1
|
Lin SM, Huang HT, Fang PJ, Chang CF, Satange R, Chang CK, Chou SH, Neidle S, Hou MH. Structural basis of water-mediated cis Watson-Crick/Hoogsteen base-pair formation in non-CpG methylation. Nucleic Acids Res 2024; 52:8566-8579. [PMID: 38989613 DOI: 10.1093/nar/gkae594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Non-CpG methylation is associated with several cellular processes, especially neuronal development and cancer, while its effect on DNA structure remains unclear. We have determined the crystal structures of DNA duplexes containing -CGCCG- regions as CCG repeat motifs that comprise a non-CpG site with or without cytosine methylation. Crystal structure analyses have revealed that the mC:G base-pair can simultaneously form two alternative conformations arising from non-CpG methylation, including a unique water-mediated cis Watson-Crick/Hoogsteen, (w)cWH, and Watson-Crick (WC) geometries, with partial occupancies of 0.1 and 0.9, respectively. NMR studies showed that an alternative conformation of methylated mC:G base-pair at non-CpG step exhibits characteristics of cWH with a syn-guanosine conformation in solution. DNA duplexes complexed with the DNA binding drug echinomycin result in increased occupancy of the (w)cWH geometry in the methylated base-pair (from 0.1 to 0.3). Our structural results demonstrated that cytosine methylation at a non-CpG step leads to an anti→syntransition of its complementary guanosine residue toward the (w)cWH geometry as a partial population of WC, in both drug-bound and naked mC:G base pairs. This particular geometry is specific to non-CpG methylated dinucleotide sites in B-form DNA. Overall, the current study provides new insights into DNA conformation during epigenetic regulation.
Collapse
Affiliation(s)
- Shan-Meng Lin
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsiang-Ti Huang
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Pei-Ju Fang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Roshan Satange
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Chung-Ke Chang
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Shan-Ho Chou
- Institute of Biochemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Stephen Neidle
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Ming-Hon Hou
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
2
|
Kriukienė E, Tomkuvienė M, Klimašauskas S. 5-Hydroxymethylcytosine: the many faces of the sixth base of mammalian DNA. Chem Soc Rev 2024; 53:2264-2283. [PMID: 38205583 DOI: 10.1039/d3cs00858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Epigenetic phenomena play a central role in cell regulatory processes and are important factors for understanding complex human disease. One of the best understood epigenetic mechanisms is DNA methylation. In the mammalian genome, cytosines (C) in CpG dinucleotides were long known to undergo methylation at the 5-position of the pyrimidine ring (mC). Later it was found that mC can be oxidized to 5-hydroxymethylcytosine (hmC) or even further to 5-formylcytosine (fC) and to 5-carboxylcytosine (caC) by the action of 2-oxoglutarate-dependent dioxygenases of the TET family. These findings unveiled a long elusive mechanism of active DNA demethylation and bolstered a wave of studies in the area of epigenetic regulation in mammals. This review is dedicated to critical assessment of recent data on biochemical and chemical aspects of the formation and conversion of hmC in DNA, analytical techniques used for detection and mapping of this nucleobase in mammalian genomes as well as epigenetic roles of hmC in DNA replication, transcription, cell differentiation and human disease.
Collapse
Affiliation(s)
- Edita Kriukienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Miglė Tomkuvienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
3
|
Zeng Y, Mao Y, Chen Y, Wang Y, Xu S. DNA methylation induces subtle mechanical alteration but significant chiral selectivity. Chem Commun (Camb) 2023; 59:14855-14858. [PMID: 38015496 PMCID: PMC10794036 DOI: 10.1039/d3cc05211g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
DNA methylation is a major epigenetic modification that is closely related to human health. Many experimental techniques as well as theoretical methods have been used to detect the modified nucleotides and identify their effects on molecular binding. It remains challenging to resolve the effect of few methylations of nucleic acids. Using super-resolution force spectroscopy, we firstly revealed that single cytosine methylation increases the mechanical stability of the DNA duplex by 1.9 ± 0.3 pN. Methylation also induces significant chiral selectivity towards drug molecules such as d,l-tetrahydropalmatine. Our results precisely quantify the mechanical effect of methylation and suggest that drug design should take methylation into consideration for enhanced selectivity.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Chemistry, University of Houston, Houston, TX 77204, USA.
| | - Yujia Mao
- Department of Chemistry, University of Houston, Houston, TX 77204, USA.
| | - Yanjun Chen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA.
| | - Yuhong Wang
- Department of Biology and Biochemistry, University of Houston, TX 77204, USA.
| | - Shoujun Xu
- Department of Chemistry, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
4
|
Lirussi L, Nilsen HL. DNA Glycosylases Define the Outcome of Endogenous Base Modifications. Int J Mol Sci 2023; 24:10307. [PMID: 37373453 DOI: 10.3390/ijms241210307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chemically modified nucleic acid bases are sources of genomic instability and mutations but may also regulate gene expression as epigenetic or epitranscriptomic modifications. Depending on the cellular context, they can have vastly diverse impacts on cells, from mutagenesis or cytotoxicity to changing cell fate by regulating chromatin organisation and gene expression. Identical chemical modifications exerting different functions pose a challenge for the cell's DNA repair machinery, as it needs to accurately distinguish between epigenetic marks and DNA damage to ensure proper repair and maintenance of (epi)genomic integrity. The specificity and selectivity of the recognition of these modified bases relies on DNA glycosylases, which acts as DNA damage, or more correctly, as modified bases sensors for the base excision repair (BER) pathway. Here, we will illustrate this duality by summarizing the role of uracil-DNA glycosylases, with particular attention to SMUG1, in the regulation of the epigenetic landscape as active regulators of gene expression and chromatin remodelling. We will also describe how epigenetic marks, with a special focus on 5-hydroxymethyluracil, can affect the damage susceptibility of nucleic acids and conversely how DNA damage can induce changes in the epigenetic landscape by altering the pattern of DNA methylation and chromatin structure.
Collapse
Affiliation(s)
- Lisa Lirussi
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
- Unit for Precision Medicine, Akershus University Hospital, 1478 Lørenskog, Norway
| |
Collapse
|
5
|
Marion-Poll L, Roussarie JP, Taing L, Dard-Dascot C, Servant N, Jaszczyszyn Y, Jordi E, Mulugeta E, Hervé D, Bourc’his D, Greengard P, Thermes C, Girault JA. DNA methylation and hydroxymethylation characterize the identity of D1 and D2 striatal projection neurons. Commun Biol 2022; 5:1321. [PMID: 36456703 PMCID: PMC9715678 DOI: 10.1038/s42003-022-04269-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Neuronal DNA modifications differ from those in other cells, including methylation outside CpG context and abundant 5-hydroxymethylation whose relevance for neuronal identities are unclear. Striatal projection neurons expressing D1 or D2 dopamine receptors allow addressing this question, as they share many characteristics but differ in their gene expression profiles, connections, and functional roles. We compare translating mRNAs and DNA modifications in these two populations. DNA methylation differences occur predominantly in large genomic clusters including differentially expressed genes, potentially important for D1 and D2 neurons. Decreased gene body methylation is associated with higher gene expression. Hydroxymethylation differences are more scattered and affect transcription factor binding sites, which can influence gene expression. We also find a strong genome-wide hydroxymethylation asymmetry between the two DNA strands, particularly pronounced at expressed genes and retrotransposons. These results identify novel properties of neuronal DNA modifications and unveil epigenetic characteristics of striatal projection neurons heterogeneity.
