1
|
Dolskii A, Alcantara Dos Santos SA, Andrake M, Franco-Barraza J, Dunbrack RL, Cukierman E. Exploring the potential role of palladin in modulating human CAF/ECM functional units. Cytoskeleton (Hoboken) 2024. [PMID: 39239855 DOI: 10.1002/cm.21926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Fibroblasts, crucial for maintaining tissue homeostasis, significantly shape the tumor microenvironment (TME). In pancreatic cancer, a highly aggressive malignancy, cancer-associated fibroblast (CAF)/extracellular matrix (ECM) units dominate the TME, influencing tumor initiation, progression, and treatment responses. Palladin, an actin-associated protein, is vital for fibroblast structural integrity and activation, playing a key role in CAF/ECM functionality. Palladin interacts with cytoskeletal proteins such as alpha-actinin (α-Act) and can therefore regulate other proteins like syndecans, modulating cytoskeletal features, cell adhesion, integrin recycling, and signaling. In this review, we propose that targeting the palladin/α-Act/syndecan interaction network could modulate CAF/ECM units, potentially shifting the TME from a tumor-promoting to a tumor-suppressive state. In silico data and reported studies to suggest that stabilizing palladin-α-Act interactions, via excess palladin, influences syndecan functions; potentially modulating integrin endocytosis via syndecan engagement with protein kinase C alpha as opposed to syndecan binding to α-Act. This mechanism can then affect the distribution of active α5β1-integrin between the plasma membrane and known intracellular vesicular compartments, thereby influencing the tumor-suppressive versus tumor-promoting functions of CAF/ECM units. Understanding these interactions offers likely future therapeutic avenues for stroma normalization in pancreatic and other cancers, aiming to inhibit tumor progression and improve future treatment outcomes.
Collapse
Affiliation(s)
- Aleksandr Dolskii
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, Pennsylvania, USA
| | - Sérgio A Alcantara Dos Santos
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, Pennsylvania, USA
| | - Mark Andrake
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, Pennsylvania, USA
| | - Janusz Franco-Barraza
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, Pennsylvania, USA
| | - Roland L Dunbrack
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, Pennsylvania, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Revisiting the Syndecans: Master Signaling Regulators with Prognostic and Targetable Therapeutic Values in Breast Carcinoma. Cancers (Basel) 2023; 15:cancers15061794. [PMID: 36980680 PMCID: PMC10046401 DOI: 10.3390/cancers15061794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Syndecans (SDC1 to 4), a family of cell surface heparan sulfate proteoglycans, are frequently expressed in mammalian tissues. SDCs are aberrantly expressed either on tumor or stromal cells, influencing cancer initiation and progression through their pleiotropic role in different signaling pathways relevant to proliferation, cell-matrix adhesion, migration, invasion, metastasis, cancer stemness, and angiogenesis. In this review, we discuss the key roles of SDCs in the pathogenesis of breast cancer, the most common malignancy in females worldwide, focusing on the prognostic significance and molecular regulators of SDC expression and localization in either breast tumor tissue or its microenvironmental cells and the SDC-dependent epithelial–mesenchymal transition program. This review also highlights the molecular mechanisms underlying the roles of SDCs in regulating breast cancer cell behavior via modulation of nuclear hormone receptor signaling, microRNA expression, and exosome biogenesis and functions, as well as summarizing the potential of SDCs as promising candidate targets for therapeutic strategies against breast cancer.
Collapse
|
3
|
Hudák A, Morgan G, Bacovsky J, Patai R, Polgár TF, Letoha A, Pettko-Szandtner A, Vizler C, Szilák L, Letoha T. Biodistribution and Cellular Internalization of Inactivated SARS-CoV-2 in Wild-Type Mice. Int J Mol Sci 2022; 23:ijms23147609. [PMID: 35886958 PMCID: PMC9316427 DOI: 10.3390/ijms23147609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the growing list of identified SARS-CoV-2 receptors, the human angiotensin-converting enzyme 2 (ACE2) is still viewed as the main cell entry receptor mediating SARS-CoV-2 internalization. It has been reported that wild-type mice, like other rodent species of the Muridae family, cannot be infected with SARS-CoV-2 due to differences in their ACE2 receptors. On the other hand, the consensus heparin-binding motif of SARS-CoV-2’s spike protein, PRRAR, enables the attachment to rodent heparan sulfate proteoglycans (HSPGs), including syndecans, a transmembrane HSPG family with a well-established role in clathrin- and caveolin-independent endocytosis. As mammalian syndecans possess a relatively conserved structure, we analyzed the cellular uptake of inactivated SARS-CoV-2 particles in in vitro and in vivo mice models. Cellular studies revealed efficient uptake into murine cell lines with established syndecan-4 expression. After intravenous administration, inactivated SARS-CoV-2 was taken up by several organs in vivo and could also be detected in the brain. Internalized by various tissues, inactivated SARS-CoV-2 raised tissue TNF-α levels, especially in the heart, reflecting the onset of inflammation. Our studies on in vitro and in vivo mice models thus shed light on unknown details of SARS-CoV-2 internalization and help broaden the understanding of the molecular interactions of SARS-CoV-2.
Collapse
Affiliation(s)
- Anett Hudák
- Pharmacoidea Ltd., H-6726 Szeged, Hungary; (A.H.); (L.S.)
| | | | | | - Roland Patai
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (R.P.); (T.F.P.)
| | - Tamás F. Polgár
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (R.P.); (T.F.P.)
- Theoretical Medicine Doctoral School, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Annamária Letoha
- Department of Medicine, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary;
| | | | - Csaba Vizler
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary;
| | - László Szilák
- Pharmacoidea Ltd., H-6726 Szeged, Hungary; (A.H.); (L.S.)
| | - Tamás Letoha
- Pharmacoidea Ltd., H-6726 Szeged, Hungary; (A.H.); (L.S.)
- Correspondence: ; Tel.: +36-30-2577393
| |
Collapse
|
4
|
Hudák A, Jósvay K, Domonkos I, Letoha A, Szilák L, Letoha T. The Interplay of Apoes with Syndecans in Influencing Key Cellular Events of Amyloid Pathology. Int J Mol Sci 2021; 22:ijms22137070. [PMID: 34209175 PMCID: PMC8268055 DOI: 10.3390/ijms22137070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 01/06/2023] Open
Abstract
Apolipoprotein E (ApoE) isoforms exert intricate effects on cellular physiology beyond lipid transport and metabolism. ApoEs influence the onset of Alzheimer’s disease (AD) in an isoform-dependent manner: ApoE4 increases AD risk, while ApoE2 decreases it. Previously we demonstrated that syndecans, a transmembrane proteoglycan family with increased expression in AD, trigger the aggregation and modulate the cellular uptake of amyloid beta (Aβ). Utilizing our previously established syndecan-overexpressing cellular assays, we now explore how the interplay of ApoEs with syndecans contributes to key events, namely uptake and aggregation, in Aβ pathology. The interaction of ApoEs with syndecans indicates isoform-specific characteristics arising beyond the frequently studied ApoE–heparan sulfate interactions. Syndecans, and among them the neuronal syndecan-3, increased the cellular uptake of ApoEs, especially ApoE2 and ApoE3, while ApoEs exerted opposing effects on syndecan-3-mediated Aβ uptake and aggregation. ApoE2 increased the cellular internalization of monomeric Aβ, hence preventing its extracellular aggregation, while ApoE4 decreased it, thus helping the buildup of extracellular plaques. The contrary effects of ApoE2 and ApoE4 remained once Aβ aggregated: while ApoE2 reduced the uptake of Aβ aggregates, ApoE4 facilitated it. Fibrillation studies also revealed ApoE4′s tendency to form fibrillar aggregates. Our results uncover yet unknown details of ApoE cellular biology and deepen our molecular understanding of the ApoE-dependent mechanism of Aβ pathology.
Collapse
Affiliation(s)
- Anett Hudák
- Pharmacoidea Ltd., H-6726 Szeged, Hungary; (A.H.); (L.S.)
| | - Katalin Jósvay
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Ildikó Domonkos
- Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Annamária Letoha
- Department of Medicine, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary;
| | - László Szilák
- Pharmacoidea Ltd., H-6726 Szeged, Hungary; (A.H.); (L.S.)
| | - Tamás Letoha
- Pharmacoidea Ltd., H-6726 Szeged, Hungary; (A.H.); (L.S.)
