1
|
Kim SH, Kim HM, Chung DR, Ko JH, Huh K, Cho SY, Kang CI, Peck KR. Synergistic effects of colistin-rifampin-based triple antimicrobial combination therapy against Carbapenem-resistant Pseudomonas aeruginosa: a time-kill assay. J Antimicrob Chemother 2024:dkae466. [PMID: 39737887 DOI: 10.1093/jac/dkae466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Our research aimed to investigate the potential of in vitro triple antimicrobial synergism against carbapenem-resistant Pseudomonas aeruginosa (CRPA) as a strategy to overcome antimicrobial resistance. METHODS We used 12 CRPA blood isolates stocked in the Asian Bacterial Bank between 2016 and 2018. All isolates were tested by multi-locus sequencing and carbapenemase multiplex PCR. To assess the antimicrobial interactions, we performed time-kill assays using double or triple combination regimens. These regimens included CST and/or rifampin combined with IPM, MEM, or CZA. The assay was conducted at 1× and 0.5× MICs. RESULTS Among the 12 CRPA isolates, nine produced metallo-beta-lactamases (6 IMP-6, 2 VIM-2 and 1 NDM-1). In the time-kill assay, the median viable bacterial count for CST-rifampin was the lowest among double combinations after 24 h incubation (2.25 log cfu/mL at 1× MIC and 3.71 log cfu/mL at 0.5× MIC). In contrast, all triple combinations achieved 0 log cfu/mL at both 1× MIC and 0.5× MIC. Compared with CST-rifampin (synergism: 25% at 1× MIC, 42% at 0.5× MIC; bactericidal: 50% at 1× MIC, 42% at 0.5× MIC), all triple combinations showed greater synergism and bactericidal activity at both 1× MIC (50%-75% for synergism, 75%-83% for bactericidal activity) and 0.5× MIC (58%-75% for both). CONCLUSIONS Our findings suggest that CST-rifampin-based triple antimicrobial combinations exhibit greater synergy and bactericidal activity in eradicating CRPA compared with double antimicrobial combinations.
Collapse
Affiliation(s)
- Si-Ho Kim
- Division of Infectious Diseases, Department of Medicine, Samsung Changwon Medical Center, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Hye Mee Kim
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea
| | - Doo Ryeon Chung
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea
- Center for Infection Prevention and Control, Samsung Medical Center, Seoul, South Korea
| | - Jae-Hoon Ko
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
| | - Kyungmin Huh
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea
| | - Sun Young Cho
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
- Center for Infection Prevention and Control, Samsung Medical Center, Seoul, South Korea
| | - Cheol-In Kang
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
| |
Collapse
|
2
|
Lovey A, Lee A, Yu A, Krel M, Wang M, Paderu P, Brady T, Hough G, Zhao Q, Balkovec JM, Perlin DS, Zhao Y. CTC-177, a novel drug-Fc conjugate, shows promise as an immunoprophylactic agent against multidrug-resistant Gram-negative bacterial infections. JAC Antimicrob Resist 2024; 6:dlae100. [PMID: 39071163 PMCID: PMC11276960 DOI: 10.1093/jacamr/dlae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/31/2024] [Indexed: 07/30/2024] Open
Abstract
Background The widespread emergence of antibiotic resistance including MDR in Gram-negative bacterial pathogens poses a critical challenge to the current antimicrobial armamentarium. Objectives To create a novel drug-Fc conjugate (DFC) that can be delivered at sustained and prolonged levels while simultaneously activating the host immune response to combat MDR Gram-negative infections. Methods The Cloudbreak™ platform was used to develop DFCs consisting of a targeting moiety (TM) (a polymyxin-derived dimer) attached via a non-cleavable linker to an effector moiety (EM) (the Fc domain of human IgG1). In vitro activities of the DFCs were assessed by MIC testing. Neutropenic mouse models of thigh infection, septicaemia and pneumonia were used to evaluate in vivo efficacy. Pharmacokinetics were evaluated in mice and cynomolgus monkeys. Results A single prophylactic dose of our lead DFC, CTC-177, resulted in significantly decreased bacterial burdens and reduced inflammation comparable to daily treatment with colistin in septicaemia and pneumonia mouse models. Furthermore, CTC-177 prophylaxis was able to restore colistin efficacy in colistin-resistant septicaemia, reducing bacterial burdens beyond the limit of detection. Finally, CTC-177 displayed a long terminal half-life of over 24 and 65 h in mice and cynomolgus monkeys, respectively. Conclusions These data support the continued development of Cloudbreak™ DFCs as broad-spectrum prophylactic agents against Gram-negative infections.
Collapse
Affiliation(s)
- Arianne Lovey
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Annie Lee
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Allison Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Mila Krel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Mingming Wang
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Padmaja Paderu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Thomas Brady
- Departments of Medicinal Chemistry and Protein Chemistry, Cidara Therapeutics, Inc., San Diego, CA 92121, USA
| | - Grayson Hough
- Departments of Medicinal Chemistry and Protein Chemistry, Cidara Therapeutics, Inc., San Diego, CA 92121, USA
| | - Qiping Zhao
- Departments of Medicinal Chemistry and Protein Chemistry, Cidara Therapeutics, Inc., San Diego, CA 92121, USA
| | - James M Balkovec
- Departments of Medicinal Chemistry and Protein Chemistry, Cidara Therapeutics, Inc., San Diego, CA 92121, USA
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Yanan Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
3
|
Taheri-Araghi S. Synergistic action of antimicrobial peptides and antibiotics: current understanding and future directions. Front Microbiol 2024; 15:1390765. [PMID: 39144233 PMCID: PMC11322369 DOI: 10.3389/fmicb.2024.1390765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024] Open
Abstract
Antibiotic resistance is a growing global problem that requires innovative therapeutic approaches and strategies for administering antibiotics. One promising approach is combination therapy, in which two or more drugs are combined to combat an infection. Along this line, the combination of antimicrobial peptides (AMPs) with conventional antibiotics has gained attention mainly due to the complementary mechanisms of action of AMPs and conventional antibiotics. In this article, we review both in vitro and in vivo studies that explore the synergy between AMPs and antibiotics. We highlight several mechanisms through which synergy is observed in in vitro experiments, including increasing membrane permeability, disrupting biofilms, directly potentiating antibiotic efficacy, and inhibiting resistance development. Moreover, in vivo studies reveal additional mechanisms such as enhanced/modulated immune responses, reduced inflammation, and improved tissue regeneration. Together, the current literature demonstrates that AMP-antibiotic combinations can substantially enhance efficacy of antibiotic therapies, including therapies against resistant bacteria, which represents a valuable enhancement to current antimicrobial strategies.
Collapse
Affiliation(s)
- Sattar Taheri-Araghi
- Department of Physics and Astronomy, California State University, Northridge, CA, United States
| |
Collapse
|
4
|
Chi Y, Peng Y, Zhang S, Tang S, Zhang W, Dai C, Ji S. A Rapid In Vivo Toxicity Assessment Method for Antimicrobial Peptides. TOXICS 2024; 12:387. [PMID: 38922067 PMCID: PMC11209610 DOI: 10.3390/toxics12060387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Antimicrobial peptides (AMPs) represent a promising antibiotic alternative to overcome drug-resistant bacteria by inserting into the membrane of bacteria, resulting in cell lysis. However, therapeutic applications of AMPs have been hindered by their ability to lyse eukaryotic cells. GF-17 is a truncated peptide of LL-37, which has perfect amphipathicity and a higher hydrophobicity, resulting in higher haemolytic activity. However, there is no significant difference in the cytotoxicity against human lung epithelial cells between the GF-17 and LL-37 groups, indicating that there are significant differences in the sensitivity of different human cells to GF-17. In this study, LL-37 and GF-17 were administered to mouse lungs via intranasal inoculation. Blood routine examination results showed that LL-37 did not affect the red blood cells, platelet, white blood cells and neutrophil counts, but GF-17 decreased the white blood cells and neutrophil counts with the increasing concentration of peptides. GF-17-treated mice suffer a body weight loss of about 2.3 g on average in 24 h, indicating that GF-17 is highly toxic to mice. The total cell counts in the bronchoalveolar lavage fluid from GF-17-treated mice were 4.66-fold that in the untreated group, suggesting that GF-17 treatment leads to inflammation in the lungs of mice. Similarly, the histological results showed the infiltration of neutrophils in the lungs of GF-17-treated mice. The results suggest that the administration of GF-17 in the lungs of mice does not affect the red blood cells and platelet counts in the blood but promotes neutrophil infiltration in the lungs, leading to an inflammatory response. Therefore, we established a mouse acute lung injury model to preliminarily evaluate the in vivo toxicity of AMPs. For AMPs with a clinical application value, systematic research is still needed to evaluate their acute and long-term toxicity.
Collapse
Affiliation(s)
- Yulang Chi
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.C.)
| | - Yunhui Peng
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.C.)
- School of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China
| | - Shikun Zhang
- Academy of Military Medical Sciences, Beijing 100850, China;
| | - Sijia Tang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.C.)
| | - Wenzhou Zhang
- School of Pharmacy, Quanzhou Medical College, Quanzhou 362011, China
| | - Congjie Dai
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.C.)
| | - Shouping Ji
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; (Y.C.)
- School of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China
| |
Collapse
|
5
|
de Matos AM, Calado P, Miranda M, Almeida R, Rauter AP, Oliveira MC, Manageiro V, Caniça M. Alkyl deoxyglycoside-polymyxin combinations against critical priority carbapenem-resistant gram-negative bacteria. Sci Rep 2024; 14:2219. [PMID: 38278870 PMCID: PMC10817917 DOI: 10.1038/s41598-024-51428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024] Open
Abstract
The escalating antimicrobial resistance crisis urges the development of new antibacterial treatments with innovative mechanisms of action, particularly against the critical priority carbapenem-resistant Acinetobacter baumannii (CRAB), Pseudomonas aeruginosa (CRPA) and Enterobacteriaceae (CRE). Membrane-disrupting dodecyl deoxyglycosides have been reported for their interesting phosphatidylethanolamine-associated bactericidal activity against Gram-positive strains; however, their inability to penetrate the Gram-negative outer membrane (OM) renders them useless against the most challenging pathogens. Aiming to repurpose alkyl deoxyglycosides against Gram-negative bacteria, this study investigates the antimicrobial effects of five reference compounds with different deoxygenation patterns or anomeric configurations in combination with polymyxins as adjuvants for enhanced OM permeability. The generation of the lead 4,6-dideoxy scaffold was optimized through a simultaneous dideoxygenation step and applied to the synthesis of a novel alkyl 4,6-dideoxy C-glycoside 5, herein reported for the first time. When combined with subtherapeutic colistin concentrations, most glycosides demonstrated potent antimicrobial activity against several multidrug-resistant clinical isolates of CRAB, CRE and CRPA exhibiting distinct carbapenem resistance mechanisms, together with acceptable cytotoxicity against human HEK-293T and Caco-2 cells. The novel 4,6-dideoxy C-glycoside 5 emerged as the most promising prototype structure for further development (MIC 3.1 μg/mL when combined with colistin 0.5 μg/mL against CRPA or 0.25 μg/mL against several CRE and CRAB strains), highlighting the potential of C-glycosylation for an improved bioactive profile. This study is the first to show the potential of IM-targeting carbohydrate-based compounds for the treatment of infections caused by MDR Gram-negative pathogens of clinical importance.