Collapse
Affiliation(s)
- Lucile Marion-Poll
- grid.7429.80000000121866389INSERM UMR-S1270, Paris, 75005 France ,grid.462844.80000 0001 2308 1657Sorbonne Université, Faculty of Sciences and Engineering, Paris, 75005 France ,grid.462192.a0000 0004 0520 8345Institut du Fer à Moulin, Paris, 75005 France ,Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, 75005 France ,grid.8591.50000 0001 2322 4988Present Address: Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, 1211 Switzerland
| | - Jean-Pierre Roussarie
- grid.134907.80000 0001 2166 1519Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA ,grid.189504.10000 0004 1936 7558Present Address: Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118 USA
| | - Lieng Taing
- grid.7429.80000000121866389INSERM UMR-S1270, Paris, 75005 France ,grid.462844.80000 0001 2308 1657Sorbonne Université, Faculty of Sciences and Engineering, Paris, 75005 France ,grid.462192.a0000 0004 0520 8345Institut du Fer à Moulin, Paris, 75005 France ,grid.462844.80000 0001 2308 1657Present Address: UMR1166 Inserm and Sorbonne Université, Faculty of Medicine, Paris, 75013 France
| | - Cloelia Dard-Dascot
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198 France
| | - Nicolas Servant
- grid.440907.e0000 0004 1784 3645Institut Curie, INSERM U900, CBIO-Centre for Computational Biology, Mines Paris Tech, PSL-Research University, Paris, 75005 France
| | - Yan Jaszczyszyn
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198 France
| | - Emmanuelle Jordi
- grid.7429.80000000121866389INSERM UMR-S1270, Paris, 75005 France ,grid.462844.80000 0001 2308 1657Sorbonne Université, Faculty of Sciences and Engineering, Paris, 75005 France ,grid.462192.a0000 0004 0520 8345Institut du Fer à Moulin, Paris, 75005 France ,Present Address: Coave Therapeutics, Paris, 75014 France
| | - Eskeatnaf Mulugeta
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, 75005 France ,grid.5645.2000000040459992XPresent Address: Erasmus University Medical Center (Erasmus MC), Department of Cell Biology, Rotterdam, 3000 CA The Netherlands
| | - Denis Hervé
- grid.7429.80000000121866389INSERM UMR-S1270, Paris, 75005 France ,grid.462844.80000 0001 2308 1657Sorbonne Université, Faculty of Sciences and Engineering, Paris, 75005 France ,grid.462192.a0000 0004 0520 8345Institut du Fer à Moulin, Paris, 75005 France
| | - Déborah Bourc’his
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, 75005 France
| | - Paul Greengard
- grid.134907.80000 0001 2166 1519Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Claude Thermes
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198 France
| | - Jean-Antoine Girault
- grid.7429.80000000121866389INSERM UMR-S1270, Paris, 75005 France ,grid.462844.80000 0001 2308 1657Sorbonne Université, Faculty of Sciences and Engineering, Paris, 75005 France ,grid.462192.a0000 0004 0520 8345Institut du Fer à Moulin, Paris, 75005 France
| |
Collapse
|
6
|
Li S, Peng Y, Landsman D, Panchenko AR. DNA methylation cues in nucleosome geometry, stability and unwrapping. Nucleic Acids Res 2022; 50:1864-1874. [PMID: 35166834 DOI: 10.1093/nar/gkac097] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 01/04/2023] Open
Abstract
Cytosine methylation at the 5-carbon position is an essential DNA epigenetic mark in many eukaryotic organisms. Although countless structural and functional studies of cytosine methylation have been reported, our understanding of how it influences the nucleosome assembly, structure, and dynamics remains obscure. Here, we investigate the effects of cytosine methylation at CpG sites on nucleosome dynamics and stability. By applying long molecular dynamics simulations on several microsecond time scale, we generate extensive atomistic conformational ensembles of full nucleosomes. Our results reveal that methylation induces pronounced changes in geometry for both linker and nucleosomal DNA, leading to a more curved, under-twisted DNA, narrowing the adjacent minor grooves, and shifting the population equilibrium of sugar-phosphate backbone geometry. These DNA conformational changes are associated with a considerable enhancement of interactions between methylated DNA and the histone octamer, doubling the number of contacts at some key arginines. H2A and H3 tails play important roles in these interactions, especially for DNA methylated nucleosomes. This, in turn, prevents a spontaneous DNA unwrapping of 3-4 helical turns for the methylated nucleosome with truncated histone tails, otherwise observed in the unmethylated system on several microseconds time scale.
Collapse
Affiliation(s)
- Shuxiang Li
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON, Canada
| | - Yunhui Peng
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - David Landsman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON, Canada
| |
Collapse
|
7
|
Zhu Y, Li Z, Song W, Khan MA, Li H. Conformation Locking of the Pentose Ring in Nucleotide Monophosphate Coordination Polymers via π-π Stacking and Metal-Ion Coordination. Inorg Chem 2022; 61:818-829. [PMID: 34856096 DOI: 10.1021/acs.inorgchem.1c02356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The conformation of the pentose ring in nucleotides is extremely important and a basic problem in biochemistry and pharmaceutical chemistry. In this study, we used a strategy to regulate the conformation of pentose rings of nucleotides via the synergistic effect of metal-ion coordination and π-π stacking. Seven types of coordination complexes were developed and characterized using Fourier transform infrared spectroscopy, elemental analysis, thermogravimetric analysis, powder X-ray diffraction, ultraviolet-visible spectroscopy, 1H nuclear magnetic resonance spectroscopy, electrospray ionization mass spectrometry, and single-crystal X-ray diffraction. On the basis of two conformational parameters obtained from single-crystal structure analysis, i.e., the pseudorotation phase angle and degree of puckering, the exact conformation of the furanose ring in these coordination polymers was unequivocally determined. Crystallographic studies demonstrate that a short bridging ligand (4,4'-bipyridine) is conducive to the formation of a twist form, and long auxiliary ligands [1,2-bis(4-pyridyl)ethene and 4,4'-azopyridine] induce the formation of an envelope conformation. However, the longest auxiliary ligands [1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene] cannot limit the flexibility of a nucleotide. Our results demonstrated that the proposed strategy is universal and controllable. Moreover, the chirality of these coordination polymers was examined by combining the explanation of their crystal structures with solid-state circular dichroism spectroscopy measurements.
Collapse
Affiliation(s)
- Yanhong Zhu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhongkui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Wenjing Song
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Maroof Ahmad Khan
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
8
|
Bernaudat F, Gustems M, Günther J, Oliva MF, Buschle A, Göbel C, Pagniez P, Lupo J, Signor L, Müller CW, Morand P, Sattler M, Hammerschmidt W, Petosa C. Structural basis of DNA methylation-dependent site selectivity of the Epstein-Barr virus lytic switch protein ZEBRA/Zta/BZLF1. Nucleic Acids Res 2021; 50:490-511. [PMID: 34893887 PMCID: PMC8754650 DOI: 10.1093/nar/gkab1183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022] Open
Abstract
In infected cells, Epstein-Barr virus (EBV) alternates between latency and lytic replication. The viral bZIP transcription factor ZEBRA (Zta, BZLF1) regulates this cycle by binding to two classes of ZEBRA response elements (ZREs): CpG-free motifs resembling the consensus AP-1 site recognized by cellular bZIP proteins and CpG-containing motifs that are selectively bound by ZEBRA upon cytosine methylation. We report structural and mutational analysis of ZEBRA bound to a CpG-methylated ZRE (meZRE) from a viral lytic promoter. ZEBRA recognizes the CpG methylation marks through a ZEBRA-specific serine and a methylcytosine-arginine-guanine triad resembling that found in canonical methyl-CpG binding proteins. ZEBRA preferentially binds the meZRE over the AP-1 site but mutating the ZEBRA-specific serine to alanine inverts this selectivity and abrogates viral replication. Our findings elucidate a DNA methylation-dependent switch in ZEBRA's transactivation function that enables ZEBRA to bind AP-1 sites and promote viral latency early during infection and subsequently, under appropriate conditions, to trigger EBV lytic replication by binding meZREs.
Collapse
Affiliation(s)
- Florent Bernaudat
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,European Synchrotron Radiation Facility, 71 avenue des Martyrs, 38043 Grenoble, France
| | - Montse Gustems
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Johannes Günther
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany.,Bavarian NMR Center and Department of Chemistry, Technical University of Munich, 85748 Gaching, Germany
| | - Mizar F Oliva
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Cedex 9 Grenoble, France
| | - Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Christine Göbel
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Priscilla Pagniez
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Julien Lupo
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Laboratoire de Virologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Luca Signor
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Patrice Morand
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.,Laboratoire de Virologie, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany.,Bavarian NMR Center and Department of Chemistry, Technical University of Munich, 85748 Gaching, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany and German Centre for Infection Research (DZIF), Partner site Munich, D-81377 Germany
| | - Carlo Petosa
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| |
Collapse
|
9
|
Khamis H, Rudnizky S, Melamed P, Kaplan A. Single molecule characterization of the binding kinetics of a transcription factor and its modulation by DNA sequence and methylation. Nucleic Acids Res 2021; 49:10975-10987. [PMID: 34606618 PMCID: PMC8565314 DOI: 10.1093/nar/gkab843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
The interaction of transcription factors with their response elements in DNA is emerging as a highly complex process, whose characterization requires measuring the full distribution of binding and dissociation times in a well-controlled assay. Here, we present a single-molecule assay that exploits the thermal fluctuations of a DNA hairpin to detect the association and dissociation of individual, unlabeled transcription factors. We demonstrate this new approach by following the binding of Egr1 to its consensus motif and the three binding sites found in the promoter of the Lhb gene, and find that both association and dissociation are modulated by the 9 bp core motif and the sequences around it. In addition, CpG methylation modulates the dissociation kinetics in a sequence and position-dependent manner, which can both stabilize or destabilize the complex. Together, our findings show how variations in sequence and methylation patterns synergistically extend the spectrum of a protein's binding properties, and demonstrate how the proposed approach can provide new insights on the function of transcription factors.
