1
|
Ma Y, Cao J, Li S, Wang L, Meng Y, Chen Y. Nature-Inspired Wet Drug Delivery Platforms. SMALL METHODS 2024; 8:e2301726. [PMID: 38284322 DOI: 10.1002/smtd.202301726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Nature has created various organisms with unique chemical components and multi-scale structures (e.g., foot proteins, toe pads, suckers, setose gill lamellae) to achieve wet adhesion functions to adapt to their complex living environments. These organisms can provide inspirations for designing wet adhesives with mediated drug release behaviors in target locations of biological surfaces. They exhibit conformal and enhanced wet adhesion, addressing the bottleneck of weaker tissue interface adhesion in the presence of body fluids. Herein, it is focused on the research progress of different wet adhesion and bioinspired fabrications, including adhesive protein-based adhesion and inspired adhesives (e.g., mussel adhesion); capillarity and Stefan adhesion and inspired adhesive surfaces (e.g., tree frog adhesion); suction-based adhesion and inspired suckers (e.g., octopus' adhesion); interlocking and friction-based adhesion and potential inspirations (e.g., mayfly larva and teleost adhesion). Other secreted protein-induced wet adhesion is also reviewed and various suckers for other organisms and their inspirations. Notably, one representative application scenario of these bioinspired wet adhesives is highlighted, where they function as efficient drug delivery platforms on target tissues and/or organs with requirements of both controllable wet adhesion and optimized drug release. Finally, the challenges of these bioinspired wet drug delivery platforms in the future is presented.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jian Cao
- School of Software and Microelectronics, Peking University, Beijing, 100871, China
| | - Shiyao Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Lili Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Yufei Meng
- Research Institute of Ornamental Plants and Landscapes, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Zhou R, Wang Z, Song Y, Liu S, Dai Z. Tree Frogs Alter Their Behavioral Strategies While Landing On Vertical Perches. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024. [PMID: 39221750 DOI: 10.1002/jez.2864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
As an arboreal animal, tree frogs face diverse challenges when landing on perches, including variations in substrate shape, diameter, flexibility, and angular distribution, with potentially significant consequences for failed landings. Research on tree frog landing behavior on perches, especially concerning landing on vertical substrates, remains limited. This study investigated the landing strategies (forelimb, abdomen, and hindlimb) of tree frogs on vertical perches, considering perch diameter. Although all three strategies were observed across perches of different diameters, their frequencies differed. Forelimb landing was most common across all perch diameters, with its frequency increasing with perch diameter, while abdomen and hindlimb landing strategies were more prevalent on smaller diameter perches. During the process from take-off to landing, the body axis underwent some deviation owing to the asymmetric movement of the left and right limbs; however, these deviations did not significantly differ among landing strategies. Additionally, different landing strategies led to variations in the landing forces, with abdominal landings generating significantly higher impact forces than the other two strategies. These findings provide insights into the biomechanics and biological adaptations of tree frogs when landing on challenging substrates, such as leaves or branches.
Collapse
Affiliation(s)
- Rui Zhou
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhouyi Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
- Shenzhen Research Institute, Nanjing University of Aeronautics and Astronautics, Shenzhen, China
| | - Yi Song
- Taizhou Research Institute, Zhejiang University of Technology, Taizhou, China
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Shuhao Liu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhendong Dai
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
3
|
Li M, Mao A, Guan Q, Saiz E. Nature-inspired adhesive systems. Chem Soc Rev 2024; 53:8240-8305. [PMID: 38982929 DOI: 10.1039/d3cs00764b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Many organisms in nature thrive in intricate habitats through their unique bio-adhesive surfaces, facilitating tasks such as capturing prey and reproduction. It's important to note that the remarkable adhesion properties found in these natural biological surfaces primarily arise from their distinct micro- and nanostructures and/or chemical compositions. To create artificial surfaces with superior adhesion capabilities, researchers delve deeper into the underlying mechanisms of these captivating adhesion phenomena to draw inspiration. This article provides a systematic overview of various biological surfaces with different adhesion mechanisms, focusing on surface micro- and nanostructures and/or chemistry, offering design principles for their artificial counterparts. Here, the basic interactions and adhesion models of natural biological surfaces are introduced first. This will be followed by an exploration of research advancements in natural and artificial adhesive surfaces including both dry adhesive surfaces and wet/underwater adhesive surfaces, along with relevant adhesion characterization techniques. Special attention is paid to stimulus-responsive smart artificial adhesive surfaces with tunable adhesive properties. The goal is to spotlight recent advancements, identify common themes, and explore fundamental distinctions to pinpoint the present challenges and prospects in this field.
Collapse
Affiliation(s)
- Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Anran Mao
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
4
|
Borodich FM, Gao Z, Gorb EV, Gorb SN, Jin X. Wax Protrusions on Anti-Adhesive Plant Surfaces and Their Interactions with Insect Adhesive Pads: A Mechanical Interpretation. Biomimetics (Basel) 2024; 9:442. [PMID: 39056883 PMCID: PMC11274746 DOI: 10.3390/biomimetics9070442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Insect attachment devices enhance adhesion to complex-geometry substrates by increasing the real contact area. In nature, insects mainly interact with plant surfaces that are often covered by 3D wax structures. Here, we describe, discuss, and give a mechanical interpretation of plant waxes and the possible fracture mechanisms of these wax structures during their interactions with the adhesive pads of insects. It is argued that these plant surface microstructures significantly influence insect adhesion through reducing the contact area and contaminating the insect pads.
Collapse
Affiliation(s)
- Feodor M. Borodich
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, China;
| | - Zaida Gao
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, China;
| | - Elena V. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Am Botanischen Garten 1-9, 24098 Kiel, Germany; (E.V.G.); (S.N.G.)
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Am Botanischen Garten 1-9, 24098 Kiel, Germany; (E.V.G.); (S.N.G.)
| | - Xiaoqing Jin
- College of Aerospace Engineering, Chongqing University, Chongqing 400030, China;
| |
Collapse
|
5
|
Glaser NC, Langowski JKA. Stiff skin, soft core: soft backings enhance the conformability and friction of fibre-reinforced adhesives. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221263. [PMID: 36908990 PMCID: PMC9993060 DOI: 10.1098/rsos.221263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Biomimetic adhesives with a stiff fibre-reinforced base layer generate strong attachment, even without bioinspired micropatterning of the contact surface. However, current fibre-reinforced adhesive designs are still less versatile with respect to substrate variability than their biological counterparts. In this study, we enhance the comformability of a fibre-reinforced adhesive on curved substrates by adding bioinspired soft backings. We designed and fabricated soft backing variations (polyurethane foams and silicone hydroskeletons) with varying compressive stiffnesses that mimic the soft viscoelastic structures in the adhesive appendages of tree frogs, geckos and other animals. The backings were mounted on a smooth silicone layer enforced with a polyester mesh, and we experimentally investigated the contact area and friction performance of these adhesives on a curved substrate. The results show that the contact area and friction created by a fibre-reinforced adhesive with a soft backing in contact with a non-flat substrate scale inversely with backing stiffness. The integration of stiff fibre-reinforcement with a compressible backing represents an important step in bringing bioinspired adhesives out of the laboratory and into the real world, for example in soft robotic grippers. Moreover, our findings stimulate further research into the role of soft tissues in biological adhesive systems.
Collapse
Affiliation(s)
- Niels C. Glaser
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Julian K. A. Langowski
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University and Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
6
|
Duan W, Yu Z, Cui W, Zhang Z, Zhang W, Tian Y. Bio-inspired switchable soft adhesion for the boost of adhesive surfaces and robotics applications: A brief review. Adv Colloid Interface Sci 2023; 313:102862. [PMID: 36848868 DOI: 10.1016/j.cis.2023.102862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
In nature, millions of creatures, such as geckos, tree frogs, octopuses, etc., have evolved fantastic switchable adhesion capabilities to climb swiftly on vertical even inverted surfaces or hunt for prey easily, adapting to harsh and unpredictable environments. Notably, these fascinating adhesive behaviors depend on interfacial forces (friction, van der Waals force, capillary force, vacuum suction, etc.), which primarily originate from the interactions between the soft micro/nanostructures evolved in the natural creatures and objects. Over the past few decades, these biological switchable adhesives have inspired scientists to explore and engineer desirable artificial adhesives. In this review, we summarized the state-of-the-art research on the ultra-fast adhesive motion of three types of biological organisms (gecko, tree frog, and octopus). Firstly, the basic adhesion principles in the three representative organisms, including micro/nanostructures, interfacial forces, and fundamental adhesion models, are reviewed. Then, we discussed the adhesion mechanisms of the prominent organisms from the perspective of soft contacts between micro/nanostructures and the substrates. Later, the mechanics-guided design principles of artificial adhesive surfaces, as well as the smart adhesion strategies, are summarized. The applications of these bio-inspired switchable adhesives are demonstrated, including wearable electronic devices, soft grippers, and climbing robots. The challenges and opportunities in this fast-growing field are also discussed.