- Correspondence: ; Tel.: +36-(30)-2577393
| |
Collapse
|
5
|
Nadanaka S, Bai Y, Kitagawa H. Cleavage of Syndecan-1 Promotes the Proliferation of the Basal-Like Breast Cancer Cell Line BT-549 Via Akt SUMOylation. Front Cell Dev Biol 2021; 9:659428. [PMID: 34113616 PMCID: PMC8185021 DOI: 10.3389/fcell.2021.659428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Basal-like breast cancer is characterized by an aggressive clinical outcome and presence of metastasis, for which effective therapies are unavailable. We have previously shown that chondroitin 4-O-sulfotransferase-1 (C4ST-1) controls the invasive properties of the basal-like breast cancer cell line BT-549 by inducing matrix metalloproteinase (MMP) expression through the N-cadherin/β-catenin pathway. Here we report that C4ST-1 controls the proliferation of BT-549 cells via the MMP-dependent cleavage of syndecan-1. Syndecan-1 is a membrane-bound proteoglycan associated with an aggressive phenotype and poor prognosis in breast cancer. In addition, the cleavage of syndecan-1 at a specific juxtamembrane cleavage site is implicated in the pathophysiological response in breast cancer. Knockout of C4ST-1 remarkably suppressed both the cleavage of syndecan-1 and proliferation of BT-549 cells. Kinases (AKT1, ERK1/2, PI3K, and STAT3) comprising cancer proliferative pathways are phosphorylated in C4ST-1 knockout cells at a level similar to that in parental BT-549 cells, whereas levels of phosphorylated S6 kinase and SUMOylated AKT (hyperactivated AKT observed in breast cancer) decreased in C4ST-1 knockout cells. An MMP inhibitor, GM6001, suppressed the small ubiquitin-like modifier (SUMO) modification of AKT, suggesting that cleavage of syndecan-1 by MMPs is involved in the SUMO modification of AKT. Forced expression of the cytoplasmic domain of syndecan-1, which is generated by MMP-dependent cleavage, increased the SUMO modification of AKT and global protein SUMOylation. Furthermore, syndecan-1 C-terminal domain-expressing BT-549 cells were more proliferative and sensitive to a potent SUMOylation inhibitor, tannic acid, compared with BT-549 cells transfected with an empty expression vector. These findings assign new functions to the C-terminal fragment of syndecan-1 generated by MMP-dependent proteolysis, thereby broadening our understanding of their physiological importance and implying that the therapeutic inhibition of syndecan-1 cleavage could affect the progression of basal-like breast cancer.
Collapse
Affiliation(s)
- Satomi Nadanaka
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Yaqiang Bai
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
6
|
Contribution of Syndecans to the Cellular Entry of SARS-CoV-2. Int J Mol Sci 2021; 22:ijms22105336. [PMID: 34069441 PMCID: PMC8159090 DOI: 10.3390/ijms22105336] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/13/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel emerging pathogen causing an unprecedented pandemic in 21st century medicine. Due to the significant health and economic burden of the current SARS-CoV-2 outbreak, there is a huge unmet medical need for novel interventions effectively blocking SARS-CoV-2 infection. Unknown details of SARS-CoV-2 cellular biology hamper the development of potent and highly specific SARS-CoV-2 therapeutics. Angiotensin-converting enzyme-2 (ACE2) has been reported to be the primary receptor for SARS-CoV-2 cellular entry. However, emerging scientific evidence suggests the involvement of additional membrane proteins, such as heparan sulfate proteoglycans, in SARS-CoV-2 internalization. Here, we report that syndecans, the evolutionarily conserved family of transmembrane proteoglycans, facilitate the cellular entry of SARS-CoV-2. Among syndecans, the lung abundant syndecan-4 was the most efficient in mediating SARS-CoV-2 uptake. The S1 subunit of the SARS-CoV-2 spike protein plays a dominant role in the virus's interactions with syndecans. Besides the polyanionic heparan sulfate chains, other parts of the syndecan ectodomain, such as the cell-binding domain, also contribute to the interaction with SARS-CoV-2. During virus internalization, syndecans colocalize with ACE2, suggesting a jointly shared internalization pathway. Both ACE2 and syndecan inhibitors exhibited significant efficacy in reducing the cellular entry of SARS-CoV-2, thus supporting the complex nature of internalization. Data obtained on syndecan specific in vitro assays present syndecans as novel cellular targets of SARS-CoV-2 and offer molecularly precise yet simple strategies to overcome the complex nature of SARS-CoV-2 infection.
Collapse
|
7
|
Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells 2021; 10:1201. [PMID: 34068954 PMCID: PMC8156822 DOI: 10.3390/cells10051201] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.
Collapse
Affiliation(s)
- Harriet R. Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Michael P. Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
8
|
Vlodavsky I, Barash U, Nguyen HM, Yang SM, Ilan N. Biology of the Heparanase-Heparan Sulfate Axis and Its Role in Disease Pathogenesis. Semin Thromb Hemost 2021; 47:240-253. [PMID: 33794549 DOI: 10.1055/s-0041-1725066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell surface proteoglycans are important constituents of the glycocalyx and participate in cell-cell and cell-extracellular matrix (ECM) interactions, enzyme activation and inhibition, and multiple signaling routes, thereby regulating cell proliferation, survival, adhesion, migration, and differentiation. Heparanase, the sole mammalian heparan sulfate degrading endoglycosidase, acts as an "activator" of HS proteoglycans, thus regulating tissue hemostasis. Heparanase is a multifaceted enzyme that together with heparan sulfate, primarily syndecan-1, drives signal transduction, immune cell activation, exosome formation, autophagy, and gene transcription via enzymatic and nonenzymatic activities. An important feature is the ability of heparanase to stimulate syndecan-1 shedding, thereby impacting cell behavior both locally and distally from its cell of origin. Heparanase releases a myriad of HS-bound growth factors, cytokines, and chemokines that are sequestered by heparan sulfate in the glycocalyx and ECM. Collectively, the heparan sulfate-heparanase axis plays pivotal roles in creating a permissive environment for cell proliferation, differentiation, and function, often resulting in the pathogenesis of diseases such as cancer, inflammation, endotheliitis, kidney dysfunction, tissue fibrosis, and viral infection.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Uri Barash
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
9
|
Ranganayaki S, Jamshidi N, Aiyaz M, Rashmi SK, Gayathri N, Harsha PK, Padmanabhan B, Srinivas Bharath MM. Inhibition of mitochondrial complex II in neuronal cells triggers unique pathways culminating in autophagy with implications for neurodegeneration. Sci Rep 2021; 11:1483. [PMID: 33452321 PMCID: PMC7810707 DOI: 10.1038/s41598-020-79339-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial dysfunction and neurodegeneration underlie movement disorders such as Parkinson’s disease, Huntington’s disease and Manganism among others. As a corollary, inhibition of mitochondrial complex I (CI) and complex II (CII) by toxins 1-methyl-4-phenylpyridinium (MPP+) and 3-nitropropionic acid (3-NPA) respectively, induced degenerative changes noted in such neurodegenerative diseases. We aimed to unravel the down-stream pathways associated with CII inhibition and compared with CI inhibition and the Manganese (Mn) neurotoxicity. Genome-wide transcriptomics of N27 neuronal cells exposed to 3-NPA, compared with MPP+ and Mn revealed varied transcriptomic profile. Along with mitochondrial and synaptic pathways, Autophagy was the predominant pathway differentially regulated in the 3-NPA model with implications for neuronal survival. This pathway was unique to 3-NPA, as substantiated by in silico modelling of the three toxins. Morphological and biochemical validation of autophagy markers in the cell model of 3-NPA revealed incomplete autophagy mediated by mechanistic Target of Rapamycin Complex 2 (mTORC2) pathway. Interestingly, Brain Derived Neurotrophic Factor (BDNF), which was elevated in the 3-NPA model could confer neuroprotection against 3-NPA. We propose that, different downstream events are activated upon neurotoxin-dependent CII inhibition compared to other neurotoxins, with implications for movement disorders and regulation of autophagy could potentially offer neuroprotection.
Collapse
Affiliation(s)
- Sathyanarayanan Ranganayaki
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Bangalore, Karnataka, 560029, India
| | - Neema Jamshidi
- Department of Radiological Sciences, Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095, USA
| | - Mohamad Aiyaz
- Genotypic Technology Pvt. Ltd., 2/13, Balaji Complex, 80 feet Road, RMV 2nd Stage, Bangalore, Karnataka, 560094, India
| | - Santhosh-Kumar Rashmi
- Department of Neuropathology, NIMHANS, No. 2900, Hosur Road, Bangalore, Karnataka, 560029, India
| | - Narayanappa Gayathri
- Department of Neuropathology, NIMHANS, No. 2900, Hosur Road, Bangalore, Karnataka, 560029, India
| | - Pulleri Kandi Harsha
- Department of Neurovirology, NIMHANS, No. 2900, Hosur Road, Bangalore, Karnataka, 560029, India
| | | | - Muchukunte Mukunda Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Bangalore, Karnataka, 560029, India.
| |
Collapse
|
10
|
Cleavage of proteoglycans, plasma proteins and the platelet-derived growth factor receptor in the hemorrhagic process induced by snake venom metalloproteinases. Sci Rep 2020; 10:12912. [PMID: 32737331 PMCID: PMC7395112 DOI: 10.1038/s41598-020-69396-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Envenoming by viperid snakes results in a complex pattern of tissue damage, including hemorrhage, which in severe cases may lead to permanent sequelae. Snake venom metalloproteinases (SVMPs) are main players in this pathogenesis, acting synergistically upon different mammalian proteomes. Hemorrhagic Factor 3 (HF3), a P-III class SVMP from Bothrops jararaca, induces severe local hemorrhage at pmol doses in a murine model. Our hypothesis is that in a complex scenario of tissue damage, HF3 triggers proteolytic cascades by acting on a partially known substrate repertoire. Here, we focused on the hypothesis that different proteoglycans, plasma proteins, and the platelet derived growth factor receptor (PDGFR) could be involved in the HF3-induced hemorrhagic process. In surface plasmon resonance assays, various proteoglycans were demonstrated to interact with HF3, and their incubation with HF3 showed degradation or limited proteolysis. Likewise, Western blot analysis showed in vivo degradation of biglycan, decorin, glypican, lumican and syndecan in the HF3-induced hemorrhagic process. Moreover, antithrombin III, complement components C3 and C4, factor II and plasminogen were cleaved in vitro by HF3. Notably, HF3 cleaved PDGFR (alpha and beta) and PDGF in vitro, while both receptor forms were detected as cleaved in vivo in the hemorrhagic process induced by HF3. These findings outline the multifactorial character of SVMP-induced tissue damage, including the transient activation of tissue proteinases, and underscore for the first time that endothelial glycocalyx proteoglycans and PDGFR are targets of SVMPs in the disruption of microvasculature integrity and generation of hemorrhage.
