1
|
Pradhan UK, Behera P, Das R, Naha S, Gupta A, Parsad R, Pradhan SK, Meher PK. AScirRNA: A novel computational approach to discover abiotic stress-responsive circular RNAs in plant genome. Comput Biol Chem 2024; 113:108205. [PMID: 39265460 DOI: 10.1016/j.compbiolchem.2024.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/12/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
In the realm of plant biology, understanding the intricate regulatory mechanisms governing stress responses stands as a pivotal pursuit. Circular RNAs (circRNAs), emerging as critical players in gene regulation, have garnered attention in recent days for their potential roles in abiotic stress adaptation. A comprehensive grasp of circRNAs' functions in stress response offers avenues for breeders to manipulating plants to develop abiotic stress resistant crop cultivars to thrive in challenging climates. This study pioneers a machine learning-based model for predicting abiotic stress-responsive circRNAs. The K-tuple nucleotide composition (KNC) and Pseudo KNC (PKNC) features were utilized to numerically represent circRNAs. Three different feature selection strategies were employed to select relevant and non-redundant features. Eight shallow and four deep learning algorithms were evaluated to build the final predictive model. Following five-fold cross-validation process, XGBoost learning algorithm demonstrated superior performance with LightGBM-chosen 260 KNC features (Accuracy: 74.55 %, auROC: 81.23 %, auPRC: 76.52 %) and 160 PKNC features (Accuracy: 74.32 %, auROC: 81.04 %, auPRC: 76.43 %), over other combinations of learning algorithms and feature selection techniques. Further, the robustness of the developed models were evaluated using an independent test dataset, where the overall accuracy, auROC and auPRC were found to be 73.13 %, 72.34 % and 72.68 % for KNC feature set and 73.52 %, 79.53 % and 73.09 % for PKNC feature set, respectively. This computational approach was also integrated into an online prediction tool, AScirRNA (https://iasri-sg.icar.gov.in/ascirna/) for easy prediction by the users. Both the proposed model and the developed tool are poised to augment ongoing efforts in identifying stress-responsive circRNAs in plants.
Collapse
Affiliation(s)
- Upendra Kumar Pradhan
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| | - Prasanjit Behera
- Department of Bioinformatics, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha 751003, India.
| | - Ritwika Das
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| | - Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| | - Ajit Gupta
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| | - Rajender Parsad
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha 751003, India.
| | - Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| |
Collapse
|
2
|
Zheng Y, Li H, Lin S. m7GRegpred: substrate prediction of N7-methylguanosine (m7G) writers and readers based on sequencing features. Front Genet 2024; 15:1469011. [PMID: 39262420 PMCID: PMC11387174 DOI: 10.3389/fgene.2024.1469011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
N7-Methylguanosine (m7G) is important RNA modification at internal and the cap structure of five terminal end of message RNA. It is essential for RNA stability of RNA, the efficiency of translation, and various intracellular RNA processing pathways. Given the significance of the m7G modification, numerous studies have been conducted to predict m7G sites. To further elucidate the regulatory mechanisms surrounding m7G, we introduce a novel bioinformatics framework, m7GRegpred, designed to forecast the targets of the m7G methyltransferases METTL1 and WDR4, and m7G readers QKI5, QKI6, and QKI7 for the first time. We integrated different features to build predictors, with AUROC scores of 0.856, 0.857, 0.780, 0.776, 0.818 for METTL1, WDR4, QKI5, QKI6, and QKI7, respectively. In addition, the effect of window lengths and algorism were systemically evaluated in this work. The finial model was summarized in a user-friendly webserver: http://modinfor.com/m7GRegpred/. Our research indicates that the substrates of m7G regulators can be identified and may potentially advance the study of m7G regulators under unique conditions.
Collapse
Affiliation(s)
- Yu Zheng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Haipeng Li
- Graduate School of Fujian Medical University, Fuzhou, Fujian, China
- Department of Operating Room, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shaofeng Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Masoudi-Sobhanzadeh Y, Li S, Peng Y, Panchenko A. Interpretable deep residual network uncovers nucleosome positioning and associated features. Nucleic Acids Res 2024; 52:8734-8745. [PMID: 39036965 PMCID: PMC11347144 DOI: 10.1093/nar/gkae623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/31/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
Nucleosomes represent elementary building units of eukaryotic chromosomes and consist of DNA wrapped around a histone octamer flanked by linker DNA segments. Nucleosomes are central in epigenetic pathways and their genomic positioning is associated with regulation of gene expression, DNA replication, DNA methylation and DNA repair, among other functions. Building on prior discoveries that DNA sequences noticeably affect nucleosome positioning, our objective is to identify nucleosome positions and related features across entire genome. Here, we introduce an interpretable framework based on the concepts of deep residual networks (NuPoSe). Trained on high-coverage human experimental MNase-seq data, NuPoSe is able to learn sequence and structural patterns associated with nucleosome organization in human genome. NuPoSe can be also applied to unseen data from different organisms and cell types. Our findings point to 43 informative features, most of them constitute tri-nucleotides, di-nucleotides and one tetra-nucleotide. Most features are significantly associated with the nucleosomal structural characteristics, namely, periodicity of nucleosomal DNA and its location with respect to a histone octamer. Importantly, we show that features derived from the 27 bp linker DNA flanking nucleosomes contribute up to 10% to the quality of the prediction model. This, along with the comprehensive training sets, deep-learning architecture, and feature selection method, may contribute to the NuPoSe's 80-89% classification accuracy on different independent datasets.
Collapse
Affiliation(s)
| | - Shuxiang Li
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, K7L3N6, Canada
| | - Yunhui Peng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, K7L3N6, Canada
- Department of Biology and Molecular Sciences, Queen's University, Kingston, K7L3N6, Canada
- School of Computing, Queen's University, Kingston, K7L3N6, Canada
- Ontario Institute of Cancer Research, Toronto, M5G 0A3, Canada
| |
Collapse
|
4
|
Sahrhage M, Paul NB, Beißbarth T, Haubrock M. The importance of DNA sequence for nucleosome positioning in transcriptional regulation. Life Sci Alliance 2024; 7:e202302380. [PMID: 38830772 PMCID: PMC11147951 DOI: 10.26508/lsa.202302380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Nucleosome positioning is a key factor for transcriptional regulation. Nucleosomes regulate the dynamic accessibility of chromatin and interact with the transcription machinery at every stage. Influences to steer nucleosome positioning are diverse, and the according importance of the DNA sequence in contrast to active chromatin remodeling has been the subject of long discussion. In this study, we evaluate the functional role of DNA sequence for all major elements along the process of transcription. We developed a random forest classifier based on local DNA structure that assesses the sequence-intrinsic support for nucleosome positioning. On this basis, we created a simple data resource that we applied genome-wide to the human genome. In our comprehensive analysis, we found a special role of DNA in mediating the competition of nucleosomes with cis-regulatory elements, in enabling steady transcription, for positioning of stable nucleosomes in exons, and for repelling nucleosomes during transcription termination. In contrast, we relate these findings to concurrent processes that generate strongly positioned nucleosomes in vivo that are not mediated by sequence, such as energy-dependent remodeling of chromatin.
Collapse
Affiliation(s)
- Malte Sahrhage
- Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany
| | - Niels Benjamin Paul
- Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany
- Department of Cardiology and Pneumology, University Medical Center, Göttingen, Germany
| | - Tim Beißbarth
- Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany
| | - Martin Haubrock
- Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany
| |
Collapse
|
5
|
Pradhan UK, Meher PK, Naha S, Das R, Gupta A, Parsad R. ProkDBP: Toward more precise identification of prokaryotic DNA binding proteins. Protein Sci 2024; 33:e5015. [PMID: 38747369 PMCID: PMC11094783 DOI: 10.1002/pro.5015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/19/2024]
Abstract
Prokaryotic DNA binding proteins (DBPs) play pivotal roles in governing gene regulation, DNA replication, and various cellular functions. Accurate computational models for predicting prokaryotic DBPs hold immense promise in accelerating the discovery of novel proteins, fostering a deeper understanding of prokaryotic biology, and facilitating the development of therapeutics targeting for potential disease interventions. However, existing generic prediction models often exhibit lower accuracy in predicting prokaryotic DBPs. To address this gap, we introduce ProkDBP, a novel machine learning-driven computational model for prediction of prokaryotic DBPs. For prediction, a total of nine shallow learning algorithms and five deep learning models were utilized, with the shallow learning models demonstrating higher performance metrics compared to their deep learning counterparts. The light gradient boosting machine (LGBM), coupled with evolutionarily significant features selected via random forest variable importance measure (RF-VIM) yielded the highest five-fold cross-validation accuracy. The model achieved the highest auROC (0.9534) and auPRC (0.9575) among the 14 machine learning models evaluated. Additionally, ProkDBP demonstrated substantial performance with an independent dataset, exhibiting higher values of auROC (0.9332) and auPRC (0.9371). Notably, when benchmarked against several cutting-edge existing models, ProkDBP showcased superior predictive accuracy. Furthermore, to promote accessibility and usability, ProkDBP (https://iasri-sg.icar.gov.in/prokdbp/) is available as an online prediction tool, enabling free access to interested users. This tool stands as a significant contribution, enhancing the repertoire of resources for accurate and efficient prediction of prokaryotic DBPs.