Collapse
Affiliation(s)
- Ana M de Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal.
| | - Patrícia Calado
- Centro de Química Estrutural, Institute of Molecular Sciences, Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal
| | - Mónica Miranda
- Centro de Química Estrutural, Institute of Molecular Sciences, Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal
| | - Rita Almeida
- Centro de Química Estrutural, Institute of Molecular Sciences, Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal
| | - Amélia P Rauter
- Centro de Química Estrutural, Institute of Molecular Sciences, Departmento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal
| | - M Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare-Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare-Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
6
|
MATSUMOTO Y, YAMASAKI S, HAYAMA K, IINO R, NOJI H, YAMAGUCHI A, NISHINO K. Changes in the expression of mexB, mexY, and oprD in clinical Pseudomonas aeruginosa isolates. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:57-67. [PMID: 38199247 PMCID: PMC10864171 DOI: 10.2183/pjab.100.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 01/12/2024]
Abstract
Changes in expression levels of drug efflux pump genes, mexB and mexY, and porin gene oprD in Pseudomonas aeruginosa were investigated in this study. Fifty-five multidrug-resistant P. aeruginosa (MDRP) strains were compared with 26 drug-sensitive strains and 21 strains resistant to a single antibiotic. The effect of the efflux inhibitor Phe-Arg-β-naphthylamide on drug susceptibility was determined, and gene expression was quantified using real-time quantitative real-time reverse transcription polymerase chain reaction. In addition, the levels of metallo-β-lactamase (MBL) and 6'-N-aminoglycoside acetyltransferase [AAC(6')-Iae] were investigated. Efflux pump inhibitor treatment increased the sensitivity to ciprofloxacin, aztreonam, and imipenem in 71%, 73%, and 29% of MDRPs, respectively. MBL and AAC(6')-Iae were detected in 38 (69%) and 34 (62%) MDRP strains, respectively. Meanwhile, 76% of MDRP strains exhibited more than 8-fold higher mexY expression than the reference strain PAO1. Furthermore, 69% of MDRP strains expressed oprD at levels less than 0.01-fold of those in PAO1. These findings indicated that efflux pump inhibitors in combination with ciprofloxacin or aztreonam might aid in treating MDRP infections.
Collapse
Affiliation(s)
- Yoshimi MATSUMOTO
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
| | - Seiji YAMASAKI
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Kouhei HAYAMA
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
| | - Ryota IINO
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| | - Hiroyuki NOJI
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Akihito YAMAGUCHI
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
| | - Kunihiko NISHINO
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Plotniece A, Sobolev A, Supuran CT, Carta F, Björkling F, Franzyk H, Yli-Kauhaluoma J, Augustyns K, Cos P, De Vooght L, Govaerts M, Aizawa J, Tammela P, Žalubovskis R. Selected strategies to fight pathogenic bacteria. J Enzyme Inhib Med Chem 2023; 38:2155816. [PMID: 36629427 PMCID: PMC9848314 DOI: 10.1080/14756366.2022.2155816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.
Collapse
Affiliation(s)
- Aiva Plotniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, Riga, Latvia
| | | | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Carta
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Koen Augustyns
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Linda De Vooght
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Matthias Govaerts
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Juliana Aizawa
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Päivi Tammela
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| |
Collapse
|
8
|
Nguyen HT, Venter H, Woolford L, Young KA, McCluskey A, Garg S, Sapula SS, Page SW, Ogunniyi AD, Trott DJ. Oral administration of a 2-aminopyrimidine robenidine analogue (NCL195) significantly reduces Staphylococcus aureus infection and reduces Escherichia coli infection in combination with sub-inhibitory colistin concentrations in a bioluminescent mouse model. Antimicrob Agents Chemother 2023; 67:e0042423. [PMID: 37695304 PMCID: PMC10583667 DOI: 10.1128/aac.00424-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/06/2023] [Indexed: 09/12/2023] Open
Abstract
We have previously reported promising in vivo activity of the first-generation 2-aminopyramidine robenidine analogue NCL195 against Gram-positive bacteria (GPB) when administered via the systemic route. In this study, we examined the efficacy of oral treatment with NCL195 (± low-dose colistin) in comparison to oral moxifloxacin in bioluminescent Staphylococcus aureus and Escherichia coli peritonitis-sepsis models. Four oral doses of 50 mg/kg NCL195, commencing immediately post-infection, were administered at 4 h intervals in the S. aureus peritonitis-sepsis model. We used a combination of four oral doses of 50 mg/kg NCL195 and four intraperitoneal doses of colistin at 0.125 mg/kg, 0.25 mg/kg, or 0.5 mg/kg in the E. coli peritonitis-sepsis model. Subsequently, the dose rates of four intraperitoneal doses of colistin were increased to 0.5 mg/kg, 1 mg/kg, or 2 mg/kg at 4 h intervals to treat a colistin-resistant E. coli infection. In the S. aureus infection model, oral treatment of mice with NCL195 resulted in significantly reduced S. aureus infection loads (P < 0.01) and longer survival times (P < 0.001) than vehicle-only treated mice. In the E. coli infection model, co-administration of NCL195 and graded doses of colistin resulted in a dose-dependent significant reduction in colistin-susceptible (P < 0.01) or colistin-resistant (P < 0.05) E. coli loads compared to treatment with colistin alone at similar concentrations. Our results confirm that NCL195 is a potential candidate for further preclinical development as a specific treatment for multidrug-resistant infections, either as a stand-alone antibiotic for GPB or in combination with sub-inhibitory concentrations of colistin for Gram-negative bacteria.
Collapse
Affiliation(s)
- Hang Thi Nguyen
- Australian Center for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kelly A. Young
- Chemistry, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sanjay Garg
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sylvia S. Sapula
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | - Abiodun David Ogunniyi
- Australian Center for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Darren J. Trott
- Australian Center for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Zhang J, Song C, Wu M, Yue J, Zhu S, Zhu P, Oo C, Schlender JF, Lv Z, Zhu Y, Sy SKB, Yu M. Physiologically-based pharmacokinetic modeling to inform dosing regimens and routes of administration of rifampicin and colistin combination against Acinetobacter baumannii. Eur J Pharm Sci 2023; 185:106443. [PMID: 37044198 DOI: 10.1016/j.ejps.2023.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/28/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii (CRAB) is resistant to major antibiotics such as penicillin, cephalosporin, fluoroquinolone and aminoglycoside, and has become a significant nosocomial pathogen. The efficacy of rifampicin and colistin combination against CRAB could be dependent on the administration routes and drug concentrations at the site of infection. OBJECTIVE The objective is to predict drug disposition in biological tissues. Treatment efficacy is extrapolated by assessing respective pharmacodynamic (PD) indices, as well as parameters associated with the emergence of resistance. METHODS Physiologically-based pharmacokinetic models of rifampicin and colistin were utilized to predict tissue exposures. Dosing regimens and administration routes for combination therapy were evaluated in terms of in vitro antimicrobial susceptibility of A. baumannii associated with targeted PD indices and resistance parameters. RESULTS Simulated exposures in blood, heart, lung, skin and brain were consistent with reported penetration rates. The results demonstrated that a combination of colistin and rifampicin using conventional intravenous (i.v.) doses could achieve effective exposures in the blood and skin. However, for lung infections, colistin by inhalation would be required due to low lung penetration from intravenous route. Inhaled colistin alone provided good PD coverage but this practice could encourage the emergence of additional resistance which may be overcome by a combination regimen that includes inhaled colistin. CONCLUSION This in silico extrapolation provides valuable information on dosing regimens and routes of administration against CRAB infections in specific tissues. The PBPK modeling approach could be a non-invasive way to inform therapeutic benefits of combination antimicrobial therapy.
Collapse
Affiliation(s)
- Jiayuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Chu Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Mengyuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Jiali Yue
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Shixing Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Peijuan Zhu
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles Oo
- SunLife Biopharma, Morris Plains, New Jersey, USA
| | | | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China.
| | - Yuanqi Zhu
- Department of Laboratory Medicine, the Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Sherwin K B Sy
- Department of Statistics, State University of Maringá, Maringá, Paraná, Brazil.
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China.
| |
Collapse
|
10
|
Zhu S, Zhang J, Lv Z, Zhu P, Oo C, Yu M, Sy SKB. Prediction of Tissue Exposures of Meropenem, Colistin, and Sulbactam in Pediatrics Using Physiologically Based Pharmacokinetic Modeling. Clin Pharmacokinet 2022; 61:1427-1441. [PMID: 35947360 DOI: 10.1007/s40262-022-01161-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The combination of polymyxins, meropenem, and sulbactam demonstrated efficacy against multi-drug-resistant bacillus Acinetobacter baumannii. These three antibiotics are commonly used against major blood, skin, lung, and heart muscle infections. OBJECTIVE The objective of this study was to predict drug disposition and extrapolate the efficacy in these tissues using a physiologically based pharmacokinetic modeling approach that linked drug exposures to their target pharmacodynamic indices associated with antimicrobial activities against A. baumannii. METHODS An adult physiologically based pharmacokinetic model was developed for meropenem, colistin, and sulbactam and scaled to pediatrics accounting for both renal and non-renal clearances. The model reliability was evaluated by comparing simulated plasma and tissue drug exposures to observed data. Target pharmacodynamic indices were used to evaluate whether pediatric and adult dosing regimens provided sufficient coverage. RESULTS The modeled plasma drug exposures in adults and pediatric patients were consistent with reported literature data. The mean fold errors for meropenem, colistin, and sulbactam were in the range of 0.710-1.37, 0.981-1.47, and 0.647-1.39, respectively. Simulated exposures in the blood, skin, lung, and heart were consistent with reported penetration rates. In a virtual pediatric population aged from 2 to < 18 years, the interpretive breakpoints were achieved in 85-90% of subjects for their targeted pharmacodynamic indices after administration of pediatric dosing regimens consisting of 30 mg/kg of meropenem, and 40 mg/kg of sulbactam three times daily as a 3-h or continuous infusion and 5 mg/kg/day of colistin base activity. CONCLUSIONS The physiologically based pharmacokinetic modeling supports pediatric dosing regimens of meropenem/colistin/sulbactam in a co-administration setting against infections in the blood, lung, skin, and heart tissues due to A. baumannii.