Collapse
Affiliation(s)
- Weiwang Duan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhilin Yu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenhui Cui
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zengxin Zhang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenling Zhang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yu Tian
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Sudersan P, Kappl M. Mechanisms of detachment in fibrillar adhesive systems. J Theor Biol 2023; 557:111315. [PMID: 36332666 DOI: 10.1016/j.jtbi.2022.111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/24/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Several creatures can climb on smooth surfaces with the help of hairy adhesive pads on their legs. A rapid change from strong attachment to effortless detachment of the leg is enabled by the asymmetric geometry of the tarsal hairs. In this study, we propose mechanisms by which the hairy pad can be easily detached, even when the hairs possess no asymmetry. Here, we examine the possible function of the tibia-tarsus leg joint and the claws. Based on a spring-based model, we consider three modes of detachment: vertically pulling the pad while maintaining either a (1) fixed or a (2) free joint, or by (3) flexing the pad about the claw. We show that in all cases, the adhesion force can be significantly reduced due to elastic forces when the hairs deform non-uniformly across the array. Our proposed model illustrates the design advantage of such fibrillar adhesive systems, that not only provide strong adhesion, but also allow easy detachment, making them suitable as organs for fast locomotion and reliable hold. The presented approaches can be potentially used to switch the adhesion state in bio-inspired fibrillar adhesives, by incorporating artificial joints and claws into their design, without the need of asymmetric or stimuli-responsive fibrillar structures.
Collapse
Affiliation(s)
- Pranav Sudersan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
8
|
Orndorf N, Garner AM, Dhinojwala A. Polar bear paw pad surface roughness and its relevance to contact mechanics on snow. J R Soc Interface 2022; 19:20220466. [PMID: 36321372 PMCID: PMC9627446 DOI: 10.1098/rsif.2022.0466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2023] Open
Abstract
Microscopic papillae on polar bear paw pads are considered adaptations for increased friction on ice/snow, yet this assertion is based on a single study of one species. The lack of comparative data from species that exploit different habitats renders the ecomorphological associations of papillae unclear. Here, we quantify the surface roughness of the paw pads of four species of bear over five orders of magnitude by calculating their surface roughness power spectral density. We find that interspecific variation in papillae base diameter can be explained by paw pad width, but that polar bear paw pads have 1.5 times taller papillae and 1.3 times more true surface area than paw pads of the American black bear and brown bear. Based on friction experiments with three-dimensional printed model surfaces and snow, we conclude that these factors increase the frictional shear stress of the polar bear paw pad on snow by a factor of 1.3-1.5 compared with the other species. Absolute frictional forces, however, are estimated to be similar among species once paw pad area is accounted for, suggesting that taller papillae may compensate for frictional losses resulting from the relatively smaller paw pads of polar bears compared with their close relatives.
Collapse
Affiliation(s)
- Nathaniel Orndorf
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Austin M. Garner
- Integrated Bioscience Program, Department of Biology, The University of Akron, Akron, OH 44325, USA
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
9
|
Bergmann JB, Moatsou D, Steiner U, Wilts BD. Bio-inspired materials to control and minimise insect attachment. BIOINSPIRATION & BIOMIMETICS 2022; 17:051001. [PMID: 36099911 DOI: 10.1088/1748-3190/ac91b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
More than three quarters of all animal species on Earth are insects, successfully inhabiting most ecosystems on the planet. Due to their opulence, insects provide the backbone of many biological processes, but also inflict adverse impacts on agricultural and stored products, buildings and human health. To countermeasure insect pests, the interactions of these animals with their surroundings have to be fully understood. This review focuses on the various forms of insect attachment, natural surfaces that have evolved to counter insect adhesion, and particularly features recently developed synthetic bio-inspired solutions. These bio-inspired solutions often enhance the variety of applicable mechanisms observed in nature and open paths for improved technological solutions that are needed in a changing global society.
Collapse
Affiliation(s)
- Johannes B Bergmann
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Dafni Moatsou
- Institute of Organic Chemistry, Karlsruhe Institute for Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2a, 5020 Salzburg, Austria
| |
Collapse
|
10
|
Takahashi H. MEMS-Based Micro Sensors for Measuring the Tiny Forces Acting on Insects. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22208018. [PMID: 36298366 PMCID: PMC9609827 DOI: 10.3390/s22208018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 06/01/2023]
Abstract
Small insects perform agile locomotion, such as running, jumping, and flying. Recently, many robots, inspired by such insect performance, have been developed and are expected to be smaller and more maneuverable than conventional robots. For the development of insect-inspired robots, understanding the mechanical dynamics of the target insect is important. However, evaluating the dynamics via conventional commercialized force sensors is difficult because the exerted force and insect itself are tiny in strength and size. Here, we review force sensor devices, especially fabricated for measuring the tiny forces acting on insects during locomotion. As the force sensor, micro-force plates for measuring the ground reaction force and micro-force probes for measuring the flying force have mainly been developed. In addition, many such sensors have been fabricated via a microelectromechanical system (MEMS) process, due to the process precision and high sensitivity. In this review, we focus on the sensing principle, design guide, fabrication process, and measurement method of each sensor, as well as the technical challenges in each method. Finally, the common process flow of the development of specialized MEMS sensors is briefly discussed.
Collapse
Affiliation(s)
- Hidetoshi Takahashi
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
11
|
Zhang Y, Wan X, Xu X, Teng P, Wang S. Recent progress of tree frog toe pads inspired wet adhesive materials. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yikai Zhang
- Key Laboratory of Bio‐inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Xizi Wan
- Key Laboratory of Bio‐inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
| | - Xuetao Xu
- Key Laboratory of Bio‐inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Peicheng Teng
- Key Laboratory of Bio‐inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Shutao Wang
- Key Laboratory of Bio‐inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
12
|
van den Boogaart LM, Langowski JKA, Amador GJ. Studying Stickiness: Methods, Trade-Offs, and Perspectives in Measuring Reversible Biological Adhesion and Friction. Biomimetics (Basel) 2022; 7:biomimetics7030134. [PMID: 36134938 PMCID: PMC9496521 DOI: 10.3390/biomimetics7030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Controlled, reversible attachment is widely spread throughout the animal kingdom: from ticks to tree frogs, whose weights span from 2 mg to 200 g, and from geckos to mosquitoes, who stick under vastly different situations, such as quickly climbing trees and stealthily landing on human hosts. A fascinating and complex interplay of adhesive and frictional forces forms the foundation of attachment of these highly diverse systems to various substrates. In this review, we present an overview of the techniques used to quantify the adhesion and friction of terrestrial animals, with the aim of informing future studies on the fundamentals of bioadhesion, and motivating the development and adoption of new or alternative measurement techniques. We classify existing methods with respect to the forces they measure, including magnitude and source, i.e., generated by the whole body, single limbs, or by sub-structures. Additionally, we compare their versatility, specifically what parameters can be measured, controlled, and varied. This approach reveals critical trade-offs of bioadhesion measurement techniques. Beyond stimulating future studies on evolutionary and physicochemical aspects of bioadhesion, understanding the fundamentals of biological attachment is key to the development of biomimetic technologies, from soft robotic grippers to gentle surgical tools.
Collapse
Affiliation(s)
- Luc M. van den Boogaart
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Julian K. A. Langowski
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
- Correspondence: (J.K.A.L.); (G.J.A.)
| | - Guillermo J. Amador
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
- Correspondence: (J.K.A.L.); (G.J.A.)
| |
Collapse
|
13
|
Duarte-Marín S, Rada M, Rivera-Correa M, Caorsi V, Barona E, González-Durán G, Vargas-Salinas F. Tic, Tii and Trii calls: advertisement call descriptions for eight glass frogs from Colombia and analysis of the structure of auditory signals in Centrolenidae. BIOACOUSTICS 2022. [DOI: 10.1080/09524622.2022.2077833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Sebastián Duarte-Marín
- Conservación (EECO), Programa de Biología, Universidad del Quindío Grupo Evolución, Ecología y, Armenia, Colombia
- Entropía Co, Pereira, Colombia
| | - Marco Rada
- Laboratório de Anfibios, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Mauricio Rivera-Correa
- Laboratorio de Anfibios, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Valentina Caorsi
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Instituto de Biociências, Universidade Federal de Rio Grande do Sul (UFGRS), Porto Alegre, Brasil
| | - Eliana Barona
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Villa de Leyva, Colombia
| | | | - Fernando Vargas-Salinas
- Conservación (EECO), Programa de Biología, Universidad del Quindío Grupo Evolución, Ecología y, Armenia, Colombia
| |
Collapse
|
14
|
Yuan J, Wang Z, Song Y, Dai Z. Peking geckos (Gekko swinhonis) traversing upward steps: the effect of step height on the transition from horizontal to vertical locomotion. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:421-433. [PMID: 35362821 DOI: 10.1007/s00359-022-01548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022]
Abstract
The ability to transition between surfaces (e.g., from the ground to vertical barriers, such as walls, tree trunks, or rock surfaces) is important for the Peking gecko's (Gekko swinhonis Günther 1864) survival. However, quantitative research on gecko's kinematic performance and the effect of obstacle height during transitional locomotion remains scarce. In this study, the transitional locomotion of geckos facing different obstacle heights was assessed. Remarkably, geckos demonstrated a bimodal locomotion ability, as they could climb and jump. Climbing was more common on smaller obstacles and took longer than jumping. The jumping type depended on the obstacle height: when geckos could jump onto the obstacle, the vertical velocity increased with obstacle height; however, geckos jumped from a closer position when the obstacle height exceeded this range and would get attached to the vertical surface. A stability analysis of vertical surface landing using a collision model revealed that geckos can reduce their restraint impulse by increasing the landing angle through limb extension close to the body, consequently dissipating collision energy and reducing their horizontal and vertical velocities. The findings of this study reveal the adaptations evolved by geckos to move in their environments and may have applicability in the robotics field.