Collapse
Affiliation(s)
- Upendra Kumar Pradhan
- Division of Statistical GeneticsICAR‐Indian Agricultural Statistics Research Institute, PUSANew DelhiIndia
| | - Prabina Kumar Meher
- Division of Statistical GeneticsICAR‐Indian Agricultural Statistics Research Institute, PUSANew DelhiIndia
| | - Sanchita Naha
- Division of Computer ApplicationsICAR‐Indian Agricultural Statistics Research Institute, PUSANew DelhiIndia
| | - Ritwika Das
- Division of Agricultural BioinformaticsICAR‐Indian Agricultural Statistics Research Institute, PUSANew DelhiIndia
| | - Ajit Gupta
- Division of Statistical GeneticsICAR‐Indian Agricultural Statistics Research Institute, PUSANew DelhiIndia
| | - Rajender Parsad
- ICAR‐Indian Agricultural Statistics Research Institute, PUSANew DelhiIndia
| |
Collapse
|
6
|
Abbasi AF, Asim MN, Ahmed S, Dengel A. Long extrachromosomal circular DNA identification by fusing sequence-derived features of physicochemical properties and nucleotide distribution patterns. Sci Rep 2024; 14:9466. [PMID: 38658614 PMCID: PMC11043385 DOI: 10.1038/s41598-024-57457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Long extrachromosomal circular DNA (leccDNA) regulates several biological processes such as genomic instability, gene amplification, and oncogenesis. The identification of leccDNA holds significant importance to investigate its potential associations with cancer, autoimmune, cardiovascular, and neurological diseases. In addition, understanding these associations can provide valuable insights about disease mechanisms and potential therapeutic approaches. Conventionally, wet lab-based methods are utilized to identify leccDNA, which are hindered by the need for prior knowledge, and resource-intensive processes, potentially limiting their broader applicability. To empower the process of leccDNA identification across multiple species, the paper in hand presents the very first computational predictor. The proposed iLEC-DNA predictor makes use of SVM classifier along with sequence-derived nucleotide distribution patterns and physicochemical properties-based features. In addition, the study introduces a set of 12 benchmark leccDNA datasets related to three species, namely Homo sapiens (HM), Arabidopsis Thaliana (AT), and Saccharomyces cerevisiae (SC/YS). It performs large-scale experimentation across 12 benchmark datasets under different experimental settings using the proposed predictor, more than 140 baseline predictors, and 858 encoder ensembles. The proposed predictor outperforms baseline predictors and encoder ensembles across diverse leccDNA datasets by producing average performance values of 81.09%, 62.2% and 81.08% in terms of ACC, MCC and AUC-ROC across all the datasets. The source code of the proposed and baseline predictors is available at https://github.com/FAhtisham/Extrachrosmosomal-DNA-Prediction . To facilitate the scientific community, a web application for leccDNA identification is available at https://sds_genetic_analysis.opendfki.de/iLEC_DNA/.
Collapse
Affiliation(s)
- Ahtisham Fazeel Abbasi
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, 67663, Kaiserslautern, Germany.
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Germany.
| | - Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Germany.
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Germany
| | - Andreas Dengel
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, 67663, Kaiserslautern, Germany
- German Research Center for Artificial Intelligence GmbH, 67663, Kaiserslautern, Germany
| |
Collapse
|
7
|
Wang M, Ali H, Xu Y, Xie J, Xu S. BiPSTP: Sequence feature encoding method for identifying different RNA modifications with bidirectional position-specific trinucleotides propensities. J Biol Chem 2024; 300:107140. [PMID: 38447795 PMCID: PMC10997841 DOI: 10.1016/j.jbc.2024.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
RNA modification, a posttranscriptional regulatory mechanism, significantly influences RNA biogenesis and function. The accurate identification of modification sites is paramount for investigating their biological implications. Methods for encoding RNA sequence into numerical data play a crucial role in developing robust models for predicting modification sites. However, existing techniques suffer from limitations, including inadequate information representation, challenges in effectively integrating positional and sequential information, and the generation of irrelevant or redundant features when combining multiple approaches. These deficiencies hinder the effectiveness of machine learning models in addressing the performance challenges associated with predicting RNA modification sites. Here, we introduce a novel RNA sequence feature representation method, named BiPSTP, which utilizes bidirectional trinucleotide position-specific propensities. We employ the parameter ξ to denote the interval between the current nucleotide and its adjacent forward or backward dinucleotide, enabling the extraction of positional and sequential information from RNA sequences. Leveraging the BiPSTP method, we have developed the prediction model mRNAPred using support vector machine classifier to identify multiple types of RNA modification sites. We evaluate the performance of our BiPSTP method and mRNAPred model across 12 distinct RNA modification types. Our experimental results demonstrate the superiority of the mRNAPred model compared to state-of-art models in the domain of RNA modification sites identification. Importantly, our BiPSTP method enhances the robustness and generalization performance of prediction models. Notably, it can be applied to feature extraction from DNA sequences to predict other biological modification sites.
Collapse
Affiliation(s)
- Mingzhao Wang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Haider Ali
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Yandi Xu
- School of Computer Science, Shaanxi Normal University, Xi'an, China; College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Juanying Xie
- School of Computer Science, Shaanxi Normal University, Xi'an, China.
| | - Shengquan Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
8
|
Li X, Li H, Yang Z, Wu Y, Zhang M. Exploring objective feature sets in constructing the evolution relationship of animal genome sequences. BMC Genomics 2023; 24:634. [PMID: 37872534 PMCID: PMC10594854 DOI: 10.1186/s12864-023-09747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Exploring evolution regularities of genome sequences and constructing more objective species evolution relationships at the genomic level are high-profile topics. Based on the evolution mechanism of genome sequences proposed in our previous research, we found that only the 8-mers containing CG or TA dinucleotides correlate directly with the evolution of genome sequences, and the relative frequency rather than the actual frequency of these 8-mers is more suitable to characterize the evolution of genome sequences. RESULT Therefore, two types of feature sets were obtained, they are the relative frequency sets of CG1 + CG2 8-mers and TA1 + TA2 8-mers. The evolution relationships of mammals and reptiles were constructed by the relative frequency set of CG1 + CG2 8-mers, and two types of evolution relationships of insects were constructed by the relative frequency sets of CG1 + CG2 8-mers and TA1 + TA2 8-mers respectively. Through comparison and analysis, we found that evolution relationships are consistent with the known conclusions. According to the evolution mechanism, we considered that the evolution relationship constructed by CG1 + CG2 8-mers reflects the evolution state of genome sequences in current time, and the evolution relationship constructed by TA1 + TA2 8-mers reflects the evolution state in the early stage. CONCLUSION Our study provides objective feature sets in constructing evolution relationships at the genomic level.
Collapse
Affiliation(s)
- Xiaolong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Hong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China.
| | - Zhenhua Yang
- School of Economics and Management, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yuan Wu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Mengchuan Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
9
|
Xu Z, Wang X, Meng J, Zhang L, Song B. m5U-GEPred: prediction of RNA 5-methyluridine sites based on sequence-derived and graph embedding features. Front Microbiol 2023; 14:1277099. [PMID: 37937221 PMCID: PMC10627201 DOI: 10.3389/fmicb.2023.1277099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
5-Methyluridine (m5U) is one of the most common post-transcriptional RNA modifications, which is involved in a variety of important biological processes and disease development. The precise identification of the m5U sites allows for a better understanding of the biological processes of RNA and contributes to the discovery of new RNA functional and therapeutic targets. Here, we present m5U-GEPred, a prediction framework, to combine sequence characteristics and graph embedding-based information for m5U identification. The graph embedding approach was introduced to extract the global information of training data that complemented the local information represented by conventional sequence features, thereby enhancing the prediction performance of m5U identification. m5U-GEPred outperformed the state-of-the-art m5U predictors built on two independent species, with an average AUROC of 0.984 and 0.985 tested on human and yeast transcriptomes, respectively. To further validate the performance of our newly proposed framework, the experimentally validated m5U sites identified from Oxford Nanopore Technology (ONT) were collected as independent testing data, and in this project, m5U-GEPred achieved reasonable prediction performance with ACC of 91.84%. We hope that m5U-GEPred should make a useful computational alternative for m5U identification.
Collapse
Affiliation(s)
- Zhongxing Xu
- Department of Public Health, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of AI and Advanced Computing, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Xuan Wang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- AI University Research Centre, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Lin Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Bowen Song
- Department of Public Health, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Hu W, Guan L, Li M. Prediction of DNA Methylation based on Multi-dimensional feature encoding and double convolutional fully connected convolutional neural network. PLoS Comput Biol 2023; 19:e1011370. [PMID: 37639434 PMCID: PMC10461834 DOI: 10.1371/journal.pcbi.1011370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023] Open
Abstract
DNA methylation takes on critical significance to the regulation of gene expression by affecting the stability of DNA and changing the structure of chromosomes. DNA methylation modification sites should be identified, which lays a solid basis for gaining more insights into their biological functions. Existing machine learning-based methods of predicting DNA methylation have not fully exploited the hidden multidimensional information in DNA gene sequences, such that the prediction accuracy of models is significantly limited. Besides, most models have been built in terms of a single methylation type. To address the above-mentioned issues, a deep learning-based method was proposed in this study for DNA methylation site prediction, termed the MEDCNN model. The MEDCNN model is capable of extracting feature information from gene sequences in three dimensions (i.e., positional information, biological information, and chemical information). Moreover, the proposed method employs a convolutional neural network model with double convolutional layers and double fully connected layers while iteratively updating the gradient descent algorithm using the cross-entropy loss function to increase the prediction accuracy of the model. Besides, the MEDCNN model can predict different types of DNA methylation sites. As indicated by the experimental results,the deep learning method based on coding from multiple dimensions outperformed single coding methods, and the MEDCNN model was highly applicable and outperformed existing models in predicting DNA methylation between different species. As revealed by the above-described findings, the MEDCNN model can be effective in predicting DNA methylation sites.