Collapse
Affiliation(s)
- Hadeel Khamis
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa 32000, Israel
- Faculty of Physics, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Sergei Rudnizky
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa 32000, Israel
- Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
- Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
10
|
Rausch C, Zhang P, Casas-Delucchi CS, Daiß JL, Engel C, Coster G, Hastert FD, Weber P, Cardoso MC. Cytosine base modifications regulate DNA duplex stability and metabolism. Nucleic Acids Res 2021; 49:12870-12894. [PMID: 34133727 PMCID: PMC8682791 DOI: 10.1093/nar/gkab509] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
DNA base modifications diversify the genome and are essential players in development. Yet, their influence on DNA physical properties and the ensuing effects on genome metabolism are poorly understood. Here, we focus on the interplay of cytosine modifications and DNA processes. We show by a combination of in vitro reactions with well-defined protein compositions and conditions, and in vivo experiments within the complex networks of the cell that cytosine methylation stabilizes the DNA helix, increasing its melting temperature and reducing DNA helicase and RNA/DNA polymerase speed. Oxidation of methylated cytosine, however, reverts the duplex stabilizing and genome metabolic effects to the level of unmodified cytosine. We detect this effect with DNA replication and transcription proteins originating from different species, ranging from prokaryotic and viral to the eukaryotic yeast and mammalian proteins. Accordingly, lack of cytosine methylation increases replication fork speed by enhancing DNA helicase unwinding speed in cells. We further validate that this cannot simply be explained by altered global DNA decondensation, changes in histone marks or chromatin structure and accessibility. We propose that the variegated deposition of cytosine modifications along the genome regulates DNA helix stability, thereby providing an elementary mechanism for local fine-tuning of DNA metabolism.
Collapse
Affiliation(s)
- Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Peng Zhang
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | | | - Julia L Daiß
- Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Christoph Engel
- Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Gideon Coster
- Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, UK
| | - Florian D Hastert
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Patrick Weber
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
11
|
Wan L, Yi J, Lam SL, Lee HK, Guo P. 5-Methylcytosine Substantially Enhances the Thermal Stability of DNA Minidumbbells. Chemistry 2021; 27:6740-6747. [PMID: 33501691 DOI: 10.1002/chem.202005410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Indexed: 11/07/2022]
Abstract
Minidumbbell (MDB) is a recently identified non-B DNA structure that has been proposed to associate with genetic instabilities. It also serves as a functional structural motif in DNA nanotechnology. DNA molecular switches constructed using MDBs show instant and complete structural conversions with easy manipulations. The availability of stable MDBs can broaden their applications. In this work, we found that substitutions of cytosine with 5-methylcytosine could lead to a significant enhancement in the thermal stabilities of MDBs. Consecutive methylations of cytosine in MDBs brought about cumulative stabilization with a drastic increase in the melting temperature by 23 °C. NMR solution structures of two MDBs containing 5-methylcytosine residues have been successfully determined and revealed that the enhanced stabilities resulted primarily from favorable hydrophobic contacts, more stable base pairs and enhanced base-base stackings involving the methyl group of 5-methylcytosine.
Collapse
Affiliation(s)
- Liqi Wan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jie Yi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Pei Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
12
|
Sadeghan AA, Soltaninejad H, Dadmehr M, Hamidieh AA, Asadollahi MA, Hosseini M, Ganjali MR, Hosseinkhani S. Fluorimetric detection of methylated DNA of Sept9 promoter by silver nanoclusters at intrastrand 6C-loop. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119081. [PMID: 33128948 DOI: 10.1016/j.saa.2020.119081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Methylation of DNA at carbon 5 of cytosines is the most common epigenetic modification of human genome. Due to its critical role in many normal cell processes such as growth and development, any aberrant methylation pattern in a particular locus may lead to abnormal functions and diseases such as cancer. Development of methods to detect methylation state of DNA which may eliminate labor-intensive chemical or enzymatic treatments has received considerable attention in recent years. Herein, we report a DNA methylation detection procedure based on fluorescence turn-on strategy. Target sequence was selected from Sept9 promoter region that has been reported as one of the most frequently methylated sites in colorectal cancer. Probe DNA was designed to be complementary to this sequence with an additional six cytosines in the middle to form an internal loop to host silver nanoclusters. The fluorescence intensity of the synthesized silver nanoclusters with the duplexes of probe-non-methylated target was significantly different from that of probe-methylated target. The fluorescence enhanced with increasing the methylated DNA concentration with a linear relation in the range of 1.0 × 10-8 M to 5.0 × 10-7 M with the detection limit of 8.2 × 10-9 M, and quenched with non-methylated ones. The method was very specific in the presence of non-complementary sequences with maximum similarity of 40%. Circular dichroism spectra indicated that silver ions significantly affected the structure of methylated and non-methylated DNA into different extents which could further influence the nanocluster fluorescence. Finally, a method was introduced to meet the concerns in the applicability of the proposed method in real situation.
Collapse
Affiliation(s)
- Amir Amiri Sadeghan
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Soltaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | | | - Amir Ali Hamidieh
- Pediatric Cell Therapy Research Center, Tehran University of Medical Scienses, Iran
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology & Metabolism Molecular - Cellular Sciences Institute, Iran
| | - Saman Hosseinkhani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
13
|
Alenaizan A, Barnett JL, Hud NV, Sherrill CD, Petrov AS. The proto-Nucleic Acid Builder: a software tool for constructing nucleic acid analogs. Nucleic Acids Res 2021; 49:79-89. [PMID: 33300028 PMCID: PMC7797056 DOI: 10.1093/nar/gkaa1159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
The helical structures of DNA and RNA were originally revealed by experimental data. Likewise, the development of programs for modeling these natural polymers was guided by known structures. These nucleic acid polymers represent only two members of a potentially vast class of polymers with similar structural features, but that differ from DNA and RNA in the backbone or nucleobases. Xeno nucleic acids (XNAs) incorporate alternative backbones that affect the conformational, chemical, and thermodynamic properties of XNAs. Given the vast chemical space of possible XNAs, computational modeling of alternative nucleic acids can accelerate the search for plausible nucleic acid analogs and guide their rational design. Additionally, a tool for the modeling of nucleic acids could help reveal what nucleic acid polymers may have existed before RNA in the early evolution of life. To aid the development of novel XNA polymers and the search for possible pre-RNA candidates, this article presents the proto-Nucleic Acid Builder (https://github.com/GT-NucleicAcids/pnab), an open-source program for modeling nucleic acid analogs with alternative backbones and nucleobases. The torsion-driven conformation search procedure implemented here predicts structures with good accuracy compared to experimental structures, and correctly demonstrates the correlation between the helical structure and the backbone conformation in DNA and RNA.
Collapse
Affiliation(s)
- Asem Alenaizan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.,Center for Computational Molecular Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Joshua L Barnett
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - C David Sherrill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.,Center for Computational Molecular Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.,School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0765, USA
| | - Anton S Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| |
Collapse
|
14
|
Tsuruta M, Sugitani Y, Sugimoto N, Miyoshi D. Combined Effects of Methylated Cytosine and Molecular Crowding on the Thermodynamic Stability of DNA Duplexes. Int J Mol Sci 2021; 22:ijms22020947. [PMID: 33477917 PMCID: PMC7833394 DOI: 10.3390/ijms22020947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/31/2022] Open
Abstract
Methylated cytosine within CpG dinucleotides is a key factor for epigenetic gene regulation. It has been revealed that methylated cytosine decreases DNA backbone flexibility and increases the thermal stability of DNA. Although the molecular environment is an important factor for the structure, thermodynamics, and function of biomolecules, there are few reports on the effects of methylated cytosine under a cell-mimicking molecular environment. Here, we systematically investigated the effects of methylated cytosine on the thermodynamics of DNA duplexes under molecular crowding conditions, which is a critical difference between the molecular environment in cells and test tubes. Thermodynamic parameters quantitatively demonstrated that the methylation effect and molecular crowding effect on DNA duplexes are independent and additive, in which the degree of the stabilization is the sum of the methylation effect and molecular crowding effect. Furthermore, the effects of methylation and molecular crowding correlate with the hydration states of DNA duplexes. The stabilization effect of methylation was due to the favorable enthalpic contribution, suggesting that direct interactions of the methyl group with adjacent bases and adjacent methyl groups play a role in determining the flexibility and thermodynamics of DNA duplexes. These results are useful to predict the properties of DNA duplexes with methylation in cell-mimicking conditions.
