture of arginine and lysine residues in non-mammalian protamines) and multiple phosphorylation sites. The two protamines found in mammals, P1 and P2, are the most widely studied. P1 packages sperm DNA in all mammals, whereas protamine P2 is present only in the sperm of primates, many rodents and a subset of other placental mammals. P2, but not P1, is synthesized as a precursor that undergoes proteolytic processing after binding to DNA and also binds a zinc atom, the function of which is not known. P1 and P2 are phosphorylated soon after their synthesis, but after binding to DNA most of the phosphate groups are removed and cysteine residues are oxidized, forming disulfide bridges that link the protamines together. Both P1 and P2 have been shown to be required for normal sperm function in primates and many rodents.
Collapse
Affiliation(s)
- Rod Balhorn
- Biosciences and BioTechnology Division, Chemistry, Materials and Life Sciences, Lawrence Livermore National Laboratory, East Avenue, Livermore, CA 94550, USA.
| |
Collapse
|
47
|
Eirin-Lopez JM, Frehlick LJ, Chiva M, Saperas N, Ausio J. The Sperm Proteins from Amphioxus Mirror Its Basal Position among Chordates and Redefine the Origin of Vertebrate Protamines. Mol Biol Evol 2008; 25:1705-13. [DOI: 10.1093/molbev/msn121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Suphamungmee W, Wanichanon C, Vanichviriyakit R, Sobhon P. Spermiogenesis and chromatin condensation in the common tree shrew, Tupaia glis. Cell Tissue Res 2007; 331:687-99. [PMID: 18095001 DOI: 10.1007/s00441-007-0557-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 11/13/2007] [Indexed: 11/24/2022]
Abstract
We have investigated the cellular characteristics, especially chromatin condensation and the basic nuclear protein profile, during spermiogenesis in the common tree shrew, Tupaia glis. Spermatids could be classified into Golgi phase, cap phase, acrosome phase, and maturation phase. During the Golgi phase, chromatin was composed of 10-nm and 30-nm fibers with few 50-nm to 60-nm knobby fibers. The latter were then transformed into 70-nm knobby fibers during the cap phase. In the acrosome phase, all fibers were packed into the highest-order knobby fibers, each about 80-100 nm in width. These chromatin fibers became tightly packed in the maturation phase. In a mature spermatozoon, the discoid-shaped head was occupied by the acrosome and completely condensed chromatin. H3, the core histone, was detected by immunostaining in all nuclei of germ cell stages, except in spermatid steps 15-16 and spermatozoa. Protamine, the basic nuclear protein causing the tight packing of sperm chromatin, was detected by immunofluorescence in the nuclei of spermatids at steps 12-16 and spermatozoa. Cross-immunoreactivity of T. glis H3 and protamine to those of primates suggests the evolutionary resemblance of these nuclear basic proteins in primate germ cells.
Collapse
Affiliation(s)
- Worawit Suphamungmee
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | |
Collapse
|
49
|
Frehlick LJ, Prado A, Calestagne-Morelli A, Ausió J. Characterization of the PL-I-Related SP2 Protein from Xenopus. Biochemistry 2007; 46:12700-8. [DOI: 10.1021/bi701274s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lindsay J. Frehlick
- Department of Biochemistry and Microbiology, University of Victoria, Petch Building, 258, Victoria, B.C., Canada, V8W 3P6, and Unidad de Biofísica (CSIC-UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, PO Box 644, 48080 Bilbao, Spain
| | - Adelina Prado
- Department of Biochemistry and Microbiology, University of Victoria, Petch Building, 258, Victoria, B.C., Canada, V8W 3P6, and Unidad de Biofísica (CSIC-UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, PO Box 644, 48080 Bilbao, Spain
| | - Alison Calestagne-Morelli
- Department of Biochemistry and Microbiology, University of Victoria, Petch Building, 258, Victoria, B.C., Canada, V8W 3P6, and Unidad de Biofísica (CSIC-UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, PO Box 644, 48080 Bilbao, Spain
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Petch Building, 258, Victoria, B.C., Canada, V8W 3P6, and Unidad de Biofísica (CSIC-UPV/EHU) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, PO Box 644, 48080 Bilbao, Spain
| |
Collapse
|
50
|
Shaman JA, Prisztoka R, Ward WS. Topoisomerase IIB and an Extracellular Nuclease Interact to Digest Sperm DNA in an Apoptotic-Like Manner1. Biol Reprod 2006; 75:741-8. [PMID: 16914690 DOI: 10.1095/biolreprod.106.055178] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We previously demonstrated that mammalian spermatozoa contain a nuclease activity that cleaves DNA into loop-sized fragments. We show here that this activity is mediated by a nuclear matrix-associated topoisomerase IIB (TOP2B) interacting with an extracellular Mn2+/Ca2+-dependent nuclease. Together, these enzymes cleave all of the DNA into fragments of 50 kb, and this cleavage can be reversed by EDTA. If dithiothreitol is included, the nuclease digests the DNA, and if the protamines are removed the DNA is completely digested. A similar, TOP2B-mediated, chromatin fragmentation, which is reversible, followed by digestion of the DNA by an intracellular nuclease occurs in somatic cells during apoptosis. The extracellular location of the sperm nuclease made it possible to reconstitute the fragmentation activity in isolated spermatozoa, thus allowing us to identify two novel aspects of the mechanism. First, the fragmentation of all of the DNA to 50 kb by TOP2B required the addition of the extracellular nuclease or factor. Second, the subsequent, complete digestion of the DNA by the nuclease could be inhibited by etoposide, suggesting that the nuclease digestion requires TOP2B religation of the cleaved DNA. These data are the first demonstration of an active TOP2B in spermatozoa, suggesting this inert chromatin may be more active than previously thought. They also show that the unique chromatin structure of spermatozoa may provide an important model to study the regulated degradation of chromatin by TOP2B and associated nucleases.
Collapse
Affiliation(s)
- Jeffrey A Shaman
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96822, USA
| | | | | |
Collapse
|