Collapse
Affiliation(s)
- Wenxing Hu
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Lixin Guan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Mengshan Li
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
11
|
Alotaibi FM, Khan YD. A Framework for Prediction of Oncogenomic Progression Aiding Personalized Treatment of Gastric Cancer. Diagnostics (Basel) 2023; 13:2291. [PMID: 37443684 DOI: 10.3390/diagnostics13132291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Mutations in genes can alter their DNA patterns, and by recognizing these mutations, many carcinomas can be diagnosed in the progression stages. The human body contains many hidden and enigmatic features that humankind has not yet fully understood. A total of 7539 neoplasm cases were reported from 1 January 2021 to 31 December 2021. Of these, 3156 were seen in males (41.9%) and 4383 (58.1%) in female patients. Several machine learning and deep learning frameworks are already implemented to detect mutations, but these techniques lack generalized datasets and need to be optimized for better results. Deep learning-based neural networks provide the computational power to calculate the complex structures of gastric carcinoma-driven gene mutations. This study proposes deep learning approaches such as long and short-term memory, gated recurrent units and bi-LSTM to help in identifying the progression of gastric carcinoma in an optimized manner. This study includes 61 carcinogenic driver genes whose mutations can cause gastric cancer. The mutation information was downloaded from intOGen.org and normal gene sequences were downloaded from asia.ensembl.org, as explained in the data collection section. The proposed deep learning models are validated using the self-consistency test (SCT), 10-fold cross-validation test (FCVT), and independent set test (IST); the IST prediction metrics of accuracy, sensitivity, specificity, MCC and AUC of LSTM, Bi-LSTM, and GRU are 97.18%, 98.35%, 96.01%, 0.94, 0.98; 99.46%, 98.93%, 100%, 0.989, 1.00; 99.46%, 98.93%, 100%, 0.989 and 1.00, respectively.
Collapse
Affiliation(s)
- Fahad M Alotaibi
- Department of Information System, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yaser Daanial Khan
- Department of Computer Science, University of Management and Technology, Lahore 54770, Pakistan
| |
Collapse
|
12
|
Pradhan UK, Meher PK, Naha S, Rao AR, Kumar U, Pal S, Gupta A. ASmiR: a machine learning framework for prediction of abiotic stress-specific miRNAs in plants. Funct Integr Genomics 2023; 23:92. [PMID: 36939943 DOI: 10.1007/s10142-023-01014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 03/21/2023]
Abstract
Abiotic stresses have become a major challenge in recent years due to their pervasive nature and shocking impacts on plant growth, development, and quality. MicroRNAs (miRNAs) play a significant role in plant response to different abiotic stresses. Thus, identification of specific abiotic stress-responsive miRNAs holds immense importance in crop breeding programmes to develop cultivars resistant to abiotic stresses. In this study, we developed a machine learning-based computational model for prediction of miRNAs associated with four specific abiotic stresses such as cold, drought, heat and salt. The pseudo K-tuple nucleotide compositional features of Kmer size 1 to 5 were used to represent miRNAs in numeric form. Feature selection strategy was employed to select important features. With the selected feature sets, support vector machine (SVM) achieved the highest cross-validation accuracy in all four abiotic stress conditions. The highest cross-validated prediction accuracies in terms of area under precision-recall curve were found to be 90.15, 90.09, 87.71, and 89.25% for cold, drought, heat and salt respectively. Overall prediction accuracies for the independent dataset were respectively observed 84.57, 80.62, 80.38 and 82.78%, for the abiotic stresses. The SVM was also seen to outperform different deep learning models for prediction of abiotic stress-responsive miRNAs. To implement our method with ease, an online prediction server "ASmiR" has been established at https://iasri-sg.icar.gov.in/asmir/ . The proposed computational model and the developed prediction tool are believed to supplement the existing effort for identification of specific abiotic stress-responsive miRNAs in plants.
Collapse
Affiliation(s)
- Upendra Kumar Pradhan
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| | - Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India.
| | - Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| | | | - Upendra Kumar
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Soumen Pal
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| | - Ajit Gupta
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| |
Collapse
|
13
|
Shi H, Wu C, Bai T, Chen J, Li Y, Wu H. Identify essential genes based on clustering based synthetic minority oversampling technique. Comput Biol Med 2023; 153:106523. [PMID: 36652869 DOI: 10.1016/j.compbiomed.2022.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Prediction of essential genes in a life organism is one of the central tasks in synthetic biology. Computational predictors are desired because experimental data is often unavailable. Recently, some sequence-based predictors have been constructed to identify essential genes. However, their predictive performance should be further improved. One key problem is how to effectively extract the sequence-based features, which are able to discriminate the essential genes. Another problem is the imbalanced training set. The amount of essential genes in human cell lines is lower than that of non-essential genes. Therefore, predictors trained with such imbalanced training set tend to identify an unseen sequence as a non-essential gene. Here, a new over-sampling strategy was proposed called Clustering based Synthetic Minority Oversampling Technique (CSMOTE) to overcome the imbalanced data issue. Combining CSMOTE with the Z curve, the global features, and Support Vector Machines, a new protocol called iEsGene-CSMOTE was proposed to identify essential genes. The rigorous jackknife cross validation results indicated that iEsGene-CSMOTE is better than the other competing methods. The proposed method outperformed λ-interval Z curve by 35.48% and 11.25% in terms of Sn and BACC, respectively.
Collapse
Affiliation(s)
- Hua Shi
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China.
| | - Chenjin Wu
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China.
| | - Tao Bai
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China; School of Mathematics & Computer Science, Yanan University, Shanxi, 716000, China.
| | - Jiahai Chen
- Xiamen Sankuai Online Technology Co., Ltd, Xiamen, China.
| | - Yan Li
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China.
| | - Hao Wu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
14
|
Su W, Xie XQ, Liu XW, Gao D, Ma CY, Zulfiqar H, Yang H, Lin H, Yu XL, Li YW. iRNA-ac4C: A novel computational method for effectively detecting N4-acetylcytidine sites in human mRNA. Int J Biol Macromol 2023; 227:1174-1181. [PMID: 36470433 DOI: 10.1016/j.ijbiomac.2022.11.299] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022]
Abstract
RNA N4-acetylcytidine (ac4C) is the acetylation of cytidine at the nitrogen-4 position, which is a highly conserved RNA modification and involves a variety of biological processes. Hence, accurate identification of genome-wide ac4C sites is vital for understanding regulation mechanism of gene expression. In this work, a novel predictor, named iRNA-ac4C, was established to identify ac4C sites in human mRNA based on three feature extraction methods, including nucleotide composition, nucleotide chemical property, and accumulated nucleotide frequency. Subsequently, minimum-Redundancy-Maximum-Relevance combined with incremental feature selection strategies was utilized to select the optimal feature subset. According to the optimal feature subset, the best ac4C classification model was trained by gradient boosting decision tree with 10-fold cross-validation. The results of independent testing set indicated that our proposed method could produce encouraging generalization capabilities. For the convenience of other researchers, we established a user-friendly web server which is freely available at http://lin-group.cn/server/iRNA-ac4C/. We hope that the tool could provide guide for wet-experimental scholars.