Collapse
Affiliation(s)
- Jiwei Yuan
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Zhouyi Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China.
| | - Yi Song
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
| | - Zhendong Dai
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, 210016, People's Republic of China
| |
Collapse
|
15
|
Hanna CS, Alihosseini C, Fischer HM, Davoli EC, Granatosky MC. Are they arboreal? Climbing abilities and mechanics in the red-backed salamander (Plethodon cinereus). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 337:238-249. [PMID: 34752693 DOI: 10.1002/jez.2561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 11/10/2022]
Abstract
While red-backed salamanders (Plethodon cinereus) are most often observed in terrestrial forested areas, several studies report arboreal substrate use and climbing behavior. However, salamanders do not have any of the anatomical features commonly observed in specialized climbing species (e.g., claws, setae, suction cups). Instead, salamanders cling to surfaces using the shear and adhesive properties of their mucous layer. In this study, we explore the capabilities and spatiotemporal gait patterns of arboreal locomotion in the red-backed salamander as they move across twelve substrate conditions ranging in diameter, orientation, and roughness. On arboreal substrates, red-backed salamanders decreased locomotor speed, stride frequency, phase and stride length, and increased duty factor and stride duration. Such responses have been observed in other non-salamander species and are posited to increase arboreal stability. Furthermore, these findings indicate that amphibian locomotion, or at least the locomotor behavior of the red-backed salamander, is not stereotyped and that some locomotor plasticity is possible in response to the demands of the external environment. However, red-backed salamanders were unable to locomote on any small-diameter or vertically-oriented coarse substrates. This finding provides strong evidence that the climbing abilities of red-backed salamanders are attributable solely to mucous adhesion and that this species is unable to produce the necessary external "gripping" forces to achieve fine-branch arboreal locomotion or scale substrates where adhesion is not possible. The red-backed salamander provides an ideal model for arboreal locomotor performance of anatomically-unspecialized amphibians and offers insight into transitionary stages in the evolution of arborealism in this lineage.
Collapse
Affiliation(s)
- Christopher S Hanna
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Christopher Alihosseini
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Hannah M Fischer
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Elizabeth C Davoli
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA.,Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
16
|
Aretz JM, Brown CE, Deban SM. Vertical locomotion in the arboreal salamander
Aneides vagrans. J Zool (1987) 2021. [DOI: 10.1111/jzo.12934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. M. Aretz
- Department of Integrative Biology, University of South Florida Tampa FL USA
| | - C. E. Brown
- Department of Integrative Biology, University of South Florida Tampa FL USA
| | - S. M. Deban
- Department of Integrative Biology, University of South Florida Tampa FL USA
| |
Collapse
|
17
|
Wöhrl T, Richter A, Guo S, Reinhardt L, Nowotny M, Blickhan R. Comparative analysis of a geometric and an adhesive righting strategy against toppling in inclined hexapedal locomotion. J Exp Biol 2021; 224:271172. [PMID: 34342358 DOI: 10.1242/jeb.242677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022]
Abstract
Animals are known to exhibit different walking behaviors in hilly habitats. For instance, cats, rats, squirrels, tree frogs, desert iguana, stick insects and desert ants were observed to lower their body height when traversing slopes, whereas mound-dwelling iguanas and wood ants tend to maintain constant walking kinematics regardless of the slope. This paper aims to understand and classify these distinct behaviors into two different strategies against toppling for climbing animals by looking into two factors: (i) the torque of the center of gravity (CoG) with respect to the critical tipping axis, and (ii) the torque of the legs, which has the potential to counterbalance the CoG torque. Our comparative locomotion analysis on level locomotion and inclined locomotion exhibited that primarily only one of the proposed two strategies was chosen for each of our sample species, despite the fact that a combined strategy could have reduced the animal's risk of toppling over even more. We found that Cataglyphis desert ants (species Cataglyphis fortis) maintained their upright posture primarily through the adjustment of their CoG torque (geometric strategy), and Formica wood ants (species Formica rufa), controlled their posture primarily by exerting leg torques (adhesive strategy). We further provide hints that the geometric strategy employed by Cataglyphis could increase the risk of slipping on slopes as the leg-impulse substrate angle of Cataglyphis hindlegs was lower than that of Formica hindlegs. In contrast, the adhesion strategy employed by Formica front legs not only decreased the risk of toppling but also explained the steeper leg-impulse substrate angle of Formica hindlegs which should relate to more bending of the tarsal structures and therefore to more microscopic contact points, potentially reducing the risk of hindleg slipping.
Collapse
Affiliation(s)
- Toni Wöhrl
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University, 07743 Jena, Germany.,Motion Science, Friedrich Schiller University, 07749 Jena, Germany
| | - Adrian Richter
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University, 07743 Jena, Germany
| | - Shihui Guo
- School of Informatics, Xiamen University, Xiamen, 361005 Fujian Province, China
| | - Lars Reinhardt
- Motion Science, Friedrich Schiller University, 07749 Jena, Germany
| | - Manuela Nowotny
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University, 07743 Jena, Germany
| | | |
Collapse
|
18
|
Blickhan R, Weihmann T, Barth FG. Measuring strain in the exoskeleton of spiders-virtues and caveats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:191-204. [PMID: 33459819 PMCID: PMC8046692 DOI: 10.1007/s00359-020-01458-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 11/23/2022]
Abstract
The measurement of cuticular strain during locomotion using foil strain gauges provides information both on the loads of the exoskeleton bears and the adaptive value of the specific location of natural strain detectors (slit sense organs). Here, we critically review available literature. In tethered animals, by applying loads to the metatarsus tip, strain and mechanical sensitivity (S = strain/load) induced at various sites in the tibia were determined. The loci of the lyriform organs close to the tibia-metatarsus joint did not stand out by high strain. The strains induced at various sites during free locomotion can be interpreted based on S and, beyond the joint region, on beam theory. Spiders avoided laterad loading of the tibia-metatarsus joint during slow locomotion. Balancing body weight, joint flexors caused compressive strain at the posterior and dorsal tibia. While climbing upside down strain measurements indicate strong flexor activity. In future studies, a precise calculation and quantitative determination of strain at the sites of the lyriform organs will profit from more detailed data on the overall strain distribution, morphology, and material properties. The values and caveats of the strain gauge technology, the only one applicable to freely moving spiders, are discussed.
Collapse
Affiliation(s)
- Reinhard Blickhan
- Science of Motion, Friedrich Schiller-University, Seidelstr. 20, 00749 Jena, Germany
| | - Tom Weihmann
- Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Friedrich G. Barth
- Department of Neuroscience and Developmental Biology, University of Vienna, Althanstr. 14, 1090 Wien, Austria
| |
Collapse
|
19
|
Li M, Shi L, Wang X. Physical mechanisms behind the wet adhesion: From amphibian toe-pad to biomimetics. Colloids Surf B Biointerfaces 2021; 199:111531. [PMID: 33383551 DOI: 10.1016/j.colsurfb.2020.111531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
Some amphibians, such as tree frogs, torrent frogs, newts, are able to climb or attach to wet slippery smooth surfaces, even in a vertical or overhanging state, by their reliable reversible adhesions developed on the epidermal of toe pads. It is widely believed that such outstanding function originates from the possible factors of the specialized evolutions of surficial micro/nanostructures, the chemical components of secreted mucus, the solid-liquid behavior of epidermal and the bulk softness of toe pads. In this review, we summarize the main physical mechanisms of these factors behaving underlying the wet adhesion of toe pads from the researches on biological models to artificial counterparts. The discussion of the organism attachments, the interfacial physical forces and the switchable strategies for artificial wet adhesion are also included. The paper gives a deeply, comprehensively understanding of the characters of wet adhesives on amphibians, which performs necessarily for the new strategies of exploring artificial adhesive surfaces.
Collapse
Affiliation(s)
- Meng Li
- School of Mechanical Engineering, Anhui University of Technology, Ma'anshan, 243032, China; International Science and Technology Cooperation Base for Intelligent Equipment Manufacturing in Special Service Environment, Ma'anshan, 243032, China; Anhui Province Key Laboratory of Special and Heavy Load Robot, Ma'anshan, 243032, China
| | - Liping Shi
- School of Mechanical Engineering, Anhui University of Technology, Ma'anshan, 243032, China; International Science and Technology Cooperation Base for Intelligent Equipment Manufacturing in Special Service Environment, Ma'anshan, 243032, China; Anhui Province Key Laboratory of Special and Heavy Load Robot, Ma'anshan, 243032, China.
| | - Xiaolei Wang
- College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China.
| |
Collapse
|
20
|
O'Donnell MK, Deban SM. The Effects of Roughness and Wetness on Salamander Cling Performance. Integr Comp Biol 2020; 60:840-851. [PMID: 32687157 DOI: 10.1093/icb/icaa110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Animals clinging to natural surfaces have to generate attachment across a range of surface roughnesses in both dry and wet conditions. Plethodontid salamanders can be aquatic, semi-aquatic, terrestrial, arboreal, troglodytic, saxicolous, and fossorial and therefore may need to climb on and over rocks, tree trunks, plant leaves, and stems, as well as move through soil and water. Sixteen species of salamanders were tested to determine the effects of substrate roughness and wetness on maximum cling angle. Substrate roughness had a significant effect on maximum cling angle, an effect that varied among species. Substrates of intermediate roughness (asperity size 100-350 µm) resulted in the poorest attachment performance for all species. Small species performed best on smooth substrates, while large species showed significant improvement on the roughest substrates (asperity size 1000-4000 µm), possibly switching from mucus adhesion on a smooth substrate to an interlocking attachment on rough substrates. Water, in the form of a misted substrate coating and a flowing stream, decreased cling performance in salamanders on smooth substrates. However, small salamanders significantly increased maximum cling angle on wetted substrates of intermediate roughness, compared with the dry condition. Study of cling performance and its relationship to surface properties may cast light onto how this group of salamanders has radiated into the most speciose family of salamanders that occupies diverse habitats across an enormous geographical range.