Collapse
|
11
|
Kang D, Jung SH, Lee GH, Lee S, Park HJ, Ko YG, Kim YN, Lee JS. Sulfated syndecan 1 is critical to preventing cellular senescence by modulating fibroblast growth factor receptor endocytosis. FASEB J 2020; 34:10316-10328. [PMID: 32530114 DOI: 10.1096/fj.201902714r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 01/10/2023]
Abstract
Cellular senescence can be triggered by various intrinsic and extrinsic stimuli. We previously reported that silencing of 3'-phosphoadenosine 5'-phosphosulfate synthetase 2 (PAPSS2) induces cellular senescence through augmented fibroblast growth factor receptor 1 (FGFR1) signaling. However, the exact molecular mechanism connecting heparan sulfation and cellular senescence remains unclear. Here, we investigated the potential involvement of heparan sulfate proteoglycans (HSPGs) in augmented FGFR1 signaling and cellular senescence. Depletion of several types of HSPGs revealed that cells depleted of syndecan 1 (SDC1) exhibited typical senescence phenotypes, and those depleted of PAPSS2-, SDC1-, or heparan sulfate 2-O sulfotransferase 1 (HS2ST1) showed decreased FGFR1 internalization along with hyperresponsiveness to and prolonged activation of fibroblast growth factor 2 (FGF2)-stimulated FGFR1- v-akt murine thymoma viral oncogene homolog (AKT) signaling. Clathrin- and caveolin-mediated FGFR1 endocytosis contributed to cellular senescence through the FGFR1-AKT-p53-p21 signaling pathway. Dynasore treatment triggered senescence phenotypes, augmented FGFR1-AKT-p53-p21 signaling, and decreased SDC1 expression. Finally, the replicatively and prematurely senescent cells were characterized by decreases of SDC1 expression and FGFR1 internalization, and an increase in FGFR1-AKT-p53-p21 signaling. Together, our results demonstrate that properly sulfated SDC1 plays a critical role in preventing cellular senescence through the regulation of FGFR1 endocytosis.
Collapse
Affiliation(s)
- Donghee Kang
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Medical Research Center, Inha University College of Medicine, Incheon, Korea
| | - Seung Hee Jung
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Medical Research Center, Inha University College of Medicine, Incheon, Korea
| | - Gun-Hee Lee
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Medical Research Center, Inha University College of Medicine, Incheon, Korea
| | - Seongju Lee
- Medical Research Center, Inha University College of Medicine, Incheon, Korea.,Department of Anatomy, Inha University College of Medicine, Incheon, Korea
| | - Heon Joo Park
- Medical Research Center, Inha University College of Medicine, Incheon, Korea.,Department of Microbiology, Inha University College of Medicine, Incheon, Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Yong-Nyun Kim
- Division of Translational Science, National Cancer Center, Goyang, Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Medical Research Center, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
12
|
Hudák A, Kusz E, Domonkos I, Jósvay K, Kodamullil AT, Szilák L, Hofmann-Apitius M, Letoha T. Contribution of syndecans to cellular uptake and fibrillation of α-synuclein and tau. Sci Rep 2019; 9:16543. [PMID: 31719623 PMCID: PMC6851098 DOI: 10.1038/s41598-019-53038-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022] Open
Abstract
Scientific evidence suggests that α-synuclein and tau have prion-like properties and that prion-like spreading and seeding of misfolded protein aggregates constitutes a central mechanism for neurodegeneration. Heparan sulfate proteoglycans (HSPGs) in the plasma membrane support this process by attaching misfolded protein fibrils. Despite of intense studies, contribution of specific HSPGs to seeding and spreading of α-synuclein and tau has not been explored yet. Here we report that members of the syndecan family of HSPGs mediate cellular uptake of α-synuclein and tau fibrils via a lipid-raft dependent and clathrin-independent endocytic route. Among syndecans, the neuron predominant syndecan-3 exhibits the highest affinity for both α-synuclein and tau. Syndecan-mediated internalization of α-synuclein and tau depends heavily on conformation as uptake via syndecans start to dominate once fibrils are formed. Overexpression of syndecans, on the other hand, reduces cellular uptake of monomeric α-synuclein and tau, yet exerts a fibril forming effect on both proteins. Data obtained from syndecan overexpressing cellular models presents syndecans, especially the neuron predominant syndecan-3, as important mediators of seeding and spreading of α-synuclein and tau and reveal how syndecans contribute to fundamental molecular events of α-synuclein and tau pathology.
Collapse
Affiliation(s)
| | | | - Ildikó Domonkos
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Katalin Jósvay
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Alpha Tom Kodamullil
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, 53754, Germany
| | - László Szilák
- Szilak Laboratories, Bioinformatics and Molecule-Design, Szeged, H-6723, Hungary
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, 53754, Germany
| | | |
Collapse
|
13
|
Zandonadi FS, Castañeda Santa Cruz E, Korvala J. New SDC function prediction based on protein-protein interaction using bioinformatics tools. Comput Biol Chem 2019; 83:107087. [PMID: 31351242 DOI: 10.1016/j.compbiolchem.2019.107087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/13/2019] [Accepted: 06/23/2019] [Indexed: 12/11/2022]
Abstract
The precise roles for SDC have been complex to specify. Assigning and reanalyzing protein and peptide identification to novel protein functions is one of the most important challenges in postgenomic era. Here, we provide SDC molecular description to support, contextualize and reanalyze the corresponding protein-protein interaction (PPI). From SDC-1 data mining, we discuss the potential of bioinformatics tools to predict new biological rules of SDC. Using these methods, we have assembled new possibilities for SDC biology from PPI data, once, the understanding of biology complexity cannot be capture from one simple question.
Collapse
Affiliation(s)
- Flávia S Zandonadi
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Departamento de Química Analítica, Universidade de Campinas, UNICAMP, Campinas, SP, Brazil.
| | - Elisa Castañeda Santa Cruz
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Departamento de Química Analítica, Universidade de Campinas, UNICAMP, Campinas, SP, Brazil
| | - Johanna Korvala
- Cancer and Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
14
|
Role of glypicans in regulation of the tumor microenvironment and cancer progression. Biochem Pharmacol 2019; 168:108-118. [PMID: 31251939 DOI: 10.1016/j.bcp.2019.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/20/2019] [Indexed: 12/28/2022]
Abstract
Glypicans are evolutionary conserved, cell surface heparan sulfate (HS) proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol (GPI) anchor. Glypicans interact with a broad class of soluble and insoluble ligands, such as morphogens, growth factors, chemokines, receptors and components of the extracellular matrix (ECM). Such versatility comes from their ability to interact through both their HS chains and core protein. Glypicans are involved in cellular and tissue development, morphogenesis and cell motility. They exhibit differential expression in several cancers, acting as both tumor promoters and inhibitors in a cancer type-specific manner. They also influence tumor stroma by facilitating angiogenesis, ECM remodeling and alteration of immune cell functions. Glypicans have emerged as a new therapeutic moiety, whose functions can be exploited in the field of targeted therapies and precision medicine in cancer. This is demonstrated by the emergence of several anti-glypican antibody-based immunologics that have been recently developed and are being evaluated in clinical trials. This review will focus on glypican structure and function with an emphasis on their expression in various cancers. Discussion will also center on the potential of glypicans to be therapeutic targets for inhibition of cancer cell growth.
Collapse
|
15
|
Letoha T, Hudák A, Kusz E, Pettkó-Szandtner A, Domonkos I, Jósvay K, Hofmann-Apitius M, Szilák L. Contribution of syndecans to cellular internalization and fibrillation of amyloid-β(1-42). Sci Rep 2019; 9:1393. [PMID: 30718543 PMCID: PMC6362000 DOI: 10.1038/s41598-018-37476-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
Intraneuronal accumulation of amyloid-β(1-42) (Aβ1-42) is one of the earliest signs of Alzheimer's disease (AD). Cell surface heparan sulfate proteoglycans (HSPGs) have profound influence on the cellular uptake of Aβ1-42 by mediating its attachment and subsequent internalization into the cells. Colocalization of amyloid plaques with members of the syndecan family of HSPGs, along with the increased expression of syndecan-3 and -4 have already been reported in postmortem AD brains. Considering the growing evidence on the involvement of syndecans in the pathogenesis of AD, we analyzed the contribution of syndecans to cellular uptake and fibrillation of Aβ1-42. Among syndecans, the neuron specific syndecan-3 isoform increased cellular uptake of Aβ1-42 the most. Kinetics of Aβ1-42 uptake also proved to be fairly different among SDC family members: syndecan-3 increased Aβ1-42 uptake from the earliest time points, while other syndecans facilitated Aβ1-42 internalization at a slower pace. Internalized Aβ1-42 colocalized with syndecans and flotillins, highlighting the role of lipid-rafts in syndecan-mediated uptake. Syndecan-3 and 4 also triggered fibrillation of Aβ1-42, further emphasizing the pathophysiological relevance of syndecans in plaque formation. Overall our data highlight syndecans, especially the neuron-specific syndecan-3 isoform, as important players in amyloid pathology and show that syndecans, regardless of cell type, facilitate key molecular events in neurodegeneration.