Collapse
Affiliation(s)
- Shixing Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Jiayuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Peijuan Zhu
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles Oo
- SunLife Biopharma, Morris Plains, NJ, USA
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China. .,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China.
| | - Sherwin K B Sy
- Department of Statistics, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
11
|
Pharmacodynamic and immunomodulatory effects of polymyxin B in combination with fosfomycin against KPC-2-producing Klebsiella pneumoniae. Int J Antimicrob Agents 2022; 59:106566. [DOI: 10.1016/j.ijantimicag.2022.106566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 11/23/2022]
|
12
|
Zhu Y, Hao W, Wang X, Ouyang J, Deng X, Yu H, Wang Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med Res Rev 2022; 42:1377-1422. [PMID: 34984699 DOI: 10.1002/med.21879] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are important effector immune defense molecules in multicellular organisms. AMPs exert their antimicrobial activities through several mechanisms; thus far, induction of drug resistance through AMPs has been regarded as unlikely. Therefore, they have great potential as new generation antimicrobial agents. To date, more than 30 AMP-related drugs are in the clinical trial phase. In recent years, studies show that some AMPs and conventional antibiotics have synergistic effects. The combined use of AMPs and antibiotics can kill drug-resistant pathogens, prevent drug resistance, and significantly improve the therapeutic effects of antibiotics. In this review, we discuss the progress in synergistic studies on AMPs and conventional antibiotics. An overview of the current understanding of the functional scope of AMPs, ongoing clinical trials, and challenges in the development processes are also presented.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Weijing Hao
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xia Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jianhong Ouyang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Deng
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
13
|
Yin T, Lai JJ, Huang WC, Kuo SC, Chiang TT, Yang YS. In vitro and in vivo comparison of eravacycline- and tigecycline-based combination therapies for tigecycline-resistant Acinetobacter baumannii. J Chemother 2021; 34:166-172. [PMID: 34818987 DOI: 10.1080/1120009x.2021.2005755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Several antimicrobial combination therapies are used to treat multiple drug resistant (MDR) and extensively drug resistant (XDR) Acinetobacter baumannii infections. A novel antibiotic, eravacycline, shows a higher potency than tigecycline. The efficacies of eravacycline-based therapies have not yet been evaluated. We demonstrated the effectiveness of eravacycline- and tigecycline-based combination therapies in XDR and especially tigecycline resistant A. baumannii. Thirteen eligible isolates were selected from 642 non-duplicate Acinetobacter blood isolates from four medical centres in 2010-2014. Tigecycline/imipenem and eravacycline/imipenem combinations were simultaneously effective against some isolates in vitro with fractional inhibitory concentration index of 0.5. In contrast, eravacycline- and tigecycline-based combination therapies provided no additional benefits in mouse survival compared to those for monotherapy. In summary, colistin is still the final resort for XDR-A. baumannii treatment according to the sensitivities. Owning to rapid development of resistance in A. baumannii, novel antibiotics are urgently needed.
Collapse
Affiliation(s)
- Ti Yin
- Nursing Department, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jiun-Ji Lai
- Department of Internal Medicine, Division of Infectious Diseases and Tropical Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Cheng Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Tsung-Ta Chiang
- Department of Internal Medicine, Division of Infectious Diseases and Tropical Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Sung Yang
- Department of Internal Medicine, Division of Infectious Diseases and Tropical Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | |
Collapse
|
14
|
Alabresm A, Chandler SL, Benicewicz BC, Decho AW. Nanotargeting of Resistant Infections with a Special Emphasis on the Biofilm Landscape. Bioconjug Chem 2021; 32:1411-1430. [PMID: 34319073 PMCID: PMC8527872 DOI: 10.1021/acs.bioconjchem.1c00116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacterial resistance to antimicrobial compounds is a growing concern in medical and public health circles. Overcoming the adaptable and duplicative resistance mechanisms of bacteria requires chemistry-based approaches. Engineered nanoparticles (NPs) now offer unique advantages toward this effort. However, most in situ infections (in humans) occur as attached biofilms enveloped in a protective surrounding matrix of extracellular polymers, where survival of microbial cells is enhanced. This presents special considerations in the design and deployment of antimicrobials. Here, we review recent efforts to combat resistant bacterial strains using NPs and, then, explore how NP surfaces may be specifically engineered to enhance the potency and delivery of antimicrobial compounds. Special NP-engineering challenges in the design of NPs must be overcome to penetrate the inherent protective barriers of the biofilm and to successfully deliver antimicrobials to bacterial cells. Future challenges are discussed in the development of new antibiotics and their mechanisms of action and targeted delivery via NPs.
Collapse
Affiliation(s)
- Amjed Alabresm
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Biological Development of Shatt Al-Arab & N. Arabian Gulf, Marine Science Centre, University of Basrah, Basrah, Iraq
| | - Savannah L Chandler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Brian C Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- USC NanoCenter, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
15
|
Oh S, Chau R, Nguyen AT, Lenhard JR. Losing the Battle but Winning the War: Can Defeated Antibacterials Form Alliances to Combat Drug-Resistant Pathogens? Antibiotics (Basel) 2021; 10:antibiotics10060646. [PMID: 34071451 PMCID: PMC8227011 DOI: 10.3390/antibiotics10060646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the recent development of antibacterials that are active against multidrug-resistant pathogens, drug combinations are often necessary to optimize the killing of difficult-to-treat organisms. Antimicrobial combinations typically are composed of multiple agents that are active against the target organism; however, many studies have investigated the potential utility of combinations that consist of one or more antibacterials that individually are incapable of killing the relevant pathogen. The current review summarizes in vitro, in vivo, and clinical studies that evaluate combinations that include at least one drug that is not active individually against Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, or Staphylococcus aureus. Polymyxins were often included in combinations against all three of the Gram-negative pathogens, and carbapenems were commonly incorporated into combinations against K. pneumoniae and A. baumannii. Minocycline, sulbactam, and rifampin were also frequently investigated in combinations against A. baumannii, whereas the addition of ceftaroline or another β-lactam to vancomycin or daptomycin showed promise against S. aureus with reduced susceptibility to vancomycin or daptomycin. Although additional clinical studies are needed to define the optimal combination against specific drug-resistant pathogens, the large amount of in vitro and in vivo studies available in the literature may provide some guidance on the rational design of antibacterial combinations.
Collapse
|
16
|
Sabnis A, Hagart KLH, Klöckner A, Becce M, Evans LE, Furniss RCD, Mavridou DAI, Murphy R, Stevens MM, Davies JC, Larrouy-Maumus GJ, Clarke TB, Edwards AM. Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. eLife 2021; 10:e65836. [PMID: 33821795 PMCID: PMC8096433 DOI: 10.7554/elife.65836] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Colistin is an antibiotic of last resort, but has poor efficacy and resistance is a growing problem. Whilst it is well established that colistin disrupts the bacterial outer membrane (OM) by selectively targeting lipopolysaccharide (LPS), it was unclear how this led to bacterial killing. We discovered that MCR-1 mediated colistin resistance in Escherichia coli is due to modified LPS at the cytoplasmic rather than OM. In doing so, we also demonstrated that colistin exerts bactericidal activity by targeting LPS in the cytoplasmic membrane (CM). We then exploited this information to devise a new therapeutic approach. Using the LPS transport inhibitor murepavadin, we were able to cause LPS accumulation in the CM of Pseudomonas aeruginosa, which resulted in increased susceptibility to colistin in vitro and improved treatment efficacy in vivo. These findings reveal new insight into the mechanism by which colistin kills bacteria, providing the foundations for novel approaches to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Akshay Sabnis
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUnited Kingdom
| | - Katheryn LH Hagart
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUnited Kingdom
| | - Anna Klöckner
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUnited Kingdom
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
- Department of Materials, Imperial College LondonLondonUnited Kingdom
- Institute of Biomedical Engineering, Imperial College LondonLondonUnited Kingdom
| | - Michele Becce
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
- Department of Materials, Imperial College LondonLondonUnited Kingdom
- Institute of Biomedical Engineering, Imperial College LondonLondonUnited Kingdom
| | - Lindsay E Evans
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUnited Kingdom
- Department of Chemistry, Imperial College London, Molecular Sciences Research HubLondonUnited Kingdom
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUnited Kingdom
| | - Despoina AI Mavridou
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - Ronan Murphy
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
- Department of Paediatric Respiratory Medicine, Royal Brompton HospitalLondonUnited Kingdom
| | - Molly M Stevens
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
- Department of Materials, Imperial College LondonLondonUnited Kingdom
- Institute of Biomedical Engineering, Imperial College LondonLondonUnited Kingdom
| | - Jane C Davies
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
- Department of Paediatric Respiratory Medicine, Royal Brompton HospitalLondonUnited Kingdom
| | - Gérald J Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUnited Kingdom
| | - Thomas B Clarke
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUnited Kingdom
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
17
|
Abstract
Antibiotic resistance is a major global health challenge and, worryingly, several key Gram negative pathogens can become resistant to most currently available antibiotics. Polymyxins have been revived as a last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram negative bacteria, in particular Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacterales. Polymyxins were first discovered in the late 1940s but were abandoned soon after their approval in the late 1950s as a result of toxicities (e.g., nephrotoxicity) and the availability of "safer" antibiotics approved at that time. Therefore, knowledge on polymyxins had been scarce until recently, when enormous efforts have been made by several research teams around the world to elucidate the chemical, microbiological, pharmacokinetic/pharmacodynamic, and toxicological properties of polymyxins. One of the major achievements is the development of the first scientifically based dosage regimens for colistin that are crucial to ensure its safe and effective use in patients. Although the guideline has not been developed for polymyxin B, a large clinical trial is currently being conducted to optimize its clinical use. Importantly, several novel, safer polymyxin-like lipopeptides are developed to overcome the nephrotoxicity, poor efficacy against pulmonary infections, and narrow therapeutic windows of the currently used polymyxin B and colistin. This review discusses the latest achievements on polymyxins and highlights the major challenges ahead in optimizing their clinical use and discovering new-generation polymyxins. To save lives from the deadly infections caused by Gram negative "superbugs," every effort must be made to improve the clinical utility of the last-line polymyxins. SIGNIFICANCE STATEMENT: Antimicrobial resistance poses a significant threat to global health. The increasing prevalence of multidrug-resistant (MDR) bacterial infections has been highlighted by leading global health organizations and authorities. Polymyxins are a last-line defense against difficult-to-treat MDR Gram negative pathogens. Unfortunately, the pharmacological information on polymyxins was very limited until recently. This review provides a comprehensive overview on the major achievements and challenges in polymyxin pharmacology and clinical use and how the recent findings have been employed to improve clinical practice worldwide.
Collapse
Affiliation(s)
- Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Mohammad A K Azad
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Tony Velkov
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Qi Tony Zhou
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| |
Collapse
|
18
|
Chai WC, Whittall JJ, Song D, Polyak SW, Ogunniyi AD, Wang Y, Bi F, Ma S, Semple SJ, Venter H. Antimicrobial Action and Reversal of Resistance in MRSA by Difluorobenzamide Derivatives Targeted at FtsZ. Antibiotics (Basel) 2020; 9:E873. [PMID: 33291418 PMCID: PMC7762090 DOI: 10.3390/antibiotics9120873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 01/21/2023] Open
Abstract
The bacterial cell division protein, FtsZ, has been identified as a target for antimicrobial development. Derivatives of 3-methoxybenzamide have shown promising activities as FtsZ inhibitors in Gram-positive bacteria. We sought to characterise the activity of five difluorobenzamide derivatives with non-heterocyclic substituents attached through the 3-oxygen. These compounds exhibited antimicrobial activity against methicillin resistant Staphylococcus aureus (MRSA), with an isopentyloxy-substituted compound showing modest activity against vancomycin resistant Enterococcus faecium (VRE). The compounds were able to reverse resistance to oxacillin in highly resistant clinical MRSA strains at concentrations far below their MICs. Three of the compounds inhibited an Escherichia coli strain lacking the AcrAB components of a drug efflux pump, which suggests the lack of Gram-negative activity can partly be attributed to efflux. The compounds inhibited cell division by targeting S. aureus FtsZ, producing a dose-dependent increase in GTPase rate which increased the rate of FtsZ polymerization and stabilized the FtsZ polymers. These compounds did not affect the polymerization of mammalian tubulin and did not display haemolytic activity or cytotoxicity. These derivatives are therefore promising compounds for further development as antimicrobial agents or as resistance breakers to re-sensitive MRSA to beta-lactam antibiotics.