Collapse
Affiliation(s)
- Mitsuki Tsuruta
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (M.T.); (Y.S.); (N.S.)
| | - Yui Sugitani
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (M.T.); (Y.S.); (N.S.)
| | - Naoki Sugimoto
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (M.T.); (Y.S.); (N.S.)
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe 650-0047, Japan
| | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (M.T.); (Y.S.); (N.S.)
- Correspondence: ; Tel.: +81-(07)-8303-1426
| |
Collapse
|
15
|
Ray S, Tillo D, Ufot A, Assad N, Durell S, Vinson C. bZIP Dimers CREB1, ATF2, Zta, ATF3|cJun, and cFos|cJun Prefer to Bind to Some Double-Stranded DNA Sequences Containing 5-Formylcytosine and 5-Carboxylcytosine. Biochemistry 2020; 59:3529-3540. [PMID: 32902247 DOI: 10.1021/acs.biochem.0c00475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In mammalian cells, 5-methylcytosine (5mC) occurs in genomic double-stranded DNA (dsDNA) and is enzymatically oxidized to 5-hydroxymethylcytosine (5hmC), then to 5-formylcytosine (5fC), and finally to 5-carboxylcytosine (5caC). These cytosine modifications are enriched in regulatory regions of the genome. The effect of these oxidative products on five bZIP dimers (CREB1, ATF2, Zta, ATF3|cJun, and cFos|cJun) binding to five types of dsDNA was measured using protein binding microarrays. The five dsDNAs contain either cytosine in both DNA strands or cytosine in one strand and either 5mC, 5hmC, 5fC, or 5caC in the second strand. Some sequences containing the CEBP half-site GCAA are bound more strongly by all five bZIP domains when dsDNA contains 5mC, 5hmC, or 5fC. dsDNA containing 5caC in some TRE (AP-1)-like sequences, e.g., TGACTAA, is better bound by Zta, ATF3|cJun, and cFos|cJun.
Collapse
|
16
|
Chen J, Hong Z, Hong Y, He X, Bi Q, Zhao C. Identification of DNA hydroxymethylation associated genes in osteoarthritis by combined analysis of hydroxymethylation and gene expression. J Orthop Sci 2020; 25:700-707. [PMID: 31669118 DOI: 10.1016/j.jos.2019.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/21/2019] [Accepted: 09/05/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Our study aimed to explore more mechanistic insights into the epigenetic regulation of osteoarthritis (OA). METHODS The expression profiles (accession number: GSE64393 and GSE64394) were downloaded from the Gene Expression Omnibus database. The differentially hydroxymethylated regions (DhMRs) and differentially expressed genes (DEGs) between OA and control groups were identified. The distribution of DhMRs in the whole genome and the correlation between DhMRs and DEGs were analyzed. Functional module mining for the DEGs and DhMRs was conducted, followed by protein-protein interaction (PPI) analysis. The transcriptional factor (TF) was predicted. RESULTS Total 52,282 DhMRs were obtained, among which 31,452 ones were annotated to 9726 genes. Additionally, 1806 DEGs were selected. Hydroxymethylation mainly occurred in gene body region. Correlation analysis revealed that more than 70% of DhMRs were uncorrelated with DEGs expression. Functional module mining for the DEGs and DhMRs identified 2 functional modules, which were involved in pathways of regulation of actin cytoskeleton, and TGF-β signaling pathway. A PPI network was constructed, and ITGB3 had the highest degree. Furthermore, 7 TFs were predicted, which regulated 12 candidate genes, such as HES1-PTEN. CONCLUSIONS The onset and progression of OA may be associated with the upregulated hydroxymethylation in gene body region of PTEN. HES1 may be important TF in the pathogenesis of OA. Additionally, pathways of regulation of actin cytoskeleton, and TGF-beta signaling pathway may also play important roles in OA progression.
Collapse
Affiliation(s)
- Jihang Chen
- Department of Orthopedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, PR China
| | - Zheping Hong
- Department of Orthopedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, PR China
| | - Yupeng Hong
- Department of Medical Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, PR China
| | - Xiaoyong He
- Department of Orthopedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, PR China
| | - Qing Bi
- Department of Orthopedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, PR China
| | - Chen Zhao
- Department of Orthopedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, PR China.
| |
Collapse
|
17
|
Sanstead PJ, Ashwood B, Dai Q, He C, Tokmakoff A. Oxidized Derivatives of 5-Methylcytosine Alter the Stability and Dehybridization Dynamics of Duplex DNA. J Phys Chem B 2020; 124:1160-1174. [PMID: 31986043 PMCID: PMC7136776 DOI: 10.1021/acs.jpcb.9b11511] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The naturally occurring nucleobase 5-methylcytosine (mC) and its oxidized derivatives 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxylcytosine (caC) play important roles in epigenetic regulation and, along with cytosine (C), represent nucleobases currently implicated in the active cytosine demethylation pathway. Despite considerable interest in these modified bases, their impact on the thermodynamic stability of double-stranded DNA (dsDNA) remains ambiguous and their influence on hybridization kinetics and dynamics is even less well-understood. To address these unknowns, we employ steady-state and time-resolved infrared spectroscopy to measure the influence of cytosine modification on the thermodynamics and kinetics of hybridization by assessing the impact on local base pairing dynamics, shifts in the stability of the duplex state, and changes to the hybridization transition state. Modification with mC leads to more tightly bound base pairing below the melting transition and stabilizes the duplex relative to canonical DNA, but the free energy barrier to dehybridization at physiological temperature is nevertheless reduced slightly. Both hmC and fC lead to an increase in local base pair fluctuations, a reduction in the cooperativity of duplex melting, and a lowering of the dissociation barrier, but these effects are most pronounced when the 5-position is formylated. The caC nucleobase demonstrates little impact on dsDNA under neutral conditions, but we find that this modification can dynamically switch between C-like and fC-like behavior depending on the protonation state of the 5-position carboxyl group. Our results provide a consistent thermodynamic and kinetic framework with which to describe the modulation of the physical properties of double-stranded DNA containing these modified nucleobases.
Collapse
Affiliation(s)
- Paul J. Sanstead
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Brennan Ashwood
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
- Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
18
|
Petrova D, Naumenko M, Khantakova D, Grin I, Zharkov D. Relative Efficiency of Recognition of 5-Methylcytosine and 5-Hydroxymethylcytosine by Methyl-Dependent DNA Endonuclease GlaI. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
DNA Modification Readers and Writers and Their Interplay. J Mol Biol 2019:S0022-2836(19)30718-1. [PMID: 31866298 DOI: 10.1016/j.jmb.2019.12.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022]
Abstract
Genomic DNA is modified in a postreplicative manner and several modifications, the enzymes responsible for their deposition as well as proteins that read these modifications, have been described. Here, we focus on the impact of DNA modifications on the DNA helix and review the writers and readers of cytosine modifications and how they interplay to shape genome composition, stability, and function.
Collapse
|
20
|
Fu T, Liu L, Yang QL, Wang Y, Xu P, Zhang L, Liu S, Dai Q, Ji Q, Xu GL, He C, Luo C, Zhang L. Thymine DNA glycosylase recognizes the geometry alteration of minor grooves induced by 5-formylcytosine and 5-carboxylcytosine. Chem Sci 2019; 10:7407-7417. [PMID: 31489163 PMCID: PMC6713860 DOI: 10.1039/c9sc02807b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
The dynamic DNA methylation-demethylation process plays critical roles in gene expression control and cell development. The oxidation derivatives of 5-methylcytosine (5mC) generated by Tet dioxygenases in the demethylation pathway, namely 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), could impact biological functions by altering DNA properties or recognition by potential reader proteins. Hence, in addition to the fifth base 5mC, 5hmC, 5fC, and 5caC have been considered as the sixth, seventh, and eighth bases of the genome. How these modifications would alter DNA and be specifically recognized remain unclear, however. Here we report that formyl- and carboxyl-modifications on cytosine induce the geometry alteration of the DNA minor groove by solving two high-resolution structures of a dsDNA decamer containing fully symmetric 5fC and 5caC. The alterations are recognized distinctively by thymine DNA glycosylase TDG via its finger residue R275, followed by subsequent preferential base excision and DNA repair. These observations suggest a mechanism by which reader proteins distinguish highly similar cytosine modifications for potential differential demethylation in order to achieve downstream biological functions.