Collapse
Affiliation(s)
- Wei Su
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xue-Qin Xie
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiao-Wei Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dong Gao
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Cai-Yi Ma
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hasan Zulfiqar
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hui Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hao Lin
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Xiao-Long Yu
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| | - Yan-Wen Li
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China; Key Laboratory of Intelligent Information Processing of Jilin Province, Northeast Normal University, Changchun 130117, China; Institute of Computational Biology, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
15
|
Nabeel Asim M, Ali Ibrahim M, Fazeel A, Dengel A, Ahmed S. DNA-MP: a generalized DNA modifications predictor for multiple species based on powerful sequence encoding method. Brief Bioinform 2023; 24:6931721. [PMID: 36528802 DOI: 10.1093/bib/bbac546] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022] Open
Abstract
Accurate prediction of deoxyribonucleic acid (DNA) modifications is essential to explore and discern the process of cell differentiation, gene expression and epigenetic regulation. Several computational approaches have been proposed for particular type-specific DNA modification prediction. Two recent generalized computational predictors are capable of detecting three different types of DNA modifications; however, type-specific and generalized modifications predictors produce limited performance across multiple species mainly due to the use of ineffective sequence encoding methods. The paper in hand presents a generalized computational approach "DNA-MP" that is competent to more precisely predict three different DNA modifications across multiple species. Proposed DNA-MP approach makes use of a powerful encoding method "position specific nucleotides occurrence based 117 on modification and non-modification class densities normalized difference" (POCD-ND) to generate the statistical representations of DNA sequences and a deep forest classifier for modifications prediction. POCD-ND encoder generates statistical representations by extracting position specific distributional information of nucleotides in the DNA sequences. We perform a comprehensive intrinsic and extrinsic evaluation of the proposed encoder and compare its performance with 32 most widely used encoding methods on $17$ benchmark DNA modifications prediction datasets of $12$ different species using $10$ different machine learning classifiers. Overall, with all classifiers, the proposed POCD-ND encoder outperforms existing $32$ different encoders. Furthermore, combinedly over 5-fold cross validation benchmark datasets and independent test sets, proposed DNA-MP predictor outperforms state-of-the-art type-specific and generalized modifications predictors by an average accuracy of 7% across 4mc datasets, 1.35% across 5hmc datasets and 10% for 6ma datasets. To facilitate the scientific community, the DNA-MP web application is available at https://sds_genetic_analysis.opendfki.de/DNA_Modifications/.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern 67663, Germany.,German Research Center for Artificial Intelligence GmbH, Kaiserslautern 67663, Germany
| | - Muhammad Ali Ibrahim
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern 67663, Germany.,German Research Center for Artificial Intelligence GmbH, Kaiserslautern 67663, Germany
| | - Ahtisham Fazeel
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern 67663, Germany.,German Research Center for Artificial Intelligence GmbH, Kaiserslautern 67663, Germany
| | - Andreas Dengel
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern 67663, Germany.,German Research Center for Artificial Intelligence GmbH, Kaiserslautern 67663, Germany
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern 67663, Germany
| |
Collapse
|
16
|
Zhang S, Wang J, Li X, Liang Y. M6A-GSMS: Computational identification of N 6-methyladenosine sites with GBDT and stacking learning in multiple species. J Biomol Struct Dyn 2022; 40:12380-12391. [PMID: 34459713 DOI: 10.1080/07391102.2021.1970628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
N6-methyladenosine (m6A) is one of the most abundant forms of RNA methylation modifications currently known. It involves a wide range of biological processes, including degradation, stability, alternative splicing, etc. Therefore, the development of convenient and efficient m6A prediction technologies are urgent. In this work, a novel predictor based on GBDT and stacking learning is developed to identify m6A sites, which is called M6A-GSMS. To achieve accurate prediction, we explore RNA sequence information from four aspects: correlation, structure, physicochemical properties and pseudo ribonucleic acid composition. After using the GBDT algorithm for feature selection, a stacking model is constructed by combining seven basic classifiers. Compared with other state-of-the-art methods, the results show that M6A-GSMS can obtain excellent performance for identifying the m6A sites. The prediction accuracy of A.thaliana, D.melanogaster, M.musculus, S.cerevisiae and Human reaches 88.4%, 60.8%, 80.5%, 92.4% and 61.8%, respectively. This method provides an effective prediction for the investigation of m6A sites. In addition, all the datasets and codes are currently available at https://github.com/Wang-Jinyue/M6A-GSMS.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an, P. R. China
| | - Jinyue Wang
- School of Mathematics and Statistics, Xidian University, Xi'an, P. R. China
| | - Xinjie Li
- School of Mathematics and Statistics, Xidian University, Xi'an, P. R. China
| | - Yunyun Liang
- School of Science, Xi'an Polytechnic University, Xi'an, P. R. China
| |
Collapse
|
17
|
Zhang T, Tang Q, Nie F, Zhao Q, Chen W. DeepLncPro: an interpretable convolutional neural network model for identifying long non-coding RNA promoters. Brief Bioinform 2022; 23:6754194. [PMID: 36209437 DOI: 10.1093/bib/bbac447] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA (lncRNA) plays important roles in a series of biological processes. The transcription of lncRNA is regulated by its promoter. Hence, accurate identification of lncRNA promoter will be helpful to understand its regulatory mechanisms. Since experimental techniques remain time consuming for gnome-wide promoter identification, developing computational tools to identify promoters are necessary. However, only few computational methods have been proposed for lncRNA promoter prediction and their performances still have room to be improved. In the present work, a convolutional neural network based model, called DeepLncPro, was proposed to identify lncRNA promoters in human and mouse. Comparative results demonstrated that DeepLncPro was superior to both state-of-the-art machine learning methods and existing models for identifying lncRNA promoters. Furthermore, DeepLncPro has the ability to extract and analyze transcription factor binding motifs from lncRNAs, which made it become an interpretable model. These results indicate that the DeepLncPro can server as a powerful tool for identifying lncRNA promoters. An open-source tool for DeepLncPro was provided at https://github.com/zhangtian-yang/DeepLncPro.
Collapse
Affiliation(s)
- Tianyang Zhang
- School of Life Sciences, North China University of Science and Technology
| | - Qiang Tang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine
| | - Fulei Nie
- School of Life Sciences, North China University of Science and Technology
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning
| | - Wei Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine
| |
Collapse
|
18
|
Zhou Y, Wu T, Jiang Y, Li Y, Li K, Quan L, Lyu Q. DeepNup: Prediction of Nucleosome Positioning from DNA Sequences Using Deep Neural Network. Genes (Basel) 2022; 13:1983. [PMID: 36360220 PMCID: PMC9689664 DOI: 10.3390/genes13111983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 10/29/2024] Open
Abstract
Nucleosome positioning is involved in diverse cellular biological processes by regulating the accessibility of DNA sequences to DNA-binding proteins and plays a vital role. Previous studies have manifested that the intrinsic preference of nucleosomes for DNA sequences may play a dominant role in nucleosome positioning. As a consequence, it is nontrivial to develop computational methods only based on DNA sequence information to accurately identify nucleosome positioning, and thus intend to verify the contribution of DNA sequences responsible for nucleosome positioning. In this work, we propose a new deep learning-based method, named DeepNup, which enables us to improve the prediction of nucleosome positioning only from DNA sequences. Specifically, we first use a hybrid feature encoding scheme that combines One-hot encoding and Trinucleotide composition encoding to encode raw DNA sequences; afterwards, we employ multiscale convolutional neural network modules that consist of two parallel convolution kernels with different sizes and gated recurrent units to effectively learn the local and global correlation feature representations; lastly, we use a fully connected layer and a sigmoid unit serving as a classifier to integrate these learned high-order feature representations and generate the final prediction outcomes. By comparing the experimental evaluation metrics on two benchmark nucleosome positioning datasets, DeepNup achieves a better performance for nucleosome positioning prediction than that of several state-of-the-art methods. These results demonstrate that DeepNup is a powerful deep learning-based tool that enables one to accurately identify potential nucleosome sequences.
Collapse
Affiliation(s)
- Yiting Zhou
- School of Computer Science and Technology, Soochow University, Suzhou Ganjiang East Streat 333, Suzhou 215006, China
| | - Tingfang Wu
- School of Computer Science and Technology, Soochow University, Suzhou Ganjiang East Streat 333, Suzhou 215006, China
- Key Lab for Information Processing Technologies, Soochow University, Suzhou Ganjiang East Streat 333, Suzhou 215006, China
- Collaborative Innovation Center of Novel Software Technology and Industrialization, Organization, Nanjing 210000, China
| | - Yelu Jiang
- School of Computer Science and Technology, Soochow University, Suzhou Ganjiang East Streat 333, Suzhou 215006, China
| | - Yan Li
- School of Computer Science and Technology, Soochow University, Suzhou Ganjiang East Streat 333, Suzhou 215006, China
| | - Kailong Li
- School of Computer Science and Technology, Soochow University, Suzhou Ganjiang East Streat 333, Suzhou 215006, China
| | - Lijun Quan
- School of Computer Science and Technology, Soochow University, Suzhou Ganjiang East Streat 333, Suzhou 215006, China
- Key Lab for Information Processing Technologies, Soochow University, Suzhou Ganjiang East Streat 333, Suzhou 215006, China
- Collaborative Innovation Center of Novel Software Technology and Industrialization, Organization, Nanjing 210000, China
| | - Qiang Lyu
- School of Computer Science and Technology, Soochow University, Suzhou Ganjiang East Streat 333, Suzhou 215006, China
- Key Lab for Information Processing Technologies, Soochow University, Suzhou Ganjiang East Streat 333, Suzhou 215006, China
- Collaborative Innovation Center of Novel Software Technology and Industrialization, Organization, Nanjing 210000, China
| |
Collapse
|
19
|
Asim MN, Ibrahim MA, Imran Malik M, Dengel A, Ahmed S. Circ-LocNet: A Computational Framework for Circular RNA Sub-Cellular Localization Prediction. Int J Mol Sci 2022; 23:ijms23158221. [PMID: 35897818 PMCID: PMC9329987 DOI: 10.3390/ijms23158221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Circular ribonucleic acids (circRNAs) are novel non-coding RNAs that emanate from alternative splicing of precursor mRNA in reversed order across exons. Despite the abundant presence of circRNAs in human genes and their involvement in diverse physiological processes, the functionality of most circRNAs remains a mystery. Like other non-coding RNAs, sub-cellular localization knowledge of circRNAs has the aptitude to demystify the influence of circRNAs on protein synthesis, degradation, destination, their association with different diseases, and potential for drug development. To date, wet experimental approaches are being used to detect sub-cellular locations of circular RNAs. These approaches help to elucidate the role of circRNAs as protein scaffolds, RNA-binding protein (RBP) sponges, micro-RNA (miRNA) sponges, parental gene expression modifiers, alternative splicing regulators, and transcription regulators. To complement wet-lab experiments, considering the progress made by machine learning approaches for the determination of sub-cellular localization of other non-coding RNAs, the paper in hand develops a computational framework, Circ-LocNet, to precisely detect circRNA sub-cellular localization. Circ-LocNet performs comprehensive extrinsic evaluation of 7 residue frequency-based, residue order and frequency-based, and physio-chemical property-based sequence descriptors using the five most widely used machine learning classifiers. Further, it explores the performance impact of K-order sequence descriptor fusion where it ensembles similar as well dissimilar genres of statistical representation learning approaches to reap the combined benefits. Considering the diversity of statistical representation learning schemes, it assesses the performance of second-order, third-order, and going all the way up to seventh-order sequence descriptor fusion. A comprehensive empirical evaluation of Circ-LocNet over a newly developed benchmark dataset using different settings reveals that standalone residue frequency-based sequence descriptors and tree-based classifiers are more suitable to predict sub-cellular localization of circular RNAs. Further, K-order heterogeneous sequence descriptors fusion in combination with tree-based classifiers most accurately predict sub-cellular localization of circular RNAs. We anticipate this study will act as a rich baseline and push the development of robust computational methodologies for the accurate sub-cellular localization determination of novel circRNAs.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
- Correspondence:
| | - Muhammad Ali Ibrahim
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Muhammad Imran Malik
- School of Computer Science & Electrical Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan;
| | - Andreas Dengel
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- DeepReader GmbH, Trippstadter Str. 122, 67663 Kaiserslautern, Germany
| |
Collapse
|
20
|
Zou H. iRNA5hmC-HOC: High-order correlation information for identifying RNA 5-hydroxymethylcytosine modification. J Bioinform Comput Biol 2022; 20:2250017. [DOI: 10.1142/s0219720022500172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Liu J, Zhou D, Jin W. Prediction of nucleosome dynamic interval based on long short-term memory network (LSTM). J Bioinform Comput Biol 2022; 20:2250009. [DOI: 10.1142/s0219720022500093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Han GS, Li Q, Li Y. Nucleosome positioning based on DNA sequence embedding and deep learning. BMC Genomics 2022; 23:301. [PMID: 35418074 PMCID: PMC9006412 DOI: 10.1186/s12864-022-08508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Background Nucleosome positioning is the precise determination of the location of nucleosomes on DNA sequence. With the continuous advancement of biotechnology and computer technology, biological data is showing explosive growth. It is of practical significance to develop an efficient nucleosome positioning algorithm. Indeed, convolutional neural networks (CNN) can capture local features in DNA sequences, but ignore the order of bases. While the bidirectional recurrent neural network can make up for CNN's shortcomings in this regard and extract the long-term dependent features of DNA sequence. Results In this work, we use word vectors to represent DNA sequences and propose three new deep learning models for nucleosome positioning, and the integrative model NP_CBiR reaches a better prediction performance. The overall accuracies of NP_CBiR on H. sapiens, C. elegans, and D. melanogaster datasets are 86.18%, 89.39%, and 85.55% respectively. Conclusions Benefited by different network structures, NP_CBiR can effectively extract local features and bases order features of DNA sequences, thus can be considered as a complementary tool for nucleosome positioning.