Collapse
Affiliation(s)
| | | | | | | | - Ildikó Domonkos
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Katalin Jósvay
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, 53754, Germany
| | - László Szilák
- Szilak Laboratories, Bioinformatics and Molecule-Design, Szeged, H-6723, Hungary
| |
Collapse
|
16
|
Furini G, Verderio EAM. Spotlight on the Transglutaminase 2-Heparan Sulfate Interaction. Med Sci (Basel) 2019; 7:E5. [PMID: 30621228 PMCID: PMC6359630 DOI: 10.3390/medsci7010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs), syndecan-4 (Sdc4) especially, have been suggested as potential partners of transglutaminase-2 (TG2) in kidney and cardiac fibrosis, metastatic cancer, neurodegeneration and coeliac disease. The proposed role for HSPGs in the trafficking of TG2 at the cell surface and in the extracellular matrix (ECM) has been linked to the fibrogenic action of TG2 in experimental models of kidney fibrosis. As the TG2-HSPG interaction is largely mediated by the heparan sulfate (HS) chains of proteoglycans, in the past few years a number of studies have investigated the affinity of TG2 for HS, and the TG2 heparin binding site has been mapped with alternative outlooks. In this review, we aim to provide a compendium of the main literature available on the interaction of TG2 with HS, with reference to the pathological processes in which extracellular TG2 plays a role.
Collapse
Affiliation(s)
- Giulia Furini
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| | - Elisabetta A M Verderio
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
- BiGeA, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
17
|
Holzmann MS, Winkler MS, Strunden MS, Izbicki JR, Schoen G, Greiwe G, Pinnschmidt HO, Poppe A, Saugel B, Daum G, Goetz AE, Heckel K. Syndecan-1 as a biomarker for sepsis survival after major abdominal surgery. Biomark Med 2018; 12:119-127. [DOI: 10.2217/bmm-2017-0231] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Maximilian S Holzmann
- Department of Anesthesiology, Center of Anesthesiology & Intensive Care, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Martin S Winkler
- Department of Anesthesiology, Center of Anesthesiology & Intensive Care, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Mike S Strunden
- Department of Anesthesiology & Intensive Care Asklepios Clinic Harburg, Eißendorfer Pferdeweg 52, 21052 Hamburg, Germany
| | - Jakob R Izbicki
- Department for General, Visceral & Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Gerhard Schoen
- Institute for Medical Biometry & Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Gillis Greiwe
- Department of Anesthesiology, Center of Anesthesiology & Intensive Care, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Hans O Pinnschmidt
- Institute for Medical Biometry & Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Annika Poppe
- Department of Anesthesiology, Center of Anesthesiology & Intensive Care, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Bernd Saugel
- Department of Anesthesiology, Center of Anesthesiology & Intensive Care, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Guenter Daum
- Clinic & Polyclinic for Vascular Medicine, University Heart Center, Martinistr 52, 20246, Hamburg, Germany
| | - Alwin E Goetz
- Department of Anesthesiology, Center of Anesthesiology & Intensive Care, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Kai Heckel
- Department of Anesthesiology, Center of Anesthesiology & Intensive Care, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| |
Collapse
|
18
|
The Role of Endothelial Surface Glycocalyx in Mechanosensing and Transduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:1-27. [PMID: 30315537 DOI: 10.1007/978-3-319-96445-4_1] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The endothelial cells (ECs) forming the inner wall of every blood vessel are constantly exposed to the mechanical forces generated by blood flow. The EC responses to these hemodynamic forces play a critical role in the homeostasis of the circulatory system. A variety of mechanosensors and transducers, locating on the EC surface, intra- and trans-EC membrane, and within the EC cytoskeleton, have thus been identified to ensure proper functions of ECs. Among them, the most recent candidate is the endothelial surface glycocalyx (ESG), which is a matrix-like thin layer covering the luminal surface of the EC. It consists of various proteoglycans, glycosaminoglycans, and plasma proteins and is close to other prominent EC mechanosensors and transducers. This chapter summarizes the ESG composition, thickness, and structure observed by different labeling and visualization techniques and in different types of vessels. It also presents the literature in determining the ESG mechanical properties by atomic force microscopy and optical tweezers. The molecular mechanisms by which the ESG plays the role in EC mechanosensing and transduction are described as well as the ESG remodeling by shear stress, the actin cytoskeleton, the membrane rafts, the angiogenic factors, and the sphingosine-1-phosphate.
Collapse
|
19
|
Takemae H, Kobayashi K, Sugi T, Han Y, Gong H, Ishiwa A, Recuenco FC, Murakoshi F, Takano R, Murata Y, Nagamune K, Horimoto T, Akashi H, Kato K. Toxoplasma gondii RON4 binds to heparan sulfate on the host cell surface. Parasitol Int 2017; 67:123-130. [PMID: 29081389 DOI: 10.1016/j.parint.2017.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/16/2017] [Accepted: 10/24/2017] [Indexed: 10/18/2022]
Abstract
Toxoplasma gondii rhoptry neck protein 4 (TgRON4) is a component of the moving junction, a key structure for host cell invasion. We previously showed that host cellular β-tubulin is a binding partner of TgRON4 in the invasion process. Here, to identify other binding partners of TgRON4 in the host cell, we examined the binding of TgRON4 to components of the host cell surface. TgRON4 binds to various mammalian cells, but this binding disappeared in glycosaminoglycan- and heparan sulfate-deficient CHO cells and after heparitinase treatment of mammalian cells. The C-terminal half of TgRON4 showed relatively strong binding to cells and heparin agarose. A glycoarray assay indicated that TgRON4 binds to heparin and modified heparin derivatives. Immunoprecipitation of T. gondii-infected CHO cell lysates showed that TgRON4 interacts with glypican 1 during Toxoplasma invasion. This interaction suggests a role for heparan sulfate in parasite invasion.
Collapse
Affiliation(s)
- Hitoshi Takemae
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan; Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Kyousuke Kobayashi
- Neurovirology Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Tatsuki Sugi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan; Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Yongmei Han
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Haiyan Gong
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Akiko Ishiwa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan; Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Frances C Recuenco
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan; Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Fumi Murakoshi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan; Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Ryo Takano
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Yuho Murata
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan
| | - Kisaburo Nagamune
- Division of Protozoology, Department of Parasitology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Taisuke Horimoto
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hiroomi Akashi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Kentaro Kato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, Japan; Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
20
|
Velleman SG, Song Y. Development and Growth of the Avian Pectoralis Major (Breast) Muscle: Function of Syndecan-4 and Glypican-1 in Adult Myoblast Proliferation and Differentiation. Front Physiol 2017; 8:577. [PMID: 28848451 PMCID: PMC5550705 DOI: 10.3389/fphys.2017.00577] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Muscle fiber number is determined around the time hatch with continued posthatch muscle growth being mediated by the adult myoblast, satellite cell, population of cells. Satellite cells are dynamic in their expression of proteins including the cell membrane associated proteoglycans, syndecan-4 and glypican-1. These proteoglycans play roles in organizing the extracellular environment in the satellite cell niche, cytoskeletal structure, cell-to-cell adhesion, satellite cell migration, and signal transduction. This review article focuses on syndecan-4 and glypican-1 as both are capable of regulating satellite cell responsiveness to fibroblast growth factor 2. Fibroblast growth factor 2 is a potent stimulator of muscle cell proliferation and a strong inhibitor of differentiation. Proteoglycans are composed of a central core protein defined functional domains, and covalently attached glycosaminoglycans and N-glycosylation chains. The functional association of these components with satellite cell function is discussed as well as an emerging role for microRNA regulation of syndecan-4 and glypican-1.
Collapse
Affiliation(s)
- Sandra G Velleman
- Department of Animal Sciences, The Ohio State UniversityWooster, OH, United States
| | - Yan Song
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical SchoolBoston, MA, United States
| |
Collapse
|
21
|
Abstract
Neural stem cells (NSCs) have been proposed as a promising cellular source for the treatment of diseases in nervous systems. NSCs can self-renew and generate major cell types of the mammalian central nervous system throughout adulthood. NSCs exist not only in the embryo, but also in the adult brain neurogenic region: the subventricular zone (SVZ) of the lateral ventricle. Embryonic stem (ES) cells acquire NSC identity with a default mechanism. Under the regulations of leukemia inhibitory factor (LIF) and fibroblast growth factors, the NSCs then become neural progenitors. Neurotrophic and differentiation factors that regulate gene expression for controlling neural cell fate and function determine the differentiation of neural progenitors in the developing mammalian brain. For clinical application of NSCs in neurodegenerative disorders and damaged neurons, there are several critical problems that remain to be resolved: 1) how to obtain enough NSCs from reliable sources for autologous transplantation; 2) how to regulate neural plasticity of different adult stem cells; 3) how to control differentiation of NSCs in the adult nervous system. In order to understand the mechanisms that control NSC differentiation and behavior, we review the ontogeny of NSCs and other stem cell plasticity of neuronal differentiation. The role of NSCs and their regulation by neurotrophic factors in CNS development are also reviewed.