Collapse
Affiliation(s)
- Wern Chern Chai
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, SA 5000 Adelaide, Australia; (W.C.C.); (J.J.W.); (S.W.P.); (S.J.S.)
| | - Jonathan J. Whittall
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, SA 5000 Adelaide, Australia; (W.C.C.); (J.J.W.); (S.W.P.); (S.J.S.)
| | - Di Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (D.S.); (Y.W.); (F.B.); (S.M.)
| | - Steven W. Polyak
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, SA 5000 Adelaide, Australia; (W.C.C.); (J.J.W.); (S.W.P.); (S.J.S.)
| | - Abiodun D. Ogunniyi
- Australia Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, SA 5371 Roseworthy, Australia;
| | - Yinhu Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (D.S.); (Y.W.); (F.B.); (S.M.)
- School of Pharmacy, Liaocheng University, Liaocheng 252000, China
| | - Fangchao Bi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (D.S.); (Y.W.); (F.B.); (S.M.)
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (D.S.); (Y.W.); (F.B.); (S.M.)
| | - Susan J. Semple
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, SA 5000 Adelaide, Australia; (W.C.C.); (J.J.W.); (S.W.P.); (S.J.S.)
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, SA 5000 Adelaide, Australia
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, SA 5000 Adelaide, Australia; (W.C.C.); (J.J.W.); (S.W.P.); (S.J.S.)
| |
Collapse
|
19
|
Immunomodulatory effects of colistin on host responses against carbapenem-resistant Klebsiella pneumoniae biofilms. Int J Antimicrob Agents 2020; 56:106182. [PMID: 33045355 DOI: 10.1016/j.ijantimicag.2020.106182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/04/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022]
Abstract
Colistin (CST) is a last-resort therapeutic option for carbapenem-resistant Klebsiella pneumoniae (CR-Kp) infections in critically ill patients. The effect of subinhibitory CST concentrations (sub-MICs) on biofilm formation is organism-dependent. We investigated the interactions between CST and innate immune cells against CR-Kp biofilms (CR-KpBF) by studying the effect of biofilm sub-MICs of CST on (i) damage induced by human polymorphonuclear neutrophils (PMNs) on CR-KpBF and (ii) the immunomodulatory potential on human mononuclear cells (MNCs) exposed to CR-KpBF. The impact of CST on PMN-induced biofilm damage was assessed by XTT reduction assay. Signal transduction and gene expression profiles in response to CST sub-MICs of MNCs exposed to CR-KpBF were studied by RT-PCR and multiplex ELISA. Pre-exposure of CR-Kp to 0.06 mg/L CST led to subsequent increased PMN-mediated biofilm damage against CR-KpBF in the presence of CST biofilm sub-MICs: there was an additive effect at 2, 4, 8 and 16 mg/L. However, the overall biofilm damage was not >52%. MNCs responded to CR-KpBF through Toll-like receptor 2 (TLR2) by 2.5-fold upregulation and NLRP3 inflammasome activation. CR-KpBF stimulated increased production of interleukin 1-beta (IL-1β), tumour necrosis factor-alpha (TNFα), IL-8 and IL-6. In the combination treatment, 0.5 mg/L CST reduced IL-1β, TNFα and IL-8 levels, whereas at 2 mg/L and 8 mg/L it increased the anti-inflammatory cytokine IL-10 (P < 0.05). Biofilm sub-MICs of CST enhance PMN killing capacity and attenuate production of inflammatory cytokines by MNCs exposed to CR-KpBF, playing a potentially important immunotherapeutic role especially for patients with cytokine deregulation.
Collapse
|
20
|
Ota K, Kaku N, Yanagihara K. Efficacy of meropenem and amikacin combination therapy against carbapenemase-producing Klebsiella pneumoniae mouse model of pneumonia. J Infect Chemother 2020; 26:1237-1243. [PMID: 32868198 DOI: 10.1016/j.jiac.2020.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 07/08/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND The emergence and spread of carbapenem-resistant Enterobacteriaceae (CRE) is a global health problem due to its high mortality and limited treatment options. Combination antimicrobial therapy is reported to be effective against CRE in vitro; however, its efficacy in vivo has not been thoroughly evaluated. Thus, this study assessed the efficacy of combination therapy of meropenem (MEPM) and amikacin (AMK) in a carbapenem-resistant Klebsiella pneumoniae (CR-Kp) mouse model of pneumonia. MATERIALS AND METHODS Agar-based bacterial suspension of CR-Kp clinical isolates was inoculated into the trachea of BALB/c mice. Treatment was initiated 6 h post infection, with 100 mg/kg MEPM every 6 h, 100 mg/kg AMK every 12 h, or in combination; survival was evaluated for 7 days. The number of viable bacteria in the lungs, lung histopathology, and neutrophil counts in broncho-alveolar lavage fluid (BALF) were evaluated 42 h after infection. RESULTS All mice in the untreated control group died in 48 h, while all the mice in treatment groups survived past 7 days following infection. The bacterial count in the lungs (log10 CFU/mL, mean ± SEM) in the combination group (2.00 ± 0.00) decreased significantly compared to that in control (10.19 ± 0.11, p < 0.0001), MEPM (6.38 ± 0.17, p < 0.0001), and AMK (6.17 ± 0.16, p < 0.0001) groups. BALF neutrophil count reduced only in the combination therapy group. Combination therapy prevented the progression of lung inflammation, including alveolar neutrophil infiltration and hemorrhage. CONCLUSIONS This study demonstrates in vivo efficacy of MEPM and AMK combination therapy against CR-Kp pneumonia.
Collapse
Affiliation(s)
- Kenji Ota
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Norihito Kaku
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan.
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
21
|
Liu Y, Li S, Shen T, Chen L, Zhou J, Shi S, Wang Y, Zhao Z, Liao C, Wang C. N-terminal Myristoylation Enhanced the Antimicrobial Activity of Antimicrobial Peptide PMAP-36PW. Front Cell Infect Microbiol 2020; 10:450. [PMID: 32984074 PMCID: PMC7481357 DOI: 10.3389/fcimb.2020.00450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/23/2020] [Indexed: 01/08/2023] Open
Abstract
Drug-resistant bacteria infections and drug residues have been increasing and causing antibiotic resistance and public health threats worldwide. Antimicrobial peptides (AMPs) are novel antimicrobial drugs with the potential to solve these problems. Here, a peptide based on our previously studied peptide PMAP-36PW was designed via N-terminal myristoylation and referred to as Myr-36PW. The fatty acid modification provided the as-prepared peptide with good stability and higher antimicrobial activity compared with PMAP-36PW in vitro. Moreover, Myr-36PW exhibited effective anti-biofilm activity against Gram-negative bacteria and may kill bacteria by improving the permeability of their membranes. In addition, the designed peptide Myr-36PW could inhibit the bacterial growth of Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa GIM 1.551 to target organs, decrease the inflammatory damage, show an impressive therapeutic effect on mouse pneumonia and peritonitis experiments, and promote abscess reduction and wound healing in infected mice. These results reveal that Myr-36PW is a promising antimicrobial agent against bacterial infections.
Collapse
Affiliation(s)
- Yongqing Liu
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Shengnan Li
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Tengfei Shen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Liangliang Chen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Jiangfei Zhou
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Shuaibing Shi
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Yang Wang
- Henan Provincial Open Laboratory of Key Disciplines in Environment and Animal Products Safety, Henan University of Science and Technology, Luoyang, China
| | - Zhanqin Zhao
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| | - Chengshui Liao
- Henan Provincial Open Laboratory of Key Disciplines in Environment and Animal Products Safety, Henan University of Science and Technology, Luoyang, China
| | - Chen Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
22
|
Corcione S, Lupia T, Maraolo AE, Mornese Pinna S, Gentile I, De Rosa FG. Carbapenem-sparing strategy: carbapenemase, treatment, and stewardship. Curr Opin Infect Dis 2020; 32:663-673. [PMID: 31599774 DOI: 10.1097/qco.0000000000000598] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW describing the current role of carbapenems and carbapenem-sparing strategies in the setting of antimicrobial stewardship programs. RECENT FINDINGS sparing carbapenems with other drugs appears to be an interesting perspective for a variety of reasons in the current context of the multidrug-resistant (MDR) pandemic. Specific algorithms should also be precisely investigated to define better how to spare carbapenems within empiric and targeted regimens, with combination treatment or monotherapies, aiming at the best use of the new drugs and improving de-escalation as soon as possible for most of the patients. SUMMARY stewardship programs may be useful in reducing probable misuse and overuse of antibiotics, which has probably contributed to the emergence of carbapenem-resistant bacteria worldwide. The proposal of carbapenem-sparing strategies has then generated substantial scientific debate and, overall, the concept of sparing these drugs is well advocated together with judicious use of novel drugs, appropriate measures of infection control and prevention as well as in stewardship programs to curb the spread of MDR and XDR-strains in healthcare facilities.
Collapse
Affiliation(s)
- Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin
| | - Tommaso Lupia
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin
| | - Alberto Enrico Maraolo
- Department of Clinical Medicine and Surgery, Section of Infectious Disease, University of Naples Federico II, Naples, Italy
| | | | - Ivan Gentile
- Department of Clinical Medicine and Surgery, Section of Infectious Disease, University of Naples Federico II, Naples, Italy
| | - Francesco G De Rosa
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin
| |
Collapse
|
23
|
Kunal K, Tiwari R, Dhaked HPS, Surolia A, Panda D. Mechanistic insight into the effect of BT‐benzo‐29 on the Z‐ring in
Bacillus subtilis. IUBMB Life 2020; 72:978-990. [DOI: 10.1002/iub.2234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Kishore Kunal
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay Mumbai India
| | - Rishu Tiwari
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay Mumbai India
| | - Hemendra P. S. Dhaked
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay Mumbai India
| | - Avadhesha Surolia
- Molecular Biophysics UnitIndian Institute of Science Bangalore India
| | - Dulal Panda
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay Mumbai India
| |
Collapse
|
24
|
The Use of Colistin for the Treatment of Multidrug-resistant Gram-negative Infections in Neonates and Infants: A Review of the Literature. Pediatr Infect Dis J 2019; 38:1107-1112. [PMID: 31469781 DOI: 10.1097/inf.0000000000002448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this review, we report the available data regarding efficacy, safety and pharmacokinetics of colistin in the treatment of multidrug-resistant Gram-negative bacteria in neonates and infants. Seventeen clinical studies, involving 312 patients, and 3 pharmacokinetics studies were identified. Blood stream infection was the most common source of infection, followed by pneumonia and meningitis/ventriculitis. In most cases, colistin was administered in association with other antibiotics. The most common route of administration was intravenous, with colistimethate doses ranging from 25,000 to 225,000 IU/kg/day divided into 2 or 3 doses. A recent pharmacokinetic study suggested that the appropriate intravenous dose should be >150,000 IU/kg/day. Microbiologic cure was obtained in 94.2% of patients and survival was 76.6%. The combination of intraventricular and intravenous colistin should be used in meningitis/ventriculitis. Nebulized colistin should be used as adjunctive treatment, but not as monotherapy. Nephrotoxicity and apnea were reported in 5.8% and 3.9% of patients respectively.The use of colistin for multidrug-resistant Gram-negative infections in neonates and infants is effective and safe, but the quality of studies is moderate. The optimal intravenous dose should be higher than that indicated in most reports.