Collapse
Affiliation(s)
- Mary Kate O'Donnell
- Department of Ecology and Evolutionary Biology, Brown University, 171 Meeting Street, GB 204, Providence, RI 02912, USA; Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, SCA 110, Tampa, FL 33620, USA
| | - Stephen M Deban
- Department of Ecology and Evolutionary Biology, Brown University, 171 Meeting Street, GB 204, Providence, RI 02912, USA; Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, SCA 110, Tampa, FL 33620, USA
| |
Collapse
|
21
|
Langowski JKA, Dodou D, van Assenbergh P, van Leeuwen JL. Design of Tree-Frog-Inspired Adhesives. Integr Comp Biol 2020; 60:906-918. [PMID: 32413122 PMCID: PMC7751017 DOI: 10.1093/icb/icaa037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The adhesive toe pads of tree frogs have inspired the design of various so-called ‘smooth’ synthetic adhesives for wet environments. However, these adhesives do not reach the attachment performance of their biological models in terms of contact formation, maintenance of attachment, and detachment. In tree frogs, attachment is facilitated by an interconnected ensemble of superficial and internal morphological components, which together form a functional unit. To help bridging the gap between biological and bioinspired adhesives, in this review, we (1) provide an overview of the functional components of tree frog toe pads, (2) investigate which of these components (and attachment mechanisms implemented therein) have already been transferred into synthetic adhesives, and (3) highlight functional analogies between existing synthetic adhesives and tree frogs regarding the fundamental mechanisms of attachment. We found that most existing tree-frog-inspired adhesives mimic the micropatterned surface of the ventral epidermis of frog pads. Geometrical and material properties differ between these synthetic adhesives and their biological model, which indicates similarity in appearance rather than function. Important internal functional components such as fiber-reinforcement and muscle fibers for attachment control have not been considered in the design of tree-frog-inspired adhesives. Experimental work on tree-frog-inspired adhesives suggests that the micropatterning of adhesives with low-aspect-ratio pillars enables crack arresting and the drainage of interstitial liquids, which both facilitate the generation of van der Waals forces. Our analysis of experimental work on tree-frog-inspired adhesives indicates that interstitial liquids such as the mucus secreted by tree frogs play a role in detachment. Based on these findings, we provide suggestions for the future design of biomimetic adhesives. Specifically, we propose to implement internal fiber-reinforcements inspired by the fibrous structures in frog pads to create mechanically reinforced soft adhesives for high-load applications. Contractile components may stimulate the design of actuated synthetic adhesives with fine-tunable control of attachment strength. An integrative approach is needed for the design of tree-frog-inspired adhesives that are functionally analogous with their biological paradigm.
Collapse
Affiliation(s)
- Julian K A Langowski
- Experimental Zoology Group, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| | - Dimitra Dodou
- Department of BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Peter van Assenbergh
- Department of BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Johan L van Leeuwen
- Experimental Zoology Group, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD, The Netherlands
| |
Collapse
|
22
|
O'Donnell MK, Deban SM. Cling performance and surface area of attachment in plethodontid salamanders. J Exp Biol 2020; 223:jeb211706. [PMID: 32675231 DOI: 10.1242/jeb.211706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Plethodontid salamanders inhabit terrestrial, scansorial, arboreal and troglodytic habitats in which clinging and climbing allow them to access additional food and shelter as well as escape from unfavorable temperature and moisture conditions and ground-dwelling predators. Although salamanders lack claws and toe pads found in other taxa, they successfully cling to and climb on inclined, vertical and inverted substrates in nature. Maximum cling angle was tested on smooth acrylic, and the relationship between cling angle, body mass and surface area of attachment (contact area) was investigated. This study found that many salamander species can cling fully inverted using only a portion of their ventral surface area to attach. Salamanders fall into three functional groups based on mass and maximum cling angle: (1) high-performing, very small salamanders, (2) moderately high performing small and medium-sized salamanders and (3) low-performing large salamanders. They show significant differences in maximum cling angle, even between species of similar mass. In species of similar mass experiencing significantly different detachment stress (resulting from significantly different contact area), differences in morphology or behavior affect how much body surface is attached to the substrate. High performance in some species, such as Desmognathus quadramaculatus, is attributable to large contact area; low performance in a similarly sized species, Ensatina eschscholtzii, is due to behavior that negatively impacts contact area. There was no clear evidence of scaling of adhesive strength with increasing body size. Salamander maximum cling angle is the result of morphology and behavior impacting the detachment stresses experienced during clinging.
Collapse
Affiliation(s)
- Mary Kate O'Donnell
- Integrative Biology Department, University of South Florida, Tampa, FL 33620, USA
| | - Stephen M Deban
- Integrative Biology Department, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
23
|
Cerullo AR, Lai TY, Allam B, Baer A, Barnes WJP, Barrientos Z, Deheyn DD, Fudge DS, Gould J, Harrington MJ, Holford M, Hung CS, Jain G, Mayer G, Medina M, Monge-Nájera J, Napolitano T, Espinosa EP, Schmidt S, Thompson EM, Braunschweig AB. Comparative Animal Mucomics: Inspiration for Functional Materials from Ubiquitous and Understudied Biopolymers. ACS Biomater Sci Eng 2020; 6:5377-5398. [DOI: 10.1021/acsbiomaterials.0c00713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antonio R. Cerullo
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Tsoi Ying Lai
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Alexander Baer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - W. Jon P. Barnes
- Centre for Cell Engineering, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Zaidett Barrientos
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Dimitri D. Deheyn
- Marine Biology Research Division-0202, Scripps Institute of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Douglas S. Fudge
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - John Gould
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Matthew J. Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Mandë Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, New York 10024, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Gaurav Jain
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802, United States
| | - Julian Monge-Nájera
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Tanya Napolitano
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Eric M. Thompson
- Sars Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5020 Bergen, Norway
- Department of Biological Sciences, University of Bergen, N-5006 Bergen, Norway
| | - Adam B. Braunschweig
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
24
|
Federle W, Labonte D. Dynamic biological adhesion: mechanisms for controlling attachment during locomotion. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190199. [PMID: 31495309 PMCID: PMC6745483 DOI: 10.1098/rstb.2019.0199] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2019] [Indexed: 01/12/2023] Open
Abstract
The rapid control of surface attachment is a key feature of natural adhesive systems used for locomotion, and a property highly desirable for man-made adhesives. Here, we describe the challenges of adhesion control and the timescales involved across diverse biological attachment systems and different adhesive mechanisms. The most widespread control principle for dynamic surface attachment in climbing animals is that adhesion is 'shear-sensitive' (directional): pulling adhesive pads towards the body results in strong attachment, whereas pushing them away from it leads to easy detachment, providing a rapid mechanical 'switch'. Shear-sensitivity is based on changes of contact area and adhesive strength, which in turn arise from non-adhesive default positions, the mechanics of peeling, pad sliding, and the targeted storage and controlled release of elastic strain energy. The control of adhesion via shear forces is deeply integrated with the climbing animals' anatomy and locomotion, and involves both active neuromuscular control, and rapid passive responses of sophisticated mechanical systems. The resulting dynamic adhesive systems are robust, reliable, versatile and nevertheless remarkably simple. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.
Collapse
Affiliation(s)
- Walter Federle
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - David Labonte
- Department of Bioengineering, Imperial College, London, UK
| |
Collapse
|
25
|
Labonte D, Struecker MY, Birn-Jeffery AV, Federle W. Shear-sensitive adhesion enables size-independent adhesive performance in stick insects. Proc Biol Sci 2019; 286:20191327. [PMID: 31640508 DOI: 10.1098/rspb.2019.1327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ability to climb with adhesive pads conveys significant advantages and is widespread in the animal kingdom. The physics of adhesion predict that attachment is more challenging for large animals, whereas detachment is harder for small animals, due to the difference in surface-to-volume ratios. Here, we use stick insects to show that this problem is solved at both ends of the scale by linking adhesion to the applied shear force. Adhesive forces of individual insect pads, measured with perpendicular pull-offs, increased approximately in proportion to a linear pad dimension across instars. In sharp contrast, whole-body force measurements suggested area scaling of adhesion. This discrepancy is explained by the presence of shear forces during whole-body measurements, as confirmed in experiments with pads sheared prior to detachment. When we applied shear forces proportional to either pad area or body weight, pad adhesion also scaled approximately with area or mass, respectively, providing a mechanism that can compensate for the size-related loss of adhesive performance predicted by isometry. We demonstrate that the adhesion-enhancing effect of shear forces is linked to pad sliding, which increased the maximum adhesive force per area sustainable by the pads. As shear forces in natural conditions are expected to scale with mass, sliding is more frequent and extensive in large animals, thus ensuring that large animals can attach safely, while small animals can still detach their pads effortlessly. Our results therefore help to explain how nature's climbers maintain a dynamic attachment performance across seven orders of magnitude in body weight.
Collapse
Affiliation(s)
- David Labonte
- Department of Bioengineering, Imperial College, London, UK
| | | | | | - Walter Federle
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Meng F, Liu Q, Wang X, Tan D, Xue L, Barnes WJP. Tree frog adhesion biomimetics: opportunities for the development of new, smart adhesives that adhere under wet conditions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20190131. [PMID: 31177956 PMCID: PMC6562351 DOI: 10.1098/rsta.2019.0131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 05/31/2023]
Abstract
Enlarged adhesive toe pads on the tip of each digit allow tree frogs to climb smooth vertical and overhanging surfaces, and are effective in generating reversible adhesion under both dry and wet conditions. In this review, we discuss the complexities of the structure of tree frog toe pads in relation to their function and review their biomimetic potential. Of particular importance are the (largely) hexagonal epithelial cells surrounded by deep channels that cover the surface of each toe pad and the array of nanopillars on their surface. Fluid secreted by the pads covers the surface of each pad, so the pads adhere by wet adhesion, involving both capillarity and viscosity-dependent forces. The fabrication and testing of toe pad mimics are challenging, but valuable both for testing hypotheses concerning tree frog toe pad function and for developing toe pad mimics. Initial mimics involved the fabrication of hexagonal pillars mimicking the toe pad epithelial structure. More recent ones additionally replicate the nanostructures on their surface. Finally we describe some of the biomimetic applications that have been developed from toe pad mimics, which include both bioinspired adhesives and friction-generating devices. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology (part 2)'.