Collapse
Affiliation(s)
- Tianran Fu
- Department of Pharmacology and Chemical Biology , Shanghai Jiao Tong University School of Medicine , Shanghai , P. R. China . ; .,Shanghai Universities Collaborative Innovation Center for Translational Medicine , Shanghai , P. R. China
| | - Liping Liu
- CAS Key Laboratory of Receptor Research , State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qing-Lin Yang
- State Key Laboratory of Molecular Biology , Chinese Academy of Sciences Center for Excellence in Molecular Cell Science , Shanghai Institute of Biochemistry and Cell Biology , Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai , China
| | - Yuxin Wang
- Department of Pharmacology and Chemical Biology , Shanghai Jiao Tong University School of Medicine , Shanghai , P. R. China . ; .,Shanghai Universities Collaborative Innovation Center for Translational Medicine , Shanghai , P. R. China
| | - Pan Xu
- CAS Key Laboratory of Receptor Research , State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology , Shanghai Jiao Tong University School of Medicine , Shanghai , P. R. China . ; .,Shanghai Universities Collaborative Innovation Center for Translational Medicine , Shanghai , P. R. China
| | - Shien Liu
- CAS Key Laboratory of Receptor Research , State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qing Dai
- Department of Chemistry , Department of Biochemistry and Molecular Biology , Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois , USA
| | - Quanjiang Ji
- School of Physical Science and Technology , ShanghaiTech University , Shanghai , China
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology , Chinese Academy of Sciences Center for Excellence in Molecular Cell Science , Shanghai Institute of Biochemistry and Cell Biology , Chinese Academy of Sciences , University of Chinese Academy of Sciences , Shanghai , China
| | - Chuan He
- Department of Chemistry , Department of Biochemistry and Molecular Biology , Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois , USA
| | - Cheng Luo
- CAS Key Laboratory of Receptor Research , State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology , Shanghai Jiao Tong University School of Medicine , Shanghai , P. R. China . ; .,Shanghai Universities Collaborative Innovation Center for Translational Medicine , Shanghai , P. R. China
| |
Collapse
|
21
|
Teng X, Hwang W. Effect of Methylation on Local Mechanics and Hydration Structure of DNA. Biophys J 2019; 114:1791-1803. [PMID: 29694859 DOI: 10.1016/j.bpj.2018.03.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/03/2018] [Accepted: 03/14/2018] [Indexed: 12/31/2022] Open
Abstract
Cytosine methylation affects mechanical properties of DNA and potentially alters the hydration fingerprint for recognition by proteins. The atomistic origin for these effects is not well understood, and we address this via all-atom molecular dynamics simulations. We find that the stiffness of the methylated dinucleotide step changes marginally, whereas the neighboring steps become stiffer. Stiffening is further enhanced for consecutively methylated steps, providing a mechanistic origin for the effect of hypermethylation. Steric interactions between the added methyl groups and the nonpolar groups of the neighboring nucleotides are responsible for the stiffening in most cases. By constructing hydration maps, we found that methylation also alters the surface hydration structure in distinct ways. Its resistance to deformation may contribute to the stiffening of DNA for deformational modes lacking steric interactions. These results highlight the sequence- and deformational-mode-dependent effects of cytosine methylation.
Collapse
Affiliation(s)
- Xiaojing Teng
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas; Department of Materials Science & Engineering, Texas A&M University, College Station, Texas; School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea.
| |
Collapse
|
22
|
Soltaninejad H, Sadeghan AA, Hosseinkhani S, Asadollahi MA, Hosseini M, Ganjali MR. Application of intercalating molecules in detection of methylated DNA in the presence of silver ions. Methods Appl Fluoresc 2019; 7:035005. [DOI: 10.1088/2050-6120/ab025b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Dostal V, Churchill MEA. Cytosine methylation of mitochondrial DNA at CpG sequences impacts transcription factor A DNA binding and transcription. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:598-607. [PMID: 30807854 PMCID: PMC7806247 DOI: 10.1016/j.bbagrm.2019.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
In eukaryotes, cytosine methylation of nuclear DNA at CpG sequences (5mCpG) regulates epigenetic inheritance through alterations in chromatin structure. However, mitochondria lack nucleosomal chromatin, therefore the molecular mechanisms by which 5mCpG influences mitochondria must be different and are as yet unknown. Mitochondrial Transcription Factor A (TFAM) is both the primary DNA-compacting protein in the mitochondrial DNA (mtDNA) nucleoid and a transcription-initiation factor. TFAM must encounter hundreds of CpGs in mtDNA, so the occurrence of 5mCpG has the potential to impact TFAM-DNA recognition. We used biophysical approaches to determine whether 5mCpG alters any TFAM-dependent activities. 5mCpG in the heavy strand promoter (HSP1) increased the binding affinity of TFAM and induced TFAM multimerization with increased cooperativity compared to nonmethylated DNA. However, 5mCpG had no apparent effect on TFAM-dependent DNA compaction. Additionally, 5mCpG had a clear and context-dependent effect on transcription initiating from the three mitochondrial promoters. Taken together, our findings demonstrate that 5mCpG in the mitochondrial promoter region does impact TFAM-dependent activities in vitro.
Collapse
Affiliation(s)
- Vishantie Dostal
- Program in Structural Biology and Biochemistry, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mair E A Churchill
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Program in Structural Biology and Biochemistry, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
24
|
Rathi P, Maurer S, Summerer D. Selective recognition of N4-methylcytosine in DNA by engineered transcription-activator-like effectors. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0078. [PMID: 29685980 DOI: 10.1098/rstb.2017.0078] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2017] [Indexed: 01/03/2023] Open
Abstract
The epigenetic DNA nucleobases 5-methylcytosine (5mC) and N4-methylcytosine (4mC) coexist in bacterial genomes and have important functions in host defence and transcription regulation. To better understand the individual biological roles of both methylated nucleobases, analytical strategies for distinguishing unmodified cytosine (C) from 4mC and 5mC are required. Transcription-activator-like effectors (TALEs) are programmable DNA-binding repeat proteins, which can be re-engineered for the direct detection of epigenetic nucleobases in user-defined DNA sequences. We here report the natural, cytosine-binding TALE repeat to not strongly differentiate between 5mC and 4mC. To engineer repeats with selectivity in the context of C, 5mC and 4mC, we developed a homogeneous fluorescence assay and screened a library of size-reduced TALE repeats for binding to all three nucleobases. This provided insights into the requirements of size-reduced TALE repeats for 4mC binding and revealed a single mutant repeat as a selective binder of 4mC. Employment of a TALE with this repeat in affinity enrichment enabled the isolation of a user-defined DNA sequence containing a single 4mC but not C or 5mC from the background of a bacterial genome. Comparative enrichments with TALEs bearing this or the natural C-binding repeat provides an approach for the complete, programmable decoding of all cytosine nucleobases found in bacterial genomes.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- Preeti Rathi
- Department of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Sara Maurer
- Department of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Daniel Summerer
- Department of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
25
|
Eytel LM, Fargher HA, Haley MM, Johnson DW. The road to aryl CHanion binding was paved with good intentions: fundamental studies, host design, and historical perspectives in CH hydrogen bonding. Chem Commun (Camb) 2019; 55:5195-5206. [PMID: 30944916 DOI: 10.1039/c9cc01460h] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Throughout the design and development of supramolecular receptors for anion binding, many different non-covalent anion-binding motifs have been employed. One motif seen in many host-guest systems is the sometimes weaker, 'non-traditional' aryl CH hydrogen bond. From June Sutor's discovery of the interaction and its subsequent dismissal by the field in the 1960s to today's use of the aryl CH hydrogen bond in synthetic anion receptors, the path our lab took to begin studying this interaction has been influenced by many other researchers in the field. This feature article highlights the history and properties of the CH hydrogen bond, with a particular focus on aryl CH hydrogen bonds in anion recognition. We highlight select recent developments in the field of anion receptors utilizing aryl CH hydrogen bonds, with an emphasis on how this has influenced the evolution of our approach in designing fundamental studies on CH hydrogen bonding and exploiting this interaction in efforts aimed toward preferential anion binding.