Collapse
|
25
|
Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev 2019; 32:32/4/e00031-19. [PMID: 31462403 PMCID: PMC6730496 DOI: 10.1128/cmr.00031-19] [Citation(s) in RCA: 491] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In recent years, the worldwide spread of the so-called high-risk clones of multidrug-resistant or extensively drug-resistant (MDR/XDR) Pseudomonas aeruginosa has become a public health threat. This article reviews their mechanisms of resistance, epidemiology, and clinical impact and current and upcoming therapeutic options. In vitro and in vivo treatment studies and pharmacokinetic and pharmacodynamic (PK/PD) models are discussed. Polymyxins are reviewed as an important therapeutic option, outlining dosage, pharmacokinetics and pharmacodynamics, and their clinical efficacy against MDR/XDR P. aeruginosa infections. Their narrow therapeutic window and potential for combination therapy are also discussed. Other "old" antimicrobials, such as certain β-lactams, aminoglycosides, and fosfomycin, are reviewed here. New antipseudomonals, as well as those in the pipeline, are also reviewed. Ceftolozane-tazobactam has clinical activity against a significant percentage of MDR/XDR P. aeruginosa strains, and its microbiological and clinical data, as well as recommendations for improving its use against these bacteria, are described, as are those for ceftazidime-avibactam, which has better activity against MDR/XDR P. aeruginosa, especially strains with certain specific mechanisms of resistance. A section is devoted to reviewing upcoming active drugs such as imipenem-relebactam, cefepime-zidebactam, cefiderocol, and murepavadin. Finally, other therapeutic strategies, such as use of vaccines, antibodies, bacteriocins, anti-quorum sensing, and bacteriophages, are described as future options.
Collapse
Affiliation(s)
- Juan P Horcajada
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Milagro Montero
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Antonio Oliver
- Service of Microbiology, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Luisa Sorlí
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Sònia Luque
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Gómez-Zorrilla
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Natividad Benito
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Santiago Grau
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Silver RJ, Paczosa MK, McCabe AL, Balada-Llasat JM, Baleja JD, Mecsas J. Amino Acid Biosynthetic Pathways Are Required for Klebsiella pneumoniae Growth in Immunocompromised Lungs and Are Druggable Targets during Infection. Antimicrob Agents Chemother 2019; 63:e02674-18. [PMID: 31109974 PMCID: PMC6658747 DOI: 10.1128/aac.02674-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/11/2019] [Indexed: 12/16/2022] Open
Abstract
The emergence of multidrug-resistant Klebsiella pneumoniae has rendered a large array of infections difficult to treat. In a high-throughput genetic screen of factors required for K. pneumoniae survival in the lung, amino acid biosynthesis genes were critical for infection in both immunosuppressed and wild-type (WT) mice. The limited pool of amino acids in the lung did not change during infection and was insufficient for K. pneumoniae to overcome attenuating mutations in aroA, hisA, leuA, leuB, serA, serB, trpE, and tyrA in WT and immunosuppressed mice. Deletion of aroA, which encodes 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase class I, resulted in the most severe attenuation. Treatment with the EPSP synthase-specific competitive inhibitor glyphosate decreased K. pneumoniae growth in the lungs. K. pneumoniae expressing two previously identified glyphosate-resistant mutations in EPSP synthase had significant colonization defects in lung infection. Selection and characterization of six spontaneously glyphosate-resistant mutants in K. pneumoniae yielded no mutations in aroA Strikingly, glyphosate treatment of mice lowered the bacterial burden of two of three spontaneous glyphosate-resistant mutants and further lowered the burden of the less-attenuated EPSP synthase catalytic mutant. Of 39 clinical isolate strains, 9 were resistant to glyphosate at levels comparable to those of selected resistant strains, and none appeared to be more highly resistant. These findings demonstrate amino acid biosynthetic pathways essential for K. pneumoniae infection are promising novel therapeutic targets.
Collapse
Affiliation(s)
- Rebecca J Silver
- Graduate Program in Immunology, MERGE-ID Track, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Michelle K Paczosa
- Graduate Program in Immunology, MERGE-ID Track, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Anne L McCabe
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | - James D Baleja
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Joan Mecsas
- Graduate Program in Immunology, MERGE-ID Track, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
27
|
|
28
|
Pastor M, Basas J, Vairo C, Gainza G, Moreno-Sastre M, Gomis X, Fleischer A, Palomino E, Bachiller D, Gutiérrez FB, Aguirre JJ, Esquisabel A, Igartua M, Gainza E, Hernandez RM, Gavaldà J, Pedraz JL. Safety and effectiveness of sodium colistimethate-loaded nanostructured lipid carriers (SCM-NLC) against P. aeruginosa: in vitro and in vivo studies following pulmonary and intramuscular administration. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:101-111. [PMID: 30849549 DOI: 10.1016/j.nano.2019.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/15/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
The usefulness of nanotechnology to increase the bioavailability of drugs and decrease their toxicity may be a tool to deal with multiresistant P. aeruginosa (Mr-Pa) respiratory infections. We describe the preparation and the in vivo efficacy and safety of sodium colistimethate-loaded nanostructured lipid carriers (SCM-NLC) by the pulmonary and intramuscular routes. Nanoparticles showed 1-2 mg/L minimum inhibitory concentration against eight extensively drug-resistant P. aeruginosa strains. In vivo, SCM-NLC displayed significantly lower CFU/g lung than the saline and similar to that of the free SCM, even the dose in SCM-NLC group was lower than free SCM. There was no tissue damage related to the treatments. Biodistribution assessments showed a mild systemic absorption after nebulization and a notorious absorption after IM route. Altogether, it could be concluded that SCM-NLC were effective against P. aeruginosa in vivo, not toxic and distribute efficiently to the lung and liver after pulmonary or intramuscular administrations.
Collapse
Affiliation(s)
- Marta Pastor
- BioPraxis Research AIE, R&D Department, Miñano (Araba), Spain
| | - Jana Basas
- Antimicrobial Resistance Laboratory, Vall d'Hebron Research Institute (VHIR), Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, Barcelona, Spain
| | - Claudia Vairo
- BioPraxis Research AIE, R&D Department, Miñano (Araba), Spain; NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Vitoria-Gasteiz, Spain
| | - Garazi Gainza
- BioPraxis Research AIE, R&D Department, Miñano (Araba), Spain
| | - María Moreno-Sastre
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Xavier Gomis
- Antimicrobial Resistance Laboratory, Vall d'Hebron Research Institute (VHIR), Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, Barcelona, Spain
| | - Aarne Fleischer
- Consejo Superior de Investigaciones Científicas (CSIC/IMEDEA), Esporles, Spain
| | - Esther Palomino
- Consejo Superior de Investigaciones Científicas (CSIC/IMEDEA), Esporles, Spain
| | - Daniel Bachiller
- Consejo Superior de Investigaciones Científicas (CSIC/IMEDEA), Esporles, Spain
| | | | - Jose Javier Aguirre
- BioPraxis Research AIE, R&D Department, Miñano (Araba), Spain; Department of Pathological Anatomy, Hospital Universitario de Álava (HUA), Vitoria-Gasteiz, Spain
| | - Amaia Esquisabel
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Eusebio Gainza
- BioPraxis Research AIE, R&D Department, Miñano (Araba), Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Joan Gavaldà
- Antimicrobial Resistance Laboratory, Vall d'Hebron Research Institute (VHIR), Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron, Barcelona, Spain.
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
29
|
Zhao Y, Guo Q, Dai X, Wei X, Yu Y, Chen X, Li C, Cao Z, Zhang X. A Biomimetic Non-Antibiotic Approach to Eradicate Drug-Resistant Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806024. [PMID: 30589118 PMCID: PMC6634980 DOI: 10.1002/adma.201806024] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/26/2018] [Indexed: 05/19/2023]
Abstract
The chronic infections by pathogenic Pseudomonas aeruginosa (P. aeruginosa) remain to be properly addressed. In particular, for drug-resistant strains, limited medication is available. An in vivo pneumonia model induced by a clinically isolated aminoglycoside resistant strain of P. aeruginosa is developed. Tobramycin clinically treating P. aeruginosa infections is found to be ineffective to inhibit or eliminate this drug-resistant strain. Here, a newly developed non-antibiotics based nanoformulation plus near-infrared (NIR) photothermal treatment shows a remarkable antibacterial efficacy in treating this drug-resistant pneumonia. The novel formulation contains 50-100 nm long nanorods decorated with two types of glycomimetic polymers to specifically block bacterial LecA and LecB lectins, respectively, which are essential for bacterial biofilm development. Such a 3D display of heteromultivalent glycomimetics on a large scale is inspired by the natural strengthening mechanism for the carbohydrate-lectin interaction that occurs when bacteria initially infects the host. This novel formulation shows the most efficient bacteria inhabitation and killing against P. aeruginosa infection, through lectin blocking and the near-infrared-light-induced photothermal effect of gold nanorods, respectively. Collectively, the novel biomimetic design combined with the photothermal killing capability is expected to be an alternative treatment strategy against the ever-threatening drug-resistant infectious diseases when known antibiotics have failed.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qianqian Guo
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaomei Dai
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaosong Wei
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuelei Chen
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
30
|
Marchaim D, Kaye D, Kaye KS. Use of Colistin in Critically Ill Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:155-179. [PMID: 31364078 DOI: 10.1007/978-3-030-16373-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to lack of better therapeutic options, colistin use for extensively drug-resistant Gram-negative organisms was revived in the past two decades, including in patients in intensive-care units (ICU). There are multiple knowledge gaps pertaining to the clinical use and utility of colistin in critically-ill patients, but due to lack of options, it is used in these high risk patients. In this chapter, we critically review the various topics pertaining to colistin use in critically-ill patients, while highlighting the (lack of) controlled evidence supporting common current practices pertaining to colistin use by clinicians.