Collapse
Affiliation(s)
- Fandong Meng
- School of Power and Mechanical Engineering, Wuhan University, South Donghu Road 8, Wuhan, People's Republic of China
| | - Quan Liu
- School of Power and Mechanical Engineering, Wuhan University, South Donghu Road 8, Wuhan, People's Republic of China
| | - Xin Wang
- School of Power and Mechanical Engineering, Wuhan University, South Donghu Road 8, Wuhan, People's Republic of China
| | - Di Tan
- School of Power and Mechanical Engineering, Wuhan University, South Donghu Road 8, Wuhan, People's Republic of China
| | - Longjian Xue
- School of Power and Mechanical Engineering, Wuhan University, South Donghu Road 8, Wuhan, People's Republic of China
| | - W. Jon. P. Barnes
- Centre for Cell Engineering, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK
| |
Collapse
|
27
|
Ji A, Yuan S, Endlein T, Hill IDC, Wang W, Wang H, Jiang N, Zhao Z, Barnes WJP, Dai Z. A force-measuring and behaviour-recording system consisting of 24 individual 3D force plates for the study of single limb forces in climbing animals on a quasi-cylindrical tower. BIOINSPIRATION & BIOMIMETICS 2019; 14:046004. [PMID: 31026861 DOI: 10.1088/1748-3190/ab1d11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This study describes the design of a new force measuring array with a quasi-cylindrical surface for measuring the 3D ground reaction forces of animals climbing on a surface with high curvature. This force-measuring array was assembled from 24 individual 3D force sensors, each with a resolution at the millinewton (mN) level, which were installed from top to bottom in four columns and six rows, with sensors in neighbouring columns staggered in height. Three cameras were used to simultaneously record the climbing behaviours of animals (in these experiments tree frogs) on the cylinder-like force measuring array. We were thus able to simultaneously record the ground reaction forces of each of the four limbs of tree frogs (here six individuals of the Chinese gliding or flying frog, Rhacophorus dennysi, with forelimb spans in the range 163-201 mm) climbing or descending both smooth and rough surfaces on a quasi-cylindrical structure with an overall diameter of 79 mm. We describe the design and calibration of the individual force sensors, their installation and arrangement on the quasi-cylindrical climbing tower, the recording of ground reaction forces and climbing behaviour, data transformations necessitated by the angular relationship of neighbouring sensors, and data processing using MATLAB scripts. Additionally, we present preliminary data on the use of a clamping grip by climbing frogs and the existence of small pull-off forces that aid toe-pad detachment at the end of each locomotor stance phase.
Collapse
Affiliation(s)
- Aihong Ji
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Escalona Sulbarán MD, Ivo Simões P, Gonzalez-Voyer A, Castroviejo-Fisher S. Neotropical frogs and mating songs: The evolution of advertisement calls in glassfrogs. J Evol Biol 2018; 32:163-176. [PMID: 30481406 DOI: 10.1111/jeb.13406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 02/04/2023]
Abstract
Anurans emit advertisement calls with the purpose of attracting mates and repelling conspecific competitors. The evolution of call traits is expected to be associated with the evolution of anatomical and behavioural traits due to the physics of call emission and transmission. The evolution of vocalizations might imply trade-offs with other energetically costly behaviours, such as parental care. Here, we investigated the association between body size, calling site, parental care and call properties (call duration, number of notes, peak frequency, frequency bandwidth and call structure) of the advertisement calls of glassfrogs (Centrolenidae)-a family of Neotropical, leaf-dwelling anurans-using phylogenetic comparative methods. We also explored the tempo and mode of evolution of these traits and compared them with those of three morphological traits associated with body size, locomotion and feeding. We generated and compiled acoustic data for 72 glassfrog species (46% of total species richness), including representatives of all genera. We found that almost all acoustic traits have significant, but generally modest, phylogenetic signal. Peak frequency of calls is significantly associated with body size, whereas call structure is significantly associated with calling site and paternal care. Thus, the evolution of body size, calling site and paternal care could constrain call evolution. The estimated disparity of acoustic traits was larger than that of morphological traits and the peak in disparity of acoustic traits generally occurred later in the evolution of glassfrogs, indicating a historically recent outset of the acoustic divergence in this clade.
Collapse
Affiliation(s)
- Moisés D Escalona Sulbarán
- Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Ivo Simões
- Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alejandro Gonzalez-Voyer
- Instituto de Ecología, Departamento de Ecología Evolutiva, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Santiago Castroviejo-Fisher
- Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Herpetology, American Museum of Natural History, New York City, New York
| |
Collapse
|
30
|
The Method of Multi-Camera Layout in Motion Capture System for Diverse Small Animals. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Motion capture based on multi-camera is widely used in the quantification of animal locomotor behaviors and this is one of the main research methods to reveal the physical laws of animal locomotion and to inspire the design and realization of bionic robot. It has been found that the multi-camera layout patterns greatly affect the effect of motion capture. Due to the researches for animals of diverse species, determining the most appropriate layout patterns to achieve excellent capture performance remains an unresolved challenge. To improve the capturing accuracy, this investigation focuses on the method of multi-camera layout as a motion capture system for diverse animals with significant differences in outward appearance characteristics and locomotor behaviors. The demand boundaries of motion capture are determined according to the appearance types (shapes and space volume) and the behavior characteristics of the animals, resulting in the matching principle of the typical multi-camera layout patterns (arch, annular and half-annular) with diverse animals. The results of the calibration experiments show that the average standard deviation rate (ASDR) of multi-camera system in the half-annular layout patterns (0.52%) is apparently smaller than that of the other two patterns, while its intersecting volume is the largest among the three patterns. The ASDR at different depths of field in a half-annular layout demonstrate that the greater depth of field is conducive to improving the precision of the motion capture system. Laboratory experiments of the motion capture for small animals (geckos and spiders) employed the multi-camera system locked in the 3-D force measuring platform in a half-annular layout pattern indicate that the ASDR of them could reach less than 3.8% and their capturing deviation rate (ACDR) are respectively 3.43% and 1.74%. In this report, the correlations between the motion capture demand boundaries of small animals and the characteristics of the multi-camera layout patterns were determined to advance the motion capture experimental technology for all kinds of small animals, which can provide effective support for the understanding of animal locomotion.
Collapse
|
31
|
Langowski JKA, Dodou D, Kamperman M, van Leeuwen JL. Tree frog attachment: mechanisms, challenges, and perspectives. Front Zool 2018; 15:32. [PMID: 30154908 PMCID: PMC6107968 DOI: 10.1186/s12983-018-0273-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/29/2018] [Indexed: 11/16/2022] Open
Abstract
Tree frogs have the remarkable ability to attach to smooth, rough, dry, and wet surfaces using their versatile toe pads. Tree frog attachment involves the secretion of mucus into the pad-substrate gap, requiring adaptations towards mucus drainage and pad lubrication. Here, we present an overview of tree frog attachment, with focus on (i) the morphology and material of the toe pad; (ii) the functional demands on the toe pad arising from ecology, lifestyle, and phylogenetics; (iii) experimental data of attachment performance such as adhesion and friction forces; and (iv) potential perspectives on future developments in the field. By revisiting reported data and observations, we discuss the involved mechanisms of attachment and propose new hypotheses for further research. Among others, we address the following questions: Do capillary and hydrodynamic forces explain the strong friction of the toe pads directly, or indirectly by promoting dry attachment mechanisms? If friction primarily relies on van der Waals (vdW) forces instead, how much do these forces contribute to adhesion in the wet environment tree frogs live in and what role does the mucus play? We show that both pad morphology and measured attachment performance suggest the coaction of several attachment mechanisms (e.g. capillary and hydrodynamic adhesion, mechanical interlocking, and vdW forces) with situation-dependent relative importance. Current analytical models of capillary and hydrodynamic adhesion, caused by the secreted mucus and by environmental liquids, do not capture the contributions of these mechanisms in a comprehensive and accurate way. We argue that the soft pad material and a hierarchical surface pattern on the ventral pad surface enhance the effective contact area and facilitate gap-closure by macro- to nanoscopic drainage of interstitial liquids, which may give rise to a significant contribution of vdW interactions to tree frog attachment. Increasing the comprehension of the complex mechanism of tree frog attachment contributes to a better understanding of other biological attachment systems (e.g. in geckos and insects) and is expected to stimulate the development of a wide array of bioinspired adhesive applications.