Collapse
Affiliation(s)
- Lisa M Eytel
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR 97403-1253, USA.
| | - Hazel A Fargher
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR 97403-1253, USA.
| | - Michael M Haley
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR 97403-1253, USA.
| | - Darren W Johnson
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, OR 97403-1253, USA.
| |
Collapse
|
26
|
Sadeghan AA, Soltaninejad H, Hosseinkhani S, Hosseini M, Ganjali MR, Asadollahi MA. Fluorescence enhancement of silver nanocluster at intrastrand of a 12C-loop in presence of methylated region of sept 9 promoter. Anal Chim Acta 2018; 1038:157-165. [DOI: 10.1016/j.aca.2018.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/27/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
|
27
|
Soltaninejad H, Asadollahi MA, Hosseinkhani S, Hosseini M, Ganjali MR. Discrimination of methylated and nonmethylated region of a colorectal cancer related promoter using fluorescence enhancement of gold nanocluster at intrastrand of a 9C-loop. Methods Appl Fluoresc 2018; 6:045009. [DOI: 10.1088/2050-6120/aae176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Dietzsch J, Feineis D, Höbartner C. Chemoselective labeling and site-specific mapping of 5-formylcytosine as a cellular nucleic acid modification. FEBS Lett 2018; 592:2032-2047. [DOI: 10.1002/1873-3468.13058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Julia Dietzsch
- Institute of Organic Chemistry; University of Würzburg; Germany
| | - Doris Feineis
- Institute of Organic Chemistry; University of Würzburg; Germany
| | | |
Collapse
|
29
|
Shen W, Ji S, Chen L, Zhang Y, Wu X. Synthesis and Properties of Alkoxyethyl β-d-
Xylopyranoside. J SURFACTANTS DETERG 2018. [DOI: 10.1002/jsde.12013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wangzhen Shen
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; Xiangtan University; Xiangtan 411105 Hunan China
| | - Shanwei Ji
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; Xiangtan University; Xiangtan 411105 Hunan China
| | - Langqiu Chen
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; Xiangtan University; Xiangtan 411105 Hunan China
| | - Yanhua Zhang
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; Xiangtan University; Xiangtan 411105 Hunan China
| | - Xiubing Wu
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; Xiangtan University; Xiangtan 411105 Hunan China
| |
Collapse
|
30
|
Hardwick JS, Lane AN, Brown T. Epigenetic Modifications of Cytosine: Biophysical Properties, Regulation, and Function in Mammalian DNA. Bioessays 2018; 40. [DOI: 10.1002/bies.201700199] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/13/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Jack S. Hardwick
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; 12 Mansfield Road Oxford OX1 3TA UK
| | - Andrew N. Lane
- Department of Toxicology and Cancer Biology; University of Kentucky; 789 S. Limestone St. Lexington KY 40536 USA
| | - Tom Brown
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
31
|
Muñoz-López Á, Summerer D. Recognition of Oxidized 5-Methylcytosine Derivatives in DNA by Natural and Engineered Protein Scaffolds. CHEM REC 2017; 18:105-116. [PMID: 29251421 DOI: 10.1002/tcr.201700088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 12/14/2022]
Abstract
Methylation of genomic cytosine to 5-methylcytosine is a central regulatory element of mammalian gene expression with important roles in development and disease. 5-methylcytosine can be actively reversed to cytosine via oxidation to 5-hydroxymethyl-, 5-formyl-, and 5-carboxylcytosine by ten-eleven-translocation dioxygenases and subsequent base excision repair or replication-dependent dilution. Moreover, the oxidized 5-methylcytosine derivatives are potential epigenetic marks with unique biological roles. Key to a better understanding of these roles are insights into the interactions of the nucleobases with DNA-binding protein scaffolds: Natural scaffolds involved in transcription, 5-methylcytosine-reading and -editing as well as general chromatin organization can be selectively recruited or repulsed by oxidized 5-methylcytosines, forming the basis of their biological functions. Moreover, designer protein scaffolds engineered for the selective recognition of oxidized 5-methylcytosines are valuable tools to analyze their genomic levels and distribution. Here, we review recent structural and functional insights into the molecular recognition of oxidized 5-methylcytosine derivatives in DNA by selected protein scaffolds.
Collapse
Affiliation(s)
- Álvaro Muñoz-López
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund
| | - Daniel Summerer
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund
| |
Collapse
|
32
|
Krawczyk K, Demharter S, Knapp B, Deane CM, Minary P. In silico structural modeling of multiple epigenetic marks on DNA. Bioinformatics 2017; 34:41-48. [DOI: 10.1093/bioinformatics/btx516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Konrad Krawczyk
- Department of Computer Science, Oxford University, OX1 3QD Oxford, UK
- Department of Statistics, Oxford University, OX1 3LB Oxford, UK
| | - Samuel Demharter
- Department of Computer Science, Oxford University, OX1 3QD Oxford, UK
| | - Bernhard Knapp
- Department of Statistics, Oxford University, OX1 3LB Oxford, UK
- Faculty of Medicine and Health Sciences, International University of Catalonia, Barcelona, Spain
| | | | - Peter Minary
- Department of Computer Science, Oxford University, OX1 3QD Oxford, UK
| |
Collapse
|
33
|
Riml C, Lusser A, Ennifar E, Micura R. Synthesis, Thermodynamic Properties, and Crystal Structure of RNA Oligonucleotides Containing 5-Hydroxymethylcytosine. J Org Chem 2017; 82:7939-7945. [PMID: 28707898 DOI: 10.1021/acs.joc.7b01171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
5-Hydroxymethylcytosine (hm5C) is an RNA modification that has attracted significant interest because of the finding that RNA hydroxymethylation can favor mRNA translation. For insight into the mechanistic details of hm5C function to be obtained, the availability of RNAs containing this modification at defined positions that can be used for in vitro studies is highly desirable. In this work, we present an eight-step route to 5-hydroxymethylcytidine (hm5rC) phosphoramidite for solid-phase synthesis of modified RNA oligonucleotides. Furthermore, we examined the effects of hm5rC on RNA duplex stability and its impact on structure formation using the sarcin-ricin loop (SRL) motif. Thermal denaturation experiments revealed that hm5rC increases RNA duplex stability. By contrast, when cytosine within an UNCG tetraloop motif was replaced by hm5rC, the thermodynamic stability of the corresponding hairpin fold was attenuated. Importantly, incorporation of hm5rC into the SRL motif resulted in an RNA crystal structure at 0.85 Å resolution. Besides changes in the hydration pattern at the site of modification, a slight opening of the hm5rC-G pair compared to the unmodified C-G in the native structure was revealed.
Collapse
Affiliation(s)
- Christian Riml
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck , 6020 Innsbruck, Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck , 6020 Innsbruck, Austria
| | - Eric Ennifar
- Université de Strasbourg, CNRS , Architecture et Réactivité des ARN, UPR 9002, 67000 Strasbourg, France
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck , 6020 Innsbruck, Austria
| |
Collapse
|
34
|
Demharter S, Knapp B, Deane CM, Minary P. Modeling Functional Motions of Biological Systems by Customized Natural Moves. Biophys J 2017; 111:710-721. [PMID: 27558715 PMCID: PMC5002067 DOI: 10.1016/j.bpj.2016.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 11/30/2022] Open
Abstract
Simulating the functional motions of biomolecular systems requires large computational resources. We introduce a computationally inexpensive protocol for the systematic testing of hypotheses regarding the dynamic behavior of proteins and nucleic acids. The protocol is based on natural move Monte Carlo, a highly efficient conformational sampling method with built-in customization capabilities that allows researchers to design and perform a large number of simulations to investigate functional motions in biological systems. We demonstrate the use of this protocol on both a protein and a DNA case study. Firstly, we investigate the plasticity of a class II major histocompatibility complex in the absence of a bound peptide. Secondly, we study the effects of the epigenetic mark 5-hydroxymethyl on cytosine on the structure of the Dickerson-Drew dodecamer. We show how our customized natural moves protocol can be used to investigate causal relationships of functional motions in biological systems.
Collapse
Affiliation(s)
- Samuel Demharter
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Bernhard Knapp
- Department of Statistics, University of Oxford, Oxford, UK
| | | | - Peter Minary
- Department of Computer Science, University of Oxford, Oxford, UK.
| |
Collapse
|
35
|
5-Formylcytosine does not change the global structure of DNA. Nat Struct Mol Biol 2017; 24:544-552. [PMID: 28504696 DOI: 10.1038/nsmb.3411] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/13/2017] [Indexed: 01/14/2023]
Abstract
The mechanism by which the recently identified DNA modification 5-formylcytosine (fC) is recognized by epigenetic writer and reader proteins is not known. Recently, an unusual DNA structure, F-DNA, has been proposed as the basis for enzyme recognition of clusters of fC. We used NMR and X-ray crystallography to compare several modified DNA duplexes with unmodified analogs and found that in the crystal state the duplexes all belong to the A family, whereas in solution they are all members of the B family. We found that, contrary to previous findings, fC does not significantly affect the structure of DNA, although there are modest local differences at the modification sites. Hence, global conformation changes are unlikely to account for the recognition of this modified base, and our structural data favor a mechanism that operates at base-pair resolution for the recognition of fC by epigenome-modifying enzymes.