Collapse
Affiliation(s)
- Dror Marchaim
- Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel. .,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Donald Kaye
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Keith S Kaye
- Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
31
|
Bergen PJ, Smith NM, Bedard TB, Bulman ZP, Cha R, Tsuji BT. Rational Combinations of Polymyxins with Other Antibiotics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:251-288. [PMID: 31364082 DOI: 10.1007/978-3-030-16373-0_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Combinations of antimicrobial agents are often used in the management of infectious diseases. Antimicrobial agents used as part of combination therapy are often selected empirically. As regrowth and the emergence of polymyxin (either colistin or polymyxin B) resistance has been observed with polymyxin monotherapy, polymyxin combination therapy has been suggested as a possible means by which to increase antimicrobial activity and reduce the development of resistance. This chapter provides an overview of preclinical and clinical investigations of CMS/colistin and polymyxin B combination therapy. In vitro data and animal model data suggests a potential clinical benefit with many drug combinations containing clinically achievable concentrations of polymyxins, even when resistance to one or more of the drugs in combination is present and including antibiotics normally inactive against Gram-negative organisms. The growing body of data on the emergence of polymyxin resistance with monotherapy lends theoretical support to a benefit with combination therapy. Benefits include enhanced bacterial killing and a suppression of polymyxin resistant subpopulations. However, the complexity of the critically ill patient population, and high rates of treatment failure and death irrespective of infection-related outcome make demonstrating a potential benefit for polymyxin combinations extremely challenging. Polymyxin combination therapy in the clinic remains a heavily debated and controversial topic. When combinations are selected, optimizing the dosage regimens for the polymyxin and the combinatorial agent is critical to ensure that the benefits outweigh the risk of the development of toxicity. Importantly, patient characteristics, pharmacokinetics, the site of infection, pathogen and resistance mechanism must be taken into account to define optimal and rational polymyxin combination regimens in the clinic.
Collapse
Affiliation(s)
- Phillip J Bergen
- Centre for Medicine Use and Safety, Monash University, Parkville Campus, Melbourne, VIC, Australia.
| | - Nicholas M Smith
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Tyler B Bedard
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Zackery P Bulman
- University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA
| | - Raymond Cha
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Brian T Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| |
Collapse
|
32
|
Liu T, Zhang Y, Wan Q. Pseudomonas aeruginosa bacteremia among liver transplant recipients. Infect Drug Resist 2018; 11:2345-2356. [PMID: 30532566 PMCID: PMC6247952 DOI: 10.2147/idr.s180283] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa bacteremia remains as a life-threatening complication after liver transplantation (LT) and is intractable because of the high rate of drug resistance to commonly used antibiotics. To better understand the characteristics of this postoperative complication, PubMed and Embase searches as well as reference mining was done for relevant literature from the start of the databases through August 2018. Among LT recipients, the incidence of P. aeruginosa bacteremia ranged from 0.5% to 14.4% and mortality rates were up to 40%. Approximately 35% of all episodes of bloodstream infections (BSIs) were P. aeruginosa bacteremia, of which 47% were multidrug resistant and 63% were extensively drug resistant. Several factors are known to affect the mortality of LT recipients with P. aeruginosa bacteremia, including hypotension, mechanical ventilation, and increasing severity of illness. In LT recipients with P. aeruginosa bacteremia, alteration in DNA gyrase A genes and overexpression of proteins involved in efflux systems, namely the expression of KPC-2-type carbapenemase, NDM-1, and VIM-2-type MBL, contribute to the high resistance of P. aeruginosa to a wide variety of antibiotics. Because of complicated mechanisms of drug resistance, P. aeruginosa causes high morbidity and mortality in bacteremic LT patients. Consequently, early detection and treatment with adequate early targeted coverage for P. aeruginosa BSI are of paramount importance in the early posttransplantation period to obtain a better prognosis for LT patients.
Collapse
Affiliation(s)
- Taohua Liu
- Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - Yuezhong Zhang
- Xiangya School of Medicine, Central South University, Changsha 410083, China
| | - Qiquan Wan
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, China,
| |
Collapse
|
33
|
Laishram S, Pragasam AK, Bakthavatchalam YD, Veeraraghavan B. An update on technical, interpretative and clinical relevance of antimicrobial synergy testing methodologies. Indian J Med Microbiol 2018; 35:445-468. [PMID: 29405135 DOI: 10.4103/ijmm.ijmm_17_189] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Testing for antimicrobial interactions has gained popularity in the last decade due to the increasing prevalence of drug-resistant organisms and limited options for the treatment of these infections. In vitro combination testing provides information, on which two or more antimicrobials can be combined for a good clinical outcome. Amongst the various in vitro methods of drug interactions, time-kill assay (TKA), checkerboard (CB) assay and E-test-based methods are most commonly used. Comparative performance of these methods reveals the TKA as the most promising method to detect synergistic combinations followed by CB assay and E-test. Various combinations of antimicrobials have been tested to demonstrate synergistic activity. Promising results were obtained for the combinations of meropenem plus colistin and rifampicin plus colistin against Acinetobacter baumannii, colistin plus carbapenem and carbapenem plus fluoroquinolones against Pseudomonas aeruginosa and colistin/polymyxin B plus rifampicin/meropenem against Klebsiella pneumoniae. Antagonism was detected in only few instances. The presence of synergy or antagonism with a combination seems to correlate with minimum inhibitory concentration of the agent and molecular mechanism involved in the resistance. Further studies need to be conducted to assess the utility of in vitro testing to predict clinical outcome and direct therapy for drug-resistant organisms.
Collapse
Affiliation(s)
- Shakti Laishram
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu,, India
| | - Agila Kumari Pragasam
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu,, India
| | | | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu,, India
| |
Collapse
|
34
|
Muheim C, Götzke H, Eriksson AU, Lindberg S, Lauritsen I, Nørholm MHH, Daley DO. Increasing the permeability of Escherichia coli using MAC13243. Sci Rep 2017; 7:17629. [PMID: 29247166 PMCID: PMC5732295 DOI: 10.1038/s41598-017-17772-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/30/2017] [Indexed: 01/21/2023] Open
Abstract
The outer membrane of gram-negative bacteria is a permeability barrier that prevents the efficient uptake of molecules with large scaffolds. As a consequence, a number of antibiotic classes are ineffective against gram-negative strains. Herein we carried out a high throughput screen for small molecules that make the outer membrane of Escherichia coli more permeable. We identified MAC13243, an inhibitor of the periplasmic chaperone LolA that traffics lipoproteins from the inner to the outer membrane. We observed that cells were (1) more permeable to the fluorescent probe 1-N-phenylnapthylamine, and (2) more susceptible to large-scaffold antibiotics when sub-inhibitory concentrations of MAC13243 were used. To exclude the possibility that the permeability was caused by an off-target effect, we genetically reconstructed the MAC13243-phenotype by depleting LolA levels using the CRISPRi system.
Collapse
Affiliation(s)
- Claudio Muheim
- Department of Biochemistry and Biophysics Stockholm University, Stockholm, Sweden
| | - Hansjörg Götzke
- Department of Biochemistry and Biophysics Stockholm University, Stockholm, Sweden
| | - Anna U Eriksson
- Chemical Biology Consortium Sweden, Laboratories for Chemical Biology, Umeå University, Umeå, Sweden
| | - Stina Lindberg
- Chemical Biology Consortium Sweden, Laboratories for Chemical Biology, Umeå University, Umeå, Sweden
| | - Ida Lauritsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Morten H H Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Daniel O Daley
- Department of Biochemistry and Biophysics Stockholm University, Stockholm, Sweden.
| |
Collapse
|
35
|
Karaiskos I, Antoniadou A, Giamarellou H. Combination therapy for extensively-drug resistant gram-negative bacteria. Expert Rev Anti Infect Ther 2017; 15:1123-1140. [DOI: 10.1080/14787210.2017.1410434] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ilias Karaiskos
- 6th Department of Internal Medicine, Hygeia General hospital, Athens, Greece
| | - Anastasia Antoniadou
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, University General Hospital ATTIKON, Athens, Greece
| | - Helen Giamarellou
- 6th Department of Internal Medicine, Hygeia General hospital, Athens, Greece
| |
Collapse
|
36
|
El-Halfawy OM, Naguib MM, Valvano MA. Novel antibiotic combinations proposed for treatment of Burkholderia cepacia complex infections. Antimicrob Resist Infect Control 2017; 6:120. [PMID: 29204272 PMCID: PMC5702217 DOI: 10.1186/s13756-017-0279-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022] Open
Abstract
Effective strategies to manage Burkholderia cepacia complex (Bcc) infections in cystic fibrosis (CF) patients are lacking. We tested combinations of clinically available antibiotics and show that moxifloxacin-ceftazidime could inhibit 16 Bcc clinical isolates at physiologically achievable concentrations. Adding low dose of colistin improved the efficacy of the combo, especially at conditions mimicking CF respiratory secretions.
Collapse
Affiliation(s)
- Omar M El-Halfawy
- Department of Microbiology and Immunology, University of Western Ontario, London, ON Canada.,Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M Naguib
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7BL UK.,Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Miguel A Valvano
- Department of Microbiology and Immunology, University of Western Ontario, London, ON Canada.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7BL UK
| |
Collapse
|
37
|
Schoergenhofer C, Matzneller P, Mußbacher M, Schmid JA, Jilma-Stohlawetz P, Zeitlinger M, Jilma B. Colistin dampens fibrinolysis and endothelial activation during endotoxaemia. A randomised, double blind trial. Thromb Haemost 2017; 117:1714-1721. [PMID: 28796276 PMCID: PMC6292133 DOI: 10.1160/th17-03-0196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/20/2017] [Indexed: 12/20/2022]
Abstract
Colistin electrostatically interacts with lipopolysaccharides (LPS). Preclinical studies demonstrated beneficial effects of colistin on LPS-induced coagulation and fibrinolysis. The objective of this trial was to investigate the effects of colistin during experimental endotoxaemia. In this randomised, double-blind, placebo-controlled, crossover trial 16 healthy volunteers received a 2 ng/kg LPS bolus after infusion of 2.5 million IU colistin or placebo. Plasma levels of F1+2 prothrombin fragments, thrombin-antithrombin complexes (TAT), von Willebrand factor antigen levels (vWF), E-selectin, plasmin-antiplasmin complexes (PAP), tissue-type plasminogen activator (t-PA) antigen and activity, plasminogen activator inhibitor-1 (PAI-1) were measured. Infusion of colistin significantly reduced peak concentrations of PAP complexes by 70 %, t-PA antigen levels by 63 % and t-PA activity by 48 %, while PAI-1 levels decreased numerically by 63 %. Two hours after the LPS bolus F1+2 levels and TAT complexes were slightly reduced in the colistin period, but peak concentrations were similar in both periods. Colistin blunted the LPS induced four-fold increase in soluble E-Selectin levels by ∼50 % and the two-fold increase in vWF antigen levels by ∼70 %. The LPS-scavenging actions of colistin significantly reduce endothelial activation and fibrinolytic response in the human endotoxaemia model, while the activation of the coagulation system remains largely unaffected. Note: This work was conducted at the Medical University of Vienna. EudraCT-Nr.: 2014–00285720
Supplementary Material to this article is available online at
http://www.thrombosis-online.com
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bernd Jilma
- Bernd Jilma, MD, Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria, Tel.: +43 1 40400 29810, Fax: +43 1 40400 29980, E-mail:
| |
Collapse
|
38
|
Kaye KS, Pogue JM, Tran TB, Nation RL, Li J. Agents of Last Resort: Polymyxin Resistance. Infect Dis Clin North Am 2017; 30:391-414. [PMID: 27208765 DOI: 10.1016/j.idc.2016.02.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Polymyxin resistance is a major public health threat, as the polymyxins represent "last-line" therapeutics for Gram-negative pathogens resistant to essentially all other antibiotics. Improved understanding of mechanisms of, and risk factors for, polymyxin resistance, as well as infection prevention and stewardship strategies, together with optimization of dosing of polymyxins including in combination regimens, can help to limit the emergence and dissemination of polymyxin resistance.