Collapse
Affiliation(s)
- Julian K. A. Langowski
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD The Netherlands
| | - Dimitra Dodou
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD The Netherlands
| | - Marleen Kamperman
- Physical Chemistry and Soft Matter, Department of Agrotechnology and Food Sciences, Wageningen University & Research, Stippeneng 4, Wageningen, 6708 WE The Netherlands
| | - Johan L. van Leeuwen
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD The Netherlands
| |
Collapse
|
32
|
Langowski JKA, Schipper H, Blij A, van den Berg FT, Gussekloo SWS, van Leeuwen JL. Force-transmitting structures in the digital pads of the tree frog Hyla cinerea: a functional interpretation. J Anat 2018; 233:478-495. [PMID: 30123974 PMCID: PMC6131963 DOI: 10.1111/joa.12860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2018] [Indexed: 01/11/2023] Open
Abstract
The morphology of the digital pads of tree frogs is adapted towards attachment, allowing these animals to attach to various substrates and to explore their arboreal habitat. Previous descriptions and functional interpretations of the pad morphology mostly focussed on the surface of the ventral epidermis, and little is known about the internal pad morphology and its functional relevance in attachment. In this study, we combine histology and synchrotron micro‐computer‐tomography to obtain a comprehensive 3‐D morphological characterisation of the digital pads (in particular of the internal structures involved in the transmission of attachment forces from the ventral pad surface towards the phalanges) of the tree frog Hyla cinerea. A collagenous septum runs from the distal tip of the distal phalanx to the ventral cutis and compartmentalises the subcutaneous pad volume into a distal lymph space and a proximal space, which contains mucus glands opening via long ducts to the ventral pad surface. A collagen layer connects the ventral basement membrane via interphalangeal ligaments with the middle phalanx. The collagen fibres forming this layer curve around the transverse pad‐axis and form laterally separated ridges below the gland space. The topological optimisation of a shear‐loaded pad model using finite element analysis (FEA) shows that the curved collagen fibres are oriented along the trajectories of the maximum principal stresses, and the optimisation also results in ridge‐formation, suggesting that the collagen layer is adapted towards a high stiffness during shear loading. We also show that the collagen layer is strong, with an estimated tensile strength of 2.0–6.5 N. Together with longitudinally skewed tonofibrils in the superficial epidermis, these features support our hypothesis that the digital pads of tree frogs are primarily adapted towards the generation and transmission of friction rather than adhesion forces. Moreover, we generate (based on a simplified FEA model and predictions from analytical models) the hypothesis that dorsodistal pulling on the collagen septum facilitates proximal peeling of the pad and that the septum is an adaptation towards detachment rather than attachment. Lastly, by using immunohistochemistry, we (re‐)discovered bundles of smooth muscle fibres in the digital pads of tree frogs. We hypothesise that these fibres allow the control of (i) contact stresses at the pad–substrate interface and peeling, (ii) mucus secretion, (iii) shock‐absorbing properties of the pad, and (iv) the macroscopic contact geometry of the ventral pad surface. Further work is needed to conclude on the role of the muscular structures in tree frog attachment. Overall, our study contributes to the functional understanding of tree frog attachment, hence offering novel perspectives on the ecology, phylogeny and evolution of anurans, as well as the design of tree‐frog‐inspired adhesives for technological applications.
Collapse
Affiliation(s)
- Julian K A Langowski
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Henk Schipper
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Anne Blij
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Frank T van den Berg
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Sander W S Gussekloo
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Johan L van Leeuwen
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
33
|
Endlein T, Ji A, Yuan S, Hill I, Wang H, Barnes WJP, Dai Z, Sitti M. The use of clamping grips and friction pads by tree frogs for climbing curved surfaces. Proc Biol Sci 2018; 284:rspb.2016.2867. [PMID: 28228509 PMCID: PMC5326540 DOI: 10.1098/rspb.2016.2867] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/30/2017] [Indexed: 11/23/2022] Open
Abstract
Most studies on the adhesive mechanisms of climbing animals have addressed attachment against flat surfaces, yet many animals can climb highly curved surfaces, like twigs and small branches. Here we investigated whether tree frogs use a clamping grip by recording the ground reaction forces on a cylindrical object with either a smooth or anti-adhesive, rough surface. Furthermore, we measured the contact area of fore and hindlimbs against differently sized transparent cylinders and the forces of individual pads and subarticular tubercles in restrained animals. Our study revealed that frogs use friction and normal forces of roughly a similar magnitude for holding on to cylindrical objects. When challenged with climbing a non-adhesive surface, the compressive forces between opposite legs nearly doubled, indicating a stronger clamping grip. In contrast to climbing flat surfaces, frogs increased the contact area on all limbs by engaging not just adhesive pads but also subarticular tubercles on curved surfaces. Our force measurements showed that tubercles can withstand larger shear stresses than pads. SEM images of tubercles revealed a similar structure to that of toe pads including the presence of nanopillars, though channels surrounding epithelial cells were less pronounced. The tubercles' smaller size, proximal location on the toes and shallow cells make them probably less prone to buckling and thus ideal for gripping curved surfaces.
Collapse
Affiliation(s)
- Thomas Endlein
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Aihong Ji
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, People's Republic of China
| | - Shanshan Yuan
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, People's Republic of China
| | - Iain Hill
- Centre for Cell Engineering, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, UK
| | - Huan Wang
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, People's Republic of China
| | - W Jon P Barnes
- Centre for Cell Engineering, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, UK
| | - Zhendong Dai
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, People's Republic of China
| | - Metin Sitti
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| |
Collapse
|
34
|
Bio-Inspired Adhesive Footpad for Legged Robot Climbing under Reduced Gravity: Multiple Toes Facilitate Stable Attachment. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8010114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Labonte D, Federle W. Biomechanics of shear-sensitive adhesion in climbing animals: peeling, pre-tension and sliding-induced changes in interface strength. J R Soc Interface 2017; 13:rsif.2016.0373. [PMID: 27605165 PMCID: PMC5046945 DOI: 10.1098/rsif.2016.0373] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/17/2016] [Indexed: 11/15/2022] Open
Abstract
Many arthropods and small vertebrates use adhesive pads for climbing. These biological adhesives have to meet conflicting demands: attachment must be strong and reliable, yet detachment should be fast and effortless. Climbing animals can rapidly and reversibly control their pads' adhesive strength by shear forces, but the mechanisms underlying this coupling have remained unclear. Here, we show that adhesive forces of stick insect pads closely followed the predictions from tape peeling models when shear forces were small, but strongly exceeded them when shear forces were large, resulting in an approximately linear increase of adhesion with friction. Adhesion sharply increased at peel angles less than ca 30°, allowing a rapid switch between attachment and detachment. The departure from classic peeling theory coincided with the appearance of pad sliding, which dramatically increased the peel force via a combination of two mechanisms. First, partial sliding pre-stretched the pads, so that they were effectively stiffer upon detachment and peeled increasingly like inextensible tape. Second, pad sliding reduces the thickness of the fluid layer in the contact zone, thereby increasing the stress levels required for peeling. In combination, these effects can explain the coupling between adhesion and friction that is fundamental to adhesion control across all climbing animals. Our results highlight that control of adhesion is not solely achieved by direction-dependence and morphological anisotropy, suggesting promising new routes for the development of controllable bio-inspired adhesives.
Collapse
Affiliation(s)
- David Labonte
- Department of Engineering, University of Cambridge, Cambridge CB2 3EJ, UK Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Walter Federle
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
36
|
Voigt D, Tsipenyuk A, Varenberg M. How tight are beetle hugs? Attachment in mating leaf beetles. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171108. [PMID: 28989792 PMCID: PMC5627132 DOI: 10.1098/rsos.171108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 05/15/2023]
Abstract
Similar to other leaf beetles, rosemary beetles Chrysolina americana exhibit a distinct sexual dimorphism in tarsal attachment setae. Setal discoid terminals occur only in males, and they have been previously associated with a long-term attachment to the female's back (elytra) during copulation and mate guarding. For the first time, we studied living males and females holding to female's elytra. Pull-off force measurements with a custom-made tribometer featuring a self-aligning sample holder confirmed stronger attachment to female elytra compared with glass in both males and females; corresponding to 45 and 30 times the body weight, respectively. In line with previous studies, males generated significantly higher forces than females on convex elytra and flat glass, 1.2 times and 6.8 times, respectively. Convex substrates like elytra seem to improve the attachment ability of rosemary beetles, because they can hold more strongly due to favourable shear angles of legs, tarsi and adhesive setae. A self-aligning sample holder is found to be suitable for running force measurement tests with living biological samples.
Collapse
Affiliation(s)
- Dagmar Voigt
- Institute for Botany, Technische Universität Dresden, 01062 Dresden, Germany
- Author for correspondence: Dagmar Voigt e-mail:
| | - Alexey Tsipenyuk
- Department of Mechanical Engineering, Technion—Israel Institute of Technology, Technion City, 32000 Haifa, Israel
| | - Michael Varenberg
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332, USA
| |
Collapse
|
37
|
Crawford N, Endlein T, Pham JT, Riehle M, Barnes WJP. When the going gets rough - studying the effect of surface roughness on the adhesive abilities of tree frogs. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:2116-2131. [PMID: 28144558 PMCID: PMC5238669 DOI: 10.3762/bjnano.7.201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/30/2016] [Indexed: 05/05/2023]
Abstract
Tree frogs need to adhere to surfaces of various roughnesses in their natural habitats; these include bark, leaves and rocks. Rough surfaces can alter the effectiveness of their toe pads, due to factors such as a change of real contact area and abrasion of the pad epithelium. Here, we tested the effect of surface roughness on the attachment abilities of the tree frog Litoria caerulea. This was done by testing shear and adhesive forces on artificial surfaces with controlled roughness, both on single toe pads and whole animal scales. It was shown that frogs can stick 2-3 times better on small scale roughnesses (3-6 µm asperities), producing higher adhesive and frictional forces, but relatively poorly on the larger scale roughnesses tested (58.5-562.5 µm asperities). Our experiments suggested that, on such surfaces, the pads secrete insufficient fluid to fill the space under the pad, leaving air pockets that would significantly reduce the Laplace pressure component of capillarity. Therefore, we measured how well the adhesive toe pad would conform to spherical asperities of known sizes using interference reflection microscopy. Based on experiments where the conformation of the pad to individual asperities was examined microscopically, our calculations indicate that the pad epithelium has a low elastic modulus, making it highly deformable.