Collapse
Affiliation(s)
- Guo-Sheng Han
- Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, 411105, Hunan, China. .,Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan, 411105, Hunan, China.
| | - Qi Li
- Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, 411105, Hunan, China.,Xiangtan Medicine Health Vocational College, Xiangtan, 411102, Hunan, China
| | - Ying Li
- Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, 411105, Hunan, China.,Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan, 411105, Hunan, China
| |
Collapse
|
23
|
He Z, Xu J, Shi H, Wu S. m5CRegpred: Epitranscriptome Target Prediction of 5-Methylcytosine (m5C) Regulators Based on Sequencing Features. Genes (Basel) 2022; 13:genes13040677. [PMID: 35456483 PMCID: PMC9025882 DOI: 10.3390/genes13040677] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
5-methylcytosine (m5C) is a common post-transcriptional modification observed in a variety of RNAs. m5C has been demonstrated to be important in a variety of biological processes, including RNA structural stability and metabolism. Driven by the importance of m5C modification, many projects focused on the m5C sites prediction were reported before. To better understand the upstream and downstream regulation of m5C, we present a bioinformatics framework, m5CRegpred, to predict the substrate of m5C writer NSUN2 and m5C readers YBX1 and ALYREF for the first time. After features comparison, window lengths selection and algorism comparison on the mature mRNA model, our model achieved AUROC scores 0.869, 0.724 and 0.889 for NSUN2, YBX1 and ALYREF, respectively in an independent test. Our work suggests the substrate of m5C regulators can be distinguished and may help the research of m5C regulators in a special condition, such as substrates prediction of hyper- or hypo-expressed m5C regulators in human disease.
Collapse
Affiliation(s)
- Zhizhou He
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China; (Z.H.); (J.X.)
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jing Xu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China; (Z.H.); (J.X.)
| | - Haoran Shi
- Research Center for BioSystems, Land Use, and Nutrition (IFZ), Institute of Applied Microbiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- Correspondence: (H.S.); (S.W.)
| | - Shuxiang Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China; (Z.H.); (J.X.)
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China
- Correspondence: (H.S.); (S.W.)
| |
Collapse
|
24
|
ASRmiRNA: Abiotic Stress-Responsive miRNA Prediction in Plants by Using Machine Learning Algorithms with Pseudo K-Tuple Nucleotide Compositional Features. Int J Mol Sci 2022; 23:ijms23031612. [PMID: 35163534 PMCID: PMC8835813 DOI: 10.3390/ijms23031612] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) play a significant role in plant response to different abiotic stresses. Thus, identification of abiotic stress-responsive miRNAs holds immense importance in crop breeding programmes to develop cultivars resistant to abiotic stresses. In this study, we developed a machine learning-based computational method for prediction of miRNAs associated with abiotic stresses. Three types of datasets were used for prediction, i.e., miRNA, Pre-miRNA, and Pre-miRNA + miRNA. The pseudo K-tuple nucleotide compositional features were generated for each sequence to transform the sequence data into numeric feature vectors. Support vector machine (SVM) was employed for prediction. The area under receiver operating characteristics curve (auROC) of 70.21, 69.71, 77.94 and area under precision-recall curve (auPRC) of 69.96, 65.64, 77.32 percentages were obtained for miRNA, Pre-miRNA, and Pre-miRNA + miRNA datasets, respectively. Overall prediction accuracies for the independent test set were 62.33, 64.85, 69.21 percentages, respectively, for the three datasets. The SVM also achieved higher accuracy than other learning methods such as random forest, extreme gradient boosting, and adaptive boosting. To implement our method with ease, an online prediction server “ASRmiRNA” has been developed. The proposed approach is believed to supplement the existing effort for identification of abiotic stress-responsive miRNAs and Pre-miRNAs.
Collapse
|
25
|
Wang C, Ju Y, Zou Q, Lin C. DeepAc4C: a convolutional neural network model with hybrid features composed of physicochemical patterns and distributed representation information for identification of N4-acetylcytidine in mRNA. Bioinformatics 2021; 38:52-57. [PMID: 34427581 DOI: 10.1093/bioinformatics/btab611] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION N4-acetylcytidine (ac4C) is the only acetylation modification that has been characterized in eukaryotic RNA, and is correlated with various human diseases. Laboratory identification of ac4C is complicated by factors, such as sample hydrolysis and high cost. Unfortunately, existing computational methods to identify ac4C do not achieve satisfactory performance. RESULTS We developed a novel tool, DeepAc4C, which identifies ac4C using convolutional neural networks (CNNs) using hybrid features composed of physicochemical patterns and a distributed representation of nucleic acids. Our results show that the proposed model achieved better and more balanced performance than existing predictors. Furthermore, we evaluated the effect that specific features had on the model predictions and their interaction effects. Several interesting sequence motifs specific to ac4C were identified. AVAILABILITY AND IMPLEMENTATION The webserver is freely accessible at https://ac4c.webmalab.cn/, the source code and datasets are accessible at Zenodo with URL https://doi.org/10.5281/zenodo.5138047 and Github with URL https://github.com/wangchao-malab/DeepAc4C. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen 361005, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Chen Lin
- School of Informatics, Xiamen University, Xiamen 361005, China
| |
Collapse
|
26
|
Zheng Y, Wang H, Ding Y, Guo F. CEPZ: A Novel Predictor for Identification of DNase I Hypersensitive Sites. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2768-2774. [PMID: 33481716 DOI: 10.1109/tcbb.2021.3053661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNase I hypersensitive sites (DHSs) have proven to be tightly associated with cis-regulatory elements, commonly indicating specific function on the chromatin structure. Thus, identifying DHSs plays a fundamental role in decoding gene regulatory behavior. While traditional experimental methods turn to be time-consuming and expensive, computational techniques promise to be practical to discovering and analyzing regulatory factors. In this study, we applied an efficient model that considered composition information and physicochemical properties and effectively selected features with a boosting algorithm. CEPZ, our predictor, greatly improved a Matthews correlation coefficient and accuracy of 0.7740 and 0.9113 respectively, more competitive than any predictor before. This result suggests that it may become a useful tool for DHSs research in the human and other complex genomes. Our research was anchored on the properties of dinucleotides and we identified several dinucleotides with significant differences in the distribution of DHS and non-DHS samples, which are likely to have a special meaning in the chromatin structure. The datasets, feature sets and the relevant algorithm are available at https://github.com/YanZheng-16/CEPZ_DHS/.
Collapse
|
27
|
Malebary SJ, Khan YD. Evaluating machine learning methodologies for identification of cancer driver genes. Sci Rep 2021; 11:12281. [PMID: 34112883 PMCID: PMC8192921 DOI: 10.1038/s41598-021-91656-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is driven by distinctive sorts of changes and basic variations in genes. Recognizing cancer driver genes is basic for accurate oncological analysis. Numerous methodologies to distinguish and identify drivers presently exist, but efficient tools to combine and optimize them on huge datasets are few. Most strategies for prioritizing transformations depend basically on frequency-based criteria. Strategies are required to dependably prioritize organically dynamic driver changes over inert passengers in high-throughput sequencing cancer information sets. This study proposes a model namely PCDG-Pred which works as a utility capable of distinguishing cancer driver and passenger attributes of genes based on sequencing data. Keeping in view the significance of the cancer driver genes an efficient method is proposed to identify the cancer driver genes. Further, various validation techniques are applied at different levels to establish the effectiveness of the model and to obtain metrics like accuracy, Mathew's correlation coefficient, sensitivity, and specificity. The results of the study strongly indicate that the proposed strategy provides a fundamental functional advantage over other existing strategies for cancer driver genes identification. Subsequently, careful experiments exhibit that the accuracy metrics obtained for self-consistency, independent set, and cross-validation tests are 91.08%., 87.26%, and 92.48% respectively.