Collapse
Affiliation(s)
- Keith S Kaye
- Division of Infectious Diseases, Department of Medicine, Detroit Medical Center, Wayne State University, 3990 John R, Detroit, MI 48201, USA.
| | - Jason M Pogue
- Department of Pharmacy Services, Sinai-Grace Hospital, Detroit Medical Center, Wayne State University School of Medicine, Detroit, MI, USA
| | - Thien B Tran
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
39
|
Aerosolized Polymyxin B for Treatment of Respiratory Tract Infections: Determination of Pharmacokinetic-Pharmacodynamic Indices for Aerosolized Polymyxin B against Pseudomonas aeruginosa in a Mouse Lung Infection Model. Antimicrob Agents Chemother 2017; 61:AAC.00211-17. [PMID: 28559256 DOI: 10.1128/aac.00211-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/20/2017] [Indexed: 01/24/2023] Open
Abstract
Pulmonary administration of polymyxins is increasingly used for the treatment of respiratory tract infections caused by multidrug-resistant Gram-negative bacteria, such as those in patients with cystic fibrosis. However, there is a lack of pharmacokinetics (PK), pharmacodynamics (PD), and toxicity data of aerosolized polymyxin B to inform rational dosage selection. The PK and PD of polymyxin B following pulmonary and intravenous dosing were examined in neutropenic infected mice, and the data were analyzed by a population PK model. Dose fractionation study was performed for total daily doses between 2.06 and 24.8 mg base/kg of weight against Pseudomonas aeruginosa ATCC 27853, PAO1, and FADDI-PA022 (MIC of 1 mg/liter for all three strains). Histopathological examination of the lung was undertaken at 24 h posttreatment in both healthy and neutropenic infected mice. A two-compartment PK model was required for both epithelial lining fluid (ELF) and plasma drug exposure. The model consisted of central and peripheral compartments and was described by bidirectional first-order distribution clearance. The ratio of the area under the curve to the MIC (AUC/MIC) was the most predictive PK/PD index to describe the antimicrobial efficacy of aerosolized polymyxin B in treating lung infections in mice (R2 of 0.70 to 0.88 for ELF and 0.70 to 0.87 for plasma). The AUC/MIC targets associated with bacteriostasis against the three P. aeruginosa strains were 1,326 to 1,506 in ELF and 3.14 to 4.03 in plasma. Histopathological results showed that polymyxin B aerosols significantly reduced lung inflammation and preserved lung epithelial integrity. This study highlights the advantageous PK/PD characteristics of pulmonary delivery of polymyxin B over intravenous administration in achieving high drug exposure in ELF.
Collapse
|
40
|
Park JY, Park C, Chun HS, Byun JH, Cho SY, Lee DG. Establishment of Experimental Murine Peritonitis Model with Hog Gastric Mucin for Carbapenem-Resistant Gram-Negative Bacteria. Infect Chemother 2017; 49:57-61. [PMID: 28271653 PMCID: PMC5382051 DOI: 10.3947/ic.2017.49.1.57] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/17/2017] [Indexed: 01/21/2023] Open
Abstract
Animal models are essential to studies of infectious diseases. The use of mice to test bacterial infection has been extensively reported. However, methods applied to clinical isolates, particularly for carbapenem-resistant bacteria, must be tailored according to the infection models and bacteria used. In this study, we infected 6-week-old female BALB/c mice intraperitoneally with different strains of resistant bacteria plus 3% hog gastric mucin. This method was found to be efficient and readily applicable for investigation of carbapenem-resisant Gram-negative pathogens (e.g., Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii) detected in Korea.
Collapse
Affiliation(s)
- Jung Yeon Park
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chulmin Park
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Sun Chun
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Hyun Byun
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Yeon Cho
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Gun Lee
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
41
|
Pharmacokinetics/Pharmacodynamics of Pulmonary Delivery of Colistin against Pseudomonas aeruginosa in a Mouse Lung Infection Model. Antimicrob Agents Chemother 2017; 61:AAC.02025-16. [PMID: 28031207 DOI: 10.1128/aac.02025-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/11/2016] [Indexed: 11/20/2022] Open
Abstract
Colistin is often administered by inhalation and/or the parenteral route for the treatment of respiratory infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa However, limited pharmacokinetic (PK) and pharmacodynamic (PD) data are available to guide the optimization of dosage regimens of inhaled colistin. In the present study, PK of colistin in epithelial lining fluid (ELF) and plasma was determined following intratracheal delivery of a single dose of colistin solution in neutropenic lung-infected mice. The antimicrobial efficacy of intratracheal delivery of colistin against three P. aeruginosa strains (ATCC 27853, PAO1, and FADDI-PA022; MIC of 1 mg/liter for all strains) was examined in a neutropenic mouse lung infection model. Dose fractionation studies were conducted over 2.64 to 23.8 mg/kg of body weight/day. The inhibitory sigmoid model was employed to determine the PK/PD index that best described the antimicrobial efficacy of pulmonary delivery of colistin. In both ELF and plasma, the ratio of the area under the unbound concentration-time profile to MIC (fAUC/MIC) was the PK/PD index that best described the antimicrobial effect in mouse lung infection (R2 = 0.60 to 0.84 for ELF and 0.64 to 0.83 for plasma). The fAUC/MIC targets required to achieve stasis against the three strains were 684 to 1,050 in ELF and 2.15 to 3.29 in plasma. The histopathological data showed that pulmonary delivery of colistin reduced infection-caused pulmonary inflammation and preserved the integrity of the lung epithelium, although colistin introduced mild pulmonary inflammation in healthy mice. This study showed pulmonary delivery of colistin provides antimicrobial effects against MDR P. aeruginosa lung infections superior to those of parenteral administrations. For the first time, our results provide important preclinical PK/PD information for optimization of inhaled colistin therapy.
Collapse
|
42
|
Matzneller P, Strommer S, Drucker C, Petroczi K, Schörgenhofer C, Lackner E, Jilma B, Zeitlinger M. Colistin Reduces LPS-Triggered Inflammation in a Human Sepsis Model In Vivo: A Randomized Controlled Trial. Clin Pharmacol Ther 2017; 101:773-781. [PMID: 27864832 DOI: 10.1002/cpt.582] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
Abstract
The previously described anti-endotoxin effect of colistin has not been investigated in humans yet. We performed a randomized, double-blind, placebo-controlled crossover trial to determine the degree of colistin-driven modulation of inflammatory response in blood of lipopolysaccharide (LPS)-challenged healthy volunteers in a human endotoxemia model. After a single intravenous dose of 2.5 million IU colistin methanesulfonate, interleukin (IL)-6, IL-8, tumor necrosis factor alpha (TNF-α), and IL-1β concentrations as well as other biomarkers of inflammation such as C-reactive protein, differential leukocyte counts, and body temperature were measured up to 24 h postdose. Colistin significantly decreased the inflammatory cytokine response to LPS in blood of healthy volunteers. This effect was most evident for IL-6, IL-8, and TNF-α. This study is the first to confirm the anti-endotoxin effect of colistin in humans in vivo. Further studies might increase our knowledge on the interaction between colistin and the effectors of the immune system.
Collapse
Affiliation(s)
- P Matzneller
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - S Strommer
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - C Drucker
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - K Petroczi
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - C Schörgenhofer
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - E Lackner
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - B Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| | - M Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Austria
| |
Collapse
|
43
|
Bioactivity-based UPLC/Q-TOF/MS strategy for screening of anti-inflammatory components from Cimicifugae Rhizoma. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Zhang X, Guo F, Shao H, Zheng X. Clinical translation of polymyxin-based combination therapy: Facts, challenges and future opportunities. J Infect 2016; 74:118-130. [PMID: 27998750 DOI: 10.1016/j.jinf.2016.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 11/18/2016] [Accepted: 11/27/2016] [Indexed: 10/20/2022]
Abstract
The emergence and spread of multidrug resistant Gram-negative bacteria has led to a resurgence in the clinical use of polymyxin antibiotics. However, the prevalence of polymyxin resistance is on the rise at an alarming rate, motivating the idea of combination therapy to sustain the revival of these "old" antibiotics. Although ample evidence in favor of combination therapy has emerged, it seems impracticable and confusing to find a promising combination from the diverse reports or gain adequate information on the efficacy and safety profile. With a stagnating discovery pipeline of novel antimicrobials, there is a clear need to fill the knowledge gaps in translating these basic research data to beneficial clinical practice. In this review, we examined the factors and ambiguities that stand as major hurdles in bringing polymyxin combination therapy to bedside care, highlighting the importance and urgency of incorporating translational research insights into areas of difficulty. We also discussed future research priorities that are essential to gather the necessary evidence and insights for promoting the best possible use of polymyxins in combination therapy.
Collapse
Affiliation(s)
- Xueli Zhang
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Fengmei Guo
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hua Shao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
45
|
Rhouma M, Beaudry F, Thériault W, Letellier A. Colistin in Pig Production: Chemistry, Mechanism of Antibacterial Action, Microbial Resistance Emergence, and One Health Perspectives. Front Microbiol 2016; 7:1789. [PMID: 27891118 PMCID: PMC5104958 DOI: 10.3389/fmicb.2016.01789] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/25/2016] [Indexed: 01/08/2023] Open
Abstract
Colistin (Polymyxin E) is one of the few cationic antimicrobial peptides commercialized in both human and veterinary medicine. For several years now, colistin has been considered the last line of defense against infections caused by multidrug-resistant Gram-negative such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Colistin has been extensively used orally since the 1960s in food animals and particularly in swine for the control of Enterobacteriaceae infections. However, with the recent discovery of plasmid-mediated colistin resistance encoded by the mcr-1 gene and the higher prevalence of samples harboring this gene in animal isolates compared to other origins, livestock has been singled out as the principal reservoir for colistin resistance amplification and spread. Co-localization of the mcr-1 gene and Extended-Spectrum-β-Lactamase genes on a unique plasmid has been also identified in many isolates from animal origin. The use of colistin in pigs as a growth promoter and for prophylaxis purposes should be banned, and the implantation of sustainable measures in pig farms for microbial infection prevention should be actively encouraged and financed. The scientific research should be encouraged in swine medicine to generate data helping to reduce the exacerbation of colistin resistance in pigs and in manure. The establishment of guidelines ensuring a judicious therapeutic use of colistin in pigs, in countries where this drug is approved, is of crucial importance. The implementation of a microbiological withdrawal period that could reduce the potential contamination of consumers with colistin resistant bacteria of porcine origin should be encouraged. Moreover, the management of colistin resistance at the human-pig-environment interface requires the urgent use of the One Health approach for effective control and prevention. This approach needs the collaborative effort of multiple disciplines and close cooperation between physicians, veterinarians, and other scientific health and environmental professionals. This review is an update on the chemistry of colistin, its applications and antibacterial mechanism of action, and on Enterobacteriaceae resistance to colistin in pigs. We also detail and discuss the One Health approach and propose guidelines for colistin resistance management.