Collapse
Affiliation(s)
- Niall Crawford
- Centre for Cell Engineering, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, UK
| | - Thomas Endlein
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | | | - Mathis Riehle
- Centre for Cell Engineering, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, UK
| | - W Jon P Barnes
- Centre for Cell Engineering, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, UK
| |
Collapse
|
38
|
A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-to-Steel Joints. MATERIALS 2016; 9:ma9070566. [PMID: 28773688 PMCID: PMC5456843 DOI: 10.3390/ma9070566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/20/2016] [Accepted: 07/01/2016] [Indexed: 11/16/2022]
Abstract
There are a great variety of joint types used in nature which can inspire engineering joints. In order to design such biomimetic joints, it is at first important to understand how biological joints work. A comprehensive literature review, considering natural joints from a mechanical point of view, was undertaken. This was used to develop a taxonomy based on the different methods/functions that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several glass fibre reinforced plastic (GFRP) to steel adhesively bonded joint configurations. The transition zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element model was used to identify the optimum variation in material stiffness that minimises potential failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to the standard joints.
Collapse
|
39
|
Song Y, Dai Z, Wang Z, Ji A, Gorb SN. The synergy between the insect-inspired claws and adhesive pads increases the attachment ability on various rough surfaces. Sci Rep 2016; 6:26219. [PMID: 27198650 PMCID: PMC4873747 DOI: 10.1038/srep26219] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/29/2016] [Indexed: 11/09/2022] Open
Abstract
To attach reliably on various inclined rough surfaces, many insects have evolved both claws and adhesive pads on their feet. However, the interaction between these organs still remains unclear. Here we designed an artificial attachment device, which mimics the structure and function of claws and adhesive pads, and tested it on stiff spheres of different dimensions. The results show that the attachment forces of claws decrease with an increase of the sphere radius. The forces may become very strong, when the sphere radius is smaller or comparable to the claw radius, because of the frictional self-lock. On the other hand, adhesive pads generate considerable adhesion on large sphere diameter due to large contact areas. The synergy effect between the claws and adhesive pads leads to much stronger attachment forces, if compared to the action of claw or adhesive pads independently (or even to the sum of both). The results carried out by our insect-inspired artificial attachment device clearly demonstrate why biological evolution employed two attachment organs working in concert. The results may greatly inspire the robot design, to obtain reliable attachment forces on various substrates.
Collapse
Affiliation(s)
- Yi Song
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016, Nanjing, China.,College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016, Nanjing, China
| | - Zhendong Dai
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016, Nanjing, China
| | - Zhouyi Wang
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016, Nanjing, China
| | - Aihong Ji
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016, Nanjing, China
| | - Stanislav N Gorb
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016, Nanjing, China.,Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, D-24098 Kiel, Germany
| |
Collapse
|
40
|
Kappl M, Kaveh F, Barnes WJP. Nanoscale friction and adhesion of tree frog toe pads. BIOINSPIRATION & BIOMIMETICS 2016; 11:035003. [PMID: 27165465 DOI: 10.1088/1748-3190/11/3/035003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Tree frogs have become an object of interest in biomimetics due to their ability to cling to wet and slippery surfaces. In this study, we have investigated the adhesion and friction behavior of toe pads of White's tree frog (Litoria caerulea) using atomic force microscopy (AFM) in an aqueous medium. Facilitating special types of AFM probes with radii of ∼400 nm and ∼13 μm, we were able to sense the frictional response without damaging the delicate nanopillar structures of the epithelial cells. While we observed no significant adhesion between both types of probes and toe pads in wet conditions, frictional forces under such conditions were very pronounced and friction coefficients amounted between 0.3 and 1.1 for the sliding friction between probes and the epithelial cell surfaces.
Collapse
|
41
|
Bijma NN, Gorb SN, Kleinteich T. Landing on branches in the frog Trachycephalus resinifictrix (Anura: Hylidae). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:267-76. [PMID: 26803830 PMCID: PMC4819504 DOI: 10.1007/s00359-016-1069-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 11/29/2022]
Abstract
Frogs (Lissamphibia: Anura) are famous for their saltatory or hopping locomotion, which is related to numerous anatomical specialisations that are characteristic for the group. However, while the biomechanics of take-off in frogs have been studied in detail, much less is known on how frogs land after a jump. Besides terrestrial and aquatic species, several lineages of frogs adopted an arboreal lifestyle and especially the biomechanics of landing on challenging, small, and unpredictable substrates, such as leaves or branches, are virtually unknown. Here we studied the landing kinematics of the arboreal frog Trachycephalus resinifictrix (Hylidae) on a wooden stick that was used to mimic a small tree branch. We observed two different landing behaviours: (1) landing on the abdomen and (2) attachment with the toes of either the forelimb or the hindlimb. In the latter case, the frogs performed a cartwheel around the stick, while they were only attached by their adhesive toe pads. We estimated the forces that act on the toes during this behaviour to be up to fourteen times the body weight of the animals. This behaviour demonstrates the remarkable adhesive capabilities of the toe pads and the body control of the frogs.
Collapse
Affiliation(s)
- Nienke N Bijma
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Thomas Kleinteich
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany.
| |
Collapse
|
42
|
Labonte D, Federle W. Scaling and biomechanics of surface attachment in climbing animals. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140027. [PMID: 25533088 PMCID: PMC4275900 DOI: 10.1098/rstb.2014.0027] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Attachment devices are essential adaptations for climbing animals and valuable models for synthetic adhesives. A major unresolved question for both natural and bioinspired attachment systems is how attachment performance depends on size. Here, we discuss how contact geometry and mode of detachment influence the scaling of attachment forces for claws and adhesive pads, and how allometric data on biological systems can yield insights into their mechanism of attachment. Larger animals are expected to attach less well to surfaces, due to their smaller surface-to-volume ratio, and because it becomes increasingly difficult to distribute load uniformly across large contact areas. In order to compensate for this decrease of weight-specific adhesion, large animals could evolve overproportionally large pads, or adaptations that increase attachment efficiency (adhesion or friction per unit contact area). Available data suggest that attachment pad area scales close to isometry within clades, but pad efficiency in some animals increases with size so that attachment performance is approximately size-independent. The mechanisms underlying this biologically important variation in pad efficiency are still unclear. We suggest that switching between stress concentration (easy detachment) and uniform load distribution (strong attachment) via shear forces is one of the key mechanisms enabling the dynamic control of adhesion during locomotion.
Collapse
Affiliation(s)
- David Labonte
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Walter Federle
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
43
|
Ponce S, Bico J, Roman B. Effect of friction on the peeling test at zero-degrees. SOFT MATTER 2015; 11:9281-9290. [PMID: 26426730 DOI: 10.1039/c5sm01203a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We describe the peeling of an elastomeric strip adhering to a glass plate through van der Waals interactions in the limit of a zero peeling angle. In contrast to classical studies that predict a saturation of the pulling force, in this lap test configuration the force continuously increases, while a sliding front propagates along the tape. The strip eventually detaches from the substrate when the front reaches its end. Although the evolution of the force is reminiscent of recent studies involving a compliant adhesive coupled with a rigid backing, the progression of a front is in contradiction with such a mechanism. To interpret this behavior, we estimate the local shear stress at the interface by monitoring the deformation of the strip. Our results are consistent with a nearly constant friction stress in the sliding zone in agreement with other experimental observations where adhesion and friction are observed.
Collapse
Affiliation(s)
- Suomi Ponce
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), UMR CNRS 7636; Sorbonne Université - UPMC, Univ. Paris 06; Sorbonne Paris Cité - UPD, Univ. Paris 07; PSL - ESPCI, 10 rue Vauquelin, 75005 Paris, France.
| | - José Bico
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), UMR CNRS 7636; Sorbonne Université - UPMC, Univ. Paris 06; Sorbonne Paris Cité - UPD, Univ. Paris 07; PSL - ESPCI, 10 rue Vauquelin, 75005 Paris, France.
| | - Benoît Roman
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), UMR CNRS 7636; Sorbonne Université - UPMC, Univ. Paris 06; Sorbonne Paris Cité - UPD, Univ. Paris 07; PSL - ESPCI, 10 rue Vauquelin, 75005 Paris, France.
| |
Collapse
|
44
|
King DR, Crosby AJ. Optimizing Adhesive Design by Understanding Compliance. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27771-27781. [PMID: 26618537 DOI: 10.1021/acsami.5b08934] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Adhesives have long been designed around a trade-off between adhesive strength and releasability. Geckos are of interest because they are the largest organisms which are able to climb utilizing adhesive toepads, yet can controllably release from surfaces and perform this action over and over again. Attempting to replicate the hierarchical, nanoscopic features which cover their toepads has been the primary focus of the adhesives field until recently. A new approach based on a scaling relation which states that reversible adhesive force capacity scales with (A/C)(1/2), where A is the area of contact and C is the compliance of the adhesive, has enabled the creation of high strength, reversible adhesives without requiring high aspect ratio, fibrillar features. Here we introduce an equation to calculate the compliance of adhesives, and utilize this equation to predict the shear adhesive force capacity of the adhesive based on the material components and geometric properties. Using this equation, we have investigated important geometric parameters which control force capacity and have shown that by controlling adhesive shape, adhesive force capacity can be increased by over 50% without varying pad size. Furthermore, we have demonstrated that compliance of the adhesive far from the interface still influences shear adhesive force capacity. Utilizing this equation will allow for the production of adhesives which are optimized for specific applications in commercial and industrial settings.