Collapse
|
36
|
Maurer S, Giess M, Koch O, Summerer D. Interrogating Key Positions of Size-Reduced TALE Repeats Reveals a Programmable Sensor of 5-Carboxylcytosine. ACS Chem Biol 2016; 11:3294-3299. [PMID: 27978710 DOI: 10.1021/acschembio.6b00627] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcription-activator-like effector (TALE) proteins consist of concatenated repeats that recognize consecutive canonical nucleobases of DNA via the major groove in a programmable fashion. Since this groove displays unique chemical information for the four human epigenetic cytosine nucleobases, TALE repeats with epigenetic selectivity can be engineered, with potential to establish receptors for the programmable decoding of all human nucleobases. TALE repeats recognize nucleobases via key amino acids in a structurally conserved loop whose backbone is positioned very close to the cytosine 5-carbon. This complicates the engineering of selectivities for large 5-substituents. To interrogate a more promising structural space, we engineered size-reduced repeat loops, performed saturation mutagenesis of key positions, and screened a total of 200 repeat-nucleobase interactions for new selectivities. This provided insight into the structural requirements of TALE repeats for affinity and selectivity, revealed repeats with improved or relaxed selectivity, and resulted in the first selective sensor of 5-carboxylcytosine.
Collapse
Affiliation(s)
- Sara Maurer
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227Dortmund, Germany
| | - Mario Giess
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227Dortmund, Germany
| | - Oliver Koch
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227Dortmund, Germany
| | - Daniel Summerer
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227Dortmund, Germany
| |
Collapse
|
37
|
Cimmino L, Aifantis I. Alternative roles for oxidized mCs and TETs. Curr Opin Genet Dev 2016; 42:1-7. [PMID: 27939598 DOI: 10.1016/j.gde.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/15/2016] [Indexed: 01/09/2023]
Abstract
Ten-eleven-translocation (TET) proteins oxidize 5-methylcytosine (5mC) to form stable or transient modifications (oxi-mCs) in the mammalian genome. Genome-wide mapping and protein interaction studies have shown that 5mC and oxi-mCs have unique distribution patterns and alternative roles in gene expression. In addition, oxi-mCs may interact with specific chromatin regulators, transcription factors and DNA repair proteins to maintain genomic integrity or alter DNA replication and transcriptional elongation rates. In this review we will discuss recent advances in our understanding of how TETs and 5hmC exert their epigenetic function as tumor suppressors by playing alternative roles in transcriptional regulation and genomic stability.
Collapse
Affiliation(s)
- Luisa Cimmino
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| | - Iannis Aifantis
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
38
|
|
39
|
Vander Zanden CM, Rowe RK, Broad AJ, Robertson AB, Ho PS. Effect of Hydroxymethylcytosine on the Structure and Stability of Holliday Junctions. Biochemistry 2016; 55:5781-5789. [PMID: 27653243 PMCID: PMC5258817 DOI: 10.1021/acs.biochem.6b00801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
5-Hydroxymethylcytosine (5hmC) is an epigenetic marker that has recently been shown to promote homologous recombination (HR). In this study, we determine the effects of 5hmC on the structure, thermodynamics, and conformational dynamics of the Holliday junction (the four-stranded DNA intermediate associated with HR) in its native stacked-X form. The hydroxymethyl and the control methyl substituents are placed in the context of an amphimorphic GxCC trinucleotide core sequence (where xC is C, 5hmC, or the methylated 5mC), which is part of a sequence also recognized by endonuclease G to promote HR. The hydroxymethyl group of the 5hmC junction adopts two distinct rotational conformations, with an in-base-plane form being dominant over the competing out-of-plane rotamer that has typically been seen in duplex structures. The in-plane rotamer is seen to be stabilized by a more stable intramolecular hydrogen bond to the junction backbone. Stabilizing hydrogen bonds (H-bonds) formed by the hydroxyl substituent in 5hmC or from a bridging water in the 5mC structure provide approximately 1.5-2 kcal/mol per interaction of stability to the junction, which is mostly offset by entropy compensation, thereby leaving the overall stability of the G5hmCC and G5mCC constructs similar to that of the GCC core. Thus, both methyl and hydroxymethyl modifications are accommodated without disrupting the structure or stability of the Holliday junction. Both 5hmC and 5mC are shown to open the structure to make the junction core more accessible. The overall consequences of incorporating 5hmC into a DNA junction are thus discussed in the context of the specificity in protein recognition of the hydroxymethyl substituent through direct and indirect readout mechanisms.
Collapse
Affiliation(s)
- Crystal M. Vander Zanden
- Department of Biochemistry & Molecular Biology, 1870 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1870
| | - Rhianon K. Rowe
- Department of Biochemistry & Molecular Biology, 1870 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1870
| | - Amanda J. Broad
- Department of Biochemistry & Molecular Biology, 1870 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1870
| | - Adam B. Robertson
- Department of Molecular Microbiology, Sognsvannsveien 20, NO-0027, Oslo University Hospital, Oslo, Norway
| | - P. Shing Ho
- Department of Biochemistry & Molecular Biology, 1870 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1870
| |
Collapse
|
40
|
Rathi P, Maurer S, Kubik G, Summerer D. Isolation of Human Genomic DNA Sequences with Expanded Nucleobase Selectivity. J Am Chem Soc 2016; 138:9910-8. [PMID: 27429302 DOI: 10.1021/jacs.6b04807] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the direct isolation of user-defined DNA sequences from the human genome with programmable selectivity for both canonical and epigenetic nucleobases. This is enabled by the use of engineered transcription-activator-like effectors (TALEs) as DNA major groove-binding probes in affinity enrichment. The approach provides the direct quantification of 5-methylcytosine (5mC) levels at single genomic nucleotide positions in a strand-specific manner. We demonstrate the simple, multiplexed typing of a variety of epigenetic cancer biomarker 5mC with custom TALE mixes. Compared to antibodies as the most widely used affinity probes for 5mC analysis, i.e., employed in the methylated DNA immunoprecipitation (MeDIP) protocol, TALEs provide superior sensitivity, resolution and technical ease. We engineer a range of size-reduced TALE repeats and establish full selectivity profiles for their binding to all five human cytosine nucleobases. These provide insights into their nucleobase recognition mechanisms and reveal the ability of TALEs to isolate genomic target sequences with selectivity for single 5-hydroxymethylcytosine and, in combination with sodium borohydride reduction, single 5-formylcytosine nucleobases.
Collapse
Affiliation(s)
- Preeti Rathi
- Department of Chemistry and Chemical Biology, Technical University of Dortmund , Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Sara Maurer
- Department of Chemistry and Chemical Biology, Technical University of Dortmund , Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Grzegorz Kubik
- Department of Chemistry and Chemical Biology, Technical University of Dortmund , Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Daniel Summerer
- Department of Chemistry and Chemical Biology, Technical University of Dortmund , Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
41
|
Liu MY, DeNizio JE, Schutsky EK, Kohli RM. The expanding scope and impact of epigenetic cytosine modifications. Curr Opin Chem Biol 2016; 33:67-73. [PMID: 27315338 DOI: 10.1016/j.cbpa.2016.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/11/2022]
Abstract
Chemical modifications to genomic DNA can expand and shape its coding potential. Cytosine methylation in particular has well-established roles in regulating gene expression and defining cellular identity. The discovery of TET family enzymes opened a major frontier beyond DNA methylation, revealing three oxidized forms of cytosine that could mediate DNA demethylation or encode independent epigenetic functions. Chemical biology has been instrumental in uncovering TET's intricate reaction mechanisms and scope of reactivity on a surprising variety of substrates. Moreover, innovative chemoenzymatic strategies have enabled sensitive detection of oxidized cytosine products in vitro and in vivo. We highlight key recent developments that demonstrate how chemical biology is advancing our understanding of the extended, dynamic epigenome.