Collapse
Affiliation(s)
- Mohamed Rhouma
- Chaire de Recherche Industrielle du CRSNG en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
| | - Francis Beaudry
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche en Pharmacologie Animale du Québec, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
| | - William Thériault
- Chaire de Recherche Industrielle du CRSNG en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
| | - Ann Letellier
- Chaire de Recherche Industrielle du CRSNG en Salubrité des Viandes, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
- Groupe de Recherche en Pharmacologie Animale du Québec, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-HyacintheQC, Canada
| |
Collapse
|
46
|
Zhao M, Lepak AJ, Andes DR. Animal models in the pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Bioorg Med Chem 2016; 24:6390-6400. [PMID: 27887963 DOI: 10.1016/j.bmc.2016.11.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 12/28/2022]
Abstract
Animal infection models in the pharmacokinetic/pharmacodynamic (PK/PD) evaluation of antimicrobial therapy serve an important role in preclinical assessments of new antibiotics, dosing optimization for those that are clinically approved, and setting or confirming susceptibility breakpoints. The goal of animal model studies is to mimic the infectious diseases seen in humans to allow for robust PK/PD studies to find the optimal drug exposures that lead to therapeutic success. The PK/PD index and target drug exposures obtained in validated animal infection models are critical components in optimizing dosing regimen design in order to maximize efficacy while minimize the cost and duration of clinical trials. This review outlines the key components in animal infection models which have been used extensively in antibiotic discovery and development including PK/PD analyses.
Collapse
Affiliation(s)
- Miao Zhao
- Institute of Antibiotics Hua-shan Hospital, Fudan University & Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, China; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alexander J Lepak
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial VA Hospital, Madison, WI, USA.
| |
Collapse
|
47
|
A High-Throughput Approach To Identify Compounds That Impair Envelope Integrity in Escherichia coli. Antimicrob Agents Chemother 2016; 60:5995-6002. [PMID: 27458225 DOI: 10.1128/aac.00537-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/17/2016] [Indexed: 12/24/2022] Open
Abstract
The envelope of Gram-negative bacteria constitutes an impenetrable barrier to numerous classes of antimicrobials. This intrinsic resistance, coupled with acquired multidrug resistance, has drastically limited the treatment options against Gram-negative pathogens. The aim of the present study was to develop and validate an assay for identifying compounds that increase envelope permeability, thereby conferring antimicrobial susceptibility by weakening of the cell envelope barrier in Gram-negative bacteria. A high-throughput whole-cell screening platform was developed to measure Escherichia coli envelope permeability to a β-galactosidase chromogenic substrate. The signal produced by cytoplasmic β-galactosidase-dependent cleavage of the chromogenic substrate was used to determine the degree of envelope permeabilization. The assay was optimized by using known envelope-permeabilizing compounds and E. coli gene deletion mutants with impaired envelope integrity. As a proof of concept, a compound library comprising 36 peptides and 45 peptidomimetics was screened, leading to identification of two peptides that substantially increased envelope permeability. Compound 79 reduced significantly (from 8- to 125-fold) the MICs of erythromycin, fusidic acid, novobiocin and rifampin and displayed synergy (fractional inhibitory concentration index, <0.2) with these antibiotics by checkerboard assays in two genetically distinct E. coli strains, including the high-risk multidrug-resistant, CTX-M-15-producing sequence type 131 clone. Notably, in the presence of 0.25 μM of this peptide, both strains were susceptible to rifampin according to the resistance breakpoints (R > 0.5 μg/ml) for Gram-positive bacterial pathogens. The high-throughput screening platform developed in this study can be applied to accelerate the discovery of antimicrobial helper drug candidates and targets that enhance the delivery of existing antibiotics by impairing envelope integrity in Gram-negative bacteria.
Collapse
|
48
|
Matsumoto Y, Sakakihara S, Grushnikov A, Kikuchi K, Noji H, Yamaguchi A, Iino R, Yagi Y, Nishino K. A Microfluidic Channel Method for Rapid Drug-Susceptibility Testing of Pseudomonas aeruginosa. PLoS One 2016; 11:e0148797. [PMID: 26872134 PMCID: PMC4752270 DOI: 10.1371/journal.pone.0148797] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/21/2016] [Indexed: 11/18/2022] Open
Abstract
The recent global increase in the prevalence of antibiotic-resistant bacteria and lack of development of new therapeutic agents emphasize the importance of selecting appropriate antimicrobials for the treatment of infections. However, to date, the development of completely accelerated drug susceptibility testing methods has not been achieved despite the availability of a rapid identification method. We proposed an innovative rapid method for drug susceptibility testing for Pseudomonas aeruginosa that provides results within 3 h. The drug susceptibility testing microfluidic (DSTM) device was prepared using soft lithography. It consisted of five sets of four microfluidic channels sharing one inlet slot, and the four channels are gathered in a small area, permitting simultaneous microscopic observation. Antimicrobials were pre-introduced into each channel and dried before use. Bacterial suspensions in cation-adjusted Mueller-Hinton broth were introduced from the inlet slot and incubated for 3 h. Susceptibilities were microscopically evaluated on the basis of differences in cell numbers and shapes between drug-treated and control cells, using dedicated software. The results of 101 clinically isolated strains of P. aeruginosa obtained using the DSTM method strongly correlated with results obtained using the ordinary microbroth dilution method. Ciprofloxacin, meropenem, ceftazidime, and piperacillin caused elongation in susceptible cells, while meropenem also induced spheroplast and bulge formation. Morphological observation could alternatively be used to determine the susceptibility of P. aeruginosa to these drugs, although amikacin had little effect on cell shape. The rapid determination of bacterial drug susceptibility using the DSTM method could also be applicable to other pathogenic species, and it could easily be introduced into clinical laboratories without the need for expensive instrumentation.
Collapse
Affiliation(s)
- Yoshimi Matsumoto
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
- * E-mail:
| | - Shouichi Sakakihara
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Andrey Grushnikov
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Kazuma Kikuchi
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Akihito Yamaguchi
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Ryota Iino
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
| | - Yasushi Yagi
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Kunihiko Nishino
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|
49
|
Bergen PJ, Bulman ZP, Landersdorfer CB, Smith N, Lenhard JR, Bulitta JB, Nation RL, Li J, Tsuji BT. Optimizing Polymyxin Combinations Against Resistant Gram-Negative Bacteria. Infect Dis Ther 2015; 4:391-415. [PMID: 26645096 PMCID: PMC4675771 DOI: 10.1007/s40121-015-0093-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 01/01/2023] Open
Abstract
Polymyxin combination therapy is increasingly used clinically. However, systematic investigations of such combinations are a relatively recent phenomenon. The emerging pharmacodynamic (PD) and pharmacokinetic (PK) data on CMS/colistin and polymyxin B suggest that caution is required with monotherapy. Given this situation, polymyxin combination therapy has been suggested as a possible way to increase bacterial killing and reduce the development of resistance. Considerable in vitro data have been generated in support of this view, particularly recent studies utilizing dynamic models. However, most existing animal data are of poor quality with major shortcomings in study design, while clinical data are generally limited to retrospective analysis and small, low-power, prospective studies. This article provides an overview of clinical and preclinical investigations of CMS/colistin and polymyxin B combination therapy.
Collapse
Affiliation(s)
- Phillip J Bergen
- Centre for Medicine Use and Safety, Monash University, Melbourne, Australia
| | - Zackery P Bulman
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia.,Centre for Medicine Use and Safety, Monash University, Melbourne, Australia
| | - Nicholas Smith
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Justin R Lenhard
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Jürgen B Bulitta
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Brian T Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA.
| |
Collapse
|
50
|
Tajima K, Miyake T, Koike N, Hattori T, Takahashi H, Matsumoto T, Fujita K, Kuroda M, Ito N, Goto H. Two Different Concentrations of Topical Levofloxacin for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Keratitis. J Ocul Pharmacol Ther 2015; 31:636-41. [PMID: 26348840 DOI: 10.1089/jop.2015.0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To compare the efficacy of topical 1.5% and 0.5% levofloxacin (LVFX) for the treatment of multidrug-resistant Pseudomonas aeruginosa (MDRP) keratitis in rabbits. METHODS In a rabbit eye, we produced an MDRP keratitis model by excising a 2-mm circular disc of the cornea up to a depth of one-half of the stromal layer and inoculated an MDRP strain into the corneal concavity. Nine hours after inoculation and after confirming that MDRP keratitis had developed, we treated the eyes topically with 0.5% levofloxacin, 1.5% levofloxacin, or phosphate-buffered saline (PBS) every 6 h until 57 h postinfection. The infected eyes were evaluated by clinical score, histopathological examination, and viable bacterial count (colony forming units). RESULTS In the MDRP keratitis model, clinical score was significantly lower in 0.5% and 1.5% levofloxacin-treated groups than in PBS-treated group and was the lowest in 1.5% levofloxacin-treated group. Histopathological examination showed maintenance of corneal translucency and little influx of polymorphonuclear neutrophils in 1.5% levofloxacin-treated group. Viable bacterial count in the infected cornea was significantly lower in 0.5% levofloxacin-treated group compared with PBS-treated group, while no viable bacteria were detected in 1.5% levofloxacin-treated group. CONCLUSIONS Using our MDRP keratitis model, we showed that topical 0.5% levofloxacin is not adequately effective, while 1.5% levofloxacin is efficacious in controlling MDRP keratitis.
Collapse
Affiliation(s)
- Kazuki Tajima
- 1 Department of Ophthalmology, Tokyo Medical University , Tokyo, Japan .,2 Department of Surgery, Keio University , Tokyo, Japan
| | - Taku Miyake
- 1 Department of Ophthalmology, Tokyo Medical University , Tokyo, Japan
| | - Naohito Koike
- 3 Department of Microbiology, Tokyo Medical University , Tokyo, Japan
| | - Takaaki Hattori
- 1 Department of Ophthalmology, Tokyo Medical University , Tokyo, Japan
| | - Hiroki Takahashi
- 1 Department of Ophthalmology, Tokyo Medical University , Tokyo, Japan
| | - Tetsuya Matsumoto
- 3 Department of Microbiology, Tokyo Medical University , Tokyo, Japan
| | - Koji Fujita
- 4 Department of Molecular Pathology, Tokyo Medical University , Tokyo, Japan
| | - Masahiko Kuroda
- 4 Department of Molecular Pathology, Tokyo Medical University , Tokyo, Japan
| | - Norihiko Ito
- 1 Department of Ophthalmology, Tokyo Medical University , Tokyo, Japan .,5 University Veterinary Medical Center, Tottori University , Tottori, Japan
| | - Hiroshi Goto
- 1 Department of Ophthalmology, Tokyo Medical University , Tokyo, Japan
| |
Collapse
|