Collapse
Affiliation(s)
- Sharaf J Malebary
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, P.O. Box 344, Rabigh, 21911, Saudi Arabia
| | - Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan.
| |
Collapse
|
28
|
Han GS, Li Q, Li Y. Comparative analysis and prediction of nucleosome positioning using integrative feature representation and machine learning algorithms. BMC Bioinformatics 2021; 22:129. [PMID: 34078256 PMCID: PMC8170966 DOI: 10.1186/s12859-021-04006-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/01/2022] Open
Abstract
Background Nucleosome plays an important role in the process of genome expression, DNA replication, DNA repair and transcription. Therefore, the research of nucleosome positioning has invariably received extensive attention. Considering the diversity of DNA sequence representation methods, we tried to integrate multiple features to analyze its effect in the process of nucleosome positioning analysis. This process can also deepen our understanding of the theoretical analysis of nucleosome positioning. Results Here, we not only used frequency chaos game representation (FCGR) to construct DNA sequence features, but also integrated it with other features and adopted the principal component analysis (PCA) algorithm. Simultaneously, support vector machine (SVM), extreme learning machine (ELM), extreme gradient boosting (XGBoost), multilayer perceptron (MLP) and convolutional neural networks (CNN) are used as predictors for nucleosome positioning prediction analysis, respectively. The integrated feature vector prediction quality is significantly superior to a single feature. After using principal component analysis (PCA) to reduce the feature dimension, the prediction quality of H. sapiens dataset has been significantly improved. Conclusions Comparative analysis and prediction on H. sapiens, C. elegans, D. melanogaster and S. cerevisiae datasets, demonstrate that the application of FCGR to nucleosome positioning is feasible, and we also found that integrative feature representation would be better.
Collapse
Affiliation(s)
- Guo-Sheng Han
- Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, 411105, Hunan, China. .,Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan, 411105, Hunan, China.
| | - Qi Li
- Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, 411105, Hunan, China.,Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Ying Li
- Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, 411105, Hunan, China.,Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan, 411105, Hunan, China
| |
Collapse
|
29
|
Wang Y, Guo R, Huang L, Yang S, Hu X, He K. m6AGE: A Predictor for N6-Methyladenosine Sites Identification Utilizing Sequence Characteristics and Graph Embedding-Based Geometrical Information. Front Genet 2021; 12:670852. [PMID: 34122525 PMCID: PMC8191635 DOI: 10.3389/fgene.2021.670852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/29/2021] [Indexed: 11/30/2022] Open
Abstract
N6-methyladenosine (m6A) is one of the most prevalent RNA post-transcriptional modifications and is involved in various vital biological processes such as mRNA splicing, exporting, stability, and so on. Identifying m6A sites contributes to understanding the functional mechanism and biological significance of m6A. The existing biological experimental methods for identifying m6A sites are time-consuming and costly. Thus, developing a high confidence computational method is significant to explore m6A intrinsic characters. In this study, we propose a predictor called m6AGE which utilizes sequence-derived and graph embedding features. To the best of our knowledge, our predictor is the first to combine sequence-derived features and graph embeddings for m6A site prediction. Comparison results show that our proposed predictor achieved the best performance compared with other predictors on four public datasets across three species. On the A101 dataset, our predictor outperformed 1.34% (accuracy), 0.0227 (Matthew's correlation coefficient), 5.63% (specificity), and 0.0081 (AUC) than comparing predictors, which indicates that m6AGE is a useful tool for m6A site prediction. The source code of m6AGE is available at https://github.com/bokunoBike/m6AGE.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, China
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Rui Guo
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, China
| | - Lan Huang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, China
| | - Sen Yang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, China
| | - Xuemei Hu
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, China
| | - Kai He
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, and College of Computer Science and Technology, Jilin University, Changchun, China
| |
Collapse
|
30
|
Wei H, Xu Y, Liu B. iCircDA-LTR: identification of circRNA-disease associations based on Learning to Rank. Bioinformatics 2021; 37:3302-3310. [PMID: 33963827 DOI: 10.1093/bioinformatics/btab334] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
MOTIVATION Due to the inherent stability and close relationship with the progression of diseases, circRNAs are serving as important biomarkers and drug targets. Efficient predictors for identifying circRNA-disease associations are highly required. The existing predictors consider circRNA-disease association prediction as a classification task or a recommendation problem, failing to capture the ranking information among the associations and detect the diseases associated with new circRNAs. However, more and more circRNAs are discovered. Identification of the diseases associated with these new circRNAs remains a challenging task. RESULTS In this study, we proposed a new predictor called iCricDA-LTR for circRNA-disease association prediction. Different from any existing predictor, iCricDA-LTR employed a ranking framework to model the global ranking associations among the query circRNAs and the diseases. The Learning to Rank (LTR) algorithm was employed to rank the associations based on various predictors and features in a supervised manner. The experimental results on two independent test datasets showed that iCircDA-LTR outperformed the other competing methods, especially for predicting the diseases associated with new circRNAs. As a result, iCircDA-LTR is more suitable for the real world applications. AVAILABILITY For the convenience of researchers to detect new circRNA-disease associations. The web server of iCircDA-LTR was established and freely available at http://bliulab.net/iCircDA-LTR/.
Collapse
Affiliation(s)
- Hang Wei
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Yong Xu
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China.,School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
31
|
Liu G, Zhao H, Meng H, Xing Y, Cai L. A deformation energy model reveals sequence-dependent property of nucleosome positioning. Chromosoma 2021; 130:27-40. [PMID: 33452566 PMCID: PMC7889546 DOI: 10.1007/s00412-020-00750-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022]
Abstract
We present a deformation energy model for predicting nucleosome positioning, in which a position-dependent structural parameter set derived from crystal structures of nucleosomes was used to calculate the DNA deformation energy. The model is successful in predicting nucleosome occupancy genome-wide in budding yeast, nucleosome free energy, and rotational positioning of nucleosomes. Our model also indicates that the genomic regions underlying the MNase-sensitive nucleosomes in budding yeast have high deformation energy and, consequently, low nucleosome-forming ability, while the MNase-sensitive non-histone particles are characterized by much lower DNA deformation energy and high nucleosome preference. In addition, we also revealed that remodelers, SNF2 and RSC8, are likely to act in chromatin remodeling by binding to broad nucleosome-depleted regions that are intrinsically favorable for nucleosome positioning. Our data support the important role of position-dependent physical properties of DNA in nucleosome positioning.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
| | - Hongyu Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Hu Meng
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yongqiang Xing
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Lu Cai
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| |
Collapse
|
32
|
Aziz AZB, Hasan MAM, Shin J. Identification of RNA pseudouridine sites using deep learning approaches. PLoS One 2021; 16:e0247511. [PMID: 33621235 PMCID: PMC7901771 DOI: 10.1371/journal.pone.0247511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/08/2021] [Indexed: 01/05/2023] Open
Abstract
Pseudouridine(Ψ) is widely popular among various RNA modifications which have been confirmed to occur in rRNA, mRNA, tRNA, and nuclear/nucleolar RNA. Hence, identifying them has vital significance in academic research, drug development and gene therapies. Several laboratory techniques for Ψ identification have been introduced over the years. Although these techniques produce satisfactory results, they are costly, time-consuming and requires skilled experience. As the lengths of RNA sequences are getting longer day by day, an efficient method for identifying pseudouridine sites using computational approaches is very important. In this paper, we proposed a multi-channel convolution neural network using binary encoding. We employed k-fold cross-validation and grid search to tune the hyperparameters. We evaluated its performance in the independent datasets and found promising results. The results proved that our method can be used to identify pseudouridine sites for associated purposes. We have also implemented an easily accessible web server at http://103.99.176.239/ipseumulticnn/.
Collapse
Affiliation(s)
- Abu Zahid Bin Aziz
- Department of Computer Science & Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
- * E-mail:
| | - Md. Al Mehedi Hasan
- Department of Computer Science & Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
| | - Jungpil Shin
- School of Computer Science and Engineering, University of Aizu, Aizuwakamatsu, Japan
| |
Collapse
|
33
|
Wang H, Liang P, Zheng L, Long C, Li H, Zuo Y. eHSCPr discriminating the cell identity involved in endothelial to hematopoietic transition. Bioinformatics 2021; 37:2157-2164. [PMID: 33532815 DOI: 10.1093/bioinformatics/btab071] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
MOTIVATION Hematopoietic stem cells (HSCs) give rise to all blood cells and play a vital role throughout the whole lifespan through their pluripotency and self-renewal properties. Accurately identifying the stages of early HSCs is extremely important, as it may open up new prospects for extracorporeal blood research. Existing experimental techniques for identifying the early stages of HSCs development are time-consuming and expensive. Machine learning has shown its excellence in massive single-cell data processing and it is desirable to develop related computational models as good complements to experimental techniques. RESULTS In this study, we presented a novel predictor called eHSCPr specifically for predicting the early stages of HSCs development. To reveal the distinct genes at each developmental stage of HSCs, we compared F-score with three state-of-art differential gene selection methods (limma, DESeq2, edgeR) and evaluated their performance. F-score captured the more critical surface markers of endothelial cells and hematopoietic cells, and the area under receiver operating characteristic curve (ROC) value was 0.987. Based on SVM, the 10-fold cross-validation accuracy of eHSCpr in the independent dataset and the training dataset reached 94.84% and 94.19%, respectively. Importantly, we performed transcription analysis on the F-score gene set, which indeed further enriched the signal markers of HSCs development stages. eHSCPr can be a powerful tool for predicting early stages of HSCs development, facilitating hypothesis-driven experimental design and providing crucial clues for the in vitro blood regeneration studies. AVAILABILITY http://bioinfor.imu.edu.cn/ehscpr. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Pengfei Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Lei Zheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - ChunShen Long
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - HanShuang Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| |
Collapse
|
34
|
The evolutionary relationship of S15/NS1RNA binding domains with a similar protein domain pattern - A computational approach. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Yang Z, Li H, Jia Y, Zheng Y, Meng H, Bao T, Li X, Luo L. Intrinsic laws of k-mer spectra of genome sequences and evolution mechanism of genomes. BMC Evol Biol 2020; 20:157. [PMID: 33228538 PMCID: PMC7684957 DOI: 10.1186/s12862-020-01723-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Background K-mer spectra of DNA sequences contain important information about sequence composition and sequence evolution. We want to reveal the evolution rules of genome sequences by studying the k-mer spectra of genome sequences. Results The intrinsic laws of k-mer spectra of 920 genome sequences from primate to prokaryote were analyzed. We found that there are two types of evolution selection modes in genome sequences, named as CG Independent Selection and TA Independent Selection. There is a mutual inhibition relationship between CG and TA independent selections. We found that the intensity of CG and TA independent selections correlates closely with genome evolution and G + C content of genome sequences. The living habits of species are related closely to the independent selection modes adopted by species genomes. Consequently, we proposed an evolution mechanism of genomes in which the genome evolution is determined by the intensities of the CG and TA independent selections and the mutual inhibition relationship. Besides, by the evolution mechanism of genomes, we speculated the evolution modes of prokaryotes in mild and extreme environments in the anaerobic age and the evolving process of prokaryotes from anaerobic to aerobic environment on earth as well as the originations of different eukaryotes. Conclusion We found that there are two independent selection modes in genome sequences. The evolution of genome sequence is determined by the two independent selection modes and the mutual inhibition relationship between them.