Collapse
Affiliation(s)
- Daniel R King
- Polymer Science and Engineering Department, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Alfred J Crosby
- Polymer Science and Engineering Department, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
45
|
Labonte D, Federle W. Rate-dependence of 'wet' biological adhesives and the function of the pad secretion in insects. SOFT MATTER 2015; 11:8661-73. [PMID: 26376599 DOI: 10.1039/c5sm01496d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Many insects use soft adhesive footpads for climbing. The surface contact of these organs is mediated by small volumes of a liquid secretion, which forms thin films in the contact zone. Here, we investigate the role of viscous dissipation by this secretion and the 'bulk' pad cuticle by quantifying the rate-dependence of the adhesive force of individual pads. Adhesion increased with retraction speed, but this effect was independent of the amount of pad secretion present in the contact zone, suggesting that the secretion's viscosity did not play a significant role. Instead, the rate-dependence can be explained by relating the strain energy release rate to the speed of crack propagation, using an established empirical power law. The 'wet' pads' behaviour was akin to that of 'dry' elastomers, with an equilibrium energy release rate close to that of dry van-der-Waals contacts. We suggest that the secretion mainly serves as a 'release layer', minimising viscous dissipation and thereby reducing the time- and 'loading-history'-dependence of the adhesive pads. In contrast to many commercial adhesives which derive much of their strength from viscous dissipation, we show that the major modulator of adhesive strength in 'wet' biological adhesive pads is friction, exhibiting a much larger effect than retraction speed. A comparison between 'wet' and 'dry' biological adhesives, using both results from this study and the literature, revealed a striking lack of differences in attachment performance under varying experimental conditions. Together, these results suggest that 'wet' and 'dry' biological adhesives may be more similar than previously thought.
Collapse
|
46
|
Internally architectured materials with directionally asymmetric friction. Sci Rep 2015; 5:10732. [PMID: 26040634 PMCID: PMC4455183 DOI: 10.1038/srep10732] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/22/2015] [Indexed: 11/08/2022] Open
Abstract
Internally Architectured Materials (IAMs) that exhibit different friction forces for sliding in the opposite directions are proposed. This is achieved by translating deformation normal to the sliding plane into a tangential force in a manner that is akin to a toothbrush with inclined bristles. Friction asymmetry is attained by employing a layered material or a structure with parallel 'ribs' inclined to the direction of sliding. A theory of directionally asymmetric friction is presented, along with prototype IAMs designed, fabricated and tested. The friction anisotropy (the ξ-coefficient) is characterised by the ratio of the friction forces for two opposite directions of sliding. It is further demonstrated that IAM can possess very high levels of friction anisotropy, with ξ of the order of 10. Further increase in ξ is attained by modifying the shape of the ribs to provide them with directionally dependent bending stiffness. Prototype IAMs produced by 3D printing exhibit truly giant friction asymmetry, with ξ in excess of 20. A novel mechanical rectifier, which can convert oscillatory movement into unidirectional movement by virtue of directionally asymmetric friction, is proposed. Possible applications include locomotion in a constrained environment and energy harvesting from oscillatory noise and vibrations.
Collapse
|
47
|
Dhong C, Fréchette J. Coupled effects of applied load and surface structure on the viscous forces during peeling. SOFT MATTER 2015; 11:1901-1910. [PMID: 25611799 DOI: 10.1039/c4sm02616k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Tree frogs are able to take advantage of an array of epithelial cells in their toe pads to modulate their adhesion to surfaces under dry, wet, and flooded environments. It has been hypothesized that the interconnected channels separating the epithelial cells could reduce the hydrodynamic repulsion to facilitate contact under a completely submerged environment (flooded conditions). Using a custom-built apparatus we investigate the interplay between surface structure and loading conditions on the peeling force. By combining a normal approach and detachment by peeling we can isolate the effects of surface structure from the loading conditions. We investigate three surfaces: two rigid structured surfaces that consist of arrays of cylindrical posts and a flat surface as a control. We observe three regimes in the work required to separate the structured surface that depend on the fluid film thickness prior to pull out. These three regimes are based on hydrodynamics and our experimental results are compared with a simple scaling argument that relates the surface features to the different regimes observed. Overall we find that the work of separation of a structured surface is always less than or equal to that for a smooth surface when considering purely viscous contributions.
Collapse
Affiliation(s)
- Charles Dhong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | |
Collapse
|
48
|
Drotlef DM, Appel E, Peisker H, Dening K, Del Campo A, Gorb SN, Barnes WJP. Morphological studies of the toe pads of the rock frog, Staurois parvus (family: Ranidae) and their relevance to the development of new biomimetically inspired reversible adhesives. Interface Focus 2015; 5:20140036. [PMID: 25657830 DOI: 10.1098/rsfs.2014.0036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The morphology of the toe epithelium of the rock frog, Staurois parvus (Family Ranidae), was investigated using a variety of microscopical techniques. The toe pad epithelium is stratified (four to five cell layers), the apical parts of the cells of the outermost layer being separated by fluid-filled channels. The surface of these cells is covered by a dense array of nanopillars, which also cover the surface of subarticular tubercles and unspecialized ventral epithelium of the toes, but not the dorsal epithelium. The apical portions of the outer two layers contain fibrils that originate from the nanopillars and are oriented approximately normal to the surface. This structure is similar to the pad structure of tree frogs of the families Hylidae and Rhacophoridae, indicating evolutionary convergence and a common evolutionary design for reversible attachment in climbing frogs. The main adaptation to the torrent habitat seems to be the straightness of the channels crossing the toe pad, which will assist in drainage of excess water. The presence of nanopillar arrays on all ventral surfaces of the toes resembles that on clingfish suckers and may be a specific adaptation for underwater adhesion and friction. The relevance of these findings to the development of new biomimetically inspired reversible adhesives is discussed.
Collapse
Affiliation(s)
- Dirk M Drotlef
- Max Planck Institut für Polymerforschung , Mainz , Germany
| | - Esther Appel
- Functional Morphology and Biomechanics , University of Kiel , Kiel , Germany
| | - Henrik Peisker
- Functional Morphology and Biomechanics , University of Kiel , Kiel , Germany
| | - Kirstin Dening
- Functional Morphology and Biomechanics , University of Kiel , Kiel , Germany
| | | | - Stanislav N Gorb
- Functional Morphology and Biomechanics , University of Kiel , Kiel , Germany
| | - W Jon P Barnes
- Centre for Cell Engineering , University of Glasgow , Scotland , UK
| |
Collapse
|
49
|
Wang Z, Dai Z, Ji A, Ren L, Xing Q, Dai L. Biomechanics of gecko locomotion: the patterns of reaction forces on inverted, vertical and horizontal substrates. BIOINSPIRATION & BIOMIMETICS 2015; 10:016019. [PMID: 25650374 DOI: 10.1088/1748-3190/10/1/016019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The excellent locomotion ability of geckos on various rough and/or inclined substrates has attracted scientists' attention for centuries. However, the moving ability of gecko-mimicking robots on various inclined surfaces still lags far behind that of geckos, mainly because our understanding of how geckos govern their locomotion is still very poor. To reveal the fundamental mechanism of gecko locomotion and also to facilitate the design of gecko-mimicking robots, we have measured the reaction forces (RFs) acting on each individual foot of moving geckos on inverted, vertical and horizontal substrates (i.e. ceiling, wall and floor), have associated the RFs with locomotion behaviors by using high-speed camera, and have presented the relationships of the force components with patterns of reaction forces (PRFs). Geckos generate different PRF on ceiling, wall and floor, that is, the PRF is determined by the angles between the direction of gravity and the substrate on which geckos move. On the ceiling, geckos produce reversed shear forces acting on the front and hind feet, which pull away from the body in both lateral and fore-aft directions. They use a very large supporting angle from 21° to 24° to reduce the forces acting on their legs and feet. On the floor, geckos lift their bodies using a supporting angle from 76° to 78°, which not only decreases the RFs but also improves their locomotion ability. On the wall, geckos generate a reliable self-locking attachment by using a supporting angle of 14.8°, which is only about half of the critical angle of detachment.
Collapse
Affiliation(s)
- Zhouyi Wang
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | | | | | | | | | | |
Collapse
|
50
|
Wang Z, Dai Z, Li W, Ji A, Wang W. How do the substrate reaction forces acting on a gecko's limbs respond to inclines? Naturwissenschaften 2015; 102:1259. [PMID: 25645733 DOI: 10.1007/s00114-015-1259-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/09/2015] [Accepted: 01/15/2015] [Indexed: 11/27/2022]
Abstract
Locomotion is an essential character of animals, and excellent moving ability results from the delicate sensing of the substrate reaction forces (SRF) acting on body and modulating the behavior to adapt the motion requirement. The inclined substrates present in habitats pose a number of functional challenges to locomotion. In order to effectively overcome these challenges, climbing geckos execute complex and accurate movements that involve both the front and hind limbs. Few studies have examined gecko's SRF on steeper inclines of greater than 90°. To reveal how the SRFs acting on the front and hind limbs respond to angle incline changes, we obtained detailed measurements of the three-dimensional SRFs acting on the individual limbs of the tokay gecko while it climbed on an inclined angle of 0-180°. The fore-aft forces acting on the front and hind limbs show opposite trends on inverted inclines of greater than 120°, indicating propulsion mechanism changes in response to inclines. When the incline angles change, the forces exerted in the normal and fore-aft directions by gecko's front and hind limbs are reassigned to take full advantage of limbs' different roles in overcoming resistance and in propelling locomotion. This also ensures that weight acts in the angle range between the forces generated by the front and hind limbs. The change in the distribution of SRF with a change in the incline angle is directly linked to the favorable trade-off between locomotive maneuverability and stability.
Collapse
Affiliation(s)
- Zhouyi Wang
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing, Jiangsu, 210016, China
| | | | | | | | | |
Collapse
|