Collapse
Affiliation(s)
- Monica Yun Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jamie E DeNizio
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily K Schutsky
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul M Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
42
|
Rohner M, Medina-Molner A, Spingler B. N,N,O and N,O,N Meridional cis Coordination of Two Guanines to Copper(II) by d(CGCGCG)2. Inorg Chem 2016; 55:6130-40. [DOI: 10.1021/acs.inorgchem.6b00672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Melanie Rohner
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Alfredo Medina-Molner
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Bernhard Spingler
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
43
|
Kubik G, Summerer D. TALEored Epigenetics: A DNA-Binding Scaffold for Programmable Epigenome Editing and Analysis. Chembiochem 2016; 17:975-80. [DOI: 10.1002/cbic.201600072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Grzegorz Kubik
- Technische Universität Dortmund; Fakultät für Chemie und Chemische Biologie; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Daniel Summerer
- Technische Universität Dortmund; Fakultät für Chemie und Chemische Biologie; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
44
|
Wang R, Luo Z, He K, Delaney MO, Chen D, Sheng J. Base pairing and structural insights into the 5-formylcytosine in RNA duplex. Nucleic Acids Res 2016; 44:4968-77. [PMID: 27079978 PMCID: PMC4889945 DOI: 10.1093/nar/gkw235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022] Open
Abstract
5-Formylcytidine (f5C), a previously discovered natural nucleotide in the mitochondrial tRNA of many species including human, has been recently detected as the oxidative product of 5-methylcytidine (m5C) through 5-hydroxymethylcytidine (hm5C) in total RNA of mammalian cells. The discovery indicated that these cytosine derivatives in RNA might also play important epigenetic roles similar as in DNA, which has been intensively investigated in the past few years. In this paper, we studied the base pairing specificity of f5C in different RNA duplex contexts. We found that the 5-formyl group could increase duplex thermal stability and enhance base pairing specificity. We present three high-resolution crystal structures of an octamer RNA duplex [5′-GUA(f5C)GUAC-3′]2 that have been solved under three crystallization conditions with different buffers and pH values. Our results showed that the 5-formyl group is located in the same plane as the cytosine base and forms an intra-residue hydrogen bond with the amino group in the N4 position. In addition, this modification increases the base stacking between the f5C and the neighboring bases while not causing significant global and local structure perturbations. This work provides insights into the effects of 5-formylcytosine on RNA duplex.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Zhipu Luo
- Synchrotron Radiation Research Section, MCL National Cancer Institute, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Kaizhang He
- Dharmacon, GE Healthcare, Lafayette, CO 80026, USA
| | | | - Doris Chen
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
45
|
Xu B, Devi G, Shao F. Regulation of telomeric i-motif stability by 5-methylcytosine and 5-hydroxymethylcytosine modification. Org Biomol Chem 2016; 13:5646-51. [PMID: 25886653 DOI: 10.1039/c4ob02646b] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The two important epigenetic markers in the human genome, 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC), are involved in gene regulation processes. As a major epigenetic target, cytosines in a C-rich DNA sequence were substituted with mC and hmC to investigate the thermal stability and pH sensitivity of the corresponding i-motifs. Circular Dichroism (CD) studies indicate the formation of i-motifs at acidic pH (<6.5) for mC- and hmC-modified DNA sequences. Thermal denaturation results suggest that DNA i-motifs are stabilized when modified with one or two mCs. However, hypermethylation with mC and single modification with hmC cause destabilization of the structure. A biomimetic crowding agent does not alter the stability effect trends resulting from mC and hmC modifications, though the corresponding i-motifs show elevated melting temperatures without significant changes in pKa values.
Collapse
Affiliation(s)
- Baochang Xu
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | | | | |
Collapse
|
46
|
Wu Q, Wong JR, Qing Yeo PL, Zhang D, Shao F. Methylation on CpG repeats modulates hydroxymethylcytosine induced duplex destabilization. RSC Adv 2016. [DOI: 10.1039/c6ra08647k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The destabilization effect of 5-hydroxymethylcytosine on CpG repeats can be reversed in heavily methylated duplex.
Collapse
Affiliation(s)
- Qiong Wu
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Jiun Ru Wong
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Penny Liu Qing Yeo
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Dawei Zhang
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Fangwei Shao
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore 637371
- Singapore
| |
Collapse
|
47
|
Fukuzawa S, Tachibana K, Tajima S, Suetake I. Selective oxidation of 5-hydroxymethylcytosine with micelle incarcerated oxidants to determine it at single base resolution. Bioorg Med Chem Lett 2015; 25:5667-71. [DOI: 10.1016/j.bmcl.2015.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022]
|
48
|
Wang R, Ranganathan SV, Valsangkar VA, Magliocco SM, Shen F, Chen A, Sheng J. Water-bridged hydrogen bond formation between 5-hydroxylmethylcytosine (5-hmC) and its 3'-neighbouring bases in A- and B-form DNA duplexes. Chem Commun (Camb) 2015; 51:16389-92. [PMID: 26411524 DOI: 10.1039/c5cc06563a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5-Hydroxylmethylcytosine (5hmC) has been recognized as the sixth base with important biological functions in many tissues and cell types. We present here the high-resolution crystal structures and molecular simulation studies of both A-form and B-form DNA duplexes containing 5hmC. We observed that 5hmC interacts with its 3'-neighboring bases through water-bridged hydrogen bonds and these interactions may affect the further oxidation of 5hmC.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA.
| | - Srivathsan V Ranganathan
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA.
| | - Vibhav A Valsangkar
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA.
| | - Stephanie M Magliocco
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA.
| | - Fusheng Shen
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA.
| | - Alan Chen
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA.
| | - Jia Sheng
- Department of Chemistry, The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA.
| |
Collapse
|
49
|
Ding Y, Fleming AM, White HS, Burrows CJ. Differentiation of G:C vs A:T and G:C vs G:mC Base Pairs in the Latch Zone of α-Hemolysin. ACS NANO 2015; 9:11325-32. [PMID: 26506108 PMCID: PMC4876701 DOI: 10.1021/acsnano.5b05055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The α-hemolysin (α-HL) nanopore can detect DNA strands under an electrophoretic force via many regions of the channel. Our laboratories previously demonstrated that trapping duplex DNA in the vestibule of wild-type α-HL under force could distinguish the presence of an abasic site compared to a G:C base pair positioned in the latch zone at the top of the vestibule. Herein, a series of duplexes were probed in the latch zone to establish if this region can detect more subtle features of base pairs beyond the complete absence of a base. The results of these studies demonstrate that the most sensitive region of the latch can readily discriminate duplexes in which one G:C base pair is replaced by an A:T. Additional experiments determined that while neither 8-oxo-7,8-dihydroguanine nor 7-deazaguanine opposite C could be differentiated from a G:C base pair, in contrast, the epigenetic marker 5-methylcytosine, when present in both strands of the duplex, yielded new blocking currents when compared to strands with unmodified cytosine. The results are discussed with respect to experimental design for utilization of the latch zone of α-HL to probe specific regions of genomic samples.
Collapse
Affiliation(s)
| | | | - Henry S. White
- To whom correspondence should be addressed: Telephone: (801) 585-7290 or (801) 585-6256, or
| | - Cynthia J. Burrows
- To whom correspondence should be addressed: Telephone: (801) 585-7290 or (801) 585-6256, or
| |
Collapse
|
50
|
Zamiri B, Mirceta M, Bomsztyk K, Macgregor RB, Pearson CE. Quadruplex formation by both G-rich and C-rich DNA strands of the C9orf72 (GGGGCC)8•(GGCCCC)8 repeat: effect of CpG methylation. Nucleic Acids Res 2015; 43:10055-64. [PMID: 26432832 PMCID: PMC4787773 DOI: 10.1093/nar/gkv1008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022] Open
Abstract
Unusual DNA/RNA structures of the C9orf72 repeat may participate in repeat expansions or pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Expanded repeats are CpG methylated with unknown consequences. Typically, quadruplex structures form by G-rich but not complementary C-rich strands. Using CD, UV and electrophoresis, we characterized the structures formed by (GGGGCC)8 and (GGCCCC)8 strands with and without 5-methylcytosine (5mCpG) or 5-hydroxymethylcytosine (5hmCpG) methylation. All strands formed heterogenous mixtures of structures, with features of quadruplexes (at pH 7.5, in K(+), Na(+) or Li(+)), but no feature typical of i-motifs. C-rich strands formed quadruplexes, likely stabilized by G•C•G•C-tetrads and C•C•C•C-tetrads. Unlike G•G•G•G-tetrads, some G•C•G•C-tetrad conformations do not require the N7-Guanine position, hence C9orf72 quadruplexes still formed when N7-deazaGuanine replace all Guanines. 5mCpG and 5hmCpG increased and decreased the thermal stability of these structures. hnRNPK, through band-shift analysis, bound C-rich but not G-rich strands, with a binding preference of unmethylated > 5hmCpG > 5mCpG, where methylated DNA-protein complexes were retained in the wells, distinct from unmethylated complexes. Our findings suggest that for C-rich sequences interspersed with G-residues, one must consider quadruplex formation and that methylation of quadruplexes may affect epigenetic processes.
Collapse
Affiliation(s)
- Bita Zamiri
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Mila Mirceta
- Program of Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle WA 98109, USA
| | - Robert B Macgregor
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Christopher E Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada Program of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|