Collapse
Affiliation(s)
- Zhenhua Yang
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China.,School of Economics and Management, Inner Mongolia University of Science & Technology, Baotou, 014010, China
| | - Hong Li
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China.
| | - Yun Jia
- College of Science, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Yan Zheng
- Baotou Medical College, Inner Mongolia University of Science & Technology, Baotou, 014040, China
| | - Hu Meng
- School of Life Science & Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China
| | - Tonglaga Bao
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaolong Li
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Liaofu Luo
- Laboratory of Theoretical Biophysics, School of Physical Science & Technology, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
36
|
Zhang WY, Xu J, Wang J, Zhou YK, Chen W, Du PF. KNIndex: a comprehensive database of physicochemical properties for k-tuple nucleotides. Brief Bioinform 2020; 22:5956158. [PMID: 33147622 DOI: 10.1093/bib/bbaa284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/17/2020] [Accepted: 09/26/2020] [Indexed: 01/12/2023] Open
Abstract
With the development of high-throughput sequencing technology, the genomic sequences increased exponentially over the last decade. In order to decode these new genomic data, machine learning methods were introduced for genome annotation and analysis. Due to the requirement of most machines learning methods, the biological sequences must be represented as fixed-length digital vectors. In this representation procedure, the physicochemical properties of k-tuple nucleotides are important information. However, the values of the physicochemical properties of k-tuple nucleotides are scattered in different resources. To facilitate the studies on genomic sequences, we developed the first comprehensive database, namely KNIndex (https://knindex.pufengdu.org), for depositing and visualizing physicochemical properties of k-tuple nucleotides. Currently, the KNIndex database contains 182 properties including one for mononucleotide (DNA), 169 for dinucleotide (147 for DNA and 22 for RNA) and 12 for trinucleotide (DNA). KNIndex database also provides a user-friendly web-based interface for the users to browse, query, visualize and download the physicochemical properties of k-tuple nucleotides. With the built-in conversion and visualization functions, users are allowed to display DNA/RNA sequences as curves of multiple physicochemical properties. We wish that the KNIndex will facilitate the related studies in computational biology.
Collapse
Affiliation(s)
- Wen-Ya Zhang
- College of Intelligence and Computing, Tianjin University
| | - Junhai Xu
- College of Intelligence and Computing, Tianjin University
| | - Jun Wang
- College of Intelligence and Computing, Tianjin University
| | - Yuan-Ke Zhou
- College of Intelligence and Computing, Tianjin University
| | - Wei Chen
- School of Life Sciences, North China University of Science and Technology
| | - Pu-Feng Du
- College of Intelligence and Computing, Tianjin University
| |
Collapse
|
37
|
Liu X, Liu Z, Mao X, Li Q. m7GPredictor: An improved machine learning-based model for predicting internal m7G modifications using sequence properties. Anal Biochem 2020; 609:113905. [DOI: 10.1016/j.ab.2020.113905] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/24/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022]
|
38
|
Khan F, Khan M, Iqbal N, Khan S, Muhammad Khan D, Khan A, Wei DQ. Prediction of Recombination Spots Using Novel Hybrid Feature Extraction Method via Deep Learning Approach. Front Genet 2020; 11:539227. [PMID: 33093842 PMCID: PMC7527634 DOI: 10.3389/fgene.2020.539227] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/13/2020] [Indexed: 01/20/2023] Open
Abstract
Meiotic recombination is the driving force of evolutionary development and an important source of genetic variation. The meiotic recombination does not take place randomly in a chromosome but occurs in some regions of the chromosome. A region in chromosomes with higher rate of meiotic recombination events are considered as hotspots and a region where frequencies of the recombination events are lower are called coldspots. Prediction of meiotic recombination spots provides useful information about the basic functionality of inheritance and genome diversity. This study proposes an intelligent computational predictor called iRSpots-DNN for the identification of recombination spots. The proposed predictor is based on a novel feature extraction method and an optimized deep neural network (DNN). The DNN was employed as a classification engine whereas, the novel features extraction method was developed to extract meaningful features for the identification of hotspots and coldspots across the yeast genome. Unlike previous algorithms, the proposed feature extraction avoids bias among different selected features and preserved the sequence discriminant properties along with the sequence-structure information simultaneously. This study also considered other effective classifiers named support vector machine (SVM), K-nearest neighbor (KNN), and random forest (RF) to predict recombination spots. Experimental results on a benchmark dataset with 10-fold cross-validation showed that iRSpots-DNN achieved the highest accuracy, i.e., 95.81%. Additionally, the performance of the proposed iRSpots-DNN is significantly better than the existing predictors on a benchmark dataset. The relevant benchmark dataset and source code are freely available at: https://github.com/Fatima-Khan12/iRspot_DNN/tree/master/iRspot_DNN.
Collapse
Affiliation(s)
- Fatima Khan
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mukhtaj Khan
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Nadeem Iqbal
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Salman Khan
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Dost Muhammad Khan
- Department of Statistics, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China.,Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|
39
|
Amato D, Bosco GL, Rizzo R. CORENup: a combination of convolutional and recurrent deep neural networks for nucleosome positioning identification. BMC Bioinformatics 2020; 21:326. [PMID: 32938377 PMCID: PMC7493859 DOI: 10.1186/s12859-020-03627-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Nucleosomes wrap the DNA into the nucleus of the Eukaryote cell and regulate its transcription phase. Several studies indicate that nucleosomes are determined by the combined effects of several factors, including DNA sequence organization. Interestingly, the identification of nucleosomes on a genomic scale has been successfully performed by computational methods using DNA sequence as input data. RESULTS In this work, we propose CORENup, a deep learning model for nucleosome identification. CORENup processes a DNA sequence as input using one-hot representation and combines in a parallel fashion a fully convolutional neural network and a recurrent layer. These two parallel levels are devoted to catching both non periodic and periodic DNA string features. A dense layer is devoted to their combination to give a final classification. CONCLUSIONS Results computed on public data sets of different organisms show that CORENup is a state of the art methodology for nucleosome positioning identification based on a Deep Neural Network architecture. The comparisons have been carried out using two groups of datasets, currently adopted by the best performing methods, and CORENup has shown top performance both in terms of classification metrics and elapsed computation time.
Collapse
Affiliation(s)
- Domenico Amato
- Dipartimento di Matematica e Informatica, Università degli studi di Palermo, Via Archirafi, 34, Palermo, 90123, Italy
| | - Giosue' Lo Bosco
- Dipartimento di Matematica e Informatica, Università degli studi di Palermo, Via Archirafi, 34, Palermo, 90123, Italy. .,Dipartimento di Scienze per l'Innovazione tecnologica, Istituto Euro-Mediterraneo di Scienza e Tecnologia, Via Michele Miraglia, 20, Palermo, 9039, Italy.
| | - Riccardo Rizzo
- CNR-ICAR, National Research Council of Italy, Via Ugo La Malfa, 153, Palermo, 90146, Italy
| |
Collapse
|
40
|
Chou KC. An Insightful 10-year Recollection Since the Emergence of the 5-steps Rule. Curr Pharm Des 2020; 25:4223-4234. [PMID: 31782354 DOI: 10.2174/1381612825666191129164042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE One of the most challenging and also the most difficult problems is how to formulate a biological sequence with a vector but considerably keep its sequence order information. METHODS To address such a problem, the approach of Pseudo Amino Acid Components or PseAAC has been developed. RESULTS AND CONCLUSION It has become increasingly clear via the 10-year recollection that the aforementioned proposal has been indeed very powerful.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, Massachusetts 02478, United States.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
41
|
Abstract
Background:Pseudouridine (Ψ) is the most abundant RNA modification and has important functions in a series of biological and cellular processes. Although experimental techniques have made great contributions to identify Ψ sites, they are still labor-intensive and costineffective. In the past few years, a series of computational approaches have been developed, which provided rapid and efficient approaches to identify Ψ sites.Results:To provide the readership with a clear landscape about the recent development in this important area, in this review, we summarized and compared the representative computational approaches developed for identifying Ψ sites. Moreover, future directions in computationally identifying Ψ sites were discussed as well.Conclusion:We anticipate that this review will provide novel insights into the researches on pseudouridine modification.