Collapse
Affiliation(s)
- Yi-Chao Hsu
- Stem Cell Research Center, National Health Research Institutes, Jhunan, Taiwan
| | - Don-Ching Lee
- Stem Cell Research Center, National Health Research Institutes, Jhunan, Taiwan
| | - Ing-Ming Chiu
- Stem Cell Research Center, National Health Research Institutes, Jhunan, Taiwan
- Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Institute of Medical Technology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
22
|
Griffin J, St-Pierre N, Lilburn M, Wick M. Transcriptional comparison of myogenesis in leghorn and low score normal embryos. Poult Sci 2017; 96:1531-1543. [DOI: 10.3382/ps/pew452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022] Open
|
23
|
Fabris A, Bruschi M, Santucci L, Candiano G, Granata S, Dalla Gassa A, Antonucci N, Petretto A, Ghiggeri GM, Gambaro G, Lupo A, Zaza G. Proteomic-based research strategy identified laminin subunit alpha 2 as a potential urinary-specific biomarker for the medullary sponge kidney disease. Kidney Int 2017; 91:459-468. [DOI: 10.1016/j.kint.2016.09.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/05/2016] [Accepted: 09/15/2016] [Indexed: 11/24/2022]
|
24
|
Cavalheiro RP, Lima MA, Jarrouge-Bouças TR, Viana GM, Lopes CC, Coulson-Thomas VJ, Dreyfuss JL, Yates EA, Tersariol ILS, Nader HB. Coupling of vinculin to F-actin demands Syndecan-4 proteoglycan. Matrix Biol 2017; 63:23-37. [PMID: 28062282 DOI: 10.1016/j.matbio.2016.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/04/2016] [Accepted: 12/04/2016] [Indexed: 01/18/2023]
Abstract
Syndecans are heparan sulfate proteoglycans characterized as transmembrane receptors that act cooperatively with the cell surface and extracellular matrix proteins. Syn4 knockdown was performed in order to address its role in endothelial cells (EC) behavior. Normal EC and shRNA-Syn4-EC cells were studied comparatively using complementary confocal, super-resolution and non-linear microscopic techniques. Confocal and super-resolution microscopy revealed that Syn4 knockdown alters the level and arrangement of essential proteins for focal adhesion, evidenced by the decoupling of vinculin from F-actin filaments. Furthermore, Syn4 knockdown alters the actin network leading to filopodial protrusions connected by VE-cadherin-rich junction. shRNA-Syn4-EC showed reduced adhesion and increased migration. Also, Syn4 silencing alters cell cycle as well as cell proliferation. Moreover, the ability of EC to form tube-like structures in matrigel is reduced when Syn4 is silenced. Together, the results suggest a mechanism in which Syndecan-4 acts as a central mediator that bridges fibronectin, integrin and intracellular components (actin and vinculin) and once silenced, the cytoskeleton protein network is disrupted. Ultimately, the results highlight Syn4 relevance for balanced cell behavior.
Collapse
Affiliation(s)
- R P Cavalheiro
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - M A Lima
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil; Institute of Integrative Biology, Department of Biochemistry, University of Liverpool, Liverpool, UK
| | - T R Jarrouge-Bouças
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - G M Viana
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - C C Lopes
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil; Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - V J Coulson-Thomas
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil; University of Houston, College of Optometry, The Ocular Surface Institute (TOSI), Houston, USA
| | - J L Dreyfuss
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil; Grupo Interdisciplinar de Ciências Exatas em Saúde, Universidade Federal de São Paulo, SP, Brazil
| | - E A Yates
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil; Institute of Integrative Biology, Department of Biochemistry, University of Liverpool, Liverpool, UK
| | - I L S Tersariol
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - H B Nader
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil.
| |
Collapse
|
25
|
Function of Membrane-Associated Proteoglycans in the Regulation of Satellite Cell Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:61-95. [DOI: 10.1007/978-3-319-27511-6_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Yang X, Liaw L, Prudovsky I, Brooks PC, Vary C, Oxburgh L, Friesel R. Fibroblast growth factor signaling in the vasculature. Curr Atheroscler Rep 2015; 17:509. [PMID: 25813213 DOI: 10.1007/s11883-015-0509-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite their discovery as angiogenic factors and mitogens for endothelial cells more than 30 years ago, much remains to be determined about the role of fibroblast growth factors (FGFs) and their receptors in vascular development, homeostasis, and disease. In vitro studies show that members of the FGF family stimulate growth, migration, and sprouting of endothelial cells, and growth, migration, and phenotypic plasticity of vascular smooth muscle cells. Recent studies have revealed important roles for FGFs and their receptors in the regulation of endothelial cell sprouting and vascular homeostasis in vivo. Furthermore, recent work has revealed roles for FGFs in atherosclerosis, vascular calcification, and vascular dysfunction. The large number of FGFs and their receptors expressed in endothelial and vascular smooth muscle cells complicates these studies. In this review, we summarize recent studies in which new and unanticipated roles for FGFs and their receptors in the vasculature have been revealed.
Collapse
Affiliation(s)
- Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Direct binding of hepatocyte growth factor and vascular endothelial growth factor to CD44v6. Biosci Rep 2015; 35:BSR20150093. [PMID: 26181364 PMCID: PMC4721543 DOI: 10.1042/bsr20150093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/11/2015] [Indexed: 12/24/2022] Open
Abstract
CD44v6 is a co-receptor for the receptor tyrosine kinases Met and VEGFR-2 (vascular endothelial growth factor receptor 2). The binding of these RTKs (receptor tyrosine kinases) to their ligands on cells requires CD44v6. Pull-downs assays show direct binding between these entities. Binding affinities were measured by several biophysical methods. CD44v6, a member of the CD44 family of transmembrane glycoproteins is a co-receptor for two receptor tyrosine kinases (RTKs), Met and VEGFR-2 (vascular endothelial growth factor receptor 2). CD44v6 is not only required for the activation of these RTKs but also for signalling. In order to understand the role of CD44v6 in Met and VEGFR-2 activation and signalling we tested whether CD44v6 binds to their ligands, HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor), respectively. FACS analysis and cellular ELISA showed binding of HGF and VEGF only to cells expressing CD44v6. Direct binding of CD44v6 to HGF and VEGF was demonstrated in pull-down assays and the binding affinities were determined using MicroScale Thermophoresis, fluorescence correlation spectroscopy and fluorescence anisotropy. The binding affinity of CD44v6 to HGF is in the micromolar range in contrast with the high-affinity binding measured in the case of VEGF and CD44v6, which is in the nanomolar range. These data reveal a heparan sulfate-independent direct binding of CD44v6 to the ligands of Met and VEGFR-2 and suggest different roles of CD44v6 for these RTKs.
Collapse
|
28
|
Role of syndecan-2 in osteoblast biology and pathology. BONEKEY REPORTS 2015; 4:666. [PMID: 25848534 DOI: 10.1038/bonekey.2015.33] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/04/2015] [Indexed: 12/20/2022]
Abstract
Syndecans 1-4 are a family of transmembrane proteins composed of a core protein and glycosaminoglycan chains. Although the four syndecans have common functions, they appear to be connected to different signaling pathways, and their expression occurs in a cell- and development-specific pattern. In contrast to other syndecans, syndecan-2 expression increases during osteoblast differentiation. Mechanistically, syndecan-2 exerts multiple functions in cells of the osteoblast lineage as it serves as a co-receptor for fibroblast growth factors and Wnt proteins and controls cell adhesion, proliferation, differentiation and apoptosis. Recent studies indicate that syndecan-2 also contributes to osteosarcoma cell response to cytotoxic agents through interactions with Wnt/β-catenin signaling. Here we summarize our current understanding of the role of syndecan-2 in the control of osteoblast biology and pathology and discuss how syndecan-2 acts as a modulator of the bone cell microenvironment.
Collapse
|
29
|
Bologna-Molina R, Mosqueda-Taylor A, Molina-Frechero N. Differential expression of glypican-1 in ameloblastoma variants. Appl Immunohistochem Mol Morphol 2015; 23:153-60. [PMID: 25046223 DOI: 10.1097/pai.0000000000000042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although benign, ameloblastomas are locally invasive and destructive tumors of the jawbones. The glypicans comprise a family of glycosylphosphatidylinositol-anchored proteoglycans that, by virtue of their cell-surface localization and heparin sulfate chain composition, might regulate the response of cells to numerous heparin-binding growth factors, cell adhesion molecules, and extracellular matrix components. The expression of glypican-1 is differentially altered among different types of malignancies, suggesting a possible role in the tumorigenesis and biological behavior of these neoplasms. The aim of this study was to determine the expression of glypican-1 and then hypothesize the possible role that this protein may play in the biological behavior of ameloblastomas. We assessed the presence of glypican-1 by immunohistochemical staining analyses in a series of 80 cases of different types of ameloblastomas. Desmoplastic ameloblastomas exhibited the highest expression of glypican-1 (100%), followed by the peripheral (66%), solid/multicystic (51.2%), and unicystic (47.2%) types, showing statistically significant differences among them (P<0.001). Differences detected in glypican-1 expression among different subtypes of ameloblastomas, could be suggesting a possible association with their different biological behavior.
Collapse
Affiliation(s)
- Ronell Bologna-Molina
- *Department of Molecular Pathology, School of Dentistry, Universidad de la República (UDELAR), Montevideo, Uruguay †Department of HealthCare, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | | | | |
Collapse
|
30
|
Luan F, Liu P, Ma H, Yue X, Liu J, Gao L, Liang X, Ma C. Reduced nucleic ZHX2 involves in oncogenic activation of glypican 3 in human hepatocellular carcinoma. Int J Biochem Cell Biol 2014; 55:129-35. [DOI: 10.1016/j.biocel.2014.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 08/23/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
|
31
|
Fiore VF, Ju L, Chen Y, Zhu C, Barker TH. Dynamic catch of a Thy-1–α5β1+syndecan-4 trimolecular complex. Nat Commun 2014; 5:4886. [DOI: 10.1038/ncomms5886] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/01/2014] [Indexed: 01/09/2023] Open
|
32
|
Sanaee MN, Malekzadeh M, Khezri A, Ghaderi A, Doroudchi M. Soluble CD138/Syndecan-1 Increases in the Sera of Patients with Moderately Differentiated Bladder Cancer. Urol Int 2014; 94:472-8. [PMID: 25115297 DOI: 10.1159/000364907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND CD138/Syndecan-1 (Sdc-1) is expressed on the tumor and stromal cells of invasive bladder carcinoma. CD138/Sdc-1 shedding from the cell surface is associated with the invasive phenotype in lung and breast cancers. PATIENTS AND METHODS Soluble CD138/Sdc-1 was measured in the sera of 86 bladder cancer patients and 57 healthy individuals by a commercial ELISA assay. RESULTS Soluble Sdc-1 was increased in the sera of patients with bladder cancer (138.42 ± 81.85 vs. 86.48 ± 82.58 ng/ml, p = 0.0003). Patients aged over 70 years had higher levels of CD138/Sdc-1 in their sera (159.7 ± 15.77 vs. 124.5 ± 9.99 ng/ml, p = 0.025), and soluble Sdc-1 levels were higher in the sera of patients with moderately differentiated tumors compared to poorly differentiated ones (170.47 ± 85.06 vs. 101.79 ± 68.24 ng/ml, p = 0.01). The soluble Sdc-1 level was higher in muscle-invasive (154.45 ± 83.60 vs. 89.9 ± 55.02 ng/ml) but not lymphatic-invasive (106.25 ± 52.10 vs. 123.43 ± 63.76 ng/ml) tumors (p = 0.027 and 0.45, respectively). A non-significant trend of soluble Sdc-1 increase in the sera of male patients compared to female patients was observed (145.38 ± 85.47 vs. 110.20 ± 59.04 ng/ml, p = 0.054). CONCLUSION The elevated levels of soluble CD138/Sdc-1 in older bladder cancer patients and those with muscular invasion sheds some light on the mechanisms of the disease invasion.
Collapse
Affiliation(s)
- Mohammad Nabi Sanaee
- Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | |
Collapse
|
33
|
Novoyatleva T, Sajjad A, Pogoryelov D, Patra C, Schermuly RT, Engel FB. FGF1-mediated cardiomyocyte cell cycle reentry depends on the interaction of FGFR-1 and Fn14. FASEB J 2014; 28:2492-503. [PMID: 24571920 DOI: 10.1096/fj.13-243576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibroblast growth factors (FGFs) signal through FGF receptors (FGFRs) mediating a broad range of cellular functions during embryonic development, as well as disease and regeneration during adulthood. Thus, it is important to understand the underlying molecular mechanisms that modulate this system. Here, we show that FGFR-1 can interact with the TNF receptor superfamily member fibroblast growth factor-inducible molecule 14 (Fn14) resulting in cardiomyocyte cell cycle reentry. FGF1-induced cell cycle reentry in neonatal cardiomyocytes could be blocked by Fn14 inhibition, while TWEAK-induced cell cycle activation was inhibited by blocking FGFR-1 signaling. In addition, costimulation experiments revealed a synergistic effect of FGF1 and TWEAK in regard to cardiomyocyte cell cycle induction via PI3K/Akt signaling. Overexpression of Fn14 with either FGFR-1 long [FGFR-1(L)] or FGFR-1 short [FGFR-1(S)] isoforms resulted after FGF1/TWEAK stimulation in cell cycle reentry of >40% adult cardiomyocytes. Finally, coimmunoprecipitation and proximity ligation assays indicated that endogenous FGFR-1 and Fn14 interact with each other in cardiomyocytes. This interaction was strongly enhanced in the presence of their corresponding ligands, FGF1 and TWEAK. Taken together, our data suggest that FGFR-1/Fn14 interaction may represent a novel endogenous mechanism to modulate the action of these receptors and their ligands and to control cardiomyocyte cell cycle reentry.
Collapse
Affiliation(s)
- Tatyana Novoyatleva
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany;
| | - Amna Sajjad
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Government College University Faisalabad, Faisalabad, Pakistan
| | - Denys Pogoryelov
- Membrane Transport Machineries Group, Cluster of Excellence Frankfurt-Macromolecular Complexes, Institute of Biochemistry, Goethe University of Frankfurt, Frankfurt am Main, Germany
| | - Chinmoy Patra
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralph T Schermuly
- Department of Pulmonary Pharmacotherapy, Justus Liebig University Giessen, Giessen, Germany; and
| | - Felix B Engel
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
34
|
Barbouri D, Afratis N, Gialeli C, Vynios DH, Theocharis AD, Karamanos NK. Syndecans as modulators and potential pharmacological targets in cancer progression. Front Oncol 2014; 4:4. [PMID: 24551591 PMCID: PMC3910246 DOI: 10.3389/fonc.2014.00004] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/09/2014] [Indexed: 12/17/2022] Open
Abstract
Extracellular matrix (ECM) components form a dynamic network of key importance for cell function and properties. Key macromolecules in this interplay are syndecans (SDCs), a family of transmembrane heparan sulfate proteoglycans (HSPGs). Specifically, heparan sulfate (HS) chains with their different sulfation pattern have the ability to interact with growth factors and their receptors in tumor microenvironment, promoting the activation of different signaling cascades that regulate tumor cell behavior. The affinity of HS chains with ligands is altered during malignant conditions because of the modification of chain sequence/sulfation pattern. Furthermore, matrix degradation enzymes derived from the tumor itself or the tumor microenvironment, like heparanase and matrix metalloproteinases, ADAM as well as ADAMTS are involved in the cleavage of SDCs ectodomain at the HS and protein core level, respectively. Such released soluble SDCs "shed SDCs" in the ECM interact in an autocrine or paracrine manner with the tumor or/and stromal cells. Shed SDCs, upon binding to several matrix effectors, such as growth factors, chemokines, and cytokines, have the ability to act as competitive inhibitors for membrane proteoglycans, and modulate the inflammatory microenvironment of cancer cells. It is notable that SDCs and their soluble counterparts may affect either the behavior of cancer cells and/or their microenvironment during cancer progression. The importance of these molecules has been highlighted since HSPGs have been proposed as prognostic markers of solid tumors and hematopoietic malignancies. Going a step further down the line, the multi-actions of SDCs in many levels make them appealing as potential pharmacological targets, either by targeting directly the tumor or indirectly the adjacent stroma.
Collapse
Affiliation(s)
- Despoina Barbouri
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Nikolaos Afratis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Chrisostomi Gialeli
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece
| |
Collapse
|
35
|
De Rossi G, Whiteford JR. Novel insight into the biological functions of syndecan ectodomain core proteins. Biofactors 2013; 39:374-82. [PMID: 23559542 DOI: 10.1002/biof.1104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/18/2013] [Indexed: 01/02/2023]
Abstract
Syndecans are a four member family of multifunctional transmembrane heparan sulphate bearing cell surface receptors. Each family member has common molecular architecture but a distinct expression profile. Numerous molecular interactions between syndecan heparan sulphate chains, growth factors, cytokines, and extracellular matrix molecules have been reported and syndecans are intimately associated with cell adhesion and migration. Here, we describe the important emerging concept that contained within syndecan extracellular core proteins are "adhesion regulatory domains." Cell adhesion is driven by the integrins and syndecan ectodomain adhesion regulatory domains can alter integrin driven cellular responses. Cell adhesion and migration is central to numerous pathologies and an understanding of how syndecan ectodomains influence integrins will lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Giulia De Rossi
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6B, UK
| | | |
Collapse
|
36
|
Lord MS, Whitelock JM. Recombinant production of proteoglycans and their bioactive domains. FEBS J 2013; 280:2490-510. [DOI: 10.1111/febs.12197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/04/2013] [Accepted: 02/15/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Megan S. Lord
- Graduate School of Biomedical Engineering; The University of New South Wales; Sydney; NSW; Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering; The University of New South Wales; Sydney; NSW; Australia
| |
Collapse
|
37
|
Song Y, McFarland DC, Velleman SG. Growth and sex effects on the expression of syndecan-4 and glypican-1 in turkey myogenic satellite cell populations. Mol Cell Biochem 2013; 378:65-72. [PMID: 23435996 DOI: 10.1007/s11010-013-1594-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/08/2013] [Indexed: 10/27/2022]
Abstract
The adult skeletal muscle stem cells, satellite cells, are responsible for skeletal muscle growth and regeneration. Satellite cells represent a heterogeneous cell population that differentially express cell surface markers. The membrane-associated heparan sulfate proteoglycans, syndecan-4, and glypican-1, are differentially expressed by satellite cells during the proliferation and differentiation stages of satellite cells. However, how the population of syndecan-4- or glypican-1-positive satellite cells changes during proliferation and differentiation, and how sex and muscle growth potential affect the expression of these genes is unknown. Differences in the amount of satellite cells positive for syndecan-4 or glypican-1 would affect the process of proliferation and differentiation which would impact both muscle mass accretion and the regeneration of muscle. In the current study, the percentage of satellite cells positive for syndecan-4 or glypican-1 from male and female turkeys from a Randombred Control Line 2 and a line (F) selected for increased 16-week body weight were measured during proliferation and differentiation. Growth selection altered the population of syndecan-4- and glypican-1-positive satellite cells and there were sex differences in the percentage of syndecan-4- and glypican-1-positive satellite cells. This study provides new information on dynamic changes in syndecan-4- and glypican-1-positive satellite cells showing that they are differentially expressed during myogenesis and growth selection and sex affects their expression.
Collapse
Affiliation(s)
- Yan Song
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | | | | |
Collapse
|
38
|
Dwivedi PP, Lam N, Powell BC. Boning up on glypicans-opportunities for new insights into bone biology. Cell Biochem Funct 2013; 31:91-114. [DOI: 10.1002/cbf.2939] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/09/2012] [Accepted: 11/16/2012] [Indexed: 01/01/2023]
Affiliation(s)
| | - N. Lam
- Craniofacial Research Group; Women's and Children's Health Research Institute; North Adelaide; South Australia; Australia
| | | |
Collapse
|
39
|
Murakami K, Yoshida S. Nerve injury induces the expression of syndecan-1 heparan sulfate proteoglycan in peripheral motor neurons. Neurosci Lett 2012; 527:28-33. [PMID: 22944346 DOI: 10.1016/j.neulet.2012.08.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/02/2012] [Accepted: 08/23/2012] [Indexed: 01/28/2023]
Abstract
Heparan sulfate proteoglycans play important roles in embryogenesis, including the development of the central nervous system. However, their function in nerve regeneration is not yet understood. We previously reported that nerve injury induces the expression of heparan sulfate glycosaminoglycans and syndecan-1, a heparan sulfate proteoglycan, in injured hypoglossal motor neurons. In this study, we examined the expression of syndecan family members, including syndecan-1, in injured hypoglossal motor neurons after hypoglossal nerve axotomy. We could not detect any changes in expression after axotomy, except for syndecan-1. The expression of syndecan-1 was markedly increased on post-operative day 7. Syndecan-1 was localized not only in the cell bodies of hypoglossal motor neurons, but also in the injured hypoglossal nerve, and it accumulated in the terminals of regenerating fibers. Similarly, facial nerve axotomy and vagus nerve axotomy induced the expression of syndecan-1 in the facial nucleus, dorsal nucleus of vagus and ambiguous nucleus, respectively. However, sciatic nerve axotomy induced very little syndecan-1 expression in injured spinal motor neurons. These results suggest that syndecan-1 may have a crucial role in the survival of injured motor neurons and in nerve regeneration after injury. Our observations also reveal the diversity of peripheral motor neurons.
Collapse
Affiliation(s)
- Koichi Murakami
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Japan.
| | | |
Collapse
|
40
|
Syndecans play dual roles as cell adhesion receptors and docking receptors. FEBS Lett 2012; 586:2207-11. [DOI: 10.1016/j.febslet.2012.05.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/03/2012] [Accepted: 05/22/2012] [Indexed: 02/01/2023]
|
41
|
Lambaerts K, Van Dyck S, Mortier E, Ivarsson Y, Degeest G, Luyten A, Vermeiren E, Peers B, David G, Zimmermann P. Syntenin, a syndecan adaptor and an Arf6 phosphatidylinositol 4,5-bisphosphate effector, is essential for epiboly and gastrulation cell movements in zebrafish. J Cell Sci 2012; 125:1129-40. [PMID: 22399807 DOI: 10.1242/jcs.089987] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Epiboly, the spreading and the thinning of the blastoderm to cover the yolk cell and close the blastopore in fish embryos, is central to the process of gastrulation. Despite its fundamental importance, little is known about the molecular mechanisms that control this coordinated cell movement. By a combination of knockdown studies and rescue experiments in zebrafish (Danio rerio), we show that epiboly relies on the molecular networking of syntenin with syndecan heparan sulphate proteoglycans, which act as co-receptors for adhesion molecules and growth factors. Furthermore, we show that the interaction of syntenin with phosphatidylinositol 4,5-bisphosphate (PIP2) and with the small GTPase ADP-ribosylation factor 6 (Arf6), which regulate the endocytic recycling of syndecan, is necessary for epiboly progression. Analysis of the earliest cellular defects suggests a role for syntenin in the autonomous vegetal expansion of the yolk syncytial layer and the rearrangement of the actin cytoskeleton in extra-embryonic tissues, but not in embryonic cell fate determination. This study identifies the importance of the syntenin-syndecan-PIP2-Arf6 complex for the progression of fish epiboly and establishes its key role in directional cell movements during early development.
Collapse
Affiliation(s)
- Kathleen Lambaerts
- Laboratory for Signal Integration in Cell Fate Decision, Department of Human Genetics and VIB, K.U.Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Velleman SG, Shin J, Li X, Song Y. Review: The skeletal muscle extracellular matrix: Possible roles in the regulation of muscle development and growth. CANADIAN JOURNAL OF ANIMAL SCIENCE 2012. [DOI: 10.4141/cjas2011-098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Velleman, S. G., Shin, J., Li, X. and Song, Y. 2012. Review: The skeletal muscle extracellular matrix: Possible roles in the regulation of muscle development and growth. Can. J. Anim. Sci. 92: 1–10. Skeletal muscle fibers are surrounded by an extrinsic extracellular matrix environment. The extracellular matrix is composed of collagens, proteoglycans, glycoproteins, growth factors, and cytokines. How the extracellular matrix influences skeletal muscle development and growth is an area that is not completely understood at this time. Studies on myogenesis have largely been directed toward the cellular components and overlooked that muscle cells secrete a complex extracellular matrix network. The extracellular matrix modulates muscle development by acting as a substrate for muscle cell migration, growth factor regulation, signal transduction of information from the extracellular matrix to the intrinsic cellular environment, and provides a cellular structural architecture framework necessary for tissue function. This paper reviews extracellular matrix regulation of muscle growth with a focus on secreted proteoglycans, cell surface proteoglycans, growth factors and cytokines, and the dynamic nature of the skeletal muscle extracellular matrix, because of its impact on the regulation of muscle cell proliferation and differentiation during myogenesis.
Collapse
Affiliation(s)
- Sandra G. Velleman
- Ohio Agricultural Research and Development Center/The Ohio State University, Department of Animal Sciences, Wooster, OH 44691, USA
| | - Jonghyun Shin
- Ohio Agricultural Research and Development Center/The Ohio State University, Department of Animal Sciences, Wooster, OH 44691, USA
| | - Xuehui Li
- University of Florida, Department of Anatomy and Cell Biology, Gainesville, FL 32610, USA
| | - Yan Song
- Ohio Agricultural Research and Development Center/The Ohio State University, Department of Animal Sciences, Wooster, OH 44691, USA
| |
Collapse
|
43
|
Cassano M, Dellavalle A, Tedesco FS, Quattrocelli M, Crippa S, Ronzoni F, Salvade A, Berardi E, Torrente Y, Cossu G, Sampaolesi M. Alpha sarcoglycan is required for FGF-dependent myogenic progenitor cell proliferation in vitro and in vivo. Development 2011; 138:4523-33. [PMID: 21903674 DOI: 10.1242/dev.070706] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mice deficient in α-sarcoglycan (Sgca-null mice) develop progressive muscular dystrophy and serve as a model for human limb girdle muscular dystrophy type 2D. Sgca-null mice suffer a more severe myopathy than that of mdx mice, the model for Duchenne muscular dystrophy. This is the opposite of what is observed in humans and the reason for this is unknown. In an attempt to understand the cellular basis of this severe muscular dystrophy, we isolated clonal populations of myogenic progenitor cells (MPCs), the resident postnatal muscle progenitors of dystrophic and wild-type mice. MPCs from Sgca-null mice generated much smaller clones than MPCs from wild-type or mdx dystrophic mice. Impaired proliferation of Sgca-null myogenic precursors was confirmed by single fiber analysis and this difference correlated with Sgca expression during MPC proliferation. In the absence of dystrophin and associated proteins, which are only expressed after differentiation, SGCA complexes with and stabilizes FGFR1. Deficiency of Sgca leads to an absence of FGFR1 expression at the membrane and impaired MPC proliferation in response to bFGF. The low proliferation rate of Sgca-null MPCs was rescued by transduction with Sgca-expressing lentiviral vectors. When transplanted into dystrophic muscle, Sgca-null MPCs exhibited reduced engraftment. The reduced proliferative ability of Sgca-null MPCs explains, at least in part, the severity of this muscular dystrophy and also why wild-type donor progenitor cells engraft efficiently and consequently ameliorate disease.
Collapse
Affiliation(s)
- Marco Cassano
- Laboratory of Translational Cardiomyology, Stem Cell Interdepartmental Institute, KU Leuven, Herestraat 49 O&N1 bus 814, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Ikesue M, Matsui Y, Ohta D, Danzaki K, Ito K, Kanayama M, Kurotaki D, Morimoto J, Kojima T, Tsutsui H, Uede T. Syndecan-4 Deficiency Limits Neointimal Formation After Vascular Injury by Regulating Vascular Smooth Muscle Cell Proliferation and Vascular Progenitor Cell Mobilization. Arterioscler Thromb Vasc Biol 2011; 31:1066-74. [DOI: 10.1161/atvbaha.110.217703] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Syndecan-4 (Syn4) is a heparan sulfate proteoglycan and works as a coreceptor for various growth factors. We examined whether Syn4 could be involved in the development of neointimal formation in vivo.
Methods and Results—
Wild-type (WT) and Syn4-deficient (Syn4
−/−
) mice were subjected to wire-induced femoral artery injury.
Syn4
mRNA was upregulated after vascular injury in WT mice. Neointimal formation was attenuated in Syn4
−/−
mice, concomitantly with the reduction of Ki67-positive vascular smooth muscle cells (VSMCs). Basic-fibroblast growth factor– or platelet-derived growth factor-BB–induced proliferation, extracellular signal-regulated kinase activation, and expression of cyclin D1 and Bcl-2 were impaired in VSMCs from Syn4
−/−
mice. To examine the role of Syn4 in bone marrow (BM)–derived vascular progenitor cells (VPCs) and vascular walls, we generated chimeric mice by replacing the BM cells of WT and Syn4
−/−
mice with those of WT or Syn4
−/−
mice. Syn4 expressed by both vascular walls and VPCs contributed to the neointimal formation after vascular injury. Although the numbers of VPCs were compatible between WT and Syn4
−/−
mice, mobilization of VPCs from BM after vascular injury was defective in Syn4
−/−
mice.
Conclusion—
Syn4 deficiency limits neointimal formation after vascular injury by regulating VSMC proliferation and VPC mobilization. Therefore, Syn4 may be a novel therapeutic target for preventing arterial restenosis after angioplasty.
Collapse
Affiliation(s)
- Masahiro Ikesue
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Yutaka Matsui
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Daichi Ohta
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Keiko Danzaki
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Koyu Ito
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Masashi Kanayama
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Daisuke Kurotaki
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Junko Morimoto
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Tetsuhito Kojima
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Hiroyuki Tsutsui
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Toshimitsu Uede
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| |
Collapse
|
46
|
Common variation in GPC5 is associated with acquired nephrotic syndrome. Nat Genet 2011; 43:459-63. [PMID: 21441931 DOI: 10.1038/ng.792] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/23/2011] [Indexed: 12/25/2022]
Abstract
Severe proteinuria is a defining factor of nephrotic syndrome irrespective of the etiology. Investigation of congenital nephrotic syndrome has shown that dysfunction of glomerular epithelial cells (podocytes) plays a crucial role in this disease. Acquired nephrotic syndrome is also assumed to be associated with podocyte injury. Here we identify an association between variants in GPC5, encoding glypican-5, and acquired nephrotic syndrome through a genome-wide association study and replication analysis (P value under a recessive model (P(rec)) = 6.0 × 10(-11), odds ratio = 2.54). We show that GPC5 is expressed in podocytes and that the risk genotype is associated with higher expression. We further show that podocyte-specific knockdown and systemic short interfering RNA injection confers resistance to podocyte injury in mouse models of nephrosis. This study identifies GPC5 as a new susceptibility gene for nephrotic syndrome and implicates GPC5 as a promising therapeutic target for reducing podocyte vulnerability in glomerular disease.
Collapse
|
47
|
Manon-Jensen T, Itoh Y, Couchman JR. Proteoglycans in health and disease: the multiple roles of syndecan shedding. FEBS J 2010; 277:3876-89. [DOI: 10.1111/j.1742-4658.2010.07798.x] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Ugarte G, Santander C, Brandan E. Syndecan-4 and β1 integrin are regulated by electrical activity in skeletal muscle: Implications for cell adhesion. Matrix Biol 2010; 29:383-92. [DOI: 10.1016/j.matbio.2010.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/19/2010] [Accepted: 03/24/2010] [Indexed: 12/12/2022]
|
49
|
Gutiérrez J, Brandan E. A novel mechanism of sequestering fibroblast growth factor 2 by glypican in lipid rafts, allowing skeletal muscle differentiation. Mol Cell Biol 2010; 30:1634-49. [PMID: 20100867 PMCID: PMC2838066 DOI: 10.1128/mcb.01164-09] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 09/25/2009] [Accepted: 01/14/2010] [Indexed: 12/14/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are critical modulators of growth factor activities. Skeletal muscle differentiation is strongly inhibited by fibroblast growth factor 2 (FGF-2). We have shown that HSPGs present at the plasma membrane are expressed in myoblasts and are downregulated during muscle differentiation. An exception is glypican-1, which is present throughout the myogenic process. Myoblasts that do not express glypican-1 exhibit defective differentiation, with an increase in the receptor binding of FGF-2, concomitant with increased signaling. Glypican-1-deficient myoblasts show decreased expression of myogenin, the master gene that controls myogenesis, myosin, and the myoblast fusion index. Reversion of these defects was induced by expression of rat glypican-1. Glypican-1 is the only HSPG localized in lipid raft domains in myoblasts, resulting in the sequestration of FGF-2 away from FGF-2 receptors (FGFRs) located in nonraft domains. A chimeric glypican-1, containing syndecan-1 transmembrane and cytoplasmic domains, is located in nonraft domains interacting with FGFR-IV- and enhanced FGF-2-dependent signaling. Thus, glypican-1 acts as a positive regulator of muscle differentiation by sequestering FGF-2 in lipid rafts and preventing its binding and dependent signaling.
Collapse
Affiliation(s)
- Jaime Gutiérrez
- Centro de Regulación Celular y Patología (CRCP), Centro de Regeneración y Envejecimiento (CARE), Departamento de Biología Celular y Molecular, MIFAB, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Brandan
- Centro de Regulación Celular y Patología (CRCP), Centro de Regeneración y Envejecimiento (CARE), Departamento de Biología Celular y Molecular, MIFAB, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
50
|
Zittermann SI, Capurro MI, Shi W, Filmus J. Soluble glypican 3 inhibits the growth of hepatocellular carcinoma in vitro and in vivo. Int J Cancer 2010; 126:1291-301. [PMID: 19816934 DOI: 10.1002/ijc.24941] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The heterogeneity of the molecular pathology of HCC poses a formidable obstacle to the development of non-cytotoxic therapies. Several pro-tumorigenic signaling pathways can be aberrantly activated in HCC, including those triggered by Wnts. Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan that is overexpressed in most HCCs, promotes the growth of these tumors by stimulating Wnt signaling. Because GPC3 binds with high affinity to Wnts, and its growth-promoting activity requires attachment to the cell membrane, we have hypothesized that a mutated GPC3 lacking the GPI anchoring domain (sGPC3) will block Wnt signaling and inhibit the growth of Wnt-dependent tumors. In addition, because sGPC3 displays heparan sulfate chains, this secreted glypican could also inhibit HCC growth by blocking the activity of other heparin-binding growth factors. To test this hypothesis, HCC cell lines were infected with an sGPC3-expressing lentivirus or virus control, and the effect of sGPC3 on the in vitro and in vivo growth was investigated. In addition, the signaling pathways targeted by sGPC3 were identified. We observed that sGPC3-expressing cells had lower proliferation rate. In addition, sGPC3 significantly inhibited the in vivo growth of the Huh6, HepG2 and Huh7 HCC cell lines. sGPC3 blocked Wnt signaling in Huh6- and Huh7-derived tumors and Erk1/2 and Akt phosphorylation in tumors generated by Huh7 and HepG2 cells, respectively. An anti-angiogenic effect in Huh7 and HepG2-derived tumors was also observed. We conclude that sGPC3 can inhibit HCC tumorigenicity by blocking the activity of several pro-tumorigenic growth factors.
Collapse
Affiliation(s)
- Sandra I Zittermann
- Division of Molecular and Cellular Biology, Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|