Collapse
Affiliation(s)
- Wei Chen
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063210, China
| | - Kewei Liu
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
42
|
|
43
|
Feng CQ, Zhang ZY, Zhu XJ, Lin Y, Chen W, Tang H, Lin H. iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators. Bioinformatics 2020; 35:1469-1477. [PMID: 30247625 DOI: 10.1093/bioinformatics/bty827] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022] Open
Abstract
MOTIVATION Transcription termination is an important regulatory step of gene expression. If there is no terminator in gene, transcription could not stop, which will result in abnormal gene expression. Detecting such terminators can determine the operon structure in bacterial organisms and improve genome annotation. Thus, accurate identification of transcriptional terminators is essential and extremely important in the research of transcription regulations. RESULTS In this study, we developed a new predictor called 'iTerm-PseKNC' based on support vector machine to identify transcription terminators. The binomial distribution approach was used to pick out the optimal feature subset derived from pseudo k-tuple nucleotide composition (PseKNC). The 5-fold cross-validation test results showed that our proposed method achieved an accuracy of 95%. To further evaluate the generalization ability of 'iTerm-PseKNC', the model was examined on independent datasets which are experimentally confirmed Rho-independent terminators in Escherichia coli and Bacillus subtilis genomes. As a result, all the terminators in E. coli and 87.5% of the terminators in B. subtilis were correctly identified, suggesting that the proposed model could become a powerful tool for bacterial terminator recognition. AVAILABILITY AND IMPLEMENTATION For the convenience of most of wet-experimental researchers, the web-server for 'iTerm-PseKNC' was established at http://lin-group.cn/server/iTerm-PseKNC/, by which users can easily obtain their desired result without the need to go through the detailed mathematical equations involved.
Collapse
Affiliation(s)
- Chao-Qin Feng
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhao-Yue Zhang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao-Juan Zhu
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Chen
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Hua Tang
- Department of Pathophysiology, Southwest Medical University, Luzhou, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
44
|
Liu B. BioSeq-Analysis: a platform for DNA, RNA and protein sequence analysis based on machine learning approaches. Brief Bioinform 2020; 20:1280-1294. [PMID: 29272359 DOI: 10.1093/bib/bbx165] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/08/2017] [Indexed: 01/07/2023] Open
Abstract
With the avalanche of biological sequences generated in the post-genomic age, one of the most challenging problems is how to computationally analyze their structures and functions. Machine learning techniques are playing key roles in this field. Typically, predictors based on machine learning techniques contain three main steps: feature extraction, predictor construction and performance evaluation. Although several Web servers and stand-alone tools have been developed to facilitate the biological sequence analysis, they only focus on individual step. In this regard, in this study a powerful Web server called BioSeq-Analysis (http://bioinformatics.hitsz.edu.cn/BioSeq-Analysis/) has been proposed to automatically complete the three main steps for constructing a predictor. The user only needs to upload the benchmark data set. BioSeq-Analysis can generate the optimized predictor based on the benchmark data set, and the performance measures can be reported as well. Furthermore, to maximize user's convenience, its stand-alone program was also released, which can be downloaded from http://bioinformatics.hitsz.edu.cn/BioSeq-Analysis/download/, and can be directly run on Windows, Linux and UNIX. Applied to three sequence analysis tasks, experimental results showed that the predictors generated by BioSeq-Analysis even outperformed some state-of-the-art methods. It is anticipated that BioSeq-Analysis will become a useful tool for biological sequence analysis.
Collapse
|
45
|
Affiliation(s)
- D Siskind
- Metro South Addiction and Mental Health Service, Brisbane, Qld, Australia.,School of Clinical Medicine, University of Queensland, Brisbane, Qld, Australia
| | - J Nielsen
- Mental Health Centre Glostrup, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
46
|
Some illuminating remarks on molecular genetics and genomics as well as drug development. Mol Genet Genomics 2020; 295:261-274. [PMID: 31894399 DOI: 10.1007/s00438-019-01634-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Facing the explosive growth of biological sequences unearthed in the post-genomic age, one of the most important but also most difficult problems in computational biology is how to express a biological sequence with a discrete model or a vector, but still keep it with considerable sequence-order information or its special pattern. To deal with such a challenging problem, the ideas of "pseudo amino acid components" and "pseudo K-tuple nucleotide composition" have been proposed. The ideas and their approaches have further stimulated the birth for "distorted key theory", "wenxing diagram", and substantially strengthening the power in treating the multi-label systems, as well as the establishment of the famous "5-steps rule". All these logic developments are quite natural that are very useful not only for theoretical scientists but also for experimental scientists in conducting genetics/genomics analysis and drug development. Presented in this review paper are also their future perspectives; i.e., their impacts will become even more significant and propounding.
Collapse
|
47
|
Shao YT, Liu XX, Lu Z, Chou KC. pLoc_Deep-mHum: Predict Subcellular Localization of Human Proteins by Deep Learning. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/ns.2020.127042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Chou KC. Impacts of Pseudo Amino Acid Components and 5-steps Rule to Proteomics and Proteome Analysis. Curr Top Med Chem 2019; 19:2283-2300. [DOI: 10.2174/1568026619666191018100141] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/18/2019] [Accepted: 08/26/2019] [Indexed: 01/27/2023]
Abstract
Stimulated by the 5-steps rule during the last decade or so, computational proteomics has achieved remarkable progresses in the following three areas: (1) protein structural class prediction; (2) protein subcellular location prediction; (3) post-translational modification (PTM) site prediction. The results obtained by these predictions are very useful not only for an in-depth study of the functions of proteins and their biological processes in a cell, but also for developing novel drugs against major diseases such as cancers, Alzheimer’s, and Parkinson’s. Moreover, since the targets to be predicted may have the multi-label feature, two sets of metrics are introduced: one is for inspecting the global prediction quality, while the other for the local prediction quality. All the predictors covered in this review have a userfriendly web-server, through which the majority of experimental scientists can easily obtain their desired data without the need to go through the complicated mathematics.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
49
|
Ma Y, He T, Jiang X. Projection-Based Neighborhood Non-Negative Matrix Factorization for lncRNA-Protein Interaction Prediction. Front Genet 2019; 10:1148. [PMID: 31824563 PMCID: PMC6880730 DOI: 10.3389/fgene.2019.01148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
Many long ncRNAs (lncRNA) make their effort by interacting with the corresponding RNA-binding proteins, and identifying the interactions between lncRNAs and proteins is important to understand the functions of lncRNA. Compared with the time-consuming and laborious experimental methods, more and more computational models are proposed to predict lncRNA-protein interactions. However, few models can effectively utilize the biological network topology of lncRNA (protein) and combine its sequence structure features, and most models cannot effectively predict new proteins (lncRNA) that do not interact with any lncRNA (proteins). In this study, we proposed a projection-based neighborhood non-negative matrix decomposition model (PMKDN) to predict potential lncRNA-protein interactions by integrating multiple biological features of lncRNAs (proteins). First, according to lncRNA (protein) sequences and lncRNA expression profile data, we extracted multiple features of lncRNA (protein). Second, based on protein GO ontology annotation, lncRNA sequences, lncRNA(protein) feature information, and modified lncRNA-protein interaction network, we calculated multiple similarities of lncRNA (protein), and fused them to obtain a more accurate lncRNA(protein) similarity network. Finally, combining the similarity and various feature information of lncRNA (protein), as well as the modified interaction network, we proposed a projection-based neighborhood non-negative matrix decomposition algorithm to predict the potential lncRNA-protein interactions. On two benchmark datasets, PMKDN showed better performance than other state-of-the-art methods for the prediction of new lncRNA-protein interactions, new lncRNAs, and new proteins. Case study further indicates that PMKDN can be used as an effective tool for lncRNA-protein interaction prediction.
Collapse
Affiliation(s)
- Yingjun Ma
- School of Mathematics & Statistics, Central China Normal University, Wuhan, China.,Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, China
| | - Tingting He
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, China.,School of Computer, Central China Normal University, Wuhan, China
| | - Xingpeng Jiang
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, China.,School of Computer, Central China Normal University, Wuhan, China
| |
Collapse
|
50
|
Chou KC. Advances in Predicting Subcellular Localization of Multi-label Proteins and its Implication for Developing Multi-target Drugs. Curr Med Chem 2019; 26:4918-4943. [PMID: 31060481 DOI: 10.2174/0929867326666190507082559] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/16/2022]
Abstract
The smallest unit of life is a cell, which contains numerous protein molecules. Most
of the functions critical to the cell’s survival are performed by these proteins located in its different
organelles, usually called ‘‘subcellular locations”. Information of subcellular localization
for a protein can provide useful clues about its function. To reveal the intricate pathways at the
cellular level, knowledge of the subcellular localization of proteins in a cell is prerequisite.
Therefore, one of the fundamental goals in molecular cell biology and proteomics is to determine
the subcellular locations of proteins in an entire cell. It is also indispensable for prioritizing
and selecting the right targets for drug development. Unfortunately, it is both timeconsuming
and costly to determine the subcellular locations of proteins purely based on experiments.
With the avalanche of protein sequences generated in the post-genomic age, it is highly
desired to develop computational methods for rapidly and effectively identifying the subcellular
locations of uncharacterized proteins based on their sequences information alone. Actually,
considerable progresses have been achieved in this regard. This review is focused on those
methods, which have the capacity to deal with multi-label proteins that may simultaneously
exist in two or more subcellular location sites. Protein molecules with this kind of characteristic
are vitally important for finding multi-target drugs, a current hot trend in drug development.
Focused in this review are also those methods that have use-friendly web-servers established so
that the majority of experimental scientists can use them to get the desired results without the
need to go through the detailed mathematics